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Abstract

Arctic ecosystems are characterized by a broad range of plant functional types that are

highly heterogeneous at small (~1–2 m) spatial scales. Climatic changes can impact vegeta-

tion distribution directly, and also indirectly via impacts on disturbance regimes. Consequent

changes in vegetation structure and function have implications for surface energy dynamics

that may alter permafrost thermal dynamics, and are therefore of interest in the context of

permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in

soil thermal properties and ecosystem carbon and water fluxes associated with varying

understory vegetation in open-canopy larch forests in northeastern Siberia. We found that

lichen mats comprise 16% of understory vegetation cover on average in open canopy larch

forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent

areas dominated by shrubs and moss, lichen mats had 2–3 times deeper permafrost thaw

depths and surface soils warmer by 1–2˚C in summer and less than 1˚C in autumn. Despite

deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating

that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net

ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover,

while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results high-

light relationships between vegetation and soil thermal dynamics in permafrost ecosystems,

and underscore the necessity of considering both vegetation and permafrost dynamics in

shaping carbon cycling in permafrost ecosystems.

1. Introduction

Widespread observations of increasing permafrost (perennially frozen ground) temperatures

throughout the northern hemisphere in recent decades [1] indicate that large-scale permafrost
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thaw is likely underway and poised to continue with climate warming. Increased permafrost

thaw is important for a number of reasons. Among the most prominent is the large amount of

organic carbon stored in permafrost [2] that will become vulnerable to decomposition and

transfer to the atmosphere as greenhouse gasses when thawed [3], constituting a potentially

large climate feedback [4]. Permafrost thaw may also alter local hydrology and nutrient avail-

ability, leading to changes in vegetation composition [5,6] that will result in multiple climate

feedbacks related to altered land surface albedo and evapotranspiration [7].

In permafrost soils, the depth of the seasonally thawed active layer is often used as a diag-

nostic measure of permafrost status. Annual thaw depth measurements can be used to monitor

permafrost responses to temporal variation in climate [8,9] while spatially distributed mea-

surements can help to elucidate processes that underlie climate responses at scales ranging

from ecosystems to continents [10–12]. In addition to serving as an indicator of permafrost

status, thaw depth measurements characterize the portion of the soil column that is available

for biological activity, including root growth, plant acquisition of water and nutrients, and

decomposition of organic matter. Deepening of the active layer is often associated with

enhanced ecosystem respiration (RECO [13]). Understanding both drivers and consequences of

active layer dynamics and how they co-vary within and between ecosystems is critical for pre-

dicting carbon cycle responses to continued climate warming in permafrost ecosystems.

In the simplest terms, active layer warming and permafrost thaw is driven by ground heat

flux, which is governed by ecosystem influences on surface energy partitioning [14] and soil

properties that influence heat transfer [15]. At local scales, surface energy exchange may be

influenced by the effects of vegetation cover on ground temperature and moisture via radiation

interception [16] and partitioning of sensible and latent heat fluxes [17–20], the insulating

effects of snow cover [21], and changes in thermal conductivity associated with soil water con-

tent [22]. A potential consequence of such variability is persistent subsurface heterogeneity in

active layer depths that, in addition to controlling the amount of unfrozen carbon, may also

influence RECO via impacts on the distribution of heat and water within the soil column [23].

In this study, we examine spatial variability in active layer depth and ecosystem carbon

fluxes associated with understory vegetation composition and biomass in an open-canopy

larch forest in northeastern Siberia. Larch forests comprise a large portion of the continuous

permafrost zone and have low canopy cover [24], meaning that understory vegetation plays a

crucial role in regional permafrost and carbon dynamics [25]. Specifically, we address two

research questions: 1) do thaw depth and soil temperature vary between common understory

vegetation types? and 2) does ecosystem respiration differ among key vegetation types, and if

so are these differences related to active layer depth?

2. Methods

2.1 Study site

Our study was conducted in two small watersheds (Y3 & Y4 ~20km2; Fig 1) [26] at the North-

east Science Station (NESS) near the town of Cherskii (68˚47’N, 161˚20’E) along the Kolyma

River in the Sakha (Yakutia) Republic of Russia on private land with permissions arranged via

NESS. For the 1986–2015 period the mean annual temperature was -10˚C, with mean January

and July temperatures of -32˚C and 13˚C, respectively and average annual precipitation is 218

mm with 85 mm occurring as rain, and 133 mm as snow [27]. Mean summer temperatures

increased ~1˚C from 1938 to 2009, though there was no systematic change in annual precipita-

tion over this period [28].

Forests in the area are comprised entirely of larch (Larix cajanderi). Understory vegetation

includes deciduous (Betula nana exilis, Betula nana divartica, Salix spp, Alnus fruticosa) and
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evergreen (Vaccinium vitis idaea, Empetrum nigrum, and Ledum decumbens) shrubs, mosses

(including Aulacomnium turgidum and Polytrichum spp), and lichens (including Cladonia ran-

giferina, Cetraria cuculata, and Stereocaulon tomentosum). Larch density is a function of fire

history and ranges from 0.05 to ~4 tree m-2 across early to late successional stands (20–200

years; [29]). For this study, we characterized differences between lichen mats and adjacent

shrub-moss patches and measured the distribution of lichen mats in stands throughout the Y3

and Y4 watershed. Here we note that the spatial distribution of vegetation can be strongly

influenced by microtpography related to geomorphic dynamics [30] or permafrost dynamics

such as ice-wedge polygons [31]. This does not appear to be the case for our study sties because

there are virtually no vertical differences between lichen mats and adjacent shrub-moss

patches in our study sites. Instead, it is likely that the distribution of understory vegetation,

and specifically lichen mats are a function of interactive influences of overstory forest cover,

variability in post-fire soil conditions, and species interactions. In this study we examine how

understory vegetation varies, and what conditions vary with vegetation, rather than seeking to

determine specific causal mechanisms.

2.2 Data collection

To understand the distribution of understory vegetation across the Y3 and Y4 watersheds, we

measured percent cover of understory vegetation along with larch canopy cover in 35 stands

(Fig 1). At each stand, we established three parallel 20 m long transects spaced 8–10 m apart.

Fig 1. Map of the study area showing the Northeast Science Station and measurement locations. The yellow circle denotes the flux and soil temperature timeseries

measurement site, and gray points indicate locations of lichen and canopy cover measurements. Sites in the western half of the map, including the flux plots, are in the

Y4 watershed while those along the road in the eastern half are in the Y3 watershed. Stands in the Y3 watershed are approximately 50 years old and of relatively high-

density, while the stands in Y4 are older (~150 years) and have generally lower forests density. Background image is a WorldView2 true color composite from 21

August 2012 provided by the Polar Geospatial Center.

https://doi.org/10.1371/journal.pone.0194014.g001
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At the end of each transect, we visually estimated understory percent cover in 1 m2 plots (6 per

stand). The plots were divided into four quadrats and in each we estimated deciduous and

evergreen shrub, forb, graminoid, moss, lichen, and non-vegetated percent cover. Time con-

straints prevented us from using the point intercept method, which can be more accurate [32].

At the center of each transect, we measured canopy cover using a hemispherical densiometer.

Within one low-density (0.06 ± 0.03 trees m-2) late succession (~178 year old) larch stand

in the Y4 watershed we examined relationships between understory vegetation cover, perma-

frost thaw depth (TD), ecosystem thermal characteristics, and fluxes of CO2 and H2O. At this

particular stand, understory vegetation cover is generally dominated by Betula nana midden-
dorffi, atop a moss layer, interspersed with mats of Cladonia spp. ranging from 0.25–2.0 m2 in

size. To examine seasonal differences in soil temperature at this stand, we installed HOBO

Pendant temperature sensors (Onset Corp, Bourne, MA) at a depth of 10 cm in the soil

beneath 0.25 m2 lichen mats (n = 9) and shrub/moss patches (n = 9). The sensors recorded

hourly soil temperature (Tsoil) from July 2012 until June 2014. Here we also collected soil sam-

ples from lichen mats (n = 6) and shrub/moss patches (n = 6) in order to characterize soil

properties. We used a soil saw to collect 10cm by 10cm to a depth of approximately 20cm. For

each sample we recorded the depth of the organic horizon. Subsamples from the organic and

mineral horizons were oven dried at 60˚C for 48 hours to determine gravimetric soil moisture,

and then placed in a muffle furnace at 450˚C for 5 hours to quantify organic matter content

using the loss-on-ignition method.

In summer 2013, we measured CO2 and H2O fluxes and thaw depth at separate 0.25 m2

plots dominated by lichen (L; n = 5), low-density shrubs with moss understory (SM; n = 5),

and high-density shrubs with little moss in the understory (S; n = 5). These flux plots were

located approximately 20m away from those instrumented for Tsoil measurements and where

the soil samples were collected. A total of 174 flux measurements (87 light and dark) were

made at these plots between July 17 and August 5, 2013 on seven days with low wind and no

rain. On each day we randomly selected the order in which plots were measured. At each plot,

we measured CO2 and H2O fluxes using a LI-COR 840 infrared gas analyzer (IRGA; LI-COR

Biosciences, Lincoln, NE) with a manual closed chamber system. A transparent acrylic cham-

ber (50x50x50 cm) was used to measure evapotranspiration (ET) and net ecosystem exchange

of CO2 (NEE), and an opaque cover was used to measure fluxes under dark conditions (i.e.,

RECO). A plastic skirt and chain were used to establish an airtight seal between the chamber

and the ground. Concentrations of CO2 and H2O were recorded every second for approxi-

mately two minutes with a tablet connected to the IRGA. To calculate gas fluxes, we fit a slope

to each set of concentration measurements, using only the linear portion of curve, omitting

data without significant linear relationships [33].

At each plot, with each set of fluxes, we also measured soil temperature from 0-5cm depth

(Tsoil) and air temperature (Tair) using a thermocouple (Fisher Scientific, Waltham, MA),

photosynthetically active radiation (QSO-PAR Decagon Devices, Pullman, WA), surface soil

moisture (GS-3 Decagon Devices, Pullman, WA), and radiometric surface temperature (Tsurf;

Appogee Instruments, Logan, UT). We also measured TD on the north and south sides of

each plot by inserting a graduated metal rod into the ground until firm resistance was met.

Twice at the beginning of the field season we measured soil thermal conductivity (KS) inte-

grated over 0–5 cm depth (KD-2, Decagon Devices, Pullman, WA). Half hourly values of Tair

and air pressure logged to a HOBO Microstation (Onset Corp, Bourne, MA) were matched to

the corresponding fluxes according to time of measurement. Tair from the meteorological sta-

tion were used to fill chamber-level gaps due to instrument failure. On three occasions, we also

measured the normalized difference vegetation index (NDVI) for each plot (SRS-Nr, Decagon

Devices, Pullman, WA). At each flux plot, we measured the basal diameter for Betula spp. and
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Salix spp. shrubs and then calculated aboveground biomass using regional allometric equa-

tions [34]. We also visually estimated percent cover of the dominant plant functional types.

At the same low-density stand where fluxes were measured we quantified subsurface het-

erogeneity related to surface vegetation using electrical resistivity imaging [35,36]. We mea-

sured ERI along ~10m linear transects centered on lichen mats approximately 1–2 m in

diameter. ERI is a minimally invasive technique applied by injecting a direct current into the

ground and measuring differences in potential along a two-dimensional electrode array. The

result of a resistivity survey is a series of point measures that depend upon electrode geometry

and an assumption of subsurface homogeneity. An inversion model was used to calculate true

resistivity values for the heterogeneous subsurface and generate resistivity images. Roll-along

resistivity surveys were conducted using a Syscal Kid resistivity meter (Iris Instruments,

Orleans, France) with 24 electrodes spaced 20 cm apart. The 30cm graphite electrodes were

inserted in the ground at 45-degree angles in order to maximize electrode contact and mini-

mize vertical distortion, and data were sampled using a Schlumberger sampling array. At

20cm intervals along each ~10 m long transect, we measured TD with a graduated metal rod.

All resistivity surveys were inverted using Res2DInv software [37]. The high resistivity val-

ues and contrasts present in permafrost ecosystems introduce challenges with respect to data

inversion [38]. In order to avoid over-fitting that leads to extremely high resistivity values [39],

we limited the number of model iterations to five. We used a robust inversion because it more

adequately captures sharp gradients characteristic of permafrost ecosystems [35]. Additionally,

prior research shows resistivity inversions in permafrost ecosystems to be highly sensitive to a

model smoothness parameter (λ) [38] that controls the degree to which the model is con-

strained by individual data points. We used the default initial value of 0.15 in Res2Dinv, and

then confirmed our results by generating additional inversions with higher λ values in order to

confirm that modeled features were real and not inversion artifacts [40]. The resistivity inver-

sion uses the finite element method for forward modeling, where the surface of interest is dis-

cretized into a series of cells, and we varied the number of cell divisions between points as well.

All data analyses were performed in R version 3.2.3 [41]. Preliminary data analyses were

conducted to ensure that all data satisfied assumptions of normality associated with each statis-

tical test. For time series Tsoil and soils data collected beneath lichen mats and shrub/moss

patches we tested for differences in soil characteristics among vegetation types using two-sam-

ple t-tests. We used a one-way Analysis of Variance (ANOVA) with vegetation type as the

fixed effect to examine differences in biological and physical variables related to surface energy

partitioning, and also to carbon dynamics measured at the flux plots. A post-hoc Tukey’s Hon-

est Significant Difference test was used to determine whether differences between each vegeta-

tion type were significant. Ordinary least squared regressions were performed across all days

to examine variability in RECO responses to soil and air temperature across each surface cover

type (e.g. shrub, lichen, and shrub-lichen). All data and code used for analyses are freely avail-

able at the following url https://github.com/mloranty/lichen_pft/tree/v2.0 [33].

3. Results

3.1 Vegetation distribution and active layer properties

Lichen occurred widely in the study area and had notable impacts on resistivity, thaw depth,

and soil temperature. Areal percent cover of lichen mats was 16.5 ± 2.5% (±1 SD) with a range

of 3–33% across the 35 forest stands sampled in this watersheds. Mean percent cover of decid-

uous shrubs and moss were (37.6 ± 2.9% and 39.2 ± 4.1%, respectively). The distribution of

lichen mats was not uniform, but rather exhibited a significant (p < 0.05) inverse relationship

with larch canopy cover (Fig 2). The ERI tomography and thaw depth measurements in mid-
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July revealed low resistivity beneath lichen mats relative to adjacent areas dominated by shrubs

and moss, indicative of deeper thaw and/or saturated conditions beneath lichen mats (Fig 3).

Concurrent measurements of thaw depth aligned well with resistivity patterns, showing deeper

thaw beneath lichen mats (Fig 3).

At the intensively measured low-density stand soil temperature measured at 10 cm depth

from July 2012 –June 2014 revealed elevated temperatures beneath lichen mats relative to adja-

cent vegetation patches dominated by shrubs and mosses (Fig 4). These differences were largest

during the early to mid growing season (~2˚C), and gradually decreased towards the end of the

growing season. Differences were minimal at the onset of fall freeze-back, but then increased

again as soils beneath lichen mats spent longer time in the ‘zero curtain’ period, after which dif-

ferences were minimal during the winter. Aggregated seasonal temperatures (Table 1) were sig-

nificantly different during the growing season (June-August; p < 0.01) and autumn

(September–November), but not during winter (December-February) or spring (March-May).

The soil organic layer was twice as thick (Table 2; p = 0.00001) beneath shrub/moss plots

(12.3 ± 1.5 cm) in comparison to lichen mats (6.0 ±1.4 cm). Gravimetric soil moisture and soil

Fig 2. Relationship between larch canopy cover and lichen percent cover. Areal percent cover of lichen declined non-linearly with increasing larch canopy cover for

35 stands in the study area. Lichen cover was estimated visaually and larch canopy cover was measured with a hemispherical densitometer.

https://doi.org/10.1371/journal.pone.0194014.g002
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organic matter content in the organic soil horizon were significantly higher beneath shrub/

moss patches relative to lichen mats (Table 2; p = 0.00008 and p = 0.0002 respectively); how-

ever, soil moisture and organic matter content within the mineral soil did not differ signifi-

cantly between vegetation types (Table 2).

3.2 Vegetation influences on carbon and water dynamics

Plots utilized for flux measurements exhibited clear differences in biological and physical char-

acteristics among vegetation types (Table 3). Shrub plots had an average of 210 ± 46 g shrub

aboveground biomass, which was significantly higher than the 69 ± 15 g in shrub-moss plots,

while only one lichen mat had a shrub (0.9 ± 0.9 g). Percent moss cover did not differ signifi-

cantly between shrub-moss plots (52 ± 11%) and shrub plots (34 ± 9%). Despite significant

Fig 3. Surface and subsurface characteristics of understory lichen mats. Photograph showing lichen mat and resistivity survey near

Cherskii, Siberia. Two representative resistivity profiles where colors indicate resistivity, black lines represent thaw depth measurements,

and green boxes labeled lichen above each profile denote the location of lichen mats. Note the deep areas of low resistivity (blue) and thaw

depth beneath lichen.

https://doi.org/10.1371/journal.pone.0194014.g003
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differences in shrub biomass, NDVI did not differ significantly between shrub-moss (0.61 ±
0.01) and shrub plots (0.63 ± 0.01), though both were significantly higher (ANOVA, p < 0.05)

than lichen mats (0.40 ± 0.01). Thermal conductivity was significantly higher (ANOVA,

p < 0.05) in lichen mats (0.40 ± 0.06 W m-1 K-1) in comparison to shrub-moss (0.12 ± 0.02 W

m-1 K-1) and shrub plots (0.07 ± 0.01 W m-1 K-1). Thaw depth below lichen mats was signifi-

cantly higher (ANOVA, p < 0.05) at the beginning (July 19; 72 ± 4 cm) and end (Aug 3; 79 ±
3 cm) of the study period than either shrub-moss (26 ± 4 cm and 36 ± 6 cm) or shrub plots

(34 ± 9 cm and 48 ± 8 cm). Differences in thermal conductivity and thaw depth between

shrub-moss and shrub plots were not statistically significant.

Fig 4. Soil temperatures beneath lichen and shrub understory vegetation. (A) Time series of daily mean Tsoil at 10 cm depth beneath lichen mats (n = 9) and

shrub patches (n = 9) from July 2012 –June 2014. Dotted lines indicate one standard deviation. (B) The difference between daily mean lichen and shrub

temperatures (lichen-shrub).

https://doi.org/10.1371/journal.pone.0194014.g004

Table 1. Seasonal soil temperatures at 10cm depth beneath lichen mats and shrub moss patches1.

Season Tsoil (˚C)

Lichen2 Shrub/Moss

2012 SON�� 0.33 (0.11) 0.01 (0.23)

2013 DJF -6.34 (1.46) -6.62 (1.56)

2013 MAM -5.61 (0.49) -5.58 (0.59)

2013 JJA�� 3.17 (0.48) 1.68 (0.47)

2013 SON� 0.15 (0.13) -0.16 (0.28)

2014 DJF -3.57 (0.85) -3.96 (0.85)

2014 MAM -4.61 (0.52) -4.52 (0.53)

1 Significant differences at

� = p<0.05

�� = p<0.01
2 Lichen n = 9; Shrub/Moss n = 9

https://doi.org/10.1371/journal.pone.0194014.t001
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Examination of variables related to surface energy partitioning may help elucidate drivers

of observed differences in TD. To accomplish this, we present plot-level differences in Tsoil,

Tair, Tsurf, PAR, and ET (latent heat flux) for two days with contrasting environmental condi-

tions (Table 4). On 1 August 2013 all fifteen plots were sampled between 16:00 and 18:00 when

temperature was moderate and PAR was low, and both were invariant across the sample

period. During this time, the difference between Tsurf and Tair (Tdif) was slightly positive

(warmer) on lichen mats while the shrub patches were approximately 1˚C cooler than the air,

but differences in Tsurf and Tdif between vegetation type were not statistically significant. On 3

August 2013 all plots were sampled between 11:30 and 13:30 when Tair and PAR were relatively

high compared to 1 August. On this occasion, Tsurf was substantially higher than Tair across all

vegetation types; with lichen Tsurf being on average 12.0 ± 2.6˚C warmer than Tair whereas

Tsurf was 6.3 ± 1.5˚C and 4.8 ± 1.6˚C warmer than Tair for shrub-moss and shrubs, respectively

(Table 4). Differences in ET between vegetation types were not significantly different on either

day. However, on August 3 when vegetation surfaces were substantially warmer than the air,

lichen had the lowest ET and the highest Tsurf, while on August 1 there were no appreciable

patterns in ET and small differences in Tsurf. On both days there were significant differences in

Tsoil (ANOVA, p < 0.05) that were consistent with observed patterns of TD and time series

observations of Tsoil at the site.

Deeper thaw depths and warmer soil temperatures associated with lichen did not lead to

higher RECO (Table 5). Across the study period, average RECO was not significantly different

across vegetation types; 2.42±0.27 μmol m-2 sec-1, 2.92±0.27 μmol m-2 sec-1, and 2.91±0.36 μmol

m-2 sec-1 for lichen, shrub-moss, and shrub plots, respectively. Average NEE across the study

period was negative in shrub plots (-0.54±0.67 μmol m-2 sec-1), indicating net carbon uptake.

This was significantly lower than NEE values of 2.01±0.58 μmol m-2 sec-1 and 2.46±0.30 μmol

Table 2. Soil properties for lichen mats and shrub/moss patches in a low-density larch stand in Northeastern Siberia1.

Organic Soil Layer Mineral Soil Layer

Vegetation Organic Depth Soil Moisture SOM Soil Moisture SOM

Type (cm) (%) (%) (%) (%)

Lichen2 6.0 (1.4)�� 52.7 (5)�� 39.0 (6.9)�� 36.7 (6.6) 13.8 (4.6)

Shrub/Moss 12.3 (1.5)�� 70.9 (3.6)�� 72.5 (10.7)�� 39.9 (10.2) 17.0 (6.1)

1 Significant differences at

� = p<0.05

�� = p<0.01
2 Lichen n = 6; Shrub/Moss n = 6

https://doi.org/10.1371/journal.pone.0194014.t002

Table 3. Summary of key vegetation and physical parameters for CO2 and H2O flux plots measured between 17 July and 5 August 20131.

Plot Type Shrub Biomass Moss Cover2 NDVI3 KS TD—July 19 TD—Aug 3

(g) (%) (W m-1 K-1) (cm) (cm)

Lichen4 0.9 (0.9)a 0 (0)a 0.40 (0.01)a 0.40 (0.06)a 71.9 (4.2)a 78.5 (3.4)a

Shrub-Moss 69.1 (14.7)a 52 (11)b 0.61 (0.01)b 0.12 (0.02)b 26.4 (4.0)b 36.2 (6.1)b

Shrub 210.6 (46.0)b 34 (9)b 0.63 (0.01)b 0.07 (0.01)b 33.7 (8.7)b 48.1 (7.9)b

1Letters indicate significant differences in measured variables between plot type
2Understory precent cover estimate includes moss cover beneath shrub canopies.
3Means are an average of three observations taken during the study, no temporal patterns were observed
4Lichen n = 5; Shrub-Moss n = 5; Shrub n = 5

https://doi.org/10.1371/journal.pone.0194014.t003
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m-2 sec-1 in shrub-moss and lichen plots, respectively (ANOVA; p < 0.05). Individual measure-

ments of RECO were linearly related to air temperature (adj r2 = 0.19, p < 0.01) but not 0–5 cm

soil temperature (Fig 5). We did not observe significant relationships between RECO and air or

soil temperatures within individual vegetation types.

4. Discussion

4.1 Vegetation and active layer dynamics

Our results illustrate the influence of understory plant functional type on permafrost thaw

depth, likely due to differences in surface energy partitioning. Specifically, we found that thaw

depths were 2–3 times greater under lichen mats than under shrubs or mosses. Low moisture

content and limited evapotranspiration from lichens prevent dissipation of latent heat [18],

potentially allowing for deeper thaw. On the other hand mosses have a low thermal conductiv-

ity and high insulating capacity when dry, due to a high air volume [42,43]. Mosses can thus

prevent thawing of permafrost by reducing the transfer of solar heat into the soil [20,44,45].

When damp, mosses have high rates of evapotranspiration that minimize sensible and ground

heat fluxes, thus buffering against temperature variations [22] and reducing soil temperature

[20,46]. Similarly, a combination of ground shading and relatively high latent heat fluxes may

minimize permafrost thaw beneath shrub canopies [16]. The absence of a root system in

mosses and lichens limits soil water loss, and may lead to the development of saturated soil

[44]. A study by Stoy et al [23] found higher soil temperatures (1 cm and 5 cm depth) beneath

Table 4. Variability in soil, air, and radiometric surface temperatures, photosynthetically active radiation, and evapotranspiration between vegetation types mea-

sured at flux-plots for two sampling periods with contrasting meteorlogical conditions during the 2013 field season1.

Tsoil Tair Tsurf PAR2 Evapotranspiration

(˚C) (˚C) (˚C) (μmol m-2 sec-1) (mmol H2O m-2 sec-1)

1 August Lichen3 4.4 (0.4)a 6.6 (0.1) 6.9 (0.8) 248 (27) 0.26 (0.08)

16:00–18:00 Shrub-Moss 2.3 (0.4)b 6.6 (0.1) 5.8 (0.8) 248 (27) 0.19 (0.11)

Shrub 2.8 (0.6)b 6.6 (0.1) 5.6 (0.7) 233 (41) 0.20 (0.05)

3 August Lichen 4.1 (0.3)a 8.0 (0.1) 20.0 (2.7)a 967 (44) 1.07 (0.31)

11:30–13:30 Shrub-Moss 2.1 (0.3)b 8.2 (0.2) 14.5 (1.6)ab 1062 (74) 1.73 (0.32)

Shrub 2.9 (0.4)b 8.2 (0.2) 13.0 (1.8)b 1062 (74) 1.67 (0.38)

1Letters indicate significant differences in measured variables between vegetation type. Variables without letters have no significant differences at p < 0.05
2Photosynthetically Active Radiation.
3 For each day Lichen n = 5; Shrub-Moss n = 5; Shrub n = 5

https://doi.org/10.1371/journal.pone.0194014.t004

Table 5. Comparison of mean values of key carbon and water fluxes, and key meteorological drivers for each vegetation type averaged across the study period

between 17 July and 5 August 20131.

Vegetation Tsoil Tair Tsurf Tdif PAR2 NEE3 RECO Evapotranspiration

Type (˚C) (˚C) (˚C) (˚C) (μmol m-2 sec-1) (μmol CO2 m-2 sec-1) (μmol CO2 m-2 sec-1) (mmol H2O m-2 sec-1)

Lichen4 5.2 (0.3)a 16.8 (1.3) 13.0 (0.9) 3.8 (1.0)a 786 (65) 2.46 (0.30)a 2.42 (0.27) 0.86 (0.14)

Shrub-Moss 2.9 (0.2)b 14.1 (1.0) 13.0 (0.9) 1.1 (0.6)b 773 (63) 2.01 (0.58)a 2.92 (0.27) 1.16 (0.19)

Shrub 3.4 (0.3)b 13.7 (1.1) 12.9 (0.9) 0.8 (0.6)b 756 (65) -0.54 (0.67)b 2.91 (0.36) 1.22 (0.16)

1Letters indicate significant differences in measured variables between vegetation type at p < 0.05. Variables without letters have no significant differences.
2Photosynthetically Active Radiation
3Net Ecosystem Exchange of CO2.
4Lichen n = 29; Shrub-Moss n = 29; Shrub n = 29

https://doi.org/10.1371/journal.pone.0194014.t005
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lichen and feather moss relative to nearby sphagnum, however, modeled ground heat flux for

lichen was relatively low in comparison to mosses. Our study is broadly inline with these previ-

ous results; we found that lichen mats had both thinner organic layers with less organic matter

and correspondingly higher thermal conductivity, and also higher surface temperatures associ-

ated with lower latent heat dissipation. Both of these sets of factors are likely to contribute to

warmer soils and deeper active layers beneath lichen mats.

It is also important to consider that variability in micortopography and soil moisture can

also influence vegetation distribution [30,31,47]. This is commonly observed in areas with ice-

wedge poloygons, where permafrost dynamics create micortopography with low wet areas

adjacent to higher drier areas. Elevation differences in these cases are typically on the order of

10s of cm and can be the dominant controls on moisture [48], which in turn impacts vegeta-

tion community distribution. This does not seem to be the case at our sites as there is no

microtopography of this nature. However it is still possible that, in addition to overstory forest

cover, lichen distribution is partially determined by post-fire soil conditions that have persisted

to the present. In this case the differences in thermal properties that we observed may actually

reinforce differences in active layer properties partially responsible for vegetation distribution.

Fire typically alters active layer depths for up to fifty years post-fire [49,50], and ecosystem

recovery typically promotes recovery of the permafrost table [51,52]. In our study sites the

high-density stands are among the youngest (~50yrs), whereas the lower density sites with

higher lichen abundance are upwards of 150 years old, indicating that our estimates of active

layer heterogeneity are not likely the results of fire legacy effects. In any case, improved under-

standing of active layer heterogeneity in Siberian larch forests requires comprehensive patch-

scale observations of understory vegetation.

Fig 5. Variation in ecosystem respiration with air and soil temperatures. (A) RECO was not significantly related to Tsoil. (B) RECO was was positively related to air

temperature when observations were polled across plant communities and sampling periods (intercept = 1.16, slope = 0.09, adj r2 = 0.19, p < 0.01).

https://doi.org/10.1371/journal.pone.0194014.g005
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4.2 Thaw depth and ecosystem respiration

Previous studies suggest that increased thaw depth can lead to greater carbon loss through

increased heterotrophic respiration if soil carbon and quality with depth [17–20,53–55]; how-

ever, we found no relationship between thaw depth and RECO. Autotrophic respiration can

comprise a substantial portion of RECO in permafrost ecosystems [13]. It is likely that higher

autotrophic respiration compensated for lower heterotrophic respiration in shrub plots, which

had higher aboveground biomass and shallower permafrost thaw depths than other vegetation

types. The observed dependence of RECO on air temperature rather than soil temperature sup-

ports this idea. Additionally, differences in the quantity and quality of soil carbon beneath dif-

ferent vegetation types may also contribute to variability in RECO, and our observations of

thicker organic soil layers with higher organic matter content suggest soil carbon differences

may have been a factor in this study. For example, the low biomass, slow turnover and low lit-

ter input of lichens could limit the amount of soil carbon available for decomposition in lichen

patches relative to areas dominated by mosses or shrubs [56]. Thus, decreased soil organic

matter may negate carbon flux from increased thaw depth. Conversely, high soil organic mat-

ter content of soil beneath shrub patches may enhance RECO from moderate thaw depths.

Alternatively, labile carbon may have already decomposed beneath lichen patches with deeper

thaw depths. Spatial variation in the amount and lability of soil C are also likely influenced by

fire, which is the dominant disturbance in the region [29,57].

Soil moisture may also influence relationships between thaw depth and RECO via moisture

limitations on decomposition [58–60] that can be regulated by vegetation [44,58,61]. Several

studies in Alaska have identified accumulation of water at the base of the active layer as a

potential explanation for lack of observed relationships between thaw depth and RECO [21,53],

and this could be plausible at our study site as well. Similarly, Zona et al [62] observed higher

RECO at micro sites with shallower thaw depth and lower water tables. In these cases, suppres-

sion of RECO by soil moisture may be offset by CH4 efflux associated with anaerobic respiration

[63,64]. Our observations of delayed autumn freeze-back suggest a higher amount of soil mois-

ture beneath lichen mats relative to adjacent areas dominated by shrubs and mosses; however,

this does not necessarily correspond to saturated soil at the base of the active layer and could

also result simply from deeper thaw depths. Other studies have observed spatial variability in

CH4 across different vegetation types [65], but it is unclear if CH4 efflux varies with thaw

depth at our study site. Our measurements of RECO are snapshots taken during the peak of the

growing season; however, non-growing season fluxes often determine sign and magnitude of

the annual carbon balance for an ecosystem [53,66]. Thus year round measurements of CO2

and CH4 are required to understand the effects of vegetation-mediated active layer dynamics

on the understory carbon fluxes in Siberian larch forests.

4.3 Implications for ecosystem change

The relationship between plant functional type and thaw depth supports the assertion that veg-

etation-mediated variability in surface energy partitioning may alter soil thermal and biogeo-

chemical dynamics in permafrost ecosystems [23]. Lichen constitutes upwards of 16% of

understory aboveground biomass in low-density larch stands in northeastern Siberia [29] and

8–32% of aboveground biomass among a network of tundra sites in western Siberia [67].

Accounting for this variability will be necessary for accurate estimates of carbon dynamics in

these ecosystems. The same is likely to be true for other permafrost ecosystems, assuming the

occurrence of similar relationships between thaw depth and plant functional type, particularly

where changes in herbivore browsing patterns (e.g. Rangifer tarandus; [68]), fire [69] or

replacement by other forms of vegetation [70,71] lead to rapid changes in lichen distribution.
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In this context, it will be particularly important to determine whether depressed RECO associ-

ated with lichen cover is a function of saturated soils, low rates of heterotrophic respiration, or

some combination of both.

At the landscape scale, the type of subsurface heterogeneity that we observed may translate

to bidirectional responses of RECO to interannual climate variability e.g. [72], potentially lead-

ing to hotspots for CO2 and CH4 emissions [64] that vary spatially from year to year. This sort

of space-time variation may present challenges in modeling future greenhouse gas emissions

from permafrost ecosystems. On the other hand, high-resolution spectral data combined

with observed relationships between surface vegetation and thaw depth in these ecosystems

may lead to improved understanding of ecosystem-scale variability in active layer dynamics

[73–76].

5. Conclusions

In open canopy larch forests in northeastern Siberia, variations in understory vegetation over

short distances (e.g. < 1 m) correspond to large differences in thaw depth. Our results illustrate

a strong interactions between vegetation and active layer dynamics in these ecosystems, where

lower latent heat fluxes and higher thermal conductivity in lichen mats lead to deeper thaw

depths. These vegetation types have clear spectral differences, and offer the possibility for

remote detection of active layer heterogeneity. Despite increased thaw depth beneath lichen

mats, we did not observe elevated ecosystem respiration. Here, soil moisture, along with lower

soil carbon content may help to explain the absence of elevated ecosystem respiration, relative

to adjacent areas with shallower thaw depths. A better understanding of this subsurface vari-

ability, particularly thaw depth controls on soil moisture redistribution, will be necessary to

accurately quantify the effects of permafrost thaw on ecosystem carbon cycling. To this end,

our results indicate the usefulness of electrical resistivity imaging for visualizing active layer

heterogeneity. In Siberian larch forests, fire controls on tree density and understory vegetation

succession will exert strong controls on variation in active layer and ecosystem carbon dynam-

ics under current and future climates.
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