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Abstract�Machine learning (ML) algorithms present an 
opportunity to estimate joint kinetics using a limited set of 
mechanical sensors. These estimates could be used as a 
continuous reference signal for exoskeleton control, able to 
modulate exoskeleton assistance in real-world environments. In 
this study, sagittal plane biological hip torque during level 
ground, incline and decline walking was calculated using 
inverse dynamics of human subject data. Subsequently, this 
torque was estimated using neural network (NN) and XGBoost 
ML models. Model inputs consisted solely of mechanical sensor 
data onboard a robotic hip exoskeleton. These results were 
compared to a baseline method of estimating hip torque as the 
mean torque profile during ambulation. On average across 
conditions, the NN and XGBoost models estimated biological 
hip torque with an RMSE of 0.116±0.015 and 0.108±0.011 
Nm/kg, respectively, which was significantly less than the 
baseline estimation that had an RMSE of 0.300±0.145 Nm/kg 
(p<0.05). Fitting the baseline method to ambulation mode 
specific data significantly reduced overall RMSE by 59.3%; 
however, the ML models were still significantly better than the 
baseline method (p<0.05). These results show that machine 
learning algorithms can estimate biological hip torque using 
only mechanical sensors onboard a hip exoskeleton better than 
simply using an average torque profile. This suggests that these 
estimation models could be suitable for modulating exoskeleton 
assistance. Additionally, no evidence suggested the need to train 
separate ML models for each ambulation mode as estimation 
RMSE was not significantly different across unified and 
separated ML models. 
 

Index Terms � Biological Torque Estimation, Machine 
Learning, Regression, Exoskeleton, Ambulation 

I. INTRODUCTION 

Many active hip exoskeletons have resulted in muscle-
level and metabolic benefits using assistance profiles 
representative of or abstracted from biological joint torque 
[1]�[6]. Most of these successes have been limited to steady-
state treadmill walking; however, many user and 
environmental state estimation algorithms have been 
developed that may be used to modulate the assistance shape 
and magnitude given a predefined lookup table and scaling 
functions [7]�[10]. Unfortunately, this approach requires 
many state estimates (e.g. walking speed, incline and gait 
phase) and predefined ambulation modes and transitions, 
which limits the scope and likelihood of accurate exoskeleton 
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assistance modulation. Given these limitations, it remains 
unclear how well this approach would modulate bio-inspired 
assistance during multimodal, overground walking.  

Direct estimation of biological joint torque is an 
alternative approach that would provide continuous estimates 
from a single estimator, reducing the complexity and rigidity 
of previous approaches. This estimate could be used as a 
reference signal or phase variable for an exoskeleton 
controller generalizable to real-world ambulation. Wearable 
sensors, such as inertial measurement units (IMUs), 
electrogoniometers and rotary encoders onboard 
exoskeletons, provide an alternative approach to measuring 
joint kinematics; however, analytical approaches to 
estimating biological joint torque also require measurements 
of external loads, such as ground reaction forces (GRFs) 
during the stance phase of gait. One innovative approach to 
this problem is the use of pressure or force sensors embedded 
in footwear to estimate the GRFs on the body [11]�[16]. 
Using these GRF measurements and wearable kinematic 
sensors, model-based inverse dynamics solutions can be 
computed without the need for external sensors, such as force 
plates [17]�[20]. Unfortunately, this method can be limited 
by the resolution of pressure insole measurements [14] and 
requires sensor information of distal segments and joints to 
estimate biological torque, resulting in complex, multi-joint 
measurement systems [17], [19]. Additionally, these inverse 
dynamics methods can be highly sensitive to anthropometric 
features, especially when using generalized models [17]. 

Machine learning (ML), along with other data-driven 
regression approaches, present an alternative method of 
estimating biomechanical measures with reduced modeling 
and measurement complexity [21], [22]. Jacobs and Ferris 
demonstrated the ability of a single-layer feedforward neural 
network to estimate ankle torque given various sets of 
wearable sensor data [11]. Howell et al. used linear 
regression to map pressure insole information to ankle and 
knee kinetics in able-bodied and post-stroke participants [16]. 
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 quantified the results of 
lower limb torque estimation via a feedforward neural 
network using demographic, anthropometric, kinematic, and 
electromyographic data [23]. Though these ML approaches 
mitigate many of the limitations of analytical model-based 
approaches, they still have limitations. Primarily, previous 
research in ML-based torque estimation often uses pressure 
insole measurements, maintaining the mechanical and 
practical limitations of such sensors [14], has been limited to 
simple ambulation, such as level ground walking, and often 
focuses on estimation of the knee and ankle joint torques, 
omitting biological hip torque estimation.   

