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Abstract

Arctic ecosystems are characterized by a broad range of plant functional types that are
highly heterogeneous at small (~1-2 m) spatial scales. Climatic changes can impact vegeta-
tion distribution directly, and also indirectly via impacts on disturbance regimes. Consequent
changes in vegetation structure and function have implications for surface energy dynamics
that may alter permafrost thermal dynamics, and are therefore of interest in the context of
permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in
soil thermal properties and ecosystem carbon and water fluxes associated with varying
understory vegetation in open-canopy larch forests in northeastern Siberia. We found that
lichen mats comprise 16% of understory vegetation cover on average in open canopy larch
forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent
areas dominated by shrubs and moss, lichen mats had 2—3 times deeper permafrost thaw
depths and surface soils warmer by 1-2°C in summer and less than 1°C in autumn. Despite
deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating
that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net
ecosystem exchange of CO, was negative (i.e. net uptake) in areas with high shrub cover,
while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results high-
light relationships between vegetation and soil thermal dynamics in permafrost ecosystems,
and underscore the necessity of considering both vegetation and permafrost dynamics in
shaping carbon cycling in permafrost ecosystems.

1. Introduction

Widespread observations of increasing permafrost (perennially frozen ground) temperatures
throughout the northern hemisphere in recent decades [1] indicate that large-scale permafrost
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thaw is likely underway and poised to continue with climate warming. Increased permafrost
thaw is important for a number of reasons. Among the most prominent is the large amount of
organic carbon stored in permafrost [2] that will become vulnerable to decomposition and
transfer to the atmosphere as greenhouse gasses when thawed [3], constituting a potentially
large climate feedback [4]. Permafrost thaw may also alter local hydrology and nutrient avail-
ability, leading to changes in vegetation composition [5,6] that will result in multiple climate
feedbacks related to altered land surface albedo and evapotranspiration [7].

In permafrost soils, the depth of the seasonally thawed active layer is often used as a diag-
nostic measure of permafrost status. Annual thaw depth measurements can be used to monitor
permafrost responses to temporal variation in climate [8,9] while spatially distributed mea-
surements can help to elucidate processes that underlie climate responses at scales ranging
from ecosystems to continents [10-12]. In addition to serving as an indicator of permafrost
status, thaw depth measurements characterize the portion of the soil column that is available
for biological activity, including root growth, plant acquisition of water and nutrients, and
decomposition of organic matter. Deepening of the active layer is often associated with
enhanced ecosystem respiration (Rgco [13]). Understanding both drivers and consequences of
active layer dynamics and how they co-vary within and between ecosystems is critical for pre-
dicting carbon cycle responses to continued climate warming in permafrost ecosystems.

In the simplest terms, active layer warming and permafrost thaw is driven by ground heat
flux, which is governed by ecosystem influences on surface energy partitioning [14] and soil
properties that influence heat transfer [15]. At local scales, surface energy exchange may be
influenced by the effects of vegetation cover on ground temperature and moisture via radiation
interception [16] and partitioning of sensible and latent heat fluxes [17-20], the insulating
effects of snow cover [21], and changes in thermal conductivity associated with soil water con-
tent [22]. A potential consequence of such variability is persistent subsurface heterogeneity in
active layer depths that, in addition to controlling the amount of unfrozen carbon, may also
influence Rgco via impacts on the distribution of heat and water within the soil column [23].

In this study, we examine spatial variability in active layer depth and ecosystem carbon
fluxes associated with understory vegetation composition and biomass in an open-canopy
larch forest in northeastern Siberia. Larch forests comprise a large portion of the continuous
permafrost zone and have low canopy cover [24], meaning that understory vegetation plays a
crucial role in regional permafrost and carbon dynamics [25]. Specifically, we address two
research questions: 1) do thaw depth and soil temperature vary between common understory
vegetation types? and 2) does ecosystem respiration differ among key vegetation types, and if
so are these differences related to active layer depth?

2. Methods
2.1 Study site

Our study was conducted in two small watersheds (Y3 & Y4 ~20km?; Fig 1) [26] at the North-
east Science Station (NESS) near the town of Cherskii (68°47’N, 161°20’E) along the Kolyma
River in the Sakha (Yakutia) Republic of Russia on private land with permissions arranged via
NESS. For the 1986-2015 period the mean annual temperature was -10°C, with mean January
and July temperatures of -32°C and 13°C, respectively and average annual precipitation is 218
mm with 85 mm occurring as rain, and 133 mm as snow [27]. Mean summer temperatures
increased ~1°C from 1938 to 2009, though there was no systematic change in annual precipita-
tion over this period [28].

Forests in the area are comprised entirely of larch (Larix cajanderi). Understory vegetation
includes deciduous (Betula nana exilis, Betula nana divartica, Salix spp, Alnus fruticosa) and
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Fig 1. Map of the study area showing the Northeast Science Station and measurement locations. The yellow circle denotes the flux and soil temperature timeseries
measurement site, and gray points indicate locations of lichen and canopy cover measurements. Sites in the western half of the map, including the flux plots, are in the
Y4 watershed while those along the road in the eastern half are in the Y3 watershed. Stands in the Y3 watershed are approximately 50 years old and of relatively high-
density, while the stands in Y4 are older (~150 years) and have generally lower forests density. Background image is a WorldView2 true color composite from 21
August 2012 provided by the Polar Geospatial Center.

https://doi.org/10.1371/journal.pone.0194014.9001

evergreen (Vaccinium vitis idaea, Empetrum nigrum, and Ledum decumbens) shrubs, mosses
(including Aulacomnium turgidum and Polytrichum spp), and lichens (including Cladonia ran-
giferina, Cetraria cuculata, and Stereocaulon tomentosum). Larch density is a function of fire
history and ranges from 0.05 to ~4 tree m ™ across early to late successional stands (20-200
years; [29]). For this study, we characterized differences between lichen mats and adjacent
shrub-moss patches and measured the distribution of lichen mats in stands throughout the Y3
and Y4 watershed. Here we note that the spatial distribution of vegetation can be strongly
influenced by microtpography related to geomorphic dynamics [30] or permafrost dynamics
such as ice-wedge polygons [31]. This does not appear to be the case for our study sties because
there are virtually no vertical differences between lichen mats and adjacent shrub-moss
patches in our study sites. Instead, it is likely that the distribution of understory vegetation,
and specifically lichen mats are a function of interactive influences of overstory forest cover,
variability in post-fire soil conditions, and species interactions. In this study we examine how
understory vegetation varies, and what conditions vary with vegetation, rather than seeking to
determine specific causal mechanisms.

2.2 Data collection

To understand the distribution of understory vegetation across the Y3 and Y4 watersheds, we
measured percent cover of understory vegetation along with larch canopy cover in 35 stands
(Fig 1). At each stand, we established three parallel 20 m long transects spaced 8-10 m apart.
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At the end of each transect, we visually estimated understory percent cover in 1 m* plots (6 per
stand). The plots were divided into four quadrats and in each we estimated deciduous and
evergreen shrub, forb, graminoid, moss, lichen, and non-vegetated percent cover. Time con-
straints prevented us from using the point intercept method, which can be more accurate [32].
At the center of each transect, we measured canopy cover using a hemispherical densiometer.

Within one low-density (0.06 + 0.03 trees m2) late succession (~178 year old) larch stand
in the Y4 watershed we examined relationships between understory vegetation cover, perma-
frost thaw depth (TD), ecosystem thermal characteristics, and fluxes of CO, and H,O. At this
particular stand, understory vegetation cover is generally dominated by Betula nana midden-
dorffi, atop a moss layer, interspersed with mats of Cladonia spp. ranging from 0.25-2.0 m* in
size. To examine seasonal differences in soil temperature at this stand, we installed HOBO
Pendant temperature sensors (Onset Corp, Bourne, MA) at a depth of 10 cm in the soil
beneath 0.25 m” lichen mats (n = 9) and shrub/moss patches (n =9). The sensors recorded
hourly soil temperature (T;) from July 2012 until June 2014. Here we also collected soil sam-
ples from lichen mats (n = 6) and shrub/moss patches (n = 6) in order to characterize soil
properties. We used a soil saw to collect 10cm by 10cm to a depth of approximately 20cm. For
each sample we recorded the depth of the organic horizon. Subsamples from the organic and
mineral horizons were oven dried at 60°C for 48 hours to determine gravimetric soil moisture,
and then placed in a muffle furnace at 450°C for 5 hours to quantify organic matter content
using the loss-on-ignition method.

In summer 2013, we measured CO, and H,O fluxes and thaw depth at separate 0.25 m”
plots dominated by lichen (L; n = 5), low-density shrubs with moss understory (SM; n = 5),
and high-density shrubs with little moss in the understory (S; n = 5). These flux plots were
located approximately 20m away from those instrumented for T,; measurements and where
the soil samples were collected. A total of 174 flux measurements (87 light and dark) were
made at these plots between July 17 and August 5, 2013 on seven days with low wind and no
rain. On each day we randomly selected the order in which plots were measured. At each plot,
we measured CO, and H,O fluxes using a LI-COR 840 infrared gas analyzer (IRGA; LI-COR
Biosciences, Lincoln, NE) with a manual closed chamber system. A transparent acrylic cham-
ber (50x50x50 cm) was used to measure evapotranspiration (ET) and net ecosystem exchange
of CO, (NEE), and an opaque cover was used to measure fluxes under dark conditions (i.e.,
Rgco)- A plastic skirt and chain were used to establish an airtight seal between the chamber
and the ground. Concentrations of CO, and H,O were recorded every second for approxi-
mately two minutes with a tablet connected to the IRGA. To calculate gas fluxes, we fit a slope
to each set of concentration measurements, using only the linear portion of curve, omitting
data without significant linear relationships [33].

At each plot, with each set of fluxes, we also measured soil temperature from 0-5cm depth
(Tsop) and air temperature (T,;,) using a thermocouple (Fisher Scientific, Waltham, MA),
photosynthetically active radiation (QSO-PAR Decagon Devices, Pullman, WA), surface soil
moisture (GS-3 Decagon Devices, Pullman, WA), and radiometric surface temperature (T,
Appogee Instruments, Logan, UT). We also measured TD on the north and south sides of
each plot by inserting a graduated metal rod into the ground until firm resistance was met.
Twice at the beginning of the field season we measured soil thermal conductivity (Ks) inte-
grated over 0-5 cm depth (KD-2, Decagon Devices, Pullman, WA). Half hourly values of T,;,
and air pressure logged to a HOBO Microstation (Onset Corp, Bourne, MA) were matched to
the corresponding fluxes according to time of measurement. T,;, from the meteorological sta-
tion were used to fill chamber-level gaps due to instrument failure. On three occasions, we also
measured the normalized difference vegetation index (NDVI) for each plot (SRS-Nr, Decagon
Devices, Pullman, WA). At each flux plot, we measured the basal diameter for Betula spp. and
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Salix spp. shrubs and then calculated aboveground biomass using regional allometric equa-
tions [34]. We also visually estimated percent cover of the dominant plant functional types.

At the same low-density stand where fluxes were measured we quantified subsurface het-
erogeneity related to surface vegetation using electrical resistivity imaging [35,36]. We mea-
sured ERI along ~10m linear transects centered on lichen mats approximately 1-2 m in
diameter. ERI is a minimally invasive technique applied by injecting a direct current into the
ground and measuring differences in potential along a two-dimensional electrode array. The
result of a resistivity survey is a series of point measures that depend upon electrode geometry
and an assumption of subsurface homogeneity. An inversion model was used to calculate true
resistivity values for the heterogeneous subsurface and generate resistivity images. Roll-along
resistivity surveys were conducted using a Syscal Kid resistivity meter (Iris Instruments,
Orleans, France) with 24 electrodes spaced 20 cm apart. The 30cm graphite electrodes were
inserted in the ground at 45-degree angles in order to maximize electrode contact and mini-
mize vertical distortion, and data were sampled using a Schlumberger sampling array. At
20cm intervals along each ~10 m long transect, we measured TD with a graduated metal rod.

All resistivity surveys were inverted using Res2DInv software [37]. The high resistivity val-
ues and contrasts present in permafrost ecosystems introduce challenges with respect to data
inversion [38]. In order to avoid over-fitting that leads to extremely high resistivity values [39],
we limited the number of model iterations to five. We used a robust inversion because it more
adequately captures sharp gradients characteristic of permafrost ecosystems [35]. Additionally,
prior research shows resistivity inversions in permafrost ecosystems to be highly sensitive to a
model smoothness parameter (1) [38] that controls the degree to which the model is con-
strained by individual data points. We used the default initial value of 0.15 in Res2Dinv, and
then confirmed our results by generating additional inversions with higher A values in order to
confirm that modeled features were real and not inversion artifacts [40]. The resistivity inver-
sion uses the finite element method for forward modeling, where the surface of interest is dis-
cretized into a series of cells, and we varied the number of cell divisions between points as well.

All data analyses were performed in R version 3.2.3 [41]. Preliminary data analyses were
conducted to ensure that all data satisfied assumptions of normality associated with each statis-
tical test. For time series T,,; and soils data collected beneath lichen mats and shrub/moss
patches we tested for differences in soil characteristics among vegetation types using two-sam-
ple t-tests. We used a one-way Analysis of Variance (ANOVA) with vegetation type as the
fixed effect to examine differences in biological and physical variables related to surface energy
partitioning, and also to carbon dynamics measured at the flux plots. A post-hoc Tukey’s Hon-
est Significant Difference test was used to determine whether differences between each vegeta-
tion type were significant. Ordinary least squared regressions were performed across all days
to examine variability in Rgco responses to soil and air temperature across each surface cover
type (e.g. shrub, lichen, and shrub-lichen). All data and code used for analyses are freely avail-
able at the following url https://github.com/mloranty/lichen_pft/tree/v2.0 [33].

3. Results
3.1 Vegetation distribution and active layer properties

Lichen occurred widely in the study area and had notable impacts on resistivity, thaw depth,
and soil temperature. Areal percent cover of lichen mats was 16.5 + 2.5% (+1 SD) with a range
of 3-33% across the 35 forest stands sampled in this watersheds. Mean percent cover of decid-
uous shrubs and moss were (37.6 + 2.9% and 39.2 + 4.1%, respectively). The distribution of
lichen mats was not uniform, but rather exhibited a significant (p < 0.05) inverse relationship
with larch canopy cover (Fig 2). The ERI tomography and thaw depth measurements in mid-
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Fig 2. Relationship between larch canopy cover and lichen percent cover. Areal percent cover of lichen declined non-linearly with increasing larch canopy cover for
35 stands in the study area. Lichen cover was estimated visaually and larch canopy cover was measured with a hemispherical densitometer.
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July revealed low resistivity beneath lichen mats relative to adjacent areas dominated by shrubs
and moss, indicative of deeper thaw and/or saturated conditions beneath lichen mats (Fig 3).
Concurrent measurements of thaw depth aligned well with resistivity patterns, showing deeper
thaw beneath lichen mats (Fig 3).

At the intensively measured low-density stand soil temperature measured at 10 cm depth
from July 2012 -June 2014 revealed elevated temperatures beneath lichen mats relative to adja-
cent vegetation patches dominated by shrubs and mosses (Fig 4). These differences were largest
during the early to mid growing season (~2°C), and gradually decreased towards the end of the
growing season. Differences were minimal at the onset of fall freeze-back, but then increased
again as soils beneath lichen mats spent longer time in the ‘zero curtain’ period, after which dif-
ferences were minimal during the winter. Aggregated seasonal temperatures (Table 1) were sig-
nificantly different during the growing season (June-August; p < 0.01) and autumn
(September—November), but not during winter (December-February) or spring (March-May).

The soil organic layer was twice as thick (Table 2; p = 0.00001) beneath shrub/moss plots
(12.3 £ 1.5 cm) in comparison to lichen mats (6.0 £1.4 cm). Gravimetric soil moisture and soil
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Fig 3. Surface and subsurface characteristics of understory lichen mats. Photograph showing lichen mat and resistivity survey near
Cherskii, Siberia. Two representative resistivity profiles where colors indicate resistivity, black lines represent thaw depth measurements,
and green boxes labeled lichen above each profile denote the location of lichen mats. Note the deep areas of low resistivity (blue) and thaw
depth beneath lichen.

https://doi.org/10.1371/journal.pone.0194014.g003

organic matter content in the organic soil horizon were significantly higher beneath shrub/
moss patches relative to lichen mats (Table 2; p = 0.00008 and p = 0.0002 respectively); how-
ever, soil moisture and organic matter content within the mineral soil did not differ signifi-
cantly between vegetation types (Table 2).

3.2 Vegetation influences on carbon and water dynamics

Plots utilized for flux measurements exhibited clear differences in biological and physical char-
acteristics among vegetation types (Table 3). Shrub plots had an average of 210 + 46 g shrub
aboveground biomass, which was significantly higher than the 69 + 15 g in shrub-moss plots,
while only one lichen mat had a shrub (0.9 £ 0.9 g). Percent moss cover did not differ signifi-
cantly between shrub-moss plots (52 + 11%) and shrub plots (34 + 9%). Despite significant
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Fig 4. Soil temperatures beneath lichen and shrub understory vegetation. (A) Time series of daily mean Ty, at 10 cm depth beneath lichen mats (n = 9) and
shrub patches (n = 9) from July 2012 —June 2014. Dotted lines indicate one standard deviation. (B) The difference between daily mean lichen and shrub
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differences in shrub biomass, NDVI did not differ significantly between shrub-moss (0.61 +
0.01) and shrub plots (0.63 + 0.01), though both were significantly higher (ANOVA, p < 0.05)
than lichen mats (0.40 + 0.01). Thermal conductivity was significantly higher (ANOVA,

p < 0.05) in lichen mats (0.40 + 0.06 W m' K" in comparison to shrub-moss (0.12 + 0.02 W
m' K') and shrub plots (0.07 + 0.01 W m™* K''). Thaw depth below lichen mats was signifi-
cantly higher (ANOVA, p < 0.05) at the beginning (July 19; 72 + 4 cm) and end (Aug 3; 79 +
3 cm) of the study period than either shrub-moss (26 + 4 cm and 36 + 6 cm) or shrub plots
(34 £ 9 cm and 48 + 8 cm). Differences in thermal conductivity and thaw depth between
shrub-moss and shrub plots were not statistically significant.

Table 1. Seasonal soil temperatures at 10cm depth beneath lichen mats and shrub moss patches’.

Season

2012 SON**
2013 DJF
2013 MAM
2013 JJA**
2013 SON*
2014 DJF
2014 MAM

! Significant differences at

* = p<0.05

** =p<0.01

2 Lichen n = 9; Shrub/Moss n = 9

https://doi.org/10.1371/journal.pone.0194014.t001

Tooit (°C)

Lichen? Shrub/Moss
0.33 (0.11) 0.01 (0.23)
-6.34 (1.46) -6.62 (1.56)
-5.61 (0.49) -5.58 (0.59)
3.17 (0.48) 1.68 (0.47)
0.15 (0.13) -0.16 (0.28)
-3.57 (0.85) -3.96 (0.85)
-4.61 (0.52) -4.52 (0.53)
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Table 2. Soil properties for lichen mats and shrub/moss patches in a low-density larch stand in Northeastern Siberia'.

Vegetation Organic Depth
Type (cm)
Lichen® 6.0 (1.4)"
Shrub/Moss 12.3 (1.5)**

! Significant differences at

* = p<0.05

** =p<0.01

% Lichen n = 6; Shrub/Moss n = 6

https://doi.org/10.1371/journal.pone.0194014.t1002

Organic Soil Layer Mineral Soil Layer
Soil Moisture SOM Soil Moisture SOM
(%) (%) (%) (%)
52.7 (5)** 39.0 (6.9)** 36.7 (6.6) 13.8 (4.6)
70.9 (3.6)** 72.5(10.7)** 39.9 (10.2) 17.0 (6.1)

Examination of variables related to surface energy partitioning may help elucidate drivers
of observed differences in TD. To accomplish this, we present plot-level differences in Ty,
Tair» Tsurs PAR, and ET (latent heat flux) for two days with contrasting environmental condi-
tions (Table 4). On 1 August 2013 all fifteen plots were sampled between 16:00 and 18:00 when
temperature was moderate and PAR was low, and both were invariant across the sample
period. During this time, the difference between Ty,rand Ty, (T4i) was slightly positive
(warmer) on lichen mats while the shrub patches were approximately 1°C cooler than the air,
but differences in Ty, and Ty between vegetation type were not statistically significant. On 3
August 2013 all plots were sampled between 11:30 and 13:30 when T,;, and PAR were relatively
high compared to 1 August. On this occasion, Ty, rwas substantially higher than T,;, across all
vegetation types; with lichen T,,¢being on average 12.0 + 2.6°C warmer than T,;, whereas
Tsurt Was 6.3 £ 1.5°C and 4.8 + 1.6°C warmer than T, for shrub-moss and shrubs, respectively
(Table 4). Differences in ET between vegetation types were not significantly different on either
day. However, on August 3 when vegetation surfaces were substantially warmer than the air,
lichen had the lowest ET and the highest Ty, while on August 1 there were no appreciable
patterns in ET and small differences in T,,+. On both days there were significant differences in
Tsoil (ANOVA, p < 0.05) that were consistent with observed patterns of TD and time series
observations of T, at the site.

Deeper thaw depths and warmer soil temperatures associated with lichen did not lead to
higher Rgco (Table 5). Across the study period, average Rgco was not significantly different
across vegetation types; 2.42+0.27 umol m sec”, 2.92+0.27 umol m™* sec ™', and 2.91+0.36 pumol
m sec”! for lichen, shrub-moss, and shrub plots, respectively. Average NEE across the study
period was negative in shrub plots (-0.54+0.67 umol m™* sec™"), indicating net carbon uptake.
This was significantly lower than NEE values of 2.01+0.58 umol m ™ sec™' and 2.46+0.30 umol

Table 3. Summary of key vegetation and physical parameters for CO, and H,O flux plots measured between 17 July and 5 August 2013,

Plot Type Shrub Biomass Moss Cover> NDVI? Ks TD—July 19 TD—Aug 3
(g) (%) (Wm™' K" (cm) (cm)

Lichen* 0.9 (0.9)* 0 (0) 0.40 (0.01)* 0.40 (0.06)* 71.9 (4.2) 78.5 (3.4)

Shrub-Moss 69.1 (14.7) 52 (11)° 0.61 (0.01)° 0.12 (0.02)° 26.4 (4.0)° 36.2 (6.1)°

Shrub 210.6 (46.0)° 34 (9)° 0.63 (0.01)° 0.07 (0.01)° 33.7 (8.7)° 48.1 (7.9)°

"Letters indicate significant differences in measured variables between plot type

*Understory precent cover estimate includes moss cover beneath shrub canopies.

