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Abstract

Cryo-electron Tomography (cryo-ET) generates 3D visualization of cellular organization that allows
biologists to analyze cellular structures in a near-native state with nano resolution. Recently, deep learning
methods have demonstrated promising performance in classification and segmentation of macromolecule
structures captured by cryo-ET, but training individual deep learning models requires large amounts
of manually labeled and segmented data from previously observed classes. To perform classification
and segmentation in the wild (i.e. with limited training data and with unseen classes), novel deep
learning model needs to be developed to classify and segment unseen macromolecules captured by
cryo-ET. In this paper, we develop a one-shot learning framework, called cryo-ET one-shot network
(COS-Net), for simultaneous classification of macromolecular structure and generation of the voxel-level
3D segmentation, using only one training sample per class. Our experimental results on 22 macromolecule
classes demonstrated that our COS-Net could efficiently classify macromolecular structures with small
amounts of samples and produce accurate 3D segmentation at the same time.

Keywords: One-Shot Learning, Cryo-ET, Macromolecule Classification, Macromolecule Segmenta-
tion, Attention, Squeeze-and-Excitation

1 INTRODUCTION

Cryo-Electron Tomography (cryo-ET) has made possible the observation of cellular organelles and
macromolecular structures at nano-meter resolution with native conformations [[14]. Without disrupting
the cell, cryo-ET can visualize both known and unknown cellular structures in sit and reveals their
spatial and organizational relationships [15]. Using cryo-ET, it is possible to capture 3D structural
information of diverse macromolecular structures inside a given scanned sample.

To analyze the macromolecular structures in cryo-ET, two major subsequent steps need to occur. First,
we need to extract the subtomogram{] and average those that belong to the same macromolecular class, in
order to generate a high Signal-to-Noise Ratio (SNR) subtomogram for clear visualization [20]. Second,

' At their original locations.
2Small cubic subvolumes containing one macromolecular structure



it is desirable to obtain the macromolecule segmentation in subtomograms to analyze the macromolecular
structure parameters such as size distribution and shape. However, the macromolecular structures are
highly heterogeneous and contain large quantities of subtomograms. In the past, biologists would spend
large amounts of time on a set of tomograms to manually classify and segment subtomograms, but manual
annotation is time-consuming and susceptible to the biases of individual biologists. Therefore, it is
desirable to automatically classify the extracted subtomograms into subset of macromolecule with similar
structure, and automatically generate the macromolecular segmentation.

To automate the process as well as to achieve objective analysis, deep learning methods for classifica-
tion [18} 12,16} 21,111} [10] and segmentation [4, |12} 22] have been developed for cryo-ET. xu2017deep pro-
posed to use Inception3D network and DSRF3D network for cryo-ET subtomogram classification. Then,
che2017improved further improved the DSRF3D network with residual connection design. guo2018model
developed a cryo-ET classification model compression technique to reduce the model size while main-
taining the classification performance. zhao2018respond developed a classification model visualization
technique for explaining the model’s attention on the classified subtomograms. For cryo-ET segmentation,
chen2017convolutional utilized independent 2D CNNss for cryo-ET tomogram components segmentation.
liu2018deep built a SSN3D net for subtomogram segmentation via supervised training with large amounts
of segmentation data. While previous deep learning models on cryo-ET improved the accuracy and
efficiency on classification and segmentation, there are still two major bottlenecks: 1) as supervised
classification methods, previous algorithms still require large amount of manually annotated training data
for deep model’s training, and 2) previous algorithms need to be trained again to apply to a new dataset of
different classes. The open question is: Is it possible to design a generalizable cryo-ET subtomogram
classification model that requires only a small reference dataset (such as one manually picked sample
in each class) and match the given subtomogram to a reference class, while performing generalizable
subtomogram segmentation?

Inspired by one-shot learning models which aim to learn information about object categories from
one, or only a few training images [5, 18], In this work, we develop a Cryo-ET One-Shot Network (COS-
Net) that is able to 1) classify macromolecular structure using only a very small amount of samples, 2)
simultaneously segment structural regions in a subtomogram based on the classification network, and 3)
be readily and directly applied to classify and segment novel structures without needing to be re-trained.
Using our COS-Net, biologists can classify and segment thousands of subtomograms by only manually
picking a few representative subtomograms as support classes. When there is a need to classify new
subtomogram datasets with novel structures, the support classes can be readily changed to accommodate
without the need to train the model again. Moreover, unlike previous one-shot learning and few-shot
learning algorithms that only address the classification task, our COS-Net can generate both classification
and 3D segmentation with application in 3D imaging data of cryo-ET.

Our COS-Net is a Siamese network with pairs of volume encoders, volume decoders, and feature
encoders. Given a support set of subtomograms and a target subtomogram, volume encoders first extract
the volume’s feature presentations. Then, the feature encoders transform the feature presentations for the
next stage: one-shot learning. In the meantime, the volume decoders decode the feature presentations to
generate the coarse attention/segmentation of the subtomograms. Our COS-Net with additional attention
guidance from segmentation information allows better feature embedding for one-shot learning, and thus
could provide better one-shot classification performance. During the test stage, we also developed a
customized subtomogram processing pipeline to refine the coarse attention/segmentation from COS-Net
based on 3D Conditional Random Field (3D-CRF) [9]. Our experimental results demonstrated that
our method can effectively classify observed or novel macromolecular structures and produce accurate
segmentation mask.

2 METHODS

The general structure of our COS-Net is shown in Figure |I} The COS-Net is a Siamese network with
two encoding-decoding streams. First, each stream consists of one volume encoder, one volume decoder,
and one feature encoder. The volume encoders, volume decoders, and feature encoders shared weights
between the dual streams. The design of our volume encoders, volume decoders, and feature encoders are
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Figure 1: Illustration of our Cryo-ET One-Shot Network (COS-Net) structure. The data input consists of
subtomogram support set and target subtomogram. The network consists of pairs of volume encoders Py g,
volume decoder Py p, and feature encoder Prpr with details illustrated in Figure 2.

illustrated in Figure 2 and are discussed in detail in our next section. Denoting the input for the upper
stream as X g that is our support set with dimensions of N x K, where N is the number of classes and K
is sample per class, support set X g consists of IV classes of macromolecules with K samples per class. In
our one-shot learning scheme, K = 1. The upper volume encoder takes the support set X g as input and
generates the latent representation of the support set with:

= Pve(Xs) )]

where Fl, is the latent representation of the support set X g and Py g is the volume encoder function.
Then, the support set’s latent representations Flg, are simultaneously fed into the volume decoder Py p
and feature encoder Prg:

Mg = Pyp(Fs,) 2
Fs, = Pre(Fs,) 3)

where Mg is the predicted segmentation of the support set, and Fls, is the feature for next stage one-shot
learning. Similarly, denoting the input for the lower stream as X that is our target set with dimensions of
1 x K, target set X7 consists of 1 classes of macromolecules with K samples per class. In our one-shot
learning scheme, K = 1. Similarly, the same volume encoder Py g takes the target set X7 as input and
generates the latent representation of the target set with:

T = Pve(Xr) €]

where Frp, is the latent representation of the target set Xr. Then, the target set’s latent representations
Fr, are simultaneously fed into the shared weights volume decoder Py p and feature encoder Pr:

Mr =Pvp(Fr,) (@)
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Figure 2: Architectures of our volume encoder and volume decoder in Figure 1. The Dual Squeeze-and-
Excitation (DuSE) block is illustrated on the bottom right.

Fr, = Pre(Fr,) (6)

where M is the predicted segmentation of the target set, and F’r, is the feature for next stage one-shot
learning. Given the features F's, from support set and the features Fr, from target set, we compute the
L1 distance between the features to calculate the similarity between the support set features Fs, and the
target set features Frp,, with:

Fuis = |Fs, — Fry| (N

where Fy; is the feature distance. Fj; is then input into a fully connected layer followed by a softmax
function:
Fout = Softmax(Pfinal(Fdis)) (8)

where F,; is the final output with one-shot prediction indicating that the target data matches with which
specific class in the support set.

Sub-networks Design: We use a 512 x 512 fully connected layer as our feature encoder. The volume
encoder and decoder design are shown in Figure 2} Our volume encoder and volume decoder consist
of three level of 3D convolution layers. Unlike conventional convolutional encoder and decoder, we
concatenate a Dual Squeeze-and-Excitation (DuSE) block at each level’s output in order to re-calibrate
the features channel-wise and spatial-wise. More specifically, as illustrated in Figure ] bottom right, our
DuSE block contains two 3D Squeeze-and-Excitation branches for spatial-Squeeze-channel-Excitation
(scSE) and channel-Squeeze-spatial-Excitation (csSE), respectively [7}17]].



For scSE, we spatial-wise squeeze the input feature map using global average pooling, where the
feature map is formulated as F' = [fi, fa, ..., fo] here with f,, € REXWxD denoting the individual
feature channel. We flatten the global average pooling output, generating v € R with its z-th element:

H W D

Uz:mzzz:fz(ivjvk) )
ik

where vector v embeds the spatial-wise global information. Then, v is feed into two fully connected
. . [eaNTe; Ccx & . . . . .
layers with weights of w; € Rz and we € R** 2, producing the channel-wise calibration vector:

o = o(wan(wiv)) (10)

where 1 and o are the ReLU and Sigmoid activation function, respectively. The calibration vector is
applied to the input feature map using channel-wise multiplication, namely channel-Excitation:

Fye = [f101, fobo, ..., fobc] (1)

where ¢; indicates the importance of the i-th feature channel and lies in [0, 1]. With scSE embedded into
our network, the calibration vector adaptively learns to emphasize the important feature channels while
playing down the others.

In csSE, we formulate our feature map as F = [fL1L . fidk o fHW.D) where fiik ¢
R indicates the feature at spatial location (4,7, k) with i € {1,...,H}, j € {1,...,W}, and k €
{1,..., D}. We channel-wise squeeze the input feature map using a convolutional kernel with weights

of wy € RPXIX1XCX1 ‘generating a volume tensor m = ws ® F with m € REXWXDP Each fi5F is a
linear combination of all feature channel at spatial location (4, j, k). Then, the spatial-wise calibration
volume that lies in [0, 1] and can be written as:

m=o(m)=o(ws®F) (12)

where o is the Sigmoid activation function. Applying the calibration volume to the input feature map, we
have:
ch _ [f1,1,1m1,1,17 o f’L,j,k}m’L,j,k, . fH,W,DmH,W,D] (13)

where calibration parameter of 7i"7* provides the relative importance of a spatial information of a given

feature map. Similarly, with csSE embedded into our network, the calibration volume learns to stress the
most important spatial locations while ignores the irrelevant ones.

Finally, channel-wise calibration and spatial-wise calibration are combined via element-wise addition:

Fpuse = FSC + ch. With the two SE branch fusion, feature at (i, j, k, ¢) possess high activation
only when it receives high activation from both scSE and c¢sSE. Our DuSE encourages the networks to
re-calibrate the feature map such that more accurate and relevant feature map can be learned.
Training Strategy and Losses: We design a customized training strategy to train our COS-Net, such
that the training procedure matches the inference at test time. Specifically, two support set are randomly
generated during the training procedure. Within [V classes, the same n classes are randomly sampled
for each support set. 1 subtomogram is randomly sampled from these classes to form a n-way-I-shot
scheme. The ground-truth one-shot classification label is generated by matching the class labels from the
two support set, i.e. 1 for matched class label and 0 for unmatched class label.

Our training loss consists of two parts, including a Binary Cross Entropy (BCE) loss for one-shot
classification learning and a Dice Similarity Coefficient (DSC) loss for one-shot segmentation. Denoting
the ground-truth one-shot classification label as F;, the BCE loss can be written as:

Lyce = 7thlog(Fout) - (1 - th)ZOQ(l - Fout) (14)

Denoting the ground-truth subtomogram segmentation for the two support set as M1 and Mgy, the
segmentation loss can be written as:

2 X |Mge, N Mg, | 2 X |Mg, N Mg,|

Lise =2 — -
- [ M, | + | Ms, | [ M, | + |Ms, |

15)
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where Mg, and Mg, are the predicted segmentation from COS-Net. The total loss thus can be formulated
as:
Liot = Lase + Lpce (16)

In testing, one of the support sets during training can be replaced with the target subtomogram for
direct inference.
Attention-guided Segmentation: The segmentation predicted from COS-Net is a probability distribution,
which is used for guiding our final segmentation. Specifically, the volume decoder’s output is a probability
distribution ranging between 0 and 1. We use a 3D Conditional Random Field (CRF) to refine and
generate the final 3D subtomogram segmentation. The CRF aims to optimize the following objective

function:
B(z) =Y tulmi) + > _ vplwi,z)) (17)
% 2,7

where 1, is the unary potential that encourages the CRF output to be loyal to the probability distribution
from the COS-Net. 9, is the pairwise potential between label on voxel 7 and j and can be expanded as:

a2 I — .2 C_m.|2
%—M%mﬂmmﬂmlm'“ ”)+wwﬁmlp7ﬂ (18)

202 203 202

where fi(x;,x;) is the compatibility transformation and depends on the labels z; and z; such that
w(z;, ;) = 1if x; # x;, and 0 otherwise. I; and I; are the intensity value at voxel location 7 and j. p;
and p; are the spatial coordinates of voxel ¢ and j. w1, wo, 04, 03, and o, are learnable parameters for
CREF. This term penalizes pixels with similar position p and intensity x but with different label.

3 EXPERIMENTS AND RESULTS

3.1 Data Preparation

We prepared a realistically simulated dataset with known macromolecular structures by reconstructing
the tomographic image using the projection images [16]. The limiting factors of cryo-ET, such as
noise, missing wedge, and electron optical factors (Modulation Transfer Function, Contrast Transfer
Function) were all properly included. The simulation process mimicked the experimental cellular sample
imaging condition and tomographic reconstruction process. We took into account the randomness of
macromolecule structural poses. The packed volume containing macromolecular structures were projected
to a series of 2D projection images with specified tilt angle steps. The resulting projection images were
convolved to include optical factors and then back-projected to obtain the reconstructed 3D simulated
tomogram. 22 distinct macromolecular structures are chosen from the Proterin Databank (PDB) with their
PDB ID information [1] of atomic coordinates and connectivity, and secondary structure assignments.
We choose very representative macromolecules such as ribosome (4V4Q), proteasome (3DY4), and
RNA polymerase (2GHO), which are well studied due to their abundance and importance in cellular
functions. Each simulated tomogram of 600 x 600 x 300 voxels contains 10000 randomly distributed
macromolecules. Given the true position of these macromolecules inside tomograms, we collected 5,835
subtomograms of size 32 x 32 x 32, belonging to 22 structural classes. The dataset with 22 distinct
classes was split into a training set with 14 classes and a test set with 8 classes. Three datasets with

different levels of signal-to-noise ratio (SNR) were used, including SNR=0o, SNR=1000, and SNR=0.5.
3.2 Classification Results

Table (1| summarizes the one-shot classification performance with different sub-network setup. We
evaluated the one-shot classification accuracy under different noise level and various one-shot training
schemes. First, comparing the COS-Net with and without volume decoder for guiding the one-shot
classification, with volume decoder can significantly improve the classification accuracy for sub-networks
with or without DuSE block. For example, using the SNR=1000 dataset, the 2way-1shot COS-Net with
DuSE improve the accuracy from 0.928 to 0.939 by adding the volume decoder. Second, comparing the
COS-Net with and without DuSE block, adding DuSE block to volume encoder/decoder can also improve
the classification accuracy. However, the classification accuracy decreases as the SNR decreases, due to



Table 1: The one-shot classification accuracy on three dataset with three different SNR levels. 2way-1shot,
4way-1shot, 6way-1shot, and 8way-1shot learning scenarios are included. The highest accuracy for each
learning scenario is marked in blue.

Data Networks 2way-1shot | 4way-lIshot | 6way-1shot | 8way-1shot
SCNN w/o Decoder 0.931 0.763 0.613 0.595
SNR:co SCNN w Decoder 0.945 0.798 0.663 0.636
DuSE-SCNN w/o Decoder 0.934 0.772 0.618 0.603
DuSE-SCNN w Decoder 0.957 0.831 0.672 0.646
SCNN w/o Decoder 0.923 0.698 0.493 0.473
SNR:1000 SCNN w Decoder 0.935 0.706 0.493 0.473
DuSE-SCNN w/o Decoder 0.928 0.701 0.504 0.479
DuSE-SCNN w Decoder 0.939 0.718 0.534 0.513
SCNN w/o Decoder 0.812 0.599 0.501 0.387
SNR:0.5 SCNN w Decoder 0.824 0.616 0.502 0.399
DuSE-SCNN w/o Decoder 0.821 0.614 0.510 0.391
DuSE-SCNN w Decoder 0.829 0.628 0.513 0.403

the structural details being degraded by noise. Meanwhile, the classification accuracy also decreases as
the number of classes (way) increase.

Table 2: The segmentation results for all eight test classes on SNR= 1000 dataset. The mean-+tstandard
deviation DSC are reported in the table. 2way-1shot, 4way-1shot, 6way-1shot, and 8way-1shot learning

scenarios are reported at different rows. The macromolecular PDB ID is indicated for each classes.
SCNN 1A1S 1BXR 1EQR 1F1B 1ENT 1GYT 1KPB 1LB3
2way-lshot | .84+.07 | .85+.02 | .86+.02 | .87+.01 | .89+.01 | .84+.01 | .88+.01 | .83+ .01
4way-Ishot | .84+ .07 | .85+.02 | .86+.02 | .87+.01 | .90+.01 | .85+ .01 | .88+.01 | .84 +.02
6way-Ishot | .85+.08 | .85+.02 | .85+.02 | .87+.01 | .89+.01 | .84+.01 | .87+£.01 | .84+ .01
8way-Ishot | .85+.07 | .84+.02 | .86+.02 | .87+.01 | .90+.01 | .85+.01 | .88+.01 | .83+ .01

DuSE-SCNN 1A1S IBXR 1EQR IF1B IENT 1GYT 1KPB 1LB3
2way-1shot 85+.08 | .85+.02 | .86+.02 | .87£.01 | .90+.01 | .85+£.01 | .88+.01 | .85+£.01
4way-1shot 85+.07 | .85+.02 | .85+.02 | 87£.01 | .90+.01 | .85+£.01 | .88+.01 | .85+£.01
6way-1shot 85+.08 | .85+.02 | .86+.02 | .87£.01 | .90+.01 | .85+£.01 | .88+.01 | .85+£.02
8way-1shot 84+ .08 | 85+.01 | .86+.02 | .87£.01 | .90+.01 | .85+£.01 | .88+.01 | .85+£.02

Table 3: The segmentation results for all eight test classes on SNR= oo dataset. The mean+standard
deviation DSC are reported in the table. 2way-1shot, 4way-1shot, 6way-1shot, and 8way-1shot learning

scenarios are reported at different rows. The macromolecular PDB ID is indicated for each classes.
SCNN 1A1S 1BXR TEQR 1FIB TFNT 1GYT 1KPB 1LB3
2way-Ishot | .92+.08 | .94+.03 | 98+.02 | .97+.02 | 97+.03 | .95+ .03 | .96+.01 | .97 + .02
4way-Ishot | .92+.08 | .95+.03 | 98+.02 | .97+ .02 | .97+.02 | .95+ .03 | .96+.03 | .97 +.03
6way-lshot | .92+.08 | .94+ .04 | .98+.01 | .96+ .02 | .97+.02 | .95+ .03 | .96+.01 | .96 + .02
8way-Ishot | .92+.08 | .94+ .03 | .98+.02 | .96+ .02 | .97+.02 | .95+ .02 | .96+.02 | .96 + .02

DuSE-SCNN 1A1S IBXR 1EQR IF1B IENT 1IGYT 1KPB 1LB3
2way-1shot 92+ .08 | 94+.03 | 98+.02 | 97£.02 | 97+£.02 | 95£.03 | .96+.02 | .97+ .02
4way-1shot 93+£.07 | 96+.02 | 98+.01 | 97£.02 | 97+£.02 | 95£.03 | .96+.02 | .97+ .02
6way-1shot 92+ .08 | 95+.03 | 98+.02 | 97£.02 | 97+£.02 | 95£.02 | .96+ .02 | .96 £ .02
8way-1shot 92+ .07 | 94+.03 | 98+.02 | 96£.02 | 97T+£.02 | 95£.02 | .96+.02 | .96 £ .03




3.3 Segmentation Results

The segmentation performance of our attention-guided segmentation is evaluated using the same test set
as in the classification section based on DSC:
2 x [Mgt N Mpyed|

DSC =
‘Mgt| + ‘Mpred|

19)

where M,,,.q is our generated segmentation, and Mg, is the ground-truth segmentation. Segmentation
results with different training schemes on SNR=1000 dataset are visualized in Figure[3] As we can see,
our method can generate accurate 3D segmentation that does not rely on unseen classes’ pixel-level
or image-level training data. It is also worth notice that our method can achieve robust and consistent
segmentation performance over different way one shot learning schemes. Besides, a comparison of
segmentation results with and without DuSE block on eight different macromolecule classes is visualized
in Figure 4. While segmentation with DuSE block does not significantly outperforms segmentation
without DuSE block, they both produce reasonable segmentation of macromolecules.

The quantitative results using SNR=1000 and SNR=cc datasets are summarized in Table[2]and Table
[3] respectively. As we can observe, for all 8 unseen classes, our COS-Net is able to generate reasonable
3D segmentation. For SNR=c0 data, the DSC of our COS-Net with DuSE are all > 0.92 for all classes,
indicating accurate 3D macromolecule segmentation. For SNR=1000, the DSC of COS-Net with DuSE
are > (.84. The decrease in segmentation performance is due to the increased noise level that degrades
the macromolecule structure details. However, as illustrated in Figure 3] our COS-Net can still generate
reasonable 3D segmentation for unseen classes.

4 DISCUSSION and CONCLUSION

In this work, we developed a one-shot learning framework for cryo-ET where simultaneous classification
and segmentation can be performed for seen or unseen macromolecule subtomograms. Specifically, we
developed a COS-Net to learn the class matching between a support set consisting of multiple classes with
only 1 sample per class and a target subtomogram. In COS-Net, the segmentation attention is utilized to
better guide the one-shot classification. In the mean time, the volume decoder of COS-Net allows us to
generate the coarse segmentation of the macromolecule in the subtomogram. Then, 3D CREF is utilized to
refine the 3D macromolecule segmentation from COS-Net.

We demonstrated the successful application of our COS-Net on a cryo-ET dataset consisting of 22
macromolecule classes. First, our method demonstrated accurate one-shot classification performance
over dataset with different noise levels. Even with SNR as low as 0.5, the classification accuracy is over
0.8 in a 2way-1shot classification scheme. As compared to previous supervised cryo-ET classification
methods with classification accuracy of about 0.9, our method is able to achieve comparable performance
without using large-scale high-quality labelled data [3| [12]]. Second, our method can produce high-
quality 3D segmentation for unseen macromolecules under different one-shot classification schemes.
As we can observe in table[3] our COS-Net can produce 3D segmentation with DSC> 0.84 on all test
macromolecules over all one-shot schemes. As compared to previous supervised segmentation methods,
our segmentation performance is comparable to these supervised cryo-ET segmentation models with
DSC of about 0.88, which require segmentation ground truth on seen macromolecule classes for training
[3,112]. Therefore, our method provides a solution of both accurate classification and segmentation for
unseen macromolecule classes.

The presented work can potentially be further improved from the following perspectives. First of
all, the classification accuracy decreases as the number of classes in the support set increases. As more
classes are involved in the class matching procedure and only one sample is used for each classes, the
classification difficulty will naturally increase. However, our COS-Net can be extended from one-shot
to few-shot if more samples are available for each class, and this strategy could potentially improve
the classification accuracy. Moreover, the macromolecule alignment is not considered in the current
one-shot classification pipeline. The macromolecule in the support set and target set may not be aligned,
i.e. they have different orientations before feeding into our network, which could potentially decrease the
classification accuracy. Subtomogram pre-processing by alignment of macromolecule in subtomograms
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Figure 3: Illustration of segmentation results on all three test classes using COS-Net with DuSESCNN. The
macromolecule PDB ID is indicated for each classes on the left. The ground truth segmentation (second
column) is compared against COS-Net with 2way-1shot, 4way-1shot, 6way-1shot scenarios from second to
fifth column. The enlarged images on selected 2D slices are visualized at the bottom.

could potentially further improve our classification accuracy and will be a focus in our future work [19}[13].
Second, the cryo-ET imaging data is reconstructed from limited angle conditions. The subtomogram
image quality could be degraded by the limited angle reconstruction artifacts and potentially impact
the downstream COS-Net’s performance. Deep learning based limited angle reconstruction algorithms
could be incorporated to mitigate these artifacts and potentially further improve our performance [23], 24].
Third, our study is performed based on realistically simulated cryo-ET dataset with sufficient amounts
of macromolecule classes for one-shot learning studies. Currently, real cryo-ET data does not provide
sufficient amounts of classes for one-shot learning studies, and we will include it in our future studies.

In summary, we developed a COS-Net for one-shot classification and segmentation in cryo-ET, which
enables the classification and segmentation for unseen macromolecules in the wild. We believe our
algorithm is an important step toward the large-scale and systematic in situ analysis of macromolecular
structure in single cells captured by cryo-ET.
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Figure 4: Illustration of segmentation results on all eight test classes using 2way-1shot. The macromolecular
PDB ID is indicated for each classes on the top. The ground truth segmentation (second row) is compared
against COS-Net with SCNN (third row) and COS-Net with DuSESCNN (fourth row). The enlarged images
on selected 2D slices are visualized at the bottom.
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