This gap has prompted our study to quantify the 
performance of biological hip torque estimation across 
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multiple ambulation modes, using a wearable sensor suite 
limited to those onboard a robotic hip exoskeleton (one 
encoder and one IMU). The sensors were integrated into the 
device, which provides practical benefits when considering 
the ease of putting on and taking off the exoskeleton 
compared to any additional wearable sensors. Using this data, 
estimation of biological hip torque was evaluated using two 
ML algorithms: a multi-layer feedforward neural network 
and the eXtreme Gradient Boosting algorithm, XGBoost 
[24]. The biological hip torque estimates were compared to a 
baseline method representative of normative hip torque 
profiles used as traditional inputs for bio-inspired exoskeleton 
control. Since these normative torque profiles have been 
sufficient for augmenting ambulation in controlled, steady-
state environments [1]�[3], it is important that our proposed 
ML-based algorithms maintain or exceed this accuracy. Thus, 
our first hypothesis was that these ML models decrease 
RMSE of sagittal plane biological hip torque compared to the 
baseline method. Additionally, given that our method omitted 
direct measurement of the GRF during walking, it is likely 
that domain knowledge of the environment can increase the 
performance of each algorithm. Thus, we also hypothesized 
that training and testing each algorithm using ambulation 
mode specific data would further decrease estimated 
biological hip torque RMSE compared to models fit using 
data from all investigated ambulation modes. Therefore, our 
study expands on the ideas of using machine learning 
algorithms to improve biological torque estimation by using 
only exoskeleton sensors and applying these methods to 
various ambulation modes. 

II. METHODS   

A. Experimental Design and Measurements 

This study was approved by the Georgia Institute of 
Technology Institutional Review Board, and all subjects 
provided written informed consent for the completion of the 
experiment. Five able-bodied subjects (age: 23.0±2.1 years; 
body mass: 74.3±8.3 kg; height: 1.76±0.08 m) completed 
walking trials at various level ground (LG), ramp ascent 
(RA), and ramp descent (RD) angles of 0°, ±7.8°, ±9.2°, 
±11.0°, and ±12.4°. Eight trials were completed for each 
slope condition, resulting in 24 LG and 32 RA and RD 
steady-state steps per subject for each leg (multiple steps per 
trial). The slope conditions were conducted in random order 
to remove potential bias in the hip dynamics. 

Biomechanical data were collected using two methods: 1) 
wearable sensors onboard an autonomous robotic hip 
exoskeleton used as the input for the evaluated torque 
estimation models of this study and 2) external stationary 
sensors used to compute biological torque for ground truth 
measurements (Fig. 1). Bilateral wearable sensor data were 
collected using a robotic hip exoskeleton operated in zero 
impedance mode, which was controlled using a zero torque 
control reference signal regulated by a PD controller and 
torque measurement from series elastic actuators (SEAs) 
[25]. Flexion/extension hip joint angles were measured using 
absolute magnetic encoders (Orbis, Renishaw, UK) mounted 
along the axis of actuation of the exoskeleton. Additionally, 
six-axis acceleration and gyroscopic data were collected from 
IMUs (Micro USB, Yost Lab, USA) mounted on each thigh 

orthosis of the exoskeleton. The wearable sensor data were 
collected at a 100 Hz sampling frequency. 

Motion capture measurements were collected at 200 Hz 
using a 36-camera Vicon motion capture system (Oxford 
Metric, Oxford, UK). GRFs were measured at 1000 Hz using 
Bertec force plates (Bertec, Columbus, Ohio, USA). These 
data were filtered using a zero-lag second order Butterworth 
filter with cutoff frequencies of 6 and 20 Hz, respectively. 
Ground truth biological hip torque was then computed using 
a biomechanical analysis in OpenSim v3.3 [26], [27]. 
Unfortunately, the exoskeleton impeded the ability to 
measure marker data directly attached to the biological pelvis 
and instead required placement of markers on the exoskeleton 
frame. Thus, additional care was taken to ensure appropriate 
scaling of the Gait2354 model used in our analysis via a two-
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that of the subject using motion capture data without wearing 
the exo���
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and right anterior superior iliac spine, posterior superior iliac 
spine, and greater trochanter. The resulting model was then 
scaled a second time, replacing these biological markers with 
those placed on the exoskeleton frame; however, the 
segmental properties were not updated during this second 
scaling operation, which only mapped the newly placed 
markers to the segments of the biologically scaled model. 
Since the exoskeleton frame fit snugly to the pelvis and upper 
body, the biomechanical model was simplified by adding the 
measured mass of the exoskeleton to the modeled torso (~8 
kg). Thus, our model assumed the orientation of the 
exoskeleton frame aligned with that of the biological pelvis 
and was validated by comparing hip dynamics with and 
without the exoskeleton during the ambulatory tasks of this 
study using pilot data. Inverse kinematics and dynamics were 
sequentially computed using the Inverse Kinematics Tool and 
Inverse Dynamics Tool in OpenSim. The interaction torque 
between the exoskeleton and human was actively mitigated 
using the zero impedance control strategy, quantified to be an 
average of 0.25 Nm in a previous study [25], and was 
neglected when computing biological torque. The computed 
biological hip torque �	�
 ����	
�"��
 ��
 ���
 ���!�����
 ����

mass and filtered using a 6 Hz zero-lag second order 
Butterworth lowpass filter to remove discontinuities resulting 
from force plate contact interactions at heel strike and toe off. 

 
Figure 1. The experimental setup and sensors used to collect 

biomechanical data are shown. Blue labels denote components onboard 

the hip exoskeleton, and red labels are used to denote otherwise. 
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Figure 2. The analysis workflow used to estimate biological hip torque in the sagittal plane is shown. Hip joint angle, measured using a rotary encoder, 
and thigh acceleration and gyroscopic data, measured using an inertial measurement unit mounted on the exoskeleton thigh orthosis, are used to estimate 

hip torque via the biological torque estimator algorithm. This algorithm consisted of windowing the mechanical sensor data and transforming the 

information into several features (minimum, maximum, mean, standard deviation, and latest value). The feature data was input to one of two machine 
learning algorithms used in this study to estimate biological hip torque. 

B. Hip Torque Estimation Algorithms 

Two ML algorithms were implemented to estimate 
biological hip torque: a feedforward neural network (NN) and 
the gradient boosting algorithm, XGBoost [24]. The NN was 
used since similar methods have been successful in 
estimating joint kinematics, GRFs, and biological torque 
using a variety of wearable sensors [11], [21], [23]. The NN 
was trained and tested in Python 3.6 using Keras [28] running 
a TensorFlow [29] backend. The exponential linear unit 
(ELU) was used as the activation function given its reported 
fast learning benefits [30]. The number of hidden layers and 
nodes of the NN were determined during hyperparameter 
optimization (see Section II.D). A symmetric number of 
nodes per layer was used to limit the number of permutations 
of network sizes completed in our hyperparameter sweep.   

XGBoost is a gradient boosting algorithm that uses 
unique regression trees to estimate residual error and has had 
success across a wide variety of regression problems [24]. 
We implemented this algorithm using the XGBoost module 
in Python 3.6. Four hyperparameters were tuned: the learning 
rate/shrinkage coefficient $%&
 ����
 ��
 ������
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each regression tree had on the total estimate; the minimum 
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$>&; and finally, the maximum allowed 
depth of each regression tree (see Section II.D). 

Both torque estimation models were compared to a 
baseline method. The baseline method was implemented by 
fitting an average curve given the computed hip torque across 
subjects. Thus, this method predicted the average hip 
dynamics curve as the provided estimate, which represents 
the common method of determining a generic biological hip 
torque profile used in exoskeleton controllers [1]�[3]. 

C. Feature Transformation  

A general workflow was developed to implement the two 
investigated ML algorithms for estimating biological hip 
torque (Fig. 2). Each hip torque estimation algorithm was 
trained using only the unilateral mechanical sensor data of 
the corresponding side of measured hip torque. The hip 
encoder angle, 3-axis thigh acceleration, and 3-axis thigh 

gyroscopic data were segmented into temporal windows and 
were transformed to five useful, but computationally simple 
features types (35 features total as inputs) containing 
temporal and proportional information: mean, standard 
deviation, minimum, maximum, and latest values [31], [32]. 
Bilateral feature information was omitted since our study 
only included symmetric, steady-state hip dynamics which is 
not always the case in real-world ambulation (e.g. ambulation 
mode transitions). Thus, including bilateral information in 
our study could result in overfitting of the model to 
symmetric gait, leading to unrealistic conclusions about 
estimation accuracy.   

D. Algorithm Training and Testing 

A test set composed of one step per leg from each 
ambulation condition was removed from the dataset until 
final testing of the tuned models. During hyperparameter 
tuning of each algorithm, 8-fold leave-one-step-out cross 
validation was used with early stopping criteria based on the 
rate of validation loss to prevent underfitting or overfitting 
of the models. Each fold of the validation set contained a 
single step from each ambulation mode condition. The 
validation dataset was the same for all hyperparameter and 
feature selection methods to ensure a fair comparison. Model 
testing consisted of a similar leave-one-step-out approach; 
however, each model was tested on a single step at a time to 
quantify test error for each ambulation mode. 