*Means are an average of three observations taken during the study, no temporal patterns were observed

“Lichen n = 5; Shrub-Moss n = 5; Shrubn = 5

https://doi.org/10.1371/journal.pone.0194014.t003
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Table 4. Variability in soil, air, and radiometric s
sured at flux-plots for two sampling periods with

1 August Lichen?

16:00-18:00 Shrub-Moss
Shrub

3 August Lichen

11:30-13:30 Shrub-Moss
Shrub

urface temperatures, photosynthetically active radiation, and evapotranspiration between vegetation types mea-
contrasting meteorlogical conditions during the 2013 field season'.

Tsoil Tair Teurt PAR? Evapotranspiration
o) Q) o) (umol m~Zsect) (mmol H,0 m? sec)
4.4 (0.4)* 6.6 (0.1) 6.9 (0.8) 248 (27) 0.26 (0.08)
2.3 (0.4)° 6.6 (0.1) 5.8 (0.8) 248 (27) 0.19 (0.11)
2.8 (0.6)° 6.6 (0.1) 5.6 (0.7) 233 (41) 0.20 (0.05)
4.1(0.3) 8.0 (0.1) 20.0 (2.7)* 967 (44) 1.07 (0.31)
2.1(0.3)° 8.2 (0.2) 14.5 (1.6)* 1062 (74) 1.73 (0.32)
2.9 (0.4)° 8.2(0.2) 13.0 (1.8)° 1062 (74) 1.67 (0.38)

"Letters indicate significant differences in measured variables between vegetation type. Variables without letters have no significant differences at p < 0.05

*Photosynthetically Active Radiation.

? For each day Lichen n = 5; Shrub-Moss n = 5; Shrub n = 5

https://doi.org/10.1371/journal.pone.0194014.t1004

Table 5. Comparison of mean values of key carbo
between 17 July and 5 August 2013,

m™ sec” in shrub-moss and lichen plots, respectively (ANOVA; p < 0.05). Individual measure-
ments of Rgco were linearly related to air temperature (adj r* = 0.19, p < 0.01) but not 0-5 cm
soil temperature (Fig 5). We did not observe significant relationships between Rgco and air or
soil temperatures within individual vegetation types.

4. Discussion
4.1 Vegetation and active layer dynamics

Our results illustrate the influence of understory plant functional type on permafrost thaw
depth, likely due to differences in surface energy partitioning. Specifically, we found that thaw
depths were 2-3 times greater under lichen mats than under shrubs or mosses. Low moisture
content and limited evapotranspiration from lichens prevent dissipation of latent heat [18],
potentially allowing for deeper thaw. On the other hand mosses have a low thermal conductiv-
ity and high insulating capacity when dry, due to a high air volume [42,43]. Mosses can thus
prevent thawing of permafrost by reducing the transfer of solar heat into the soil [20,44,45].
When damp, mosses have high rates of evapotranspiration that minimize sensible and ground
heat fluxes, thus buffering against temperature variations [22] and reducing soil temperature
[20,46]. Similarly, a combination of ground shading and relatively high latent heat fluxes may
minimize permafrost thaw beneath shrub canopies [16]. The absence of a root system in
mosses and lichens limits soil water loss, and may lead to the development of saturated soil
[44]. A study by Stoy et al [23] found higher soil temperatures (1 cm and 5 cm depth) beneath

n and water fluxes, and key meteorological drivers for each vegetation type averaged across the study period

Vegetation Tooit Tair Tourf Tais PAR? NEE® Rgco Evapotranspiration
Type Q) ({) Q) Q) (umol m?2sec!) (umol CO, m?2sec!) (umol CO, m?Zsec?) (mmol H,0 m? sec™!)
Lichen* 52(0.3)* |168(13) |13.0(09) |3.8(1.0)° | 786 (65) 2.46 (0.30)* 2.42 (0.27) 0.86 (0.14)
Shrub-Moss | 2.9(0.2)° | 14.1(1.0) | 13.0(0.9) | 1.1(0.6)> | 773 (63) 2.01 (0.58) 2.92 (0.27) 1.16 (0.19)
Shrub 34(03)° [13.7(1.1) | 12.9(0.9) |0.8(0.6)° | 756 (65) -0.54 (0.67)° 2.91 (0.36) 1.22 (0.16)

"Letters indicate significant differences in measured variables between vegetation type at p < 0.05. Variables without letters have no significant differences.

*Photosynthetically Active Radiation
*Net Ecosystem Exchange of CO,.
“Lichen n = 29; Shrub-Moss n = 29; Shrub n = 29

https://doi.org/10.1371/journal.pone.0194014.t005

PLOS ONE | https://doi.org/10.1371/journal.pone.0194014 March 22,2018

10/17


https://doi.org/10.1371/journal.pone.0194014.t004
https://doi.org/10.1371/journal.pone.0194014.t005
https://doi.org/10.1371/journal.pone.0194014

@° PLOS | ONE

Larch understory vegetation and active layer dynamics

7 - ° o
a
6 °
) °
® 51 .
(7] ° o
IE 4_ o ®
6 ’ ° o (]
£ 34 e T
el .-
o A | Te s,
mclﬁz ¢ \'o.
14 0%
O— °

. [ ] [ J
Lichen b
® Shrub-Moss
® Shrub ]
[ ]
[ ] [ ]
[ ] ° °
° N . //,”
° -7
. | ° [ ] ° .’.’”r [ ]
.. ’r/” ® [}
. -7 ® °
/”’ [ ]
o I o
) ] .. o ® L
[ ]
— °

Tsoil (Co)

Tair (Co)

Fig 5. Variation in ecosystem respiration with air and soil temperatures. (A) Rxco was not significantly related to Ty (B) Rpco was was positively related to air
temperature when observations were polled across plant communities and sampling periods (intercept = 1.16, slope = 0.09, adj r* = 0.19, p < 0.01).

https://doi.org/10.1371/journal.pone.0194014.g005

lichen and feather moss relative to nearby sphagnum, however, modeled ground heat flux for
lichen was relatively low in comparison to mosses. Our study is broadly inline with these previ-
ous results; we found that lichen mats had both thinner organic layers with less organic matter
and correspondingly higher thermal conductivity, and also higher surface temperatures associ-
ated with lower latent heat dissipation. Both of these sets of factors are likely to contribute to
warmer soils and deeper active layers beneath lichen mats.

It is also important to consider that variability in micortopography and soil moisture can
also influence vegetation distribution [30,31,47]. This is commonly observed in areas with ice-
wedge poloygons, where permafrost dynamics create micortopography with low wet areas
adjacent to higher drier areas. Elevation differences in these cases are typically on the order of
10s of cm and can be the dominant controls on moisture [48], which in turn impacts vegeta-
tion community distribution. This does not seem to be the case at our sites as there is no
microtopography of this nature. However it is still possible that, in addition to overstory forest
cover, lichen distribution is partially determined by post-fire soil conditions that have persisted
to the present. In this case the differences in thermal properties that we observed may actually
reinforce differences in active layer properties partially responsible for vegetation distribution.
Fire typically alters active layer depths for up to fifty years post-fire [49,50], and ecosystem
recovery typically promotes recovery of the permafrost table [51,52]. In our study sites the
high-density stands are among the youngest (~50yrs), whereas the lower density sites with
higher lichen abundance are upwards of 150 years old, indicating that our estimates of active
layer heterogeneity are not likely the results of fire legacy effects. In any case, improved under-
standing of active layer heterogeneity in Siberian larch forests requires comprehensive patch-
scale observations of understory vegetation.
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4.2 Thaw depth and ecosystem respiration

Previous studies suggest that increased thaw depth can lead to greater carbon loss through
increased heterotrophic respiration if soil carbon and quality with depth [17-20,53-55]; how-
ever, we found no relationship between thaw depth and Rgco. Autotrophic respiration can
comprise a substantial portion of Rgco in permafrost ecosystems [13]. It is likely that higher
autotrophic respiration compensated for lower heterotrophic respiration in shrub plots, which
had higher aboveground biomass and shallower permafrost thaw depths than other vegetation
types. The observed dependence of Rgco on air temperature rather than soil temperature sup-
ports this idea. Additionally, differences in the quantity and quality of soil carbon beneath dif-
ferent vegetation types may also contribute to variability in Rgco, and our observations of
thicker organic soil layers with higher organic matter content suggest soil carbon differences
may have been a factor in this study. For example, the low biomass, slow turnover and low lit-
ter input of lichens could limit the amount of soil carbon available for decomposition in lichen
patches relative to areas dominated by mosses or shrubs [56]. Thus, decreased soil organic
matter may negate carbon flux from increased thaw depth. Conversely, high soil organic mat-
ter content of soil beneath shrub patches may enhance Rpco from moderate thaw depths.
Alternatively, labile carbon may have already decomposed beneath lichen patches with deeper
thaw depths. Spatial variation in the amount and lability of soil C are also likely influenced by
fire, which is the dominant disturbance in the region [29,57].

Soil moisture may also influence relationships between thaw depth and Rgco via moisture
limitations on decomposition [58-60] that can be regulated by vegetation [44,58,61]. Several
studies in Alaska have identified accumulation of water at the base of the active layer as a
potential explanation for lack of observed relationships between thaw depth and Rgco [21,53],
and this could be plausible at our study site as well. Similarly, Zona et al [62] observed higher
Rgco at micro sites with shallower thaw depth and lower water tables. In these cases, suppres-
sion of Rgco by soil moisture may be offset by CH, efflux associated with anaerobic respiration
[63,64]. Our observations of delayed autumn freeze-back suggest a higher amount of soil mois-
ture beneath lichen mats relative to adjacent areas dominated by shrubs and mosses; however,
this does not necessarily correspond to saturated soil at the base of the active layer and could
also result simply from deeper thaw depths. Other studies have observed spatial variability in
CH, across different vegetation types [65], but it is unclear if CH, efflux varies with thaw
depth at our study site. Our measurements of Rgco are snapshots taken during the peak of the
growing season; however, non-growing season fluxes often determine sign and magnitude of
the annual carbon balance for an ecosystem [53,66]. Thus year round measurements of CO,
and CH, are required to understand the effects of vegetation-mediated active layer dynamics
on the understory carbon fluxes in Siberian larch forests.

4.3 Implications for ecosystem change

The relationship between plant functional type and thaw depth supports the assertion that veg-
etation-mediated variability in surface energy partitioning may alter soil thermal and biogeo-
chemical dynamics in permafrost ecosystems [23]. Lichen constitutes upwards of 16% of
understory aboveground biomass in low-density larch stands in northeastern Siberia [29] and
8-32% of aboveground biomass among a network of tundra sites in western Siberia [67].
Accounting for this variability will be necessary for accurate estimates of carbon dynamics in
these ecosystems. The same is likely to be true for other permafrost ecosystems, assuming the
occurrence of similar relationships between thaw depth and plant functional type, particularly
where changes in herbivore browsing patterns (e.g. Rangifer tarandus; [68]), fire [69] or
replacement by other forms of vegetation [70,71] lead to rapid changes in lichen distribution.
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In this context, it will be particularly important to determine whether depressed Rgco associ-
ated with lichen cover is a function of saturated soils, low rates of heterotrophic respiration, or
some combination of both.

At the landscape scale, the type of subsurface heterogeneity that we observed may translate
to bidirectional responses of Rgco to interannual climate variability e.g. [72], potentially lead-
ing to hotspots for CO, and CH, emissions [64] that vary spatially from year to year. This sort
of space-time variation may present challenges in modeling future greenhouse gas emissions
from permafrost ecosystems. On the other hand, high-resolution spectral data combined
with observed relationships between surface vegetation and thaw depth in these ecosystems
may lead to improved understanding of ecosystem-scale variability in active layer dynamics
[73-76].

5. Conclusions

In open canopy larch forests in northeastern Siberia, variations in understory vegetation over
short distances (e.g. < 1 m) correspond to large differences in thaw depth. Our results illustrate
a strong interactions between vegetation and active layer dynamics in these ecosystems, where
lower latent heat fluxes and higher thermal conductivity in lichen mats lead to deeper thaw
depths. These vegetation types have clear spectral differences, and offer the possibility for
remote detection of active layer heterogeneity. Despite increased thaw depth beneath lichen
mats, we did not observe elevated ecosystem respiration. Here, soil moisture, along with lower
soil carbon content may help to explain the absence of elevated ecosystem respiration, relative
to adjacent areas with shallower thaw depths. A better understanding of this subsurface vari-
ability, particularly thaw depth controls on soil moisture redistribution, will be necessary to
accurately quantify the effects of permafrost thaw on ecosystem carbon cycling. To this end,
our results indicate the usefulness of electrical resistivity imaging for visualizing active layer
heterogeneity. In Siberian larch forests, fire controls on tree density and understory vegetation
succession will exert strong controls on variation in active layer and ecosystem carbon dynam-
ics under current and future climates.
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