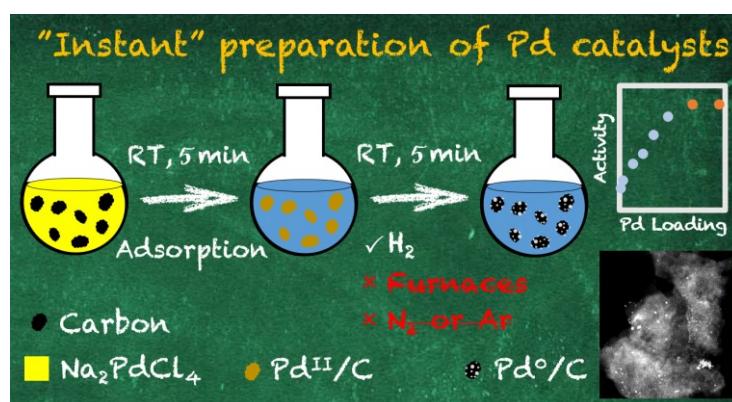


Supported Palladium Catalysts: A Facile Preparation Method and Implications to Reductive Catalysis Technology for Water Treatment

Jinyu Gao,[†] Changxu Ren,[†] Xiangchen Huo,[‡] Rundong Ji,[†] Xiaoyu Wen,[†] Juchen Guo,[†] and Jinyong Liu^{*,†}


[†]Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States

³Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States

Abstract:

8 Supported palladium (Pd) catalysts have been extensively studied for water purification
9 applications. However, this technology is primarily challenged by the high cost of Pd and the lack
10 of optimization of catalyst formulations. In this report, we demonstrate a convenient approach to
11 prepare and optimize Pd catalysts for the reduction of toxic oxyanions (bromate, chlorate, and
12 perchlorate). Water-dissolved Na_2PdCl_4 was quickly adsorbed in the suspension of activated
13 carbon within 5 min and reduced into Pd^0 nanoparticles *in situ* within another 5 min under 1 atm
14 H_2 at 20 °C. In terms of both material characterizations and reaction kinetics, the Pd catalysts
15 prepared with the new method show no significant difference from those prepared by the
16 conventional method (involving multiple-step high-temperature procedures) and from benchmark
17 commercial Pd catalysts. With the very simple approach to control, evaluate, and optimize Pd
18 content in the catalyst, we elucidate the relationships among the Pd content, Pd^0 particle size, and
19 catalytic activity. We further showcase that the precious metals in previously reported Re–Pd/C
20 and Mo–Pd/C catalysts can be saved for 80% without sacrificing the activity. The new and
21 convenient catalyst preparation method will significantly enhance the cost-effectiveness of
22 reductive catalysis technologies for water purification.

23 **Keywords:** Palladium catalyst, Preparation method, Metal content, Oxyanion reduction, Water
24 purification

26 **Introduction**

27 Supported palladium (Pd) catalysts have been extensively studied for water pollutant
28 degradation for nearly three decades.¹⁻⁴ Toxic oxyanions, halogenated organics, and nitroso
29 organics are labile substrates of Pd-catalyzed hydrogenation.³ Multiple pilot systems have been
30 studied on Pd-catalyzed degradation of chlorinated hydrocarbons⁵⁻⁷ and nitrate.^{2, 8} In particular,
31 oxyanion pollutants such as bromate (BrO_3^-),⁹⁻¹¹ chlorate (ClO_3^-),¹²⁻¹⁴ nitrate (NO_3^-),^{15, 16} and
32 perchlorate (ClO_4^-)^{17, 18} can be only degraded through a reductive mechanism. With 1 atm H_2 at
33 ambient temperatures, Pd catalysts enable complete reduction of BrO_3^- and ClO_3^- :

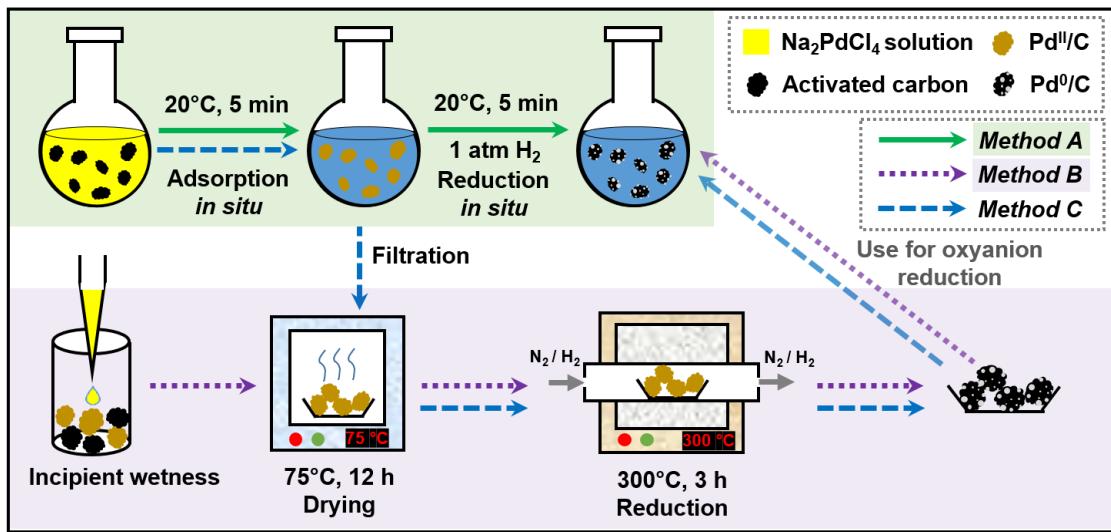
36 For highly recalcitrant substrates such as ClO_4^- , the incorporation of another metal, such as
37 rhenium (Re),^{19, 20} introduces a new oxygen atom transfer (OAT) mechanism that can significantly
38 accelerate the reaction:

40 In addition to the widely recognized benefits of enhanced kinetics and clean byproducts,
41 the interest in developing supported Pd catalysts is also fueled by recent discoveries of their
42 applicability in treating waste streams, which are usually challenging to conventional wastewater
43 treatment technologies. For example, Re–Pd/C and In–Pd/C catalysts have shown robust
44 performance in the reduction of ClO_4^- and NO_3^- , respectively, in waste brines from the
45 regeneration of ion-exchange resins.^{8, 21} In chloro-alkali plants, the ClO_3^- byproduct in
46 concentrated NaCl brine can be reduced back to Cl^- by the currently used rhodium (Rh) catalysts
47 or by the new Mo–Pd/C developed by our group.²² Notably, these reactions are not significantly

48 inhibited (and even surprisingly accelerated)²¹ by the high ionic strength in brines. In these
49 scenarios, biological treatment may be less efficient or not feasible. Pd catalysts can be coupled
50 with biological processes to improve the overall performance of the treatment system.²³

51 However, the potential of applying hydrogenation catalysts to the broad scope of water
52 treatment has often been challenged by the high loadings of Pd, which increases the system cost
53 and offsets the environmental benefits of catalytic technologies. A life cycle assessment (LCA) of
54 the previously reported Re–Pd/C for ClO₄[–] reduction²⁴ suggested that the negative environmental
55 impacts of this technology mainly come from the use of 5 wt% Pd on the carbon support. For
56 example, to treat 1 kg of ClO₄[–] by biological reactors, the total amount of CO₂ produced was
57 estimated to be ~700 kg from organic electron donors, nutrients, and aeration energy. In contrast,
58 the total amount of CO₂ from a 5 wt% Re – 5 wt% Pd/C catalyst was ~2000 kg, which includes
59 1600 kg from Pd, 250 kg from Re, and 150 kg from H₂ and aeration energy. If the loading of Pd
60 can be lowered, the catalytic treatment of ClO₄[–] may become competitive with the biological
61 treatment.²⁴ However, no effort has been made to assess the catalysts with lower Pd contents. The
62 5 wt% of Pd in powdered catalysts has been commonly used in a large number of studies.^{3,4} Fewer
63 cases have used lower Pd contents such as 1 wt%,^{3,4} whereas the rationale for choosing a specific
64 Pd content was not explicit. The effect of using lower Pd loadings for water treatment remains
65 elusive.

66 Although many researchers in this field have doubts about the arbitrary choice of metal
67 content, the preparation of a series of catalysts with various formulations for evaluation and
68 optimization is arduous. Conventionally, supported Pd catalysts are synthesized with a
69 combination of wet chemistry and heat treatment. For example, Pd^{II} precursors are first
70 immobilized in the porous support by various approaches (e.g., incipient wetness and alkaline


71 deposition).²⁵ Then, the powders are dried in an oven (and calcined in a muffle furnace if needed),
72 followed by the reduction with H₂ gas flow at 200–500°C^{25–28} with special safety measures. The
73 whole procedure takes multiple hours, and only one catalyst formulation can be prepared each
74 time, making it challenging to efficiently prepare and test a large variety of catalyst formulations.
75 Therefore, it is valuable to develop a rapid, convenient, and reliable catalyst preparation method
76 for the evaluation and optimization of catalyst formulations.

77 The challenges from conventional Pd catalyst preparation procedures have already
78 triggered a broad interest in developing alternative approaches. Organic chemists have reported a
79 “mix-and-stir” strategy to prepare Pd/C from a pre-synthesized molecular Pd⁰ precursor, Pd₂⁰dba₃
80 (dba = dibenzylideneacetone). In the heated organic solvent, decomposed Pd₂⁰dba₃ complexes
81 yielded Pd⁰ nanoparticles on the carbon support.²⁹ Nanotechnology researchers synthesized Pd⁰
82 nanoparticles in a solution using various chemicals and then immobilized the Pd⁰ nanoparticles
83 onto carbon support.^{30,31} Herein, we report on a very simple and rapid method to prepare supported
84 Pd catalysts *in situ* with freely tunable Pd contents without heating, washing, extra chemicals, or
85 special equipment. We used material characterizations, reaction kinetics, and case studies to show
86 that the new method allows for rapid and extensive screening and optimization of supported Pd
87 catalysts to advance catalyst development for water treatment, where cost-effectiveness is a
88 primary focus.

89 **Materials and Methods**

90 **Chemicals and materials.** KBrO₃, NaClO₃, NaClO₄, Na₂PdCl₄, KReO₄, and Na₂MoO₄
91 (>98% purity for each) were used as received from Sigma–Aldrich. Detailed information of
92 commercial Pd catalysts and the support materials (activated carbon, aluminum oxide, and silica

93 gel) for Pd catalyst preparation are summarized in **Table S1** of the **Supporting Information (SI)**.
94 All aqueous solutions were prepared with Milli-Q water (resistivity $>18.2\text{ M}\Omega\text{ cm}$). The solution
95 pH was adjusted by 2 N H_2SO_4 standard solution (Alfa Aesar) for pH 3.0 and by the mixed solution
96 of 5 mM Na_2HPO_4 and 5 mM NaH_2PO_4 (Fisher Chemical) for pH 7.2.

Figure 1. Preparation of Pd/C catalysts with three different approaches.

99 **Pd/C catalyst preparation.** This work developed the *all-in-situ* *Method A* to prepare
100 supported Pd catalysts (**Figure 1**). A 50-mL flask was sequentially loaded with a magnetic stir bar,
101 the desired amount of carbon, 50 mL of DI water, and the desired amount of Na_2PdCl_4 (via stock
102 solution). The flask was capped with a rubber stopper and sonicated for 1 min to disperse the
103 carbon particles. Two 16-gauge stainless steel needles were introduced through the stopper. One
104 needle was connected to the H_2 gas supply, and the other one served as both the gas outlet and
105 sampling port. The whole operation was conducted at room temperature (20°C). The suspension
106 was stirred at 350 rpm for 5 min to allow the adsorption of the Pd^{II} precursor. Afterward, the
107 suspension was sparged with H_2 (2–3 mL min^{-1}) for another 5 min to reduce the adsorbed Pd^{II} into
108 Pd^0 . The concentration of Pd in water was analyzed by inductively coupled plasma-optical

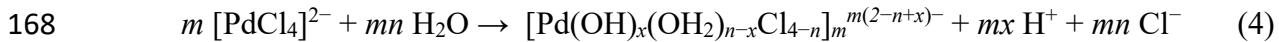
109 emission spectrometry (ICP–OES, PerkinElmer Optima 8300). The preparation of Pd/Al₂O₃ and
110 Pd/SiO₂ followed the same procedure.

111 To validate the new *Method A*, we also prepared Pd/C using the same carbon material with
112 conventional *Method B*, which uses incipient wetness for the impregnation of Pd^{II} into carbon
113 support and then a heated H₂ flow to reduce Pd^{II} into Pd⁰. In a 7-ml scintillation vial, 100 mg of
114 dry carbon powder was loaded as a 0.5-cm-thick cake. Na₂PdCl₄ (13.8 mg, containing 5 mg Pd)
115 was dissolved in 100 μ L of DI water and slowly added via a pipette tip to wet the entire carbon
116 cake without accumulating liquid at the vial bottom. The resulting wet paste was loaded on a small
117 sample boat made of aluminum foil, dried in a 75°C oven for 12 h, and then transferred into a tube
118 furnace. The tube furnace was first flushed with N₂ for 30 min at room temperature to avoid mixing
119 H₂ and air. After switching to Ar/H₂ (v/v = 95/5), the furnace was heated at 300°C for 3 h. The
120 furnace was then cooled down for 2 h and flushed with N₂ for another 30 min before taking out
121 the sample boat.

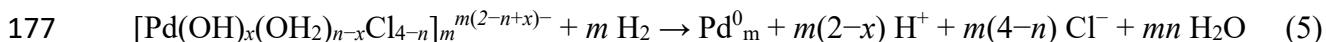
122 To directly compare the effect of *in situ* reduction at 20°C and heated reduction at 300°C,
123 we also used *Method C*, where the adsorption of Pd^{II} occurred in water suspension (the same as
124 *Method A*) and the H₂ reduction occurred in the tube furnace (the same as *Method B*).

125 **Oxyanion reduction.** After catalyst preparation, pH buffers and oxyanions (BrO₃[−], ClO₃[−],
126 and ClO₄[−]) were added to the catalyst suspension to initiate the reaction under the sparging of 1
127 atm H₂ (2–3 mL min^{−1}) at 20°C. For ClO₄[−] reduction, the KReO₄ precursor was added to the Pd/C
128 suspension (pH 3.0) under H₂ sparging for 8 h to prepare the Re–Pd/C catalyst.²¹ For ClO₃[−]
129 reduction by Mo–Pd/C, the Na₂MoO₄ precursor was added to the Pd/C suspension (pH 3.0) under
130 H₂ sparging for 15 min.²² Reactions using all other Pd catalysts followed the same procedure.
131 Aliquots of water samples were collected with a 3-mL syringe and immediately filtered through a

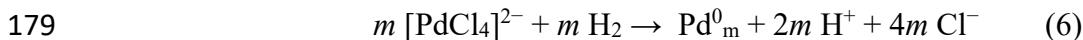
132 0.22- μ m cellulose acetate membrane. Concentrations of anions were determined by ion
133 chromatography (Dionex ICS-5000) equipped with a conductivity detector and a 25 μ L sample
134 injection loop. For BrO_3^- and ClO_3^- , an IonPac AS19 column and 20 mM KOH eluent were used.
135 For ClO_4^- , an IonPac AS16 column and 65 mM KOH eluent were used. The column temperature
136 was 30°C, and the eluent flow rate was 1 mL min⁻¹.


137 **Catalyst characterization.** The prepared Pd/C powder was washed with DI water and
138 collected by filtration under vacuum. The filter paper with the catalyst cake was placed in a fume
139 hood and dried by the airflow at room temperature. The Pd content was measured by ICP-OES
140 after digestion with HCl/HNO₃. The oxidation state of Pd was determined by X-ray photoelectron
141 spectroscopy (XPS, Kratos AXIS Supra). X-ray diffraction (XRD) of Pd/C powders was
142 conducted with a Panalytical Empyrean instrument (45 kV/40 mA) equipped with a Cu-K α source.
143 The surface area of Pd was determined by chemisorption using a Micromeritics ASAP 2020
144 analyzer with the surface Pd:CO stoichiometry of 2.³² All Pd/C powders were resuspended and
145 sonicated in distilled water to further reduce the size for characterization by a scanning
146 transmission electron microscope (STEM, FEI Titan Themis 300) equipped with an energy
147 dispersive X-ray spectrometer (EDS) system at 300 kV accelerating voltage. STEM images were
148 acquired with a high-angle annular dark-field (HAADF) detector. The statistical analysis of Pd
149 particle size was performed using the Nano Measurer software package.

150 **Results and Discussion**

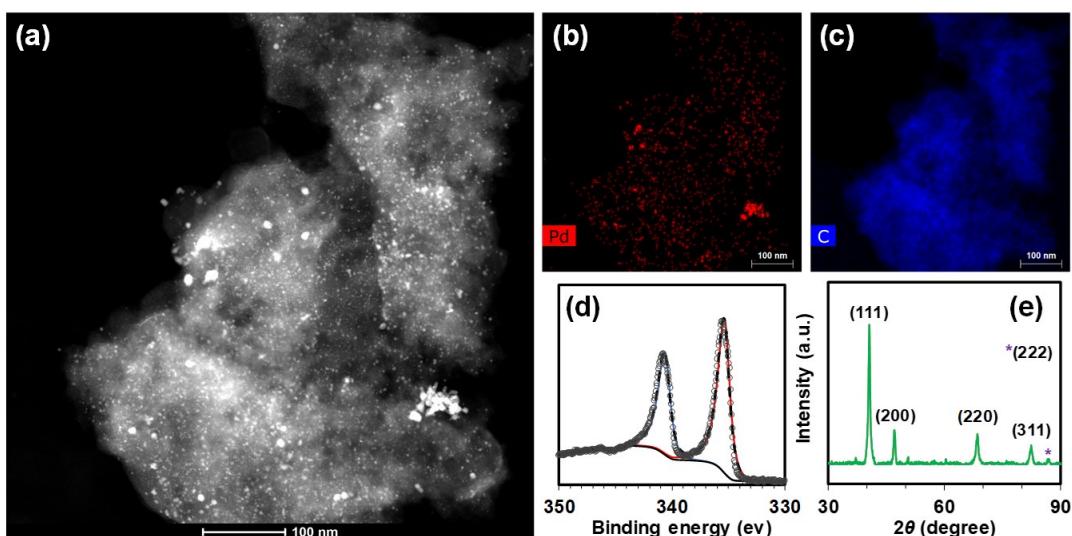

151 **Catalyst preparation and characterization.** The reduction of dissolved Pd^{II} into Pd⁰ by
152 1 atm H₂ at room temperature has been documented for at least 35 years.^{33, 34} We verified this
153 phenomenon with a very simple experiment using only an aqueous solution of Na₂PdCl₄ and 1 atm
154 H₂ in the headspace. Within 35 min, the yellow color of the Pd^{II} solution completely faded, and

155 gray Pd⁰ solids precipitated out (**Figure S1a**). Beneath the solution surface, the reduction occurred
156 with the diffusion of H₂ (**Figure S1b**). We hypothesized that if Pd^{II} is dispersed in a porous
157 material, the reduction by 1 atm H₂ at ambient temperature will yield dispersed Pd⁰ nanoparticles.
158 Hence, we expected that this approach could avoid multiple-step procedures in the conventional
159 preparation method.


160 We chose Na₂PdCl₄ as the Pd^{II} precursor because it has good solubility in water and only
161 leaves Na⁺ and Cl⁻ after the reduction. A comprehensive discussion of various Pd^{II} precursors and
162 conventional catalyst preparation methods can be found in the literature.^{25, 32} ICP–OES analysis
163 of dissolved Pd found that, in the absence of H₂, 98% of the added Pd (5.0 mg L⁻¹) was adsorbed
164 into activated carbon (100 mg L⁻¹ suspension) within 5 min. The dissolution of Na₂PdCl₄
165 generated Pd^{II} colloids (confirmed by the Tyndall effect, **Figure S2**) and lowered the pH of DI
166 water (**Table 1**), indicating the following process that combines ligand exchange, hydrolysis, and
167 polymerization of Pd^{II}.^{25, 35-37}

169 where *n* and *x* can be any value between 0 and 4 (*n* ≥ *x*) depending on solution conditions. The
170 following H₂ sparging further lowered the dissolved Pd from 0.11 mg L⁻¹ to below the detection
171 limit (0.01 mg L⁻¹) within 5 min. This result indicates >99.8% removal of Pd from the aqueous
172 phase. The exposure to H₂ for only 3 min provided the full activity for catalytic reduction of BrO₃⁻
173 (**Figure S3**), suggesting a rapid reduction of the adsorbed Pd^{II} precursor into active Pd⁰ particles.
174 Elemental analysis of the resulting Pd/C found 4.52 wt% of Pd, which is close to the theoretical
175 value of 4.76% (i.e., 5 mg of Pd was added to 100 mg of carbon). Upon H₂ sparging, the pH of the
176 aqueous phase was further lowered (**Table 1**), indicating the reduction of adsorbed Pd^{II} species:

178 The overall reaction combining Eqs 4 and 5 is



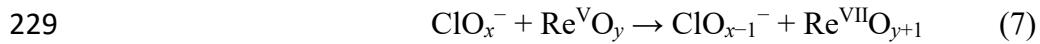
180 **Table 1. The Changes of Solution pH after Sequential Steps for Pd/C Preparation^a**

Pd content (wt %)	DI Water	after addition of Na_2PdCl_4	after addition of carbon	after H_2 sparging
0.5	6.53	5.50	5.95	4.86
5	6.62	4.93	5.00	3.96

181 ^aThe loading of carbon was 0.1 g L^{-1} , and the added Pd concentrations for preparing 0.5 and 5 wt% Pd/C
182 were 0.5 and 5.0 mg L^{-1} , respectively.

183 The exposure of Na_2PdCl_4 solid to 1 atm H_2 quickly changed the color from brown to
184 metallic (**Figure S4**), suggesting that an aqueous environment is not critical for the rapid reduction
185 of Pd^{II} into Pd^0 . We added ethylenediaminetetraacetic acid and citric acid to the solution of
186 Na_2PdCl_4 to simulate the effect of typical functional groups on carbon (e.g., carboxylate, hydroxyl,
187 and amino). Interestingly, both additives slowed down the reduction of Pd^{II} in bulk solution
188 (**Figure S5**). Thus, the potential interaction between adsorbed Pd^{II} and surface functional groups
189 might impede Pd reduction. Nevertheless, characterization data below show that highly dispersed
190 Pd^{II} in the carbon support was rapidly and fully reduced to Pd⁰ nanoparticles.

191
192 **Figure 2.** (a) HAADF-STEM imaging, EDS mapping of (b) Pd and (c) C, (d) Pd 3d XPS spectrum,
193 and (e) powder XRD spectrum of the 5 wt% Pd/C catalyst prepared by *Method A*.

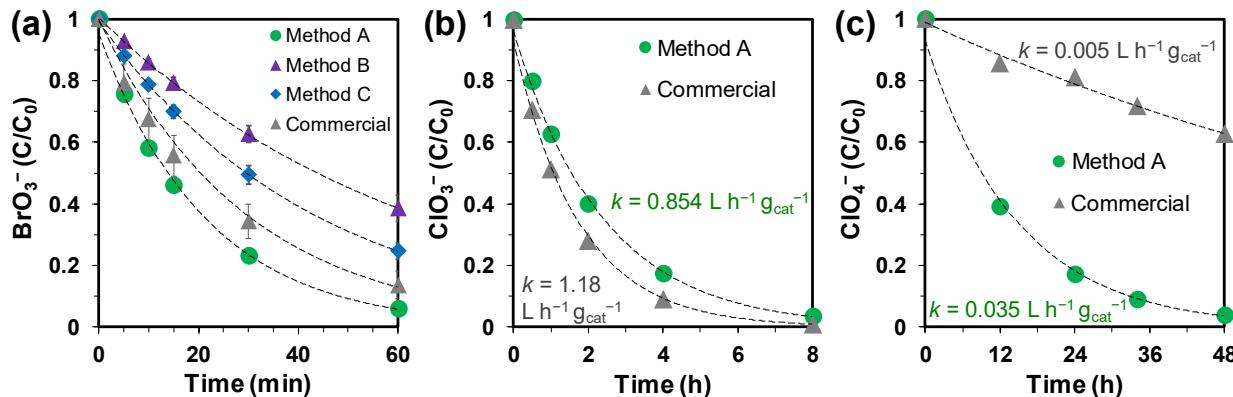

194 The STEM characterization observed a good dispersion of Pd in the carbon support (**Figure**
195 **2a**). EDS elemental mapping confirmed the bright spots in the HAADF-STEM image as Pd
196 nanoparticles (**Figure 2b**). Macropores of the activated carbon can be seen in the elemental
197 mapping of C (**Figure 2c**). XPS characterization observed only one set of Pd 3d spin-orbit coupling
198 doublets (**Figure 2d**), with the $3d_{5/2}$ binding energy at 335.5 eV. This value is characteristic of
199 Pd^0 .²² Notably, the airflow drying without heating did not oxidize the surface of Pd^0 nanoparticles
200 to $Pd^{II}O$. Five peaks corresponding to Pd^0 crystals were identified in the XRD spectrum (**Figure**
201 **2e**). These peaks showed little difference from those of the commercial Pd/C catalyst (**Figure S6**)
202 and other carbon-supported Pd catalysts²⁷ in terms of the diffraction angles and relative intensities.

203 In the STEM images, the majority of adsorbed Pd^{II} was converted into fine particles of Pd^0 ,
204 whereas some relatively large Pd^0 particles can be seen on the edge of the carbon. More STEM
205 images are available in **Figure S7**. We postulate that the formation of those large Pd^0 particles is
206 attributed to the deposition of the residual dissolved Pd (i.e., 0.11 mg L^{-1} in the bulk solution)
207 upon H_2 sparging. It is also possible that Pd^0 particles initially formed in the solution can also be
208 captured by the carbon support.³¹ We note that Pd^0 catalysts from the reduction of Pd^{II} within solid
209 supports usually contain Pd^0 particles in a wide size range.^{25, 27, 29, 38, 39} A narrow size distribution
210 of Pd^0 particles is primarily achieved via solution-phase synthesis using special chemicals.^{31, 40}

211 **Validation of catalyst structure and performance.** We compared the Pd/C catalysts
212 prepared by *Methods A, B, and C* (**Figure 1**) and a commercial Pd/C, which has been used in early
213 studies as a benchmark catalyst.^{20, 22, 27, 41, 42} STEM characterization of all four Pd/C observed
214 similar distribution and size of Pd^0 particles (**Figure S7–S10**). For catalytic reduction of BrO_3^- ,
215 the Pd/C prepared by *Method A* showed the highest activity (**Figure 3a**). At pH 7.2, the use of 0.1
216 g L^{-1} Pd/C achieved 95% reduction of 1 mM BrO_3^- within 1 h. The commercial Pd/C was also

217 more active than those prepared by *Method B* and *C*, which involved heated H₂ treatment. The
218 effect of temperature and time for Pd⁰ formation (20°C for 5 min in *Method A* versus 300°C for 3
219 h in *Method B*) and the effect of Pd^{II} immobilization (incipient wetness in *Method B* versus aqueous
220 adsorption in *Method C*) remain elusive and go beyond the scope of this study. However, the results
221 confirm that the *all-in-situ Method A* provided a Pd/C with satisfactory activity. In comparison to
222 the labile BrO₃⁻, the reduction of ClO₃⁻ required acidic pH 3.0 and 0.5 g L⁻¹ of Pd/C.⁴¹ The *all-in-*
223 *situ* prepared and commercial Pd/C catalysts showed similar activities (i.e., only 28% difference
224 in rate constants); both reduced >95% of 1 mM ClO₃⁻ within 8 h (**Figure 3b**).

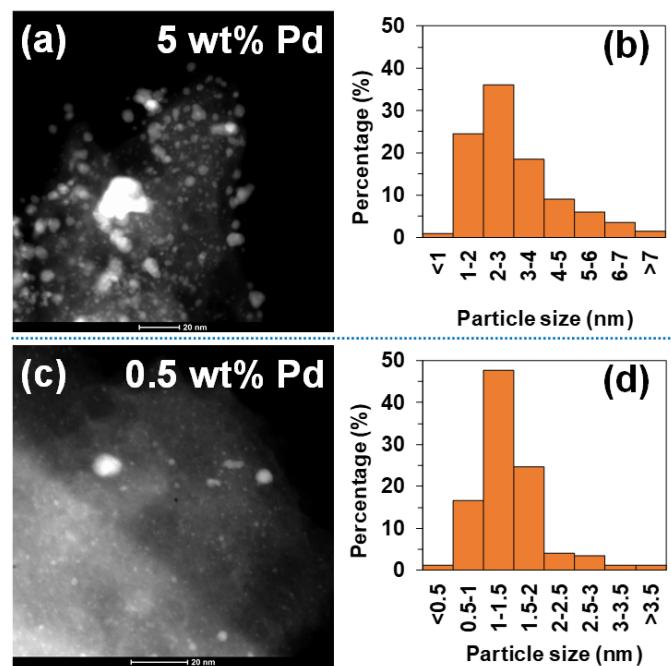
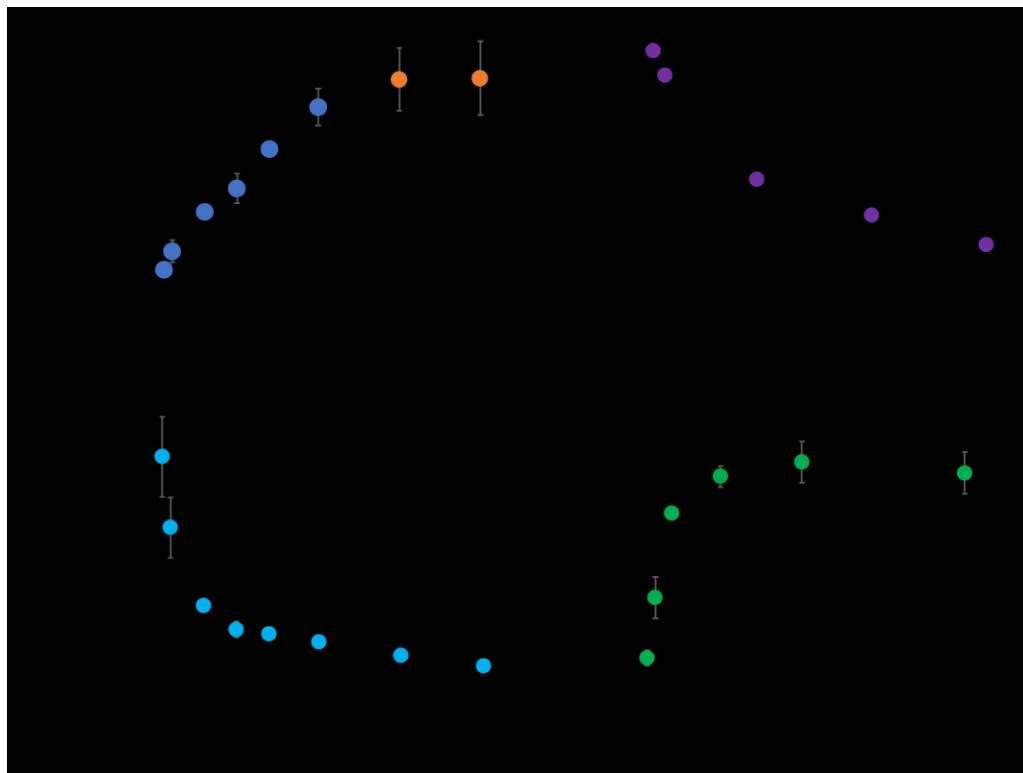
225 The reduction of highly recalcitrant ClO₄⁻ required the use of a bimetallic Re–Pd/C catalyst
226 at a high loading of 2.0 g L⁻¹ at pH 3.0. The Re^{VII}O₄⁻ precursor is reduced by H₂+Pd/C into surface-
227 immobilized Re^VO_x clusters and Re^I species.⁴³ The Re^V site abstracts one oxygen off the Re^V-
228 bound ClO₄⁻ and other x<4 ClO_x⁻ products:



230 The Re^V-Re^{VII} redox cycle is maintained by Pd-catalyzed hydrogenation:

232 Interestingly, the Re–Pd/C catalyst from the *all-in-situ* prepared Pd/C showed a 6-fold
233 higher ClO₄⁻ reduction activity than that from the commercial Pd/C (**Figure 3c**). We note that the
234 rate-limiting step of ClO₄⁻ reduction is the reaction between ClO₄⁻ and Re^V, and the reactivity of
235 Re^V is influenced by its coordination environment,^{20, 21, 44} including the functional groups on
236 carbon materials. Hence, a comparison between the two Pd/C in the perspective of reducing Re^{VII}
237 to Re^V is not meaningful. However, the much higher activity from the *all-in-situ* prepared Pd/C
238 demonstrates the importance of testing new supports to improve the catalyst performance. Such

239 an effort can be significantly accelerated by the convenient *all-in-situ* method for catalyst
 240 preparation.



241
 242 **Figure 3.** The reduction of (a) 1 mM BrO_3^- by 0.1 g L^{-1} of 5 wt% Pd/C at pH 7.2, (b) 1 mM ClO_3^-
 243 by 0.5 g L^{-1} of 5 wt% Pd/C at pH 3.0, and (c) 1 mM ClO_4^- by 2.0 g L^{-1} of 5 wt% Re – 5 wt% Pd/C
 244 at pH 3.0. All reactions used 1 atm H_2 at 20°C. Catalysts prepared by *Methods A–C* used the same
 245 carbon support. Dotted lines indicate the first-order model fit.

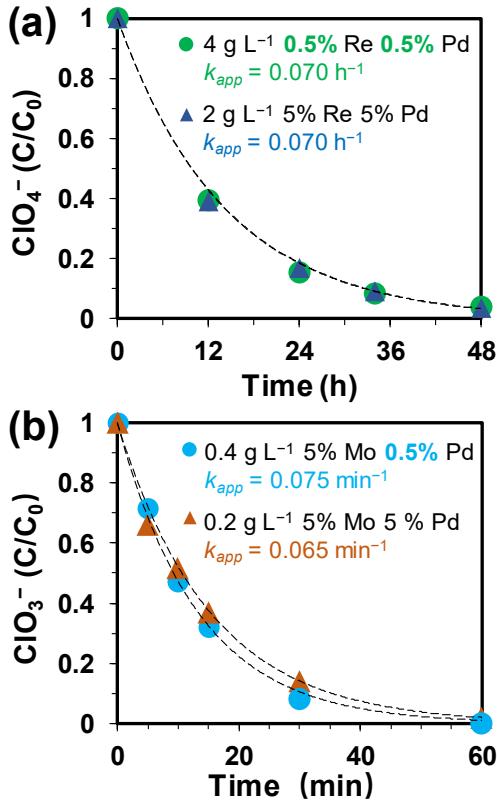
246 We further confirmed the robustness of Pd/C prepared by the *all-in-situ* *Method A*. First,
 247 the recycled (i.e., centrifuged, collected, and redispersed) Pd/C showed an almost identical
 248 performance to the freshly prepared Pd/C in water suspension (**Figure S11**). The spikes of 1 mM
 249 BrO_3^- into the Pd/C suspension for five times resulted in a gradual but limited loss of activity
 250 (**Figure S12a**). However, the almost identical kinetics for 1 mM BrO_3^- reduction in the presence
 251 of 4 mM NaBr by the fresh Pd/C (**Figure S12b**) shows that the activity decrease during catalyst
 252 reuse was merely caused by the accumulation of Br^- in water. Furthermore, the *all-in-situ* prepared
 253 and commercial Pd/C were both resistant to 2 M NaCl and 1 M Na_2SO_4 for BrO_3^- reduction at pH
 254 7.2 (**Figure S13**).

255 Besides the carbon support, we also applied the *all-in-situ* *Method A* to load 5 wt% of Pd⁰
 256 on Al_2O_3 and SiO_2 . In general, Pd/ Al_2O_3 and Pd/ SiO_2 were less active than Pd/C in BrO_3^- reduction
 257 (**Figure S14**). The *all-in-situ* prepared and commercial Pd/ Al_2O_3 and Pd/ SiO_2 showed similar
 258 activities (**Figure S15**). Although the diverse structure of support materials can impact the catalyst

259 activity (out of the scope of this work), the results clearly show that the *all-in-situ* catalyst
260 preparation using 1 atm H₂ at 20°C can be applied to multiple support materials.

261 **Effect of Pd content on catalytic activity.** We utilized this new catalyst preparation
262 method to systematically optimize the formulation of Pd/C. Although it seems common sense that
263 the variation of Pd contents will alter the catalytic activity, a quantitative relationship has not yet
264 been determined for oxyanion reduction. We prepared eight Pd/C with a variety of Pd contents
265 (0.5, 1, 3, 5, 7, 10, 15, and 20 wt%) by simply controlling the dose of Na₂PdCl₄ added in the water
266 suspension. At the same loading of the carbon support (0.1 g L⁻¹), the rate of BrO₃⁻ reduction
267 increased when the Pd content increased from 0.5 wt% to 10 wt%, and reached a plateau beyond
268 10 wt% (**Figure 4a**). However, in the Pd content range of 0.5–10 wt%, the increase of Pd for 100%
269 only increased the rate constant for 60%. Chemisorption data suggest that the increased Pd content
270 decreased the surface area normalized by the mass of Pd (**Figure 4b**). STEM characterization
271 confirms that the average size of Pd⁰ particles in 0.5 wt% Pd/C is half of that in 5 wt% Pd/C
272 (**Figure 5**, and **Figure S16** versus **S7**). The majority of Pd⁰ particles in 0.5 wt% Pd/C are smaller
273 than 2 nm. We note that the Pd⁰ surface coverage by the residual Cl⁻ (from Na₂PdCl₄) led to a
274 significantly reduced CO chemisorption (**Table S2**).^{25, 30} Therefore, the calculated average sizes
275 of Pd⁰ particles are much larger than the STEM measurements.

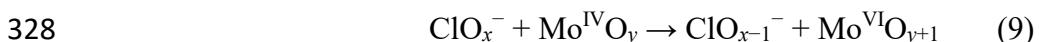
284 We normalized the rate constants of BrO_3^- reduction (in min^{-1}) by the total loading of Pd
285 in the water suspension (in $\text{g}_{\text{Pd}} \text{ L}^{-1}$). **Figure 4c** shows that a low Pd content of 0.5 wt% is 2.5 fold
286 more cost-effective than 5 wt%. We consolidated this finding by using different loadings of carbon
287 (0.05–2 g L^{-1}) to accommodate the same amount of Pd (5 mg L^{-1}). **Figure 4d** shows that 0.5 wt%
288 Pd/C (i.e., dispersing 5 mg L^{-1} Pd into 1.0 g L^{-1} of carbon) provided the highest reaction rate.
289 Further increasing the carbon loading to 2.0 g L^{-1} (i.e., 0.025 wt% Pd/C) did not enhance the
290 catalytic activity further but wasted the carbon support. These quantitative observations from rapid
291 testing of multiple Pd/C formulations are attributed to the convenient *all-in-situ* preparation
292 method.


293 **Case study 1: Optimization of the Re–Pd/C catalyst.** After identifying that a low Pd
294 content (e.g., 0.5 wt%) on the carbon support can maximize the cost-effectiveness of Pd^0 , we
295 optimized the Re–Pd/C catalyst, where both Pd and Re were 5 wt% for ClO_4^- reduction in the
296 earlier LCA study.^{21, 24} When we lowered both Pd and Re contents by 90% (i.e., to 0.5 wt% for
297 each metal), the rate of ClO_4^- reduction was only reduced for 46% (**Table 2**, entry 6 versus 2).
298 Because the apparent rate constants are in proportion to the catalyst loadings,^{19, 20, 45} a doubled
299 loading (4 g L^{-1}) of the new 0.5 wt% Re – 0.5 wt% Pd/C catalyst achieved the same kinetics as 2
300 g L^{-1} of 5 wt% Re – 5 wt% Pd/C (**Figure 6a**). Therefore, in comparison to the original
301 configuration, a doubled amount of carbon support and a 20% amount of both Pd and Re afforded
302 the same performance of ClO_4^- reduction. If the same LCA metrics are used, the calculated CO_2
303 can be lowered from 2000 kg to 520 kg due to the 80% decrease of the original contribution from
304 Pd (1600 kg) and Re (250 kg). Further lowering the Pd and Re content to 0.1 wt% cannot
305 significantly increase the cost-effectiveness (**Table 2**, entries 7–9). For example, further lowering
306 the Re content for 80% (from 0.5 to 0.1 wt%) resulted in a 60% decrease in activity (from 0.020

307 to $0.008 \text{ L h}^{-1} \text{ g}_{\text{cat}}^{-1}$). In other words, a great amount of carbon support is needed to balance the
 308 saving of Re or Pd in the low metal content range. Again, the *all-in-situ* preparation method
 309 allowed the efficient investigation of various metal contents and effectively improved the
 310 sustainability of the Re–Pd catalyst system.

311 **Table 2. Rate Constants of Oxyanion Reductions by Re–Pd/C and Mo–Pd/C with Various**
 312 **Metal Contents.**

entry	Pd (wt%)	Re or Mo (wt%)	rate constant ($\text{L h}^{-1} \text{ g}_{\text{cat}}^{-1}$) ^a
<i>Reduction of 1 mM ClO_4^- with Re–Pd/C</i>			
1	5	0	no reaction
2	5	5	0.037
3	5	1	0.024
4	1	5	0.022
5	1	1	0.021
6	0.5	0.5	0.020
7	0.5	0.1	0.008
8	0.1	0.5	0.005
9	0.1	0.1	<0.001
<i>Reduction of 1 mM ClO_3^- with Mo–Pd/C</i>			
10	5	0	0.854
11	5	5	20.1
12	1	5	15.0
13	1	1	7.8
14	1	10	15.0
15	0.5	5	9.6


313 ^aThe rate constants were normalized by the catalyst
 314 loading of Re–Pd/C (2 g L^{-1}) and Mo–Pd/C (0.2 g L^{-1}).
 315 Reaction conditions: pH = 3.0, 1 atm H_2 , and 20 °C.

316

317 **Figure 6.** The reduction of (a) 1 mM ClO₄⁻ by Re-Pd/C with different Re and Pd contents and
 318 catalyst loadings and (b) 1 mM ClO₃⁻ by Mo-Pd/C with different Pd contents and catalyst
 319 loadings. Dotted lines indicate the first-order model fit. Reaction conditions: pH = 3.0, 1 atm H₂,
 320 and 20 °C.

321 **Case study 2: Optimization of the Mo-Pd/C catalyst.** We further optimized a Mo-Pd/C
 322 catalyst, where both Pd and Mo were 5 wt% for highly active ClO₃⁻ reduction in the earlier study.²²
 323 Although Pd/C itself can reduce ClO₃⁻, the immobilization of reduced Mo species on Pd/C
 324 substantially enhanced the reaction rate (Table 2, entry 11 versus 10). Similar to the redox
 325 transformation of Re species, the polymeric Mo^{VI}O_x precursor (from dissolved Na₂MoO₄) is
 326 reduced by H₂+Pd/C into surface-immobilized Mo^V, Mo^{IV}, Mo^{III}, and Mo^{II}.²² Mo^{IV} can abstract
 327 one oxygen off the Mo^{IV}-bound ClO₃⁻ and other x<3 ClO_x⁻ products:

329 The Mo^{IV}-Mo^{VI} redox cycle is maintained by Pd-catalyzed hydrogenation:

331 Because Mo is an inexpensive metal, our prior interest was to lower the Pd content. With the fixed
332 5 wt% Mo, we found that the decrease of Pd content from 5 wt% to 0.5 wt% only lowered the
333 ClO_3^- reduction rate for 52% (**Table 2**, entry 15 versus 11). Reducing the Mo content from 5 wt%
334 to 1 wt% also lowered the rate (**Table 2**, entry 13 versus 12). This trend is different from Re–Pd/C
335 (cf. **Table 2**, entry 5 versus 4). However, further adding the Mo content to 10 wt% did not increase
336 the activity (**Table 2**, entry 14 versus 12). A doubled loading (0.4 g L⁻¹) of the new 5 wt% Mo –
337 0.5 wt% Pd/C catalyst achieved the same kinetics as 0.2 g L⁻¹ of 5 wt% Mo – 5 wt% Pd/C (**Figure**
338 **6b**), indicating the saving of Pd for 80% without sacrificing the rate of ClO_3^- reduction.

339 **Implications for reductive catalyst research.** This study shows that Pd-based catalysts
340 of various formulations can be conveniently prepared, evaluated, and optimized for oxyanion
341 reduction applications. As shown by literature²⁵ and our results using two commercial 1 wt% Pd/C
342 (**Figure S17**), catalysts prepared with different carbon supports and methods can have very
343 different performance. Since the systematic comparison of Pd contents (using the same Pd
344 precursor, support material, and preparation procedures) has not become a common practice in
345 water treatment catalysis research, we attribute this situation to either the multi-step procedures
346 involved in the conventional preparation method or the lack of specialized ovens and furnaces in
347 many water engineering labs.

348 The *all-in-situ* preparation method only needs 5 min for the adsorption of Pd^{II} precursor
349 and another 5 min for the generation of Pd⁰ particles. This method only requires 1 atm H₂ gas in
350 the headspace, and the water suspension of the catalyst is ready for tests. If only a single-run is
351 needed for the rapid screening of catalyst formulations, this new method minimizes the
352 consumption of materials. For example, to evaluate a 50 mL suspension of 0.1 g L⁻¹ Pd/C with

353 varying Pd contents, only 5 mg of carbon and an even smaller amount of Pd precursor (i.e., 0.5–5
354 wt%) are needed. In comparison to the oven- and furnace-involved conventional methods, the new
355 method saves time and investment by allowing rapid screening (e.g., **Figure 4** and **Table 2**) and
356 effective optimization (e.g., **Figure 6**) of catalyst formulations. Ultimately, an adequately
357 optimized catalyst will significantly improve the cost-effectiveness and sustainability of catalytic
358 technologies for water treatment.

359 There are also limitations to this new method. First, it is not suitable for studying catalytic
360 reactions that do not involve H₂ (e.g., Pd⁰-catalyzed oxidation). Second, it cannot be directly
361 applied to prepare granule/pellet catalysts that can be broken into small pieces by stirring. Third,
362 since the method does not involve high temperatures for calcination and reduction, the catalyst
363 may contain residual Cl[−] from the Na₂PdCl₄ precursor. Literature suggests that a deep removal of
364 Cl[−] requires treatment with H₂ flow at >200°C.³⁰ However, high temperatures may cause the
365 sintering of small Pd⁰ particles into large ones.²⁶ For synthetic catalysis in organic media or at high
366 temperatures, residual Cl[−] can be problematic by producing HCl, contaminating the product, or
367 disrupting the reaction.^{46, 47} However, for water treatment catalysis, Cl[−] is ubiquitous in water,
368 highly abundant in brine, or produced from the degradation of pollutants (e.g., ClO₃[−], ClO₄[−], and
369 chlorinated organics). Therefore, the complete removal of Cl[−] from the Pd precursor is not
370 necessary for water treatment applications.

371 **ASSOCIATED CONTENT**

372 **Supporting Information**

373 The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/xxxxx>.

374 Detailed information of catalyst materials; data of CO chemisorption; experimental results
375 for the direct reduction of dissolved and solid Pd^{II} with H₂ gas; additional HAADF-STEM and
376 EDS images and XRD spectrum; additional concentration-time profiles for catalytic reactions
377 (PDF).

378 **AUTHOR INFORMATION**

379 **Corresponding Author**

380 *(J.L.) E-mail: jylu@engr.ucr.edu; jinyong.liu101@gmail.com.

381 **Notes**

382 The authors declare no competing financial interest.

383 **ACKNOWLEDGMENTS**

384 Financial support was provided by the UCR faculty research startup grant for J.L. and the
385 National Science Foundation (CBET-1932942). We thank Dr. Krassimir Bozhilov for performing
386 the STEM characterization at the Central Facility for Advanced Microscopy and Microanalysis
387 (CFAMM) at UC Riverside. We thank Dr. Ich Tran for assisting in the XPS characterization
388 performed at the UC Irvine Materials Research Institute (IMRI) using instrumentation funded in
389 part by the National Science Foundation Major Research Instrumentation Program (CHE-
390 1338173).

391

392 **References:**

1. Hörold, S.; Vorlop, K.-D.; Tacke, T.; Sell, M., Development of catalysts for a selective nitrate and nitrite removal from drinking water. *Catal. Today* **1993**, *17* (1-2), 21-30.
2. Lecloux, A. J., Chemical, biological and physical constrains in catalytic reduction processes for purification of drinking water. *Catal. Today* **1999**, *53* (1), 23-34.
3. Chaplin, B. P.; Reinhard, M.; Schneider, W. F.; Schüth, C.; Shapley, J. R.; Strathmann, T. J.; Werth, C. J., Critical review of Pd-based catalytic treatment of priority contaminants in water. *Environ. Sci. Technol.* **2012**, *46* (7), 3655-3670.
4. Yin, Y. B.; Guo, S.; Heck, K. N.; Clark, C. A.; Coonrod, C. L.; Wong, M. S., Treating water by degrading oxyanions using metallic nanostructures. *ACS Sustain. Chem. Eng.* **2018**, *6* (9), 11160-11175.
5. Mcnab, W. W.; Ruiz, R.; Reinhard, M., In-situ destruction of chlorinated hydrocarbons in groundwater using catalytic reductive dehalogenation in a reactive well: Testing and operational experiences. *Environ. Sci. Technol.* **2000**, *34* (1), 149-153.
6. Schüth, C.; Kummer, N.-A.; Weidenthaler, C.; Schad, H., Field application of a tailored catalyst for hydrodechlorinating chlorinated hydrocarbon contaminants in groundwater. *Appl. Catal., B* **2004**, *52* (3), 197-203.
7. Davie, M. G.; Cheng, H.; Hopkins, G. D.; LeBron, C. A.; Reinhard, M., Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater. *Environ. Sci. Technol.* **2008**, *42* (23), 8908-8915.
8. Choe, J. K.; Bergquist, A. M.; Jeong, S.; Guest, J. S.; Werth, C. J.; Strathmann, T. J., Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate. *Water Res.* **2015**, *80* 267-280.
9. Weinberg, H. S.; Delcomyn, C. A.; Unnam, V., Bromate in chlorinated drinking waters: occurrence and implications for future regulation. *Environ. Sci. Technol.* **2003**, *37* (14), 3104-3110.
10. Butler, R.; Godley, A.; Lytton, L.; Cartmell, E., Bromate environmental contamination: review of impact and possible treatment. *Crit. Rev. Environ. Sci. Technol.* **2005**, *35* (3), 193-217.

420 11. Stanford, B. D.; Pisarenko, A. N.; Snyder, S. A.; Gordon, G., Perchlorate, bromate, and
421 chlorate in hypochlorite solutions: Guidelines for utilities. *J. Am. Water Works Assoc.* **2011**, *103*
422 (6), 71-83.

423 12. Bolyard, M.; Fair, P. S.; Hautman, D. P., Occurrence of chlorate in hypochlorite solutions
424 used for drinking water disinfection. *Environ. Sci. Technol.* **1992**, *26* (8), 1663-1665.

425 13. Alfredo, K.; Stanford, B.; Roberson, J. A.; Eaton, A., Chlorate challenges for water
426 systems. *J. Am. Water Works Assoc.* **2015**, *107* (4), E187-E196.

427 14. Cho, K.; Qu, Y.; Kwon, D.; Zhang, H.; Cid, C. A.; Aryanfar, A.; Hoffmann, M. R., Effects
428 of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for
429 solar-powered wastewater treatment. *Environ. Sci. Technol.* **2014**, *48* (4), 2377-2384.

430 15. Bouchard, D. C.; Williams, M. K.; Surampalli, R. Y., Nitrate contamination of
431 groundwater: sources and potential health effects. *J. Am. Water Works Assoc.* **1992**, *84* (9), 85-90.

432 16. Bruning-Fann, C. S.; Kaneene, J., The effects of nitrate, nitrite and N-nitroso compounds
433 on human health: A review. *Vet. Hum. Toxicol.* **1993**, *35* (6), 521-538.

434 17. Gullick, R. W.; Lechevallier, M. W.; Barhorst, T. S., Occurrence of perchlorate in drinking
435 water sources. *J. Am. Water Works Assoc.* **2001**, *93* (1), 66-77.

436 18. Greer, M. A.; Goodman, G.; Pleus, R. C.; Greer, S. E., Health effects assessment for
437 environmental perchlorate contamination: The dose response for inhibition of thyroidal
438 radioiodine uptake in humans. *Environ. Health Perspect.* **2002**, *110* (9), 927-937.

439 19. Hurley, K. D.; Shapley, J. R., Efficient heterogeneous catalytic reduction of perchlorate in
440 water. *Environ. Sci. Technol.* **2007**, *41* (6), 2044-2049.

441 20. Liu, J.; Choe, J. K.; Wang, Y.; Shapley, J. R.; Werth, C. J.; Strathmann, T. J., Bioinspired
442 complex-nanoparticle hybrid catalyst system for aqueous perchlorate reduction: Rhenium
443 speciation and its influence on catalyst activity. *ACS Catal.* **2015**, *5* (2), 511-522.

444 21. Liu, J.; Choe, J. K.; Sasnow, Z.; Werth, C. J.; Strathmann, T. J., Application of a Re-Pd
445 bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine. *Water Res.*
446 **2013**, *47* (1), 91-101.

447 22. Ren, C.; Yang, P.; Gao, J.; Huo, X.; Min, X.; Bi, E. Y.; Liu, Y.; Wang, Y.; Zhu, M.; Liu,
448 J., Catalytic reduction of aqueous chlorate with MoO_x immobilized on Pd/C. *ACS Catal.* **2020**, *10*
449 (15), 8201-8211.

450 23. Zhou, C.; Wang, Z.; Ontiveros-Valencia, A.; Long, M.; Lai, C.; Zhao, H.; Xia, S.;
451 Rittmann, B. E., Coupling of Pd nanoparticles and denitrifying biofilm promotes H_2 -based nitrate
452 removal with greater selectivity towards N_2 . *Appl. Catal., B* **2017**, *206*, 461-470.

453 24. Choe, J. K.; Mehnert, M. H.; Guest, J. S.; Strathmann, T. J.; Werth, C. J., Comparative
454 assessment of the environmental sustainability of existing and emerging perchlorate treatment
455 technologies for drinking water. *Environ. Sci. Technol.* **2013**, *47* (9), 4644-4652.

456 25. Mironenko, R. M.; Belskaya, O. B.; Likhobolov, V. A., Approaches to the synthesis of
457 Pd/C catalysts with controllable activity and selectivity in hydrogenation reactions. *Catal. Today*
458 **2020**, *357*, 152-165.

459 26. Xie, Y.; Cao, H.; Li, Y.; Zhang, Y.; Crittenden, J. C., Highly selective PdCu/amorphous
460 silica-alumina (ASA) catalysts for groundwater denitrification. *Environ. Sci. Technol.* **2011**, *45* (9),
461 4066-4072.

462 27. Shuai, D.; Choe, J. K.; Shapley, J. R.; Werth, C. J., Enhanced activity and selectivity of
463 carbon nanofiber supported Pd catalysts for nitrite reduction. *Environ. Sci. Technol.* **2012**, *46* (5),
464 2847-2855.

465 28. Sun, J.; Zhang, J.; Fu, H.; Wan, H.; Wan, Y.; Qu, X.; Xu, Z.; Yin, D.; Zheng, S., Enhanced
466 catalytic hydrogenation reduction of bromate on Pd catalyst supported on CeO₂ modified SBA-15
467 prepared by strong electrostatic adsorption. *Appl. Catal., B* **2018**, *229*, 32-40.

468 29. Yakukhnov, S. A.; Pentsak, E. O.; Galkin, K. I.; Mironenko, R. M.; Drozdov, V. A.;
469 Likholobov, V. A.; Ananikov, V. P., Rapid “mix-and-stir” preparation of well-defined palladium
470 on carbon catalysts for efficient practical use. *ChemCatChem* **2018**, *10* (8), 1869-1873.

471 30. Zhao, Y.; Jia, L.; Medrano, J. A.; Ross, J. R.; Lefferts, L., Supported Pd catalysts prepared
472 via colloidal method: the effect of acids. *ACS Catal.* **2013**, *3* (10), 2341-2352.

473 31. Shao, M.; Yu, T.; Odell, J. H.; Jin, M.; Xia, Y., Structural dependence of oxygen reduction
474 reaction on palladium nanocrystals. *ChemComm* **2011**, *47* (23), 6566-6568.

475 32. Fagherazzi, G.; Canton, P.; Riello, P.; Pernicone, N.; Pinna, F.; Battagliarin, M.,
476 Nanostructural features of Pd/C catalysts investigated by physical methods: A reference for
477 chemisorption analysis. *Langmuir* **2000**, *16* (10), 4539-4546.

478 33. Vargaftik, M.; Zagorodnikov, V.; Stolyarov, I.; Kochubei, D.; Nekipelov, V. M.;
479 Mastikhin, V.; Chinakov, V.; Zamaraev, K.; Moiseev, I., Formation of palladium hydride
480 complexes upon the reduction of Pd (II) by hydrogen. *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1985**,
481 *34* (10), 2206-2209.

482 34. Blokhina, M.; Smirnov, I.; Blokhin, A., Production of fine palladium powders by the
483 hydrogen reduction of palladium hydroxide (II). *Sov. Powder Metall. Met. Ceram.* **1989**, *28* (7),
484 505-507.

485 35. Elding, L. I.; Olsson, L. F., Electronic absorption spectra of square-planar chloro-aqua and
486 bromo-aqua complexes of palladium (II) and platinum (II). *J. Phys. Chem.* **1978**, *82* (1), 69-74.

487 36. Bel'skaya, O.; Gulyaeva, T.; Arbuzov, A.; Duplyakin, V.; Likholobov, V., Interaction
488 between Pt (IV) and Pd (II) chloro complexes in solution and on the γ -Al₂O₃ surface. *Kinet. Catal.*
489 **2010**, *51* (1), 105-112.

490 37. Zhao, Y.; Liang, W.; Li, Y.; Lefferts, L., Effect of chlorine on performance of Pd catalysts
491 prepared via colloidal immobilization. *Catal. Today* **2017**, *297*, 308-315.

492 38. Belskaya, O. B.; Mironenko, R. M.; Talsi, V. P.; Rodionov, V. A.; Gulyaeva, T. I.;
493 Sysolyatin, S. V.; Likholobov, V. A., The effect of preparation conditions of Pd/C catalyst on its
494 activity and selectivity in the aqueous-phase hydrogenation of 2,4,6-trinitrobenzoic acid. *Catal.*
495 *Today* **2018**, *301*, 258-265.

496 39. Ye, T.; Banek, N. A.; Durkin, D. P.; Hu, M.; Wang, X.; Wagner, M. J.; Shuai, D., Pd
497 nanoparticle catalysts supported on nitrogen-functionalized activated carbon for oxyanion
498 hydrogenation and water purification. *ACS Appl. Nano Mater.* **2018**, *1* (12), 6580-6586.

499 40. Shuai, D.; McCalman, D. C.; Choe, J. K.; Shapley, J. R.; Schneider, W. F.; Werth, C. J.,
500 Structure sensitivity study of waterborne contaminant hydrogenation using shape- and size-
501 controlled Pd nanoparticles. *ACS Catal.* **2013**, *3* (3), 453-463.

502 41. Chen, X.; Huo, X.; Liu, J.; Wang, Y.; Werth, C. J.; Strathmann, T. J., Exploring beyond
503 palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group
504 metals and new mechanistic implications. *Chem. Eng. J.* **2017**, *313*, 745-752.

505 42. Liu, J.; Han, M.; Wu, D.; Chen, X.; Choe, J. K.; Werth, C. J.; Strathmann, T. J., A new
506 bioinspired perchlorate reduction catalyst with significantly enhanced stability via rational tuning
507 of rhenium coordination chemistry and heterogeneous reaction pathway. *Environ. Sci. Technol.*
508 **2016**, *50* (11), 5874-5881.

509 43. Choe, J. K.; Boyanov, M. I.; Liu, J.; Kemner, K. M.; Werth, C. J.; Strathmann, T. J., X-ray
510 spectroscopic characterization of immobilized rhenium species in hydrated rhenium-palladium

511 bimetallic catalysts used for perchlorate water treatment. *J. Phys. Chem. C* **2014**, *118* (22), 11666-
512 11676.

513 44. Hurley, K. D.; Zhang, Y.; Shapley, J. R., Ligand-enhanced reduction of perchlorate in
514 water with heterogeneous Re-Pd/C catalysts. *J. Am. Chem. Soc.* **2009**, *131* (40), 14172-14173.

515 45. Davie, M. G.; Reinhard, M.; Shapley, J. R., Metal-catalyzed reduction of N-
516 nitrosodimethylamine with hydrogen in water. *Environ. Sci. Technol.* **2006**, *40* (23), 7329-7335.

517 46. Simone, D. O.; Kennelly, T.; Farrauto, R. J., Reversible poisoning of palladium catalysts
518 for methane oxidation. *Appl. Catal.* **1991**, *70* (1), 87-100.

519 47. Sepulveda, J.; Figoli, N., Effect of residual chlorine on the activity of Pd/SiO₂ catalysts
520 during the selective hydrogenation of styrene. *React. Kinet. Catal. Lett.* **1994**, *53* (1), 155-160.

521