Hyperparameter optimization of both machine learning 
algorithms was completed to ensure the model architectures 
were appropriate for generalizing the mechanical sensor data 
to biological hip torque. We implemented a directed search of 
unique hyperparameters for each algorithm, starting with a 
large sweep over the hyperparameter space. An initial 
window size of 250 ms was used for the first step of this 
search, as recommended for an ambulation mode prediction 
system using a similar feature set [33]. The subset of 
hyperparameters resulting in lowest RMSE to the validation 
dataset and lowest model complexity were used in a second 
parameter sweep, which included testing window sizes 
varying from 100 ms to 500 ms in increments of 50 ms. The 
resulting set of hyperparameters and window size that 
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minimized RMSE while limiting model complexity (i.e. 
hidden nodes/layers and maximum tree depth) and window 
size was then selected using the elbow method for all later 
analyses [34]. The selected NN hyperparameters were three 
hidden layers, 30 nodes per layer, and a 350 ms window. The 
selected XGBoost hyperparameters were maximum tree 
depth of 6�
%
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Using these selected hyperparameters, sequential forward 
feature-type (mean, std., min., max., latest) selection and 
sequential forward channel-type (encoder angle, accel x-y-z, 
gyro x-y-z) selection were run using both machine learning 
algorithms to remove less relevant features and mitigate the 
^�����
��
���������	
���_
[35]. Feature-type selection of both 
the NN and XGBoost methods resulted in minimum RMSE 
using only mean, standard deviation, and latest value feature 
types. Thus, the minimum and maximum feature types were 
removed from all further analyses. Channel-type selection 
was also run both before and after feature-type selection for 
both algorithms. Minimum RMSE was achieved by using all 
available sensor channels for both algorithms. 

E. Ambulation Mode Dependency 

Ambulation mode dependent and independent methods 

were used when fitting the ML and baseline models. These 

two conditions represent a premise in which the ambulation 

mode is known or unknown to the exoskeleton, respectively, 

which provides insight into the need of ambulation mode 

classification algorithms when implementing these 

estimators during real-world ambulation. The mode 

dependent condition was completed by training and testing 

individual models and baseline torque profiles for each 

ambulation mode (LG, RA, RD). In contrast, the mode 

independent condition used unified ML models and a 

baseline torque profile regardless of ambulation mode. 

F. Statistical Analysis 

A two-way repeated measures analysis of variance 

(ANOVA) was used to determine significant differences 

within and between the hip torque estimation algorithms and 

ambulation mode dependence using a 0.05 alpha level of 

significance. A post hoc multiple comparisons test using a 

Bonferroni-correction was used to compute statistical 

differences between each condition. SPSS Statistics 21.0 

(IBM, Amonk, NY, USA) was used for all statistical tests. 

III. RESULTS 

A.  Algorithm Performance 

There were no statistical differences in estimated hip 
torque RMSE between the NN and XGBoost models (Fig. 3). 
When trained using the mode independent method, the 
XGBoost algorithm reduced estimated hip torque RMSE by 
73.3±4.5%, 38.4±30.8%, 77.3±2.9%, and 71.7±7.6% 
compared to the baseline method for the aggregate, LG, RA, 
and RD results, respectively. Similarly, when trained using 
the mode dependent method, the XGBoost algorithm reduced 
RMSE by 39.3±5.0%, 43.2±23.1%, 48.1±4.5%, and 
26.6±11.1% relative to the baseline method for the aggregate, 
LG, RA, and RD results, respectively. These reductions in 
error were significant for all pairwise comparisons except for 
those of the LG results (p<0.05). Comparing the NN hip 

torque to the baseline method yielded similar statistical 
comparisons, other than the mode dependent RD result 
(p<0.05) (Fig. 3d). 

B. Ambulation Mode Dependency Comparison 

Training the XGBoost and NN models with ambulation 
mode dependency compared to the mode independent 
method did not result in a significant difference in hip torque 
estimation RMSE (Fig. 3). Unlike the machine learning 
methods, fitting the baseline method with ambulation mode 
specific data significantly reduced RMSE by 59.3±7.8%, 
57.4±9.9%, and 64.8±14.3% for the aggregate, RA, and RD 
results, respectively (p<0.05). Mode dependency did not 
result in significantly different RMSE when fitting the 
baseline method for the LG result given the similarity in LG 
hip torque compared to the averaged hip torque across 
ambulation modes (Fig. 4). 

IV. DISCUSSION 

Our study presented a novel method of estimating 
biological hip torque during multiple ambulation modes 
using only mechanical sensors onboard an autonomous hip 
exoskeleton. In general, we accepted our hypