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Abstract

In eukaryotes, polyadenylation (poly(A)) is an essential process during mRNA maturation. Identifying
the cis-determinants of poly(A) signal (PAS) on the DNA sequence is the key to understand the mechanism
of translation regulation and mRNA metabolism. Although machine learning methods were widely
used in computationally identifying PAS, the need for tremendous amounts of annotation data hinder
applications of existing methods in species without experimental data on PAS. Therefore, cross-species
PAS identification, which enables the possibility to predict PAS from untrained species, naturally becomes
a promising direction. In our works, we propose a novel deep learning method named Poly(A)-DG for
cross-species PAS identification. Poly(A)-DG consists of a Convolution Neural Network-Multilayer
Perceptron (CNN-MLP) network and a domain generalization technique. It learns PAS patterns from
the training species and identifies PAS in target species without re-training. To test our method, we use
three species and build cross-species training sets with two of them and evaluate the performance on the
remaining one. Moreover, we test our method against insufficient data and imbalanced data issues and
demonstrate that Poly(A)-DG not only outperforms state-of-the-art methods but also maintains relatively
high accuracy when it comes to a smaller or imbalanced training set.



Author summary

The key to understanding the mechanism of translation regulation and mRNA metabolism is to identify
the cis-determinants of PAS on the DNA sequence. PAS leads to correct identification of Poly(A) sites
which play an essential role in understanding human diseases. While many researchers have employed
deep learning methods to improve the performance of PAS identification, an underlying problem is
the expensive and time-consuming nature of PAS data collection, which makes the application of deep
learning models for identifying PAS from a broad range of species a tough task. We attempt to use
domain generalization methods, inspired by its thrive in the field of computer vision, to overcome the
insufficient annotation data challenge in PAS data. Here, empirical results suggest that our proposed
model Poly(A)-DG can extract species-invariant features from multiple training species and be directly
applied to the target species without fine-tuning. Furthermore, Poly(A)-DG is a promising practical tool
for PAS identification with its stable performance on insufficient or species-imbalanced training data. We
share the implementation of our proposed model on the GitHub. (https://github.com/Szym29/Poly ADG)

Introduction

Most deukaryotic mRNA, after being transcribed from its coding DNA, typically undergoes post-
transcriptional modification, such as 5’ capping, splicing, and polyadenylation, before it is translocated
to the cytoplasm and translated into proteins [23]]. Polyadenylation is one of the post-transcriptional
modifications, where the 3’ end of a primary transcript mRNA (pre-mRNA) is cleaved and 250-300
adenines are added [35]]. Its proposed functions include conferring mRNA stability, promoting mRNA’s
translational efficiency, and facilitating the transportation of mature mRNA from the nucleus to the
cytoplasm [42] 47, 6]. It has been shown that at least two primary cis-regulatory elements are needed
for polyadenylation: i) a highly conserved AAUAAA hexamer (or a close variant) located at 10-40
nucleotides (nt) upstream of the poly(A) site, which is usually referred to as the polyadenylation signal
(PAS) [2,129] ii) a poorly conserved GU- or U-rich RNA sequence located at 20-40 nt downstream of the
polyadenylation site [27, 40].

The location of the poly(A) site determines the length of the 3’ untranslated regions (3’-UTR), which
further modulates the expression and of the gene [[10,|32]]. Recent studies revealed that more than 70% of
eukaryotic genes have more than one polyadenylation site and produce multiple RNA isoforms through the
usage of different cleavage of poly(A) sites, a process named alternative polyadenylation [9} 37, |11} 41].
These RNA isoforms have the same coding regions but differ in their 3’ UTRs. The differed 3° UTRs
may confer different stability, translation efficiency, functions or subcellular localization to the mRNA
isoform [31]]. Importantly, it has been implicated in a wide range of human diseases, including cancer and
neuromuscular disorders [35]; [12]. A single nucleotide change of the PAS could lead to dysregulation
of T'P53 expression and has been associated with the progression of thyroid tumors. [34}51] Therefore,
correct identification of poly(A) sites plays a crucial role in understanding diseases mechanisms. It
is well known that the PAS determines the correct identification of poly(A) sites [29} 46] and their
mutations directly associated with diseases. Therefore, studies on PASs and their surrounding regions are
significant for biological researches. Recently, technologies combining biochemistry and high-throughput
sequencing such as DRS, PAS-seq [36]], 3P-seq [21]], SAPAS[14], 3’READ [20], and RNA-seq [17] have
been developed to identify genome-wide poly(A) signal with a high accuracy. However, it is known that
polyadenylation is tissue-specific, so experiments are required for each tissue. Although experimental
methods provide promising results, researchers began to seek help for computational methods to accurately
and conveniently identify PAS.

Computation methods enable efficient PASs identification by learning the contexts of PASs motif and
discriminating true PASs related DNA sequences from sequences which don’t contain PAS. Ji et al.[23]
modified a Generalized Hidden Markov Model (GHMM) to extend the utility of the Hidden Markov
Model (HMM) by giving each state multiple observed values such that it can easily be used in describing
the organization of gene sequences. With the demonstrated strong empirical performance of the support
vector machine (SVM), researchers began to introduced SVM based models in PAS identification. [28]],
[5] More recently, HSVM [49], derived a set of latent features by HMM and fed features to a SVM for



classification, increased the accuracy of poly(A) recognition on a public benchmark, Dragon human
dataset [25]]. Omni-PolyA [30] further boosted the accuracy of PAS identification by combining multiple
classification models, including decision tree, RF, etc. However, even these traditional machine learning
models are competent to identify PAS, they have a common drawback that is they are built for specific
hand crafted features which are costly and time-consuming to obtain. Therefore, researchers began to
seek more general methods to automatically identify PAS from DNA sequences.

Deep learning methods have been proposed to automatically learn features of DNA sequences and
predict unknown sequences based on learned knowledge. With the increasing popularity of Convolution
Neural Network (CNN), DeepPolyA [16] first applied CNN in PAS identification. They proposed a two-
convolution-layer model and showed that their model outperformed many other deep learning models in
PAS identification in plant Arabidopsis thaliana coding DNA. In 2019, Xia et al.[48] proposed DeeReCT-
PolyA, a shallow CNN model mainly consists of one convolution layer, two fully connected layers, and
exhibited higher performances compared with previous deep learning models on four public PAS dataset.
Later, Kalkatawi et al. [24]] built DeepGSR to recognize different types genomic signals and regions,
including PAS, in genomic DNA. Recently, Yu et al. [52] developed a self-attention deep learning model
and outperforms the state-of-art PAS identification methods. However, the datasets availability for training
neural networks are often limited in scale; thus it limits the performance of the model. Although Xia et
al.[48]] extended their pre-train model for a new species or new PAS variants to mitigate the paucity of
annotated data, their models require a large amount of annotated sequences from the target species, which
hinder the application their method in practice. DNA sequences from different species may have different
gene regulations and functional meanings. We thereby assume that PAS data from different species have
different sequence preference (distributions). Traditional computational methods hardly adapt to different
species since they are designed to learn hand-crafted features for specific distributions. Domain adaptation
(DA), an important field of deep learning, describes how to apply a well-trained deep learning model in a
different (but related) target data distribution to address same tasks. Domain generalization (DG), as a
variant of DA, further improves the generalization of a model for requiring no prior knowledge of target
data distribution.

DeeReCT-PolyA [48] first provided clues to apply DA in addressing the issue of lack of annotated
PAS data in some species. In this work, we take a further step to seek a DG method to identify PAS in
some species without any experimental data. We focus on improving the generality of deep-learning
model by learning PAS regulation features shared by different species [§]] and identifying PAS from some
species without prior knowledge.

The main contributions of this paper are organized as follows:

* We propose a neural network CNN-MLP to extract both motif features and species information
about PAS related DNA sequences.

¢ We first introduce a domain generalization technique, HEX, in PAS recognition to force the model
to learn invariant features so that the model can generalize to different species.

* We evaluate Poly(A)-DG by learning from a cross-species dataset and predicting PAS of new
species directly.

* We investigate the performance of Poly(A)-DG when there are limited amount of training data or
they are imbalanced.

* We explore the performance of Poly(A)-DG in imbalanced ratio of positive and negative PAS DNA
samples.

* We visualize the motif patterns captured by convolution filters, and the contribution of regions of
DNA sequence.

* We evaluate the performance of Poly(A)-DG by predicting whole genome in chromosome 1 of rat.
* We explore the homology effect of Poly(A)-DG in cross-species PAS identification.
¢ We also investigate how the Poly(A)-DG performs on single PAS genes and multiple PAS genes.



Methods

The main challenge of identifying PAS of new species is the limitation of annotated data [22| 48§]],
especially in the case when we have no annotated data at all. We cannot directly apply well-trained poly(A)
signal identification models to a new species for two reasons. First, patterns and locations of poly(A)
signals vary widely in different species [39]. Moreover, [S0] speculates that there are subtle differences
of polyadenylation signal recognitions or uncharacterized species-specific polyadenylation enhancers
leading to differential processing. Fortunately, however, the in-depth DNA sequences connection among
different species can be employed to identify PAS for widespread species. Therefore, we propose our
method, Poly(A)-DG. We will first introduce our features extraction module, CNN-MLP that captures
both motif features and general sequence information; then we will introduce a technique to remove
species-specific information from motif features such that the model is able to learn the invariant motif
features among different species to identify PAS of a new species without experimental data.

Data description

The data sample, j, denotes as < X;,Y; > where X is a DNA sequence and Y ; is the annotation. The
length of each DNA sequences is 206-nt and PAS locates in the middle of sequences where its upstream
and downstream are both 100-nt. DNA sequences need to be one-hot encoded into four-channel data
sequences and each channel represents a type of base. The annotation of each DNA sequence is {0, 1},
denoting whether the sequence contains PAS or not.

CNN-MLP for feature extraction

We propose a neural network aiming to automatically extract both general features and motif features of
DNA sequences from different species.

Multilayer Perceptron (MLP) has a good reputation for portraying the whole distribution owing to
each node in the hidden layers connected with a certain weight to every node in previous layers. Each
node in the hidden layer can be considered as a sequence descriptor that scans through all nucleotides
of inputs DNA sequences and obtain a score to describe the sequence. In the training session, MLP
tends to fit the training data and try to find proper weights vectors to describe the training set accurately.
Given a DNA sequence dataset consists of different species, the MLP would learn to describe the general
information among species instead of learning to fit specific species. Therefore, we try to employ the
MLP to extract general information about different species. Previous work [48] showed that the simpler
architecture would lead to higher performance; thus we construct our MLP with only one hidden layer
and use ReLU to activate it. The representation of MLP denotes by Fi; (Equation (I))) where X is a set of
raw data fed in the MLP, ¢ is activation function (ReLU in our model), W is a vector of weights that
hidden nodes used to connect with nodes in the input layer and b; is a set of bias.
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Different species share the same PAS patterns and flanking motifs may relate to PAS regulations. For
using MLP to extract features that can describe species instead of PAS related motifs, we use shuffled-
DNA as the inputs of MLP. Therefore, the representations, namely confounding species-specific factors,
extracted by MLP intend to describe the specific species and become impossible to identify PAS. The
comparison of performance of feeding shuffled DNA sequences and non-shuffled DNA sequences to MLP
is shown in section 2 of [S1 Supporting Information|

Then we construct another neural network aiming to identify PAS in single species and use domain
generalization techniques to enable cross-species PAS identification by neutralizing the influence of
species-specific features extracted by MLP. We feed non-shuffled DNA sequences into a Convolution
Neural Network (CNN), which is famous for extracting motif from DNA sequences. As shown by previous
works [48]16], CNN can be applied to extract the motif information from DNA sequences to identify
PAS. Compared with MLP, CNN directly deals with original DNA sequences instead of shuffling them so
that the motif structure of DNA sequences can be retained. In order to keep the architecture simpler for
better performance [48] we build a CNN only contain a single convolution layer that consists of several




convolution kernels. Each kernel serves as a motif detector [48]], and it is able to capture sequence motifs,
which are short, recurring patterns in DNA sequences that are presumed to have a biological function.
In the training process when inputs are fed to the convolution layer, convolutional kernels can search
neighboring bases for their relationship and automatically infer the most relevant motif features [16].
ReLU activates the output of the convolution layer and sends motif features to a max-pooling layer so that
the number of parameters could be reduced. Dropout technique [38]] is used to prevent the network from
sticking at a local optimum and assuage over-fitting.

Fig shows our features extraction method, raw DNA sequences are encoded into the one-hot format
and then fed into the neural network. MLP flattens the shuffled-DNA data and connects input nodes with
weight W; to each hidden node. The inputs are directly fed to CNN and 16 convolution kernels are used
to capture motif features. The architecture of feature extraction is detailed section in 1.1 & 1.2 in[ST]]
[Supporting Information|.

Domain generalization technique

As the variance of the distributions may not be simply coded in some available labels, invariance-driven
methods such as DANN [15] and other similar methods [[18} 44} 3] will not be applicable. Therefore,
we adopt a recently proposed unguided domain generalization technique, HEX [43]], aimed to force the
model to focus on invariant features and doesn’t need the labels of distributions. We use HEX to force the
model to ignore the species-specific upstream and downstream context information and focus on bases
that contributed to PAS identification. As we show in Fig (II]) the output of CNN sub-network, F4 is
directly used in predicting whether the sequence contains PAS or not. The outputs of CNN sub-network
and MLP sub-network are concatenated and then fed into HEX. Now we need to force the model to learn
species-invariant features. With F'4 and F; used in Equation [2] we need to transform the representation
of F'4 so that it is least explainable by Fi;. Directly adopting subtraction maybe problematic because the
F4 — Fg can still be correlated with F;. Wang et al. [43] proposed a straightforward way is to regress
the information of F; out of F4. Since both F4 and F; are in the same space and the only operation left
in the network is the argmax operation, which is linear, we can safely use linear operations.

To form a standard linear regression problem, we first consider the column & of F4, denoted by FXC).
To solve a standard linear regression problem is to solve:

ﬂ(k) = arg(n)ﬂn ||F/(1k) — FaB®|[3 @
B k

B is the coefficient vector of linear regression in Equation |2} This function has a closed form solution BA’“
when the mini-batch size is greater than the number of classes of the problem (i.e. when the number of
rows of F is greater than number of columns of Fiz), and the closed form solution is:
. T 1n(k)
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Therefore, for k™ column of F4, what cannot be explained by F; is (denoted by Fék)):
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Repeat this for every column of F'4 will lead to:
Fr =~ Fg(FEFg) 'FE)Fa Q)

which is how HEX works to focus on the invariant features of cross-domain datasets and naturally
generalizes to a new species not used in training. Then we use the F7, for parameters tuning.

We employ Binary Cross Entropy (BCE) as the cost function to calculate the loss of every training
epoch. Adam optimizer [26] is used to minimize the loss derived by BCE. In order to make the training
process more stable, we apply an exponential decay method to decrease the learning rate every 1000
iterations. The domain generalization and classification module is detailed in section 1.3 in[ST Supporting|



cross-species training and hyper-parameter search

Inspired by the cross-validation strategy, we employ a new cross-species training strategy in our work.
We randomly divide every training species into five folds and define the first three of them as training
fold and the other two folds as optimization fold. The training fold is used in model training and the
optimization fold is used in searching optimal models. The accuracy of cross-species training is obtained
by testing models on all sequences from the target species.

The random sampling strategy is applied to search a relative better hyper-parameter for the different
training sets. We evaluate those hyper-parameter sets in optimization folds and select the one with the
best performance as the parameter of the final model. In our experiments, this method helps us choose
hyper-parameters such as learning rate and keep probability. Details can be found in section 1.4 in[ST]
[Supporting Information|

Figure 1: This figure illustrates the architecture of Poly(A)-DG. Each pair of inputs includes a raw DNA
sequence and its label to show it contains PAS or not. The raw DNA sequences are encoded into the one-hot
format and send into CNN and MLP sub-network. The outputs of CNN and MLP are concatenated and used
HEX technique to minimize the differences among different species. The output of CNN is directly used in
prediction after softmax and the output of HEX is used in loss calculation. The back-propagation algorithm
is employed to tune the model with loss.

Results

Datasets

We use PAS datasets from four species, Mouse, Rat, bovine, and Human, in our experiments. The
Omni Human Poly(A) dataset is recently established by Magana-Mora et al. [30] which contains 37,572
sequences and the number of true PAS sequences equals the number of pseudo-PAS ones. The human
pseudo-PAS sequences are produced by excluding all the true PAS sequences derived from human
chromosome 21. C57BL/6J (BL) Mouse PAS dataset, which has 13 PAS motif variants, consist of 46,224
sequences, is produced by Xia et al. [48]. The bovine dataset were established by Kalkatawi et al. [24]]
which contains 12,082 true PAS sequences and the they extracted false PAS sequences from chromosome
28 for bovine which also contains 12,082 DNA sequences.According to a Rat Poly(A) database [45], we
extract the annotated PAS DNA sequences from genome database to build a Rat true-PAS dataset. Rat
pseudo-PAS dataset is established by scanning the genomic sequences of the transcripts expressed in the
same cell lines and selecting those that are not close to any annotated transcription end in GENCODE or
any Poly(A) sites identified by the experimental data. Our Rat Poly(A) dataset has the same PAS motif
variants with human and it is composed of 42,008 sequences. The specific procedure can be found in
section 3 in[S1 Supporting Information|

PAS patterns have various variants, we have thirteen PAS motif variants from mouse and twelve from
human and Rat poly(A) dataset. However, in this paper, we only focus on identifying the same PAS
variants among different species; thus we select the eleven PAS motif variants that Omni human, Rat,
bovine and BL mouse shared. Therefore, we use remained 37,230 sequences from Omni human Poly(A) ,
42,428 for BL mouse, 42,008 for rat and 22,782 for bovine in our experiments. Each Poly(A) dataset is
composed of the same number of positive and pseudo-PAS sequences.

Comparison methods

We compare Poly(A)-DG with our feature extraction module, MLP-CNN, to evaluate whether HEX can
force the model to learn invariant features among different species or not, DeeReCT-PolyA (DeeReCT),
[48]] which is a state-of-the-art domain adaptation method in PAS identification and state-of-the-art
deep learning methods in PAS identification including DeepPolyA [16] and SanPolyA [52]. Although
DeepGSR [24] can identify PAS with a high accuracy, it doesn’t fit the data used in our work. We train



Poly(A)-DG, MLP-CNN, DeepPolyA and SanPolyA on the cross-species datasets and predict the PAS of
the remaining species that not used in training. DeeReCT-PolyA applies a fine-tune strategy, it first trains
on a source species then fine-tunes this model on a target species and then test on new species.

Standard experiment

Owing to different DNA sequences distributions among different species, people can hardly use a well-
trained model to identify PAS of a new species. Therefore, we want to evaluate whether Poly(A)-DG is
promising to learn invariant PAS related features from a cross-species dataset to overcome domain shifts
or not.

First, we build six cross-species training sets, including Human-Mouse, Human-Rat, Mouse-Rat,
Rat-bovine, Mouse-bovine, and Human-bovine, by mixing any two datasets discussed in Section Datasets
and define the remaining species as the target species. Following the cross-species training method in
Section Cross-species training and hyper-parameter search, we split each species in cross-species training
sets into the training fold and the optimization fold. Then we train models on training folds and report
the average accuracy over the target species. In experiments, we observe that the best learning rate and
dropout rate vary when the models train on different cross-species datasets. Therefore, we run every
methods a few times to obtain their best performance on different source domains. Generally speaking,
Poly(A)-DG outperform remaining methods. Compared with CNN-MLP, Poly(A)-DG achieves higher
accuracy in all experiments in this section by employing HEX module. For example, in Table (I, the
accuracy of Poly(A)-DG is 3.1% higher than CNN-MLP for Rat and 1.1% higher for bovine. Similar
conclusions can be drawn from resting tables. We observed that HEX improves empirical score, and we
conjecture that HEX successfully ignores some influences of domain specific features and forces the model
to learn invariant features which are essential for cross-species PAS identification. Moreover, Poly(A)-DG
achieves better and stable performances when it compared with state-of-the-art deep learning models. As
we mentioned in Section Comparison methods, SanPolyA and DeepPolyA take the same training strategy
as Poly(A)-DG. From empirical results in this section, we can directly find that Poly(A)-DG is better than
DeepPolyA. In general, SanPolyA performs as good as Poly(A)-DG, but in some scenarios, the accuracy
for Rat in Table () and Table (3], SanPolyA can not achieve a relatively high accuracy. Compared with
SanPolyA, the performance of Poly(A)-DG is more stable in all groups of experiments. The accuracy
of DeeReCT is influenced by the order of species used in pre-train and fine-tune. If we use an improper
training order, the performance of DeeReCT would be mediocre while the appropriate training order
would improve the performance of the model. In Table (2), the accuracy of Poly(A)-DG is 3.2% and 6.2%
higher than DeeReCT when it pre-trains on Human and fine tunes on Rat. When the order of pre-train
and fine-tune is reversed, the results of DeeReCT increase to 68.5% and 74.3%, which are closer to the
ones of Poly(A)-DG. Compared with DeeReCT, we notice that Poly(A)-DG does not need to find out
the most suitable pre-train and fine-tune order to obtain the highest testing accuracy. We conjecture that
Poly(A)-DG can simultaneously learn the features from all species in the source domain and reduce the
superficial species-specific information automatically. Due to problems in the order of pre-train and
fine-tune of DeeReCT and reliability of SanPolyA, Poly(A)-DG is more promising in resolving practical
tasks.

Table 1: Source domain: Omni Human and BL. Mouse. Target domain: Rat and bovine

methods Rat bovine
Poly(A)-DG 68.5% | 75.3%
CNN-MLP 65.4% | 74.2%
SanPolyA 68.4% | 75.6%
DeepPolyA 68.1% | 73.7%
DeeReCT fine-tune on BL mouse | 65.9% | 70.8%
DeeReCT fine-tune on Human 65.4% | 73.7%




Table 2: Source domain: Omni Human and Rat. Target domain: BL. Mouse and bovine

methods Mouse | bovine
Poly(A)-DG 69.7% | 76.0%
CNN-MLP 68.3% | 75.3%
SanPolyA 69.4% | 75.7%
DeepPolyA 67.8% | 74.3%
DeeReCT fine-tune on Rat 66.5% | 69.5%
DeeReCT fine-tune on human | 68.5% | 74.3%

Table 3: Source domain: Rat and BL. Mouse. Target domain: Omni Human and bovine

methods Human | bovine
Poly(A)-DG 72.3% | 72.4%
CNN-MLP 70.7% | 70.7%
SanPolyA 721% | 72.1%
DeepPolyA 70.6% | 70.7%
DeeReCT fine-tune on Rat 68.6% | 67.6%
DeeReCT fine-tune on Mouse | 71.3% | 68.3%

Table 4: Source domain: Human and bovine. Target domain: BL. Mouse and Rat

methods Mouse | Rat

Poly(A)-DG 68.9% | 69.4%
CNN-MLP 67.7% | 65.1%
SanPolyA 67.5% | 61.6%
DeepPolyA 66.2% | 67.4%
DeeReCT fine-tune on Human | 67.8% | 65.3%
DeeReCT fine-tune on bovine | 67.4% | 64.6%

Table 5: Source domain: BL. Mouse and bovine. Target domain: Human and Rat

methods Human | Rat

Poly(A)-DG 75.0% | 67.6%
CNN-MLP 73.6% | 64.3%
SanPolyA 74.3% | 63.7%
DeepPolyA 72.1% | 66.5%
DeeReCT fine-tune on Mouse | 70.3% | 66.0%
DeeReCT fine-tune on bovine | 74.1% | 65.3%

Training with limited data

In addition, we want to investigate the effectiveness of Poly(A)-DG given different amounts of data,
especially when the amount of data is limited. Therefore, we define the training fold used in the Section
Standard experiments as the standard training fold and further uniformly split each standard training fold
into ten sub-folds. The size of a new training fold ranges from 10% to 100% of the standard training fold
by increasing sub-folds. We show eight groups of experiments in this section and other four groups of
experiments can be found in the section 4 in[S1 Supporting Information|

In general, the accuracy of Poly(A)-DG has an increasing tendency when the amounts of sequences
are increasing. Impressively, in Fig[2](b) and Fig[2](d) when the number of sequences used in training is




Table 6: Source domain: Rat and bovine. Target domain: Human and BL. Mouse

methods Human | Mouse
Poly(A)-DG 73.8% | 67.9%
CNN-MLP 732% | 67.7%
SanPolyA 73.5% | 68.1%
DeepPolyA 71.0% | 66.6%
DeeReCT fine-tune on Rat 68.3% | 66.2%
DeeReCT fine-tune on bovine | 74.3% | 66.8%

Figure 2: The data from different species are in the same scale. (a)training source domain is mixed by Omni
Human and Mouse, target species is Rat. (b) training source domain is mixed by Omni Human and bovine,
target species is Rat. (c) training source domain is mixed by Rat and Mouse, target species is Omni Human.
(d) training source domain is mixed by bovine and Mouse, target species is Rat. (e) training source domain is
mixed by Omni Human and Rat, target species is BL Mouse. (f) training source domain is mixed by Omni
Human and bovine, target species is BL Mouse. (g) training source domain is mixed by Rat and Mouse,
target species is bovine. (h) training source domain is mixed by Rat and bovine, target species is BL Mouse.

Figure 3: Imbalanced source domains: The number of data from the first source species is fixed. (a)source
domain: Omni Human and Mouse, target species: Rat. (b) source domain: Omni Human and bovine, target
species: BL Mouse. (c) source domain: BL Mouse and Rat, target species: Omni Human. (d) source domain:
BL Mouse and bovine, target species: Rat. (e) source domain: Omni Human and bovine, target species: Rat.
(f) source domain: BL. Mouse and Rat, target species: bovine.

only one-tenth of the standard training fold, the accuracy of Poly(A)-DG is still higher than other methods
even when the full training fold is available. From these eight sub-figs, we observe that Poly(A)-DG
always performs better than CNN-MLP and DeepPolyA. The performance of DeeReCT depends on the
pre-train and fine-tune order. The performance of DeeReCT would be undesirable if it takes a wrong
pre-train and fine-tune order, but DeeReCT pre-trained on Rat is competitive with Poly(A)-DG. When
the data is limited, the accuracy of DeeReCT pre-trained on Rat is higher than Poly(A)-DG. While the
number of sequences used in training increases, Poly(A)-DG performs better than DeeReCT. SanPolyA
is the strongest competitor of Poly(A)-DG among comparison methods, but it performs less steadily
than Poly(A)-DG. As we discussed above, HEX is speculated to force the model to learn invariant
features among different distributions. Therefore, Poly(A)-DG may not work effectively over similar data
distributions. The sequences come from different tissues of species; some tissues provide significant more
data than other tissues. Also, we have 11 poly(A) motifs, the number of some motifs is sufficient while
the number of other motifs is limited. When we shuffle the dataset and pick up sequences randomly in
training, sequences are more likely to come from those tissues or motifs contained more sequences and we
conjecture that these sequences between Mouse and Rat or Rat and Human have a higher similarity. When
the training set becomes larger, the training set contains more diverse sequences, which may decrease the
similarity between different species, so Poly(A)-DG is likely to work.

Our experiments demonstrate that Poly(A)-DG can be applied in addressing the insufficient data
problems.

Training with imbalanced species

We intend to investigate the performance of our method dealing with variations of sample abundance
of the species, because the amount of available data for different species may differ, training sets are
usually imbalanced to take advantage of the abundance of the data sets. However, insufficient species may
become noise in training due to distribution differences and even confuse the model so that it produces



Figure 4: Imbalanced source domains: The number of data from the second source species is fixed. (a)source
domain: Omni Human and Mouse, target species: Rat. (b) source domain: Omni Human and bovine, target
species: Rat. (¢) source domain: BL Mouse and Rat, target species: bovine. (d) source domain: BL Mouse
and bovine, target species: Rat. (e) source domain: Omni Human and Rat, target species: BL Mouse. (f)
source domain: BL Mouse and bovine, target species: Omni Human.

undesirable predictions. [ [19] While we still adopt the data splitting strategy discussed in Section
Training with limited data, in this section, we start by training Poly(A)-DG on the standard training
fold and gradually decrease the number of sub-folds of one species in the cross-species training set and
the number of sequences of the other species remains the same. We have six pairs of source domain,
Omni Human-BL Mouse, Omni Human-Rat, Omni Human-bovine, BL Mouse-Rat, BL Mouse-bovine
and Rat-bovine. We fix the first species in the source domains mentioned above and plot the empirical
results of experiments conducted on them in Fig (3)). The results of experiments conducted on source
domains that the second species is fixed are plotted in Fig (4). We show experimental results of six groups
experiments for Fig and Fig {4|in this section, other twelve group of experiments can be found in
section 5 of [S1 Supporting Information] We observe that the performance of Poly(A)-DG is obvious
better than over methods in some sub-figures such as Fig (a), Fig (e) and Fig @) (a). Not only
the accuracy of Poly(A)-DG is higher than others, but the accuracy is more steady when the number of
sequences of one species decreases. The performance of SanPolyA is very close to Poly(A)-DG in some
pairs of experiments but in some sub-figures, for example, Fig (3) (d), the accuracy declines when the
number of bovine increases in the source domain. In the experiments, we find that in different source
domains or in the same source domain with different ratios of the number of sequences for each species,
DeepPolyA is very sensitive to the learning rate. Although the accuracy reported in Fig (3) and Fig @) is
acceptable, in worst cases, DeepPolyA cannot even converge.

In some situations, the performance of DeeReCT performs close or even better than Poly(A)-DG, but
when it comes to another species in target domains or takes other order of pre-train and fine-tune, the
performance will be undesirable. In contrast, experimental results show that Poly(A)-DG can adapt to
different cross-species datasets and it works stably when the size of insufficient species are various. We
also find that CNN-MLP does not work as effectively as Poly(A)-DG. We conjecture that, confused by
the imbalanced training set, CNN-MLP could mistakenly learn species-specific motif information from

cross-species datasets.
The result of experiments shows that Poly(A)-DG can be promising in addressing imbalanced dataset

problems.
Table 7: Imbalanced PAS positive-negative ratio
Positive : Negative
domain Target 1:5 1:3 1:2 1:1 Target 1:5 1:3 1:2 1:1
BL Mouse Rat 555% 59.4% 63.1% 68.5% bovine 62.2% 68.0% 729% 75.3%
Rat BL Mouse | 63.5% 67.8% 70.2% 69.7% bovine 66.7% 72.3% 75.5% 76.0%

bovine BL Mouse 624% 66.6% 69.1% 68.9% Rat 65.7% 709% 73.3% 69.4%
BL Mouse | Omni Human | 60.6% 66.2% 71.8% 75.0% Rat 553% 589% 62.1% 67.6%
BL Mouse | Omni Human | 69.6% 66.5% 70.7% 72.3% bovine 59.7% 66.6% T70.4% 72.4%

bovine Omni Human | 63.3% 68.4% 72.5% 73.8% | BLMouse | 62.3% 659% 68.7% 67.9%

Training with imbalanced PAS positive-negative ratio

In experiments conducted above, we assume that the ratio of the number of positive and negative PAS
is equal. However, in real conditions, the number of pseudo PAS sequences could be higher than true
PAS sequences and the ratio of positive and negative samples may vary among species. In this section,
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Table 8: Imbalanced PAS positive-negative ratio for different species; 1:2 for the first source species
and 1:3 for the second one

Source Domain Target Accuracy | Target | Accuracy
Omni Human | BL Mouse Rat 58.0% bovine 66.8%
Omni Human Rat BL Mouse 63.7% bovine 68.1%

Omni Human bovine BL Mouse 68.4% Rat 65.4%
bovine BL Mouse | Omni Human 63.8% Rat 57.3%
Rat BL Mouse | Omni Human 64.2% bovine 65.6%

Rat bovine Omni Human 66.7% mouse 62.0%

we train Poly(A)-DG in new training sets in different ratios of positive and negative PAS, including 1:5,
1:3 and 1:2 and predict PAS from new species with equal number of false and true PAS sequences. We
set the Poly(A)-DG models training on standard training sets as control groups. Experimental results
are shown in Table (7). When the ratio of negative and positive PAS is 5:1, though the accuracy of PAS
identification decrease by about 10% to 13%, Poly(A)-DG is still able to recognize PAS sequences. The
performance of Poly(A)-DG is closer to control groups by having more true PAS sequences. When the
ratio of negative and positive PAS becomes 2:1, Poly(A)-DG can even achieve higher performance than
control groups. We surmise that Poly(A)-DG may learn enough invariant PAS related features from
the 2:1 negative-positive PAS datasets and extra true PAS sequences sometimes cannot provide more
species-invariant motif features with Poly(A)-DG but more species-specific information. We also research
the performance of Poly(A)-DG training on soruce domains with a ratio between positive and negative
is 1:10. (Section 6 in[S1 Supporting Information)) We further investigate if Poly(A)-DG can work on
cross-species datasets that the ratio of positive and negative samples is different for different species. In
this group of experiments, we set the ratios of positive and negative PAS sequences are 1:3 and 1:2 for
different speices in the source domain. The details can be found in Table (8). These experimental results
show that the ratio of the number of positive and negative samples affect the performance of Poly(A)-DG,
but the model can still work to identify PAS.

Table 9: gene with single PAS V.S. gene with multiple PAS; Target domain: Rat

Source Domain Single | Multiple
Omni Human | BL Mouse | 78.3% | 66.5%
Omni Human bovine 84.0% | 71.2%
BL Mouse bovine 785% | 67.2%

Genes with single PAS V.S. genes with multi PAS

Some genes have more than one PAS while others have only one PAS. In this section, we build two new
Rat PAS datasets, single PAS Rat datasets and multiple PAS Rat datasets, to investigate the performance of
Poly(A)-DG on them. PolyA DB v3.2 [45] provides information about PAS and the gene they came from,
we extract sequences with AATAAA PAS motif from genome database and divide them into two groups,
gene have multiple PAS and gene have only one PAS. We train Poly(A)-DG on standard cross-species
datasets and directly test on single and multiple PAS datasets. Table (9) shows the results of experiments.
Predicting PAS in single PAS genes, Poly(A)-DG can achieve a much higher accuracy than it test on
multiple PAS genes.

Visualization of captured features in convolution filters

Poly(A)-DG directly processes DNA sequences and automatically extracts features instead of processing
hand-crafted features. As discussed in the section CNN-MLP for feature extraction, convolution neural
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Figure 5: Visualization of convolution filters of Poly(A)-DG. (A)Source domain: BL Mouse and Rat.
(B)Source domain: BL Mouse and bovine (C)Source domain: Rat and bovine. (D)Source domain: Omni
Human and BL Mouse. (E)Source domain: Omni Human and bovine. (F)Source domain: Omni Human and
Rat.

Figure 6: Visualization of position importance in PAS identification. (a)Source domain: Omni Human and
BL Mouse.(b)Source domain: Omni Human and BL Mouse. (c)Source domain: Omni Human and BL Mouse.
(d)Source domain: Omni Human and BL Mouse. (e)Source domain: Omni Human and BL Mouse. (f)Source
domain: Omni Human and BL Mouse.

network in Poly(A)-DG is responsible for extracting motif features. In this section, we visualize the motif
features that the convolution filters most likely to capture. Each convolution kernel in convolution layer has
a sliding window with a width of 10 nucleotides to scan every 10-mer sub-sequences of input sequences.
We utilize the values calculated by convolution kernels to visualize the learned motif features. For each
convolution kernels, we search the 10-nt sub-sequence that kernels give the largest activation value for
each DNA sequences sample. For all input DNA sequences, we construct position weight matrices and
use WebLogo 3 [[7] to visualize the pattern in sequence logo for each filters. We train Poly(A)-DG on
cross-species datasets and send DNA sequences from target species to investigate the importance of motif
in cross-species PAS identification. Fig (5) shows the entropy of motifs at each position that Poly(A)-DG
captured for each of convolution filters. Given the same target species with different source domains,
the Poly(A)-DG tends to capture different motifs. In general, we observe that most patterns that the
convolution filters looking for across species are A-rich, T-rich and GT-rich DNA subsequences. These
visualization outcomes confirmed the view proposed by previous studies that polyadenylation is regulated
by A-rich, U-rich and GU-rich RNA sequences. Specifically, the TGT AG(G), and AAAAAAAAA motifs
appears frequently in four species, and some T-rich motifs like TTATTT are also popular among species.
Since the Poly(A)-DG is trained on cross-species datasets, the motif captured by convolution kernels for
target species can be regarded as species-invariant features. Besides invariant features shared by four
species, we also notice some invariant features for specific species. For example, Poly(A)-DG is more
sensitive to ATA for BL Mouse than other species, CCC is more important in bovine, and AAGA is more
important in Human.

Visualization of region impacts of DNA sequences

Different positions in PAS DNA sequences may contribute different in PAS identification. To find out
the part with the biggest difference between true and pseudo PAS sequences, we propose to visualize
the contribution of every position in PAS recognition. As we mentioned in the previous subsection,
Visualization of captured features in convolution filters, a filter in convolution layers of Poly(A)-DG scans
every 10-mer sub-sequences with a stride of one nucleotide and it calculates a score to each scanned
sub-sequence at every position. For 16 filters in convolution layers, we average the scores assigned by
them at every position and obtain scores for every position when sequences are sent to Poly(A)-DG. For
every two-species source domain, we first feed positive PAS sequences to the Poly(A)-DG to get positive
position scores and then send negative PAS sequences to obtain negative scores. We plot positive and
negative position values in Fig (6). The x-axis is the position of nucleotides in DNA samples, and the
position of PAS ranges from O to 5. [-100,-1] is the upstream area of PAS and [6,100] is downstream
regions of PAS. The y-axis represents the importance of each position of the positive and negative samples
in the feature extraction of the convolution kernel. The position values represent how sensitive the model
is on the information of this position. If the position values are high, the information in this position is
more important in PAS identification. The position with a larger position value difference between positive
and negative sequences indicates that it is more significant in distinguishing true PAS from false ones.
These six sub-figures show that the downstream regions of PAS contain more information than upstream
ones, specifically, the regions located at 20-40 nt of downstream of PAS have the biggest differences
between positive and negative position values. As proved by previous studies [2,[29], these regions with
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significant differences are usually the region of Poly(A) site where the cleavage operation take place.
Due to transcription process goes from 5° to 3°, the impact of the nucleotides contents might be highly
unbalanced. However, from Fig @, we observe the mean position value of upstream and downstream of
poly(A) site is about the same. Besides the PAS and poly(A) site regions, we also observe that the position
value of positive samples are generally higher than negative samples. The reason for this phenomenon is
that Poly(A)-DG tends to look for T-rich or GT-rich motifs (discussed in section Visualization of captured
features in convolution filters), and previous study [30} 33]] confirmed that the upstream of PAS is T-rich
and the downstream of poly(A) site is T or GT-rich. Therefore, we conjecture that the poly(A) site is the
most essential elements in PAS identification.

Predict the number of PAS on whole genome from chromosome 1 of rat

To further investigate the availability of Poly(A)-DG, we examine the performance of Poly(A)-DG on the
whole genome of chromosome 1 of rat. PolyA-DB v3.2 provides 5,755 annotated PAS for chromosome 1
of rat. We first extract the whole genome of chromosome 1 in rat from genome database, and divided
them into 206 nucleotides subsequences with a stride of 50 nucleotides. Owing to the PAS is a 6-nt
motif, the same PAS contained by several consecutive 206-nt subsequences, though the position of PAS
varies. In practical usage, the position of PAS within the DNA segments is unknown if we don’t have
any annotation. Therefore, we label the sequences contain the entire PAS motif as positive samples and
the remaining sequences as negative. Owing to the different strands of PAS, we reverse the chromosome
1 of rat and repeat the process mentioned above to extract positive and negative PAS sequences. The
final established rat chromosome 1 PAS datasets contains 11,541,504 negative PAS sequences and 17,920
DNA sequences that contains PAS. We predict the rat chromosome 1 PAS datasets by Poly(A)-DG trained
on three cross-species source domains. We report the false positive rate (FPR), false negative rate (FNR),
and accuracy in Table (I0). The FPR is about 25%, FNR is about 65% and the accuracy is around 75%.
We notice that the high FNR is caused by the subsequence dividing strategy. Poly(A)-DG trains on our
standard PAS datasets which the location of PAS is in the middle of sample for all positive DNA sequences.
However in the rat chromosome 1 PAS dataset, due to the subsequence dividing strategy mentioned
above, the position of PAS is random. The position shift of PAS may greatly affect the performance of
Poly(A)-DG to identify the positive sequences. Our experiments indicates that Poly(A)-DG is promising
in detecting PAS from whole genome as an aid tool to help researchers.

Table 10: Predict PAS on chromosome 1 of Rat; FPR: False Positive Rate; FNR: False Negative Rate
Source Domain FPR FNR Acc.
Omni Human | BL Mouse | 24.91% | 66.36% | 75.02%
Omni Human bovine 30.76% | 58.52% | 69.15%
BL Mouse bovine 22.22% | 69.52% | 77.70%

Homology effect of PAS dataset

We sought to examine whether the homology sequence among four PAS datasets affect the PAS identifi-
cation. According to previous works [4,[52], we adopt the CD-HIT [13] to identify pairs of homology
sequence among Omni Human, BL Mouse, Rat and bovine PAS datasets with the lowest threshold 0.8.
We filtered detected pairs of homology sequence and the number of PAS sequence in Omni Human is
reduced from to 33,575, the number of PAS sequence in BL Mouse is reduced from to 34,714, the samples
of Rat is reduced from to 28,057, and the samples of bovine PAS sequence is reduced from to 20,272.
We retrained Poly(A)-DG on filtered cross-species PAS datasets and evaluate it on filtered target species.
Empirical results in Table [IT|show that the performance of Poly(A)-DG will not be obviously influenced
by homology pairs of DNA sequences, and in some indices, the accuracy of filtered datasets is higher
than that on standard datasets.
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nce of Poly(A)-DG on standard cross-species PAS dataset and filtered cross-species PAS dataset

Source Domain Target filtered | standard Target filtered | standard
Omni Human | BL Mouse Rat% 68.8% 68.5% bovine 75.5% | 75.3%
Omni Human bovine BL Mouse 71.0% 68.9% Rat 68.3% 69.4%

BL Mouse bovine Omni Human | 74.4% | 75.0% Rat 66.7% | 67.6%

Rat bovine Omni Human | 74.8% 73.8% | BLMouse | 70.3% | 67.9%

Rat BL Mouse | Omni Human% | 70.1% | 72.3% bovine 709% | 72.4%

Omni Human Rat BL Mouse 71.3% 69.7% bovine 75.8% | 76.0%
Conclusion

In our work, we propose a neural-network-based domain generalization model which can be trained on
cross-species PAS datasets and directly applied to identify PAS from a new species. In our experiments,
we mix each two of four datasets, Omni Human, BL Mouse, Rat, and bovine to build cross-species
training sets and evaluate our method on rest species. According to the experimental results, Poly(A)-DG
achieves relatively high accuracy over balanced cross-species datasets. Moreover, we investigate the
performance of Poly(A)-DG on insufficient and imbalanced cross-species training sets. We observe
that the performance of Poly(A)-DG would not decline drastically when the available training data
significantly decreases. On imbalanced cross-species training sets, Poly(A)-DG works relatively stably
when the size of one species varies. on imbalanced PAS positive-negative ratio cross-species datasets, the
Poly(A)-DG can still work and detect the PAS even the number of negative samples is five times larger
than the positive ones in the training domains. We conjecture that Poly(A)-DG outperforms existing
methods may owe to its ability to learn invariant distributions between different species. Experimental
results show that Poly(A)-DG, which is well adaptable to different species, provides us a promising way
to address practical PAS identification problems. We investigate the homology effect of PAS datasets
and empirical results indicate that Poly(A)-DG is slightly affected by the homology DNA sequences.
We examine the performance of Poly(A)-DG in identifying the PAS from genes with single poly(A) site
and multiple poly(A) site, and find that our model works better on gene with only one poly(A) site. We
try to apply Poly(A)-DG on the whole genome from chromosome 1 of rat to evaluate the availability of
Poly(A)-DG on practical usage and the relatively low false positive rate means that Poly(A)-DG may be a
tool to help researchers to exclude DNA sequences that don’t contain PAS. We visualize the convolution
filters and find most captured motifs are A-rich, T-rich and GT-rich DNA subsequences. We also visualize
the position impact of PAS identification and find the 20-40 nt downstream of PAS contribute most in
distinguishing true PAS from pseudo ones. We understand the RNA binding proteins (RBPs) are essential
in polyadenylation regulation, while the current version of Poly(A)-DG doesn’t support the RBPs motif
matching and the RBPs variants discovering among species. We will further work on this issue and hope
to facilitate it in future works.

Supporting information

S1 Supporting Information supplementary materials

S1 File. Human bovine and Mouse Poly(A) signal datasets These three datasets are produced by
previous researchers and we use them in our experiments.

S2 File. Rat true Poly(A) signal datasets We extract labeled Poly(A) signals sequences following the
PolyA DB v3.2 dataset [45]]

S3 File. Rat pseudo Poly(A) signal datasets The pseudo Poly(A) signal datasets used in experiments.

14



Acknowledgments

This publication is based upon work supported by the King Abdullah University of Science and Technology
(KAUST) Office of Sponsored Research (OSR) under Award No. URF/1/2602-01 and URF/1/3007-01.
This work was supported in part by U.S. National Institutes of Health (NIH) grant P41 GM103712 and
R0O1GM134020. This work was supported in part by U.S. National Science Foundation (NSF) grant
DBI-1949629 and I1S-2007595. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

The authors would like to thank Qingtian Zhu from Beijing University of Posts and Telecommunica-
tions and Wengqi Li from Minnan Normal University for insightful discussions.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

(14]

Ricardo Barandela, Rosa M Valdovinos, J Salvador Sanchez, and Francesc J Ferri. The imbalanced
training sample problem: Under or over sampling? In Joint IAPR international workshops on
statistical techniques in pattern recognition (SPR) and structural and syntactic pattern recognition
(SSPR), pages 806—814. Springer, 2004.

Emmanuel Beaudoing, Susan Freier, Jacqueline R Wyatt, Jean-Michel Claverie, and Daniel Gau-
theret. Patterns of Variant Polyadenylation Signal Usage in Human Genes. Genome Research,
10:1001-1010, 2000.

Fabio Maria Carlucci, Paolo Russo, Tatiana Tommasi, and Barbara Caputo. Hallucinating agnostic
images to generalize across domains. In 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), pages 3227-3234. IEEE, 2019.

Wei Chen, Hao Lv, Fulei Nie, and Hao Lin. i6ma-pred: Identifying dna n6-methyladenine sites in
the rice genome. Bioinformatics, 35(16):2796-2800, 2019.

Yiming Cheng, Robert M Miura, and Bin Tian. Prediction of mRNA polyadenylation sites by
support vector machine. Bioinformatics, 22:2320-2325, 2006.

Diana F Colgan and James L Manley. Mechanism and regulation of mRNA polyadenylation. Genes
& development, 11:2755-2766, 1997.

Gavin E Crooks, Gary Hon, John-Marc Chandonia, and Steven E Brenner. Weblogo: a sequence
logo generator. Genome research, 14(6):1188-1190, 2004.

Adnan Derti, Philip Garrett-Engele, Kenzie D Maclsaac, Richard C Stevens, Shreedharan Sriram,
Ronghua Chen, Carol A Rohl, Jason M Johnson, and Tomas Babak. A quantitative atlas of
polyadenylation in five mammals. Genome research, 22(6):1173-1183, 2012.

Dafne Campigli Di Giammartino, Kensei Nishida, and James L Manley. Mechanisms and Conse-
quences of Alternative Polyadenylation. Molecular Cell, 43:853-866, 2011.

Gretchen Edwalds-Gilbert, Kristen L Veraldi, and Christine Milcarek. Alternative poly(A) site
selection in complex transcription units: means to an end? Nucleic Acids Research, 25:2547-2561,
1997.

Ran Elkon, Alejandro P Ugalde, and Reuven Agami. Alternative cleavage and polyadenylation:
extent, regulation and function. Nature Reviews Genetics, 14:496-506, 2013.

Ayse Elif Erson-Bensan and Tolga Can. Alternative Polyadenylation: Another Foe in Cancer.
Molecular Cancer Research, 14:507-517, 2016.

Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. Cd-hit: accelerated for
clustering the next-generation sequencing data. Bioinformatics, 28(23):3150-3152, 2012.

Yonggui Fu, Yu Sun, Yuxin Li, Jie Li, Xingqiang Rao, Chong Chen, and Anlong Xu. Differential
genome-wide profiling of tandem 3’ UTRs among human breast cancer and normal cells by high-
throughput sequencing. Genome Research, 21:741-747, 2011.

15



(15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, Francois
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The Journal of Machine Learning Research, 17:2096-2030, 2016.

Xin Gao, Jie Zhang, Zhi Wei, and Hakon Hakonarson. DeepPolyA: A Convolutional Neural Network
Approach for Polyadenylation Site Prediction. IEEE Access, 6:24340-24349, 2018.

Dina Hafez, Ting Ni, Sayan Mukherjee, Jun Zhu, and Uwe Ohler. Genome-wide identification and
predictive modeling of tissue-specific alternative polyadenylation. Bioinformatics,29(13):1108-i116,
2013.

Shiqi Wang Alex C. Kot Haoliang Li, Sinno Jialin Pan. Domain Generalization with Adversarial
Feature Learning. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5400-5409, 2018.

Paulina Hensman and David Masko. The impact of imbalanced training data for convolutional
neural networks. Degree Project in Computer Science, KTH Royal Institute of Technology, 2015.

Mainul Hoque, Zhe Ji, Dinghai Zheng, Wenting Luo, Wencheng Li, Bei You, Ji Yeon Park, Ghassan
Yehia, and Bin Tian. Analysis of alternative cleavage and polyadenylation by 3 region extraction
and deep sequencing. Nature Methods, 10:133—-139, 2013.

Calvin H Jan, Robin C Friedman, J Graham Ruby, and David P Bartel. Formation, regulation and
evolution of Caenorhabditis elegans 3’UTRs. Nature, 469:97-101, 2011.

Guoli Ji, Jinting Guan, Yong Zeng, Qingshun Q Li, and Xiaohui Wu. Genome-wide identification and
predictive modeling of polyadenylation sites in eukaryotes. Briefings in Bioinformatics, 16:304-313,
2015.

Guoli Ji, Jianti Zheng, Yingjia Shen, Xiaohui Wu, Ronghan Jiang, Yun Lin, Johnny C Loke,
Kimberly M Davis, Greg J Reese, and Qingshun Quinn Li. Predictive modeling of plant messenger
RNA polyadenylation sites. BMC Bioinformatics, 8:43, 2007.

Manal Kalkatawi, Arturo Magana-Mora, Boris Jankovic, and Vladimir B Bajic. DeepGSR: an
optimized deep-learning structure for the recognition of genomic signals and regions. Bioinformatics,
35(7):1125-1132, 09 2018.

Manal Kalkatawi, Farania Rangkuti, Michael Schramm, Boris R Jankovic, Allan Kamau, Rajesh
Chowdhary, John AC Archer, and Vladimir B Bajic. Dragon PolyA Spotter: predictor of poly(A)
motifs within human genomic DNA sequences. Bioinformatics, 28:127-129, 2012.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Matthieu Legendre and Daniel Gautheret. Sequence determinants in human polyadenylation site
selection. BMC Genomics, 4:7, 2003.

Huiqing Liu, Hao Han, Jinyan Li, and Limsoon Wong. An in-silico method for prediction of
polyadenylation signals in human sequences. Genome informatics. International Conference on
Genome Informatics, 14:84-93, 2003.

Clinton C MacDonald and José-Luis Redondo. Reexamining the polyadenylation signal: were we
wrong about AAUAAA? Molecular and Cellular Endocrinology, 190:1-8, 2002.

Arturo Magana-Mora, Manal Kalkatawi, and Vladimir B Bajic. Omni-PolyA: a method and tool for
accurate recognition of Poly(A) signals in human genomic DNA. BMC Genomics, 18:620, 2017.

Christine Mayr. Evolution and Biological Roles of Alternative 3’UTRs. Trends in Cell Biology,
26:227-2317, 2016.

Silvia Mrvova, Kldra FrydrySkova, Martin Pospisek, Véaclav Vopélensky, and Tomas Masek. Major
splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation
initiation factors eIF4E1 and eIF4E3 regulate the translational regulators? Molecular Genetics and
Genomics, 293:167-186, 2018.

Nick J Proudfoot. Ending the message: poly (a) signals then and now. Genes & development,
25(17):1770-1782, 2011.

16



[34]

(35]

(36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

Anders Rehfeld, Mireya Plass, Anders Krogh, and Lennart Friis-Hansen. Alterations in Polyadeny-
lation and Its Implications for Endocrine Disease. Frontiers in Endocrinology, 4:53, 2013.

Amanda Scholl, Alexander Muselman, and Dong-Er Zhang. An Intronic Suppressor Element
Regulates RUNX1 Alternative Polyadenylation. Blood, 126:3578-3578, 2015.

Peter J Shepard, Eun-A Choi, Jente Lu, Lisa A Flanagan, Klemens J Hertel, and Yongsheng Shi.
Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA, 17:761-772,
2011.

Yongsheng Shi. Alternative polyadenylation: New insights from global analyses. RNA, 18:2105—
2117, 2012.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning
Research, 15:1929-1958, 2014.

Bin Tian and Joel H. Graber. Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdisci-
plinary Reviews: RNA, 3:385-396, 2012.

Bin Tian, Jun Hu, Haibo Zhang, and Carol S Lutz. A large-scale analysis of mRNA polyadenylation
of human and mouse genes. Nucleic Acids Research, 33:201-212, 2005.

Bin Tian and James L Manley. Alternative cleavage and polyadenylation: the long and short of it.
Trends in Biochemical Sciences, 38:312-320, 2013.

Elmar Wahle and Walter Keller. The biochemistry of polyadenylation. Trends in biochemical
sciences, 21(7):247-250, 1996.

Haohan Wang, Zexue He, Zachary L. Lipton, and Eric P. Xing. Learning robust representations by
projecting superficial statistics out. In International Conference on Learning Representations, 2019.

Haohan Wang, Zhenglin Wu, and Eric P Xing. Removing Confounding Factors Associated Weights
in Deep Neural Networks Improves the Prediction Accuracy for Healthcare Applications. Pacific
Symposium on Biocomputing. Pacific Symposium on Biocomputing, 24:54—65, 2019.

Ruijia Wang, Dinghai Zheng, Ghassan Yehia, and Bin Tian. A compendium of conserved cleavage
and polyadenylation events in mammalian genes. Genome Research, 28:1427-1441, 2018.

Lingjie Weng, Yi Li, Xiaohui Xie, and Yongsheng Shi. Poly(A) code analyses reveal key determi-
nants for tissue-specific mRNA alternative polyadenylation. RNA, 22:813-821, 2016.

Marvin Wickens, Philip Anderson, and Richard J Jackson. Life and death in the cytoplasm: messages
from the 3’ end. Current Opinion in Genetics & Development, 7:220-232, 1997.

Zhihao Xia, Yu Li, Bin Zhang, Zhongxiao Li, Yuhui Hu, Wei Chen, and Xin Gao. DeeReCT-PolyA:
arobust and generic deep learning method for PAS identification. Bioinformatics, 2018.

Bo Xie, Boris R Jankovic, Vladimir B Bajic, Le Song, and Xin Gao. Poly(A) motif prediction using
spectral latent features from human DNA sequences. Bioinformatics, 29:1316-1325, 2013.

Denghui Xing and Qingshun Quinn Li. Alternative polyadenylation and gene expression regulation
in plants. Wiley Interdisciplinary Reviews: RNA, 2:445-458, 2011.

Katsuhiko Yoshimoto, Hiroyuki Iwahana, Ayumi Fukuda, Toshiaki Sano, Shiro Saito, and Mitsuo
Itakura. Role of p53 mutations in endocrine tumorigenesis: mutation detection by polymerase chain
reaction-single strand conformation polymorphism. Cancer research, 52:5061-4, 1992.

Haitao Yu and Zhiming Dai. SANPolyA: a deep learning method for identifying Poly(A) signals.
Bioinformatics, 01 2020. btz970.

17



