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Abstract—This work attempts to answer two problems. (1) Can we
use the odometry information from two different Simultaneous
Localization And Mapping (SLAM) algorithms to get a better
estimate of the odometry? and (2) What if one of the SLAM
algorithms gets affected by shot noise or by attack vectors, and
can we resolve this situation? To answer the first question we
focus on fusing odometries from Lidar-based SLAM and Visual-
based SLAM using the Extended Kalman Filter (EKF) algorithm.
The second question is answered by introducing the Maximum
Correntropy Criterion - Extended Kalman Filter (MCC-EKF),
which assists in removing/minimizing shot noise or attack vectors
injected into the system. We manually simulate the shot noise and
see how our system responds to the noise vectors. We also evaluate
our approach on KITTI dataset for self-driving cars.

Keywords—extended kalman filter; maximum correntropy criterion;
SLAM; autonomous car security

I. INTRODUCTION

SLAM researchers have developed numerous algorithms that
are primarily based on visual/geometry cues of the surround-
ing environment. Given SLAM’s widespread applications in
various autonomous systems, it has gained significant atten-
tion in the research community [3], [35]. More importantly,
SLAM is an essential component, which enables the self-
driving capability in modern car systems [26]. Navigating
an autonomous system in Global Positioning Systems (GPS)
denied environments is the primary drive for SLAM research.
Even though GPS improves localization, numerous SLAM
techniques are focused on improving localization without using
GPS.

Probabilistic estimation techniques like Kalman Filters (KF)
[13] are the starting point of understanding and implementing
modern SLAM systems. It’s variants like Extended Kalman
Filters (EKF) [9], [14], [16], [17], and Unscented Kalman
Filters (UKF) were later on proposed for non-linear SLAM
systems. Other approaches like Particle filters have also
shown significant improvement in SLAM research [3]. Another
unique approach that addresses the problem of filtering based
approaches is the graph-based SLAM [35]. Here the robot
pose is modeled as a node/vertex in a graph representation,
and the edges represent the errors in measurements from
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various sensors. Eventually, the process results in generating a
pose graph structure and the resulting error can be minimized
by using mathematical optimization techniques like Gauss-
Newton/Levenberg–Marquardt. Popular SLAM techniques like
Oriented fast and Rotated Briefs-SLAM (ORB2-SLAM) [23],
[24] uses the graph-based approach for localization. Besides
the common convention, the advent and the high success
rate of deep learning have given birth to Convolutional Neu-
ral Networks (CNN), which is a unique direction in deep
learning-based SLAM research. Subsequently, quite interesting
results were observed especially with the work on CNN-
SLAM [39]. The experiments have shown that localization
can be achieved from a pair of images acquired by a moving
robot through CNN-based deep learning framework. Despite
promising results from CNN-SLAM, this approach invites a
few challenges that need to be addressed. Deploying high-end
GPU systems on robotic embedded systems capable of solving
complex deep learning problems is still a challenge. Moreover
learning complex dynamic environments is still a challenge in
modern SLAM systems. This requires heavy computation if it
uses a deep learning framework. From the various techniques
introduced in SLAM, one can observe that SLAM inclines to
combine various fields like signal processing, deep learning
(CNN-SLAM) and more significantly computer vision [34],
[38], [39], [42].

Despite the flood of numerous SLAM algorithms that have
been proposed so far, very few of them address the problem
of securing the autonomous system in case it gets attacked.
Numerous incidents have been reported, where researchers
have attacked the autonomous car systems (for example Tesla)
that made the car change it’s naturally estimated trajectory [2].
This has raised a serious concern in modern autonomous
systems and needs to be addressed [36], [37], [40]. Although
cyber-security experts have proposed various solutions in
solving those issues, these security/hacking problems are still
remaining open and challenge. It is important to note that any
system can potentially be attacked. Now, if a SLAM system
is vulnerable, it becomes a challenge to deploy it in real-time
scenarios. So, can a SLAM system be secured by itself? which
means can a SLAM system be designed in a way where it can
detect an attack/outliers by itself to avoid the change in it’s
natural estimated trajectory?

Our work is focused on solving this SLAM security problem
by building a self-secure SLAM framework that can detect
potential outliers/attacks. We propose to use the Maximum
Correntropy Criterion - Extended Kalman Filter (MCC-EKF)
approach in our framework and show through the results of
how our approach avoids attacks. The framework that we build
is based on using the odometry from two SLAM methods
and fusing them using MCC-EKF, which results in the overall
estimation of the autonomous system. This also answers the
question - Can we use two odometry from different SLAM
methods and get a better estimate of the trajectory?. The results
show that we can improve the overall trajectory. But initially,
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we introduce the idea of MCC-EKF using the Gaussian Kernel
correntropy function and discuss the mathematical interpreta-
tion of it [11]. The prime motivation for our work is to resolve
a situation when the system gets attacked, that forces the
autonomous system to change its natural estimated trajectory
[41] [8]. In several examples, we have seen how an attacker
can attack an autonomous system and change its trajectory to
the attacker’s own desired location [2]. We propose to use
the MCC-EKF SLAM algorithm in our system, which has
the potential to give a solution to this problem. We use this
approach in our system as well as evaluate our approach in
the popular KITTI dataset [1] and discuss the results.

The remaining paper is organised as follows: Section II in-
troduces the Correntropy Kalman Filter and its underlying
concepts. Section III describes our implementation of MCC-
EKF algorithm. The results and evaluation of our proposed
methodology is discussed in IV.

II. KALMAN FILTER WITH CORRENTROPY

1) Correntropy: We will first discuss the correntropy criterion
since it has gained popularity in various fields such as pattern
recognition, machine learning and designing the filter in the
presence of non-Gaussian noise. It has proved beneficial to
remove large outliers. Correntropy is essentially a similarity
measure of two scalar random variables. It can be mathemat-
ically represented as :

Vσ(X,Y ) = E[κσ(X − Y )]. (1)

This also refers to in common literature as a cross-correntropy
of two scalar random variables X and Y [11] [4] [8]. In
Equ. (1), E[.] refers to the expectation of the variable, and
κσ denotes the kernel function. In our approach, we use
the Gaussian Kernel function where the correntropy can be
rewritten as:

Vσ(X,Y ) =
1

N

N∑

i=1

Gσ(xi − yi) (2)

where xi and yi are N random samples drawn from X and
Y . Equ. (2) plays a key role in our work where,

Gσ(xi − yi) = exp(−‖xi − yi‖2
2 ∗ σ2

) (3)

and σ is the bandwidth or the kernel size of the Gaussian
kernel. From Equ. (3) it becomes evident that if X = Y
Gaussian Correntropy is maximum, and the Gaussian cor-
rentropy function is positive and bounded [11] [4] [8]. The
next subsection describes how this can be used with Kalman
Filtering.
2) Correntropy with Kalman Filtering: Kalman filter for state
estimation is given as follows:

xk = F ∗ xk−1 + wk (4)

yk = H ∗ xk + vk (5)

where xkεR
n is the state vector, and ykε is the measurement

vector. wk is the system process noise, and vk is the measure-
ment noise, and both are assumed to be zero mean. F and H
are the system matrix and the observation matrix, respectively.
We represent the associated covariance matrix to be Qk and
Rk for the system process noise and the measurement noise,
respectively. Kalman filter operates as a weighted least squares

approach where and objective function, J , is defined as:

J = 1
2 ∗ (yk −H ∗ x̂k)

T ∗R−1
k ∗ (yk −H ∗ x̂k)+

1
2 ∗ (x̂k − F ∗ x̂k−1)

T ∗ P−1
k|k−1 ∗ (x̂k − F ∗ x̂k−1)

(6)

The KF can be derived by solving

∂J

∂x̂k
= 0. (7)

Then the KF after initialization of the state variables is given
as:

Pk|k−1 = FPk−1|k−1F
T +Qk (8)

Kk = Pk|k−1H
T (HPk|k−1H

T +Rk)
−1 (9)

x̂k = x̂−
k +Kk(yk −Hx̂−

k ) (10)

Pk|k = (I −KkH)Pk|k−1(I −KkH)T +KkRkK
T
k (11)

where Kk ∈ R
n×m is the Kalman gain. x̂−

k is the priori
estimate of the state xk. It is based on measurements up to
and including time k − 1, and has covariance Pk|k−1. x̂k

is the posteriori estimate of the state xk, and it is based on
measurements up to and including time k and has covariance
Pk|k.

Now, with respect to the Correntropy Kalman Filter the objec-
tive function in Equ. (6) becomes,

J = Gσ(||yk −H ∗ x̂k||R−1
k
)+

Gσ(||x̂k − F ∗ x̂k−1||P−1
k|k−1

).
(12)

The derivation for this can be seen in [11] [4] [8], and the
overall equations for the MCC-EKF can be written as follows:

For initialization:
x̂0 = E[x0] (13)

P0 = E[e0e
T
0 ] (14)

where, e0 = x0−x̂0 is the error term, and E(.) is the expected
value operation. Prior estimation can be calculated as

x̂−
k = Fx̂k−1 (15)

Pk|k−1 = FPk−1|k−1F
T +Qk. (16)

The remaining state estimation can be calculated as:

Lk =
Gσ(||yk −H ∗ x̂k||R−1

k
)

Gσ(||x̂k − F ∗ x̂k−1||P−1
k|k−1

)
(17)

Kk = (P−1
k|k−1+Lk ∗HT ∗R−1

k ∗H)−1∗LK ∗HT ∗R−1
K (18)

x̂k = x̂−
k +Kk(yk −H ∗ x̂−

k ) (19)

Pk|k = (I−Kk ∗H)∗Pk|k−1 ∗(I−Kk ∗H)T +Kk ∗Rk ∗KT
k .

(20)

From the derivation of Lk, it can be seen that, if yk is large
(outlier measurement), Gσ approaches zero and so is Lk. So
if Lk is zero then the Kalman Gain Kk is zero, which means
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Fig. 1: System Architecture.

that the state update in Equ. (19) is updated by the state of the
system as given by Equ. (15). The mathematical representation
of the above equations can be written as:

lim
yk→∞Lk = 0 (21)

lim
Lk→0

Kk = 0 (22)

lim
Kk→0

x̂−
k = x̂−

k . (23)

III. PROPOSED METHODOLOGY

Figure 1 gives the basic system architecture of our proposed
approach. As mentioned in Section I, we use two different
SLAM algorithms to get the odometry. We also use two
different sensors to accomplish our goal. We use simulated
Velodyne Lidar (VLP-32) and a simulated stereo camera in
our setup. We have evaluated our system in a gazebo simulated
environment from an open-source repository [31]. We attempt
to evaluate how using the odometry information from the two
SLAM methods [22] [10] to enhance the overall odometry of
the autonomous system (e.g., car).

For calculating the Lidar odometry we use the Iterative closest
Point (ICP) SLAM, which uses 3D lidar data for estimating
the 6 DOF position of the Lidar sensor. For our purpose,
we are using only the raw Lidar measurements. In this ap-
proach, at first the Lidar data is downsampled for reducing
computational complexity. We use a voxel grid filter of size
0.2 to downsample the point clouds. Later on, it estimates
the sensor pose using the ICP, which is applied iteratively in
the consecutive frames. We use point-to-plane error metric for
faster convergence. Every estimated pose is then fed to a pose
graph approach to optimize the relative pose as well as to
detect the loop closure. The results of this approach are shown
in the result section. For the ICP parameters, we have set the
maximum iterations to be 100 and the maximum corresponding
ratio is set to be 0.01.

Using the stereo camera data we calculate the odometery using
rtabmap’s Frame-To-Map (F2M) strategy [22].

Our approach takes advantage of these two SLAM methods,
and we feed their respective calculated odometry in our MCC-
EKF framework. Here we also propose to introduce shot noises
or attack vectors into the estimated Lidar odometry and see
how our framework responds to the attacks. Let the attack
vector at time k be ak. So the measurement equation is updated
as y′k = yk + ak. Then Equ. (24) gets updated as:

Lk =
Gσ(||y′k −H ∗ x̂k||R−1

k
)

Gσ(||x̂k − F ∗ x̂k−1||P−1
k|k−1

)
. (24)

So when y′k is large as defined by the kernel bandwidth, Lk

is 0, which forces the Kalman Gain Kk to be 0. So the
next updated state is upated by the system state as given
in Equ. (15). This process, as one can see, can reject the
attacks/outliers thus securing the system.

The MCC-EKF algorithm for our approach is given below.

Algorithm 1: MCC-EKF algorithm for autonomous sys-
tem security

Result: Computed odometry from MCC-EKF SLAM
Lidar Odom (ICP) −→Lo(x, y, z, r, p, y)
Stereo Odom (F2M) −→So(x, y, z, r, p, y)
Initialization;
Lidar odom −→ (Lo)
Stereo odom −→ (So)
Compute x0 from Equ. (13)
Compute P0 from Equ. (14)
Prior Estimation;

Compute x̂−
k from Equ. (15)

Compute Pk|k−1 from Equ. (16)
while get Lo and So;
do

Compute Lk from Equ. (24)
Compute Gain Kk from Equ. (18)
Update state xk from Equ. (19)
Update Pk|k from Equ. (20)

end

IV. RESULTS

We evaluate our approach on two systems - the simulated
gazebo system and the KITTI dataset. The Gazebo simulated
system uses a Prius model with inbuilt Lidar and a camera
system. The source code and the model description is available
as open source [31]. Figure 2 shows the simulated gazebo
environment for our work, and Figure 3 shows a zoom-in
location with the prius car model that we use. We have edited
the model in order to include a stereo system so that we can
get the odometry from the stereo camera (using rtabmap’s
FrameToMap (F2M)).

Figure 4 shows one sequence of the data from KITTI dataset.
Again, it is mentioned earlier that we are using two different
SLAM algorithms - ICP for Lidar odometry calculation and
FrameToMap Visual odometry calculation (from rtabmap) for
stereo cameras, and we are injecting attacks on the Lidar
odomtery and evaluate how the MCC-EKF responds. Gener-
ally, for our framework, we can use any two SLAM algorithms
to output odometry.
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Fig. 2: Gazebo Simulation Environment.

Fig. 3: Zoom-in at one location in Gazebo Simulation Envi-
ronment.

For the Lidar odometry, we use ICP based approach to retrieve
the odometry from Lidar. Initially, we downsample the point
cloud using voxel grid filtering, and we use the Point-to-Plane
error metric for faster convergence of the ICP algorithm. The
sample result from our gazebo simulated model is shown in
Figure 5. Figure 5(a) shows the Lidar odometry and the map.
Figure 5(c) shows the Lidar trajectory with respect to the
ground truth. The dotted line is the ground truth.

Using the stereo camera we calculate another set of odom-
etry using Frame2Map in rtabmap. The sample result of the

(a)

(b)

Fig. 4: KITTI dataset data (SEQ 11): (a)- Environment, and
(b) its 3D Lidar map.

odometry as well as the mapping is shown in Figure 5(b) and
Figure 5(d)

The next step involves using the odometries obtained from
the above mentioned methods into our MCC-EKF framework.
The combined odometries (Lidar odometry, Stereo odometry
and the MCC-EKF odometry) for the example shown in Figure
5 is shown in Figure 6. In Table 1, this trajectory is referred
as Trajectory 1.

Our initial query as mentioned earlier was, can we improve the
odometry by using these two odometries obtained from differ-
ent SLAM algorithms? In our experiment (Gazebo simulation)
we compare the Root Mean Square Error (RMSE) values of
individual trajectories with respect to the ground truth. Table I
compares the RMSE values, which clearly shows that MCC-
EKF performs better than the individual SLAM algorithms.

Another problem that we intended to solve was to avoid attacks
(false injection of odometry values). This was the primary
reason for our work presented here. We inject false values
in the lidar odometry and test the response of our MCC-
EKF approach. Table II indicates the RMSE values of the
algorithms when false odometry is injected. We inject constant
false values at random location in the lidar odometry, and we
see that MCC-EKF can handle those attacks as compared to
the use of the traditional EKF algorithm. The sigma parameter
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(a) (b)

(c) (d)

Fig. 5: (a, c) Lidar odometry and (b, d) Stereo odometry.

of the Gaussian kernel function Gσ plays an important role in
MCC-EKF implementation. For our experiment, it is set to 10.
Figure 7 shows the response of the MCC-EKF to the attacks
on the Lidar data. In Figure 7 it is important to note that the
trajectories are translated so that all the paths are displayed
clearly. One can see that MCC-EKF does not get affected at
places where the attacks were introduced.

TABLE I: RMSE comparison

Traj 1 Traj 2
Stereo (RMSE)1 0.478404 1.840472
Lidar (RMSE) 0.557076 0.505731

MCC-EKF (RMSE) 0.419823 0.49761

TABLE II: RMSE comparison after attack vectors

Traj 1 Traj 2
Random attacks 1

Normal EKF (RMSE) 3.624596 5.01472
MCC-EKF (RMSE) 0.420437 0.81037
Random attacks 2

Normal EKF (RMSE) 4.624596 7.01472
MCC-EKF (RMSE) 0.43317 0.85132

As it is clear, MCC-EKF is a variant of the traditional EKF, and
the MCC-EKF is robust to attacks or sudden outliers. So if we
introduce attacks in the system (attacking Lidar odometry), the
trajectory changes drastically. However using the MCC-EKF
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(a) (b)

Fig. 6: (a) Odometry trajectory of each method. (b) Zoom-in
at one location.

approach, the attacks are rejected.

We have evaluated approach on the KITTI dataset. For the
KITTI dataset, we have shown our results in two sequences.
We have compared the results of MCC-EKF with normal EKF
with and without attacks. The comparison of both the systems
is shown in Figure 9 and 10. Figure 9 shows the normal
EKF response with attacks while Figure 10 shows the MCC-
EKF response with attacks. We can clearly see that the MCC-
EKF can successfully eliminate the attacks, but the EKF can
not. The source code is available on our ARA lab github:
https://github.com/aralab-unr/MCC-EKF-SLAM

Fig. 7: MCC-EKF response to attacks on Lidar data.

TABLE III: RMSE comparison on KITTI dataset.

SEQ 01 SEQ 05 SEQ 11 SEQ 27
Random
attacks 1

EKF 2.04 2.42 1.475 3.193625
MCC-EKF 0.0198 0.0073 0.110 0.142083

Random
attacks 2

EKF 3.79 7.0685 2.1875 4.1989
MCC-EKF 0.0198 0.092263 0.1842 0.1693

V. CONCLUSIONS

In this work, we have attempted to provide a self-secure
solution to an autonomous system using the MCC-EKF ap-
proach. From the results we have shown how an autonomous
system can be attacked by an attacker/hacker and change the
system’s naturally estimated trajectory and how even a simple
injection of false positions can affect the overall trajectory of
the autonomous system. We have also shown how the MCC-
EKF approach can resolve the issue of sudden attacks/outliers
to the system. In addition, we have also proposed that we
can also get a better estimate of the odometry by fusing the
odometry data from two different SLAM algorithms to obtain
a better odometry estimate of the autonomous system.

Our future work will focus on proposing a solution where we
can secure the system if the attacker chooses to inject false data
on the sensor’s raw measurements. We also plan to extend this
work to distributed MCC-EKF security for vehicle to vehicle
network in which multi-robot system research [5]–[7], [12],
[15], [18]–[21], [25], [27]–[30], [32], [33] can be utilized.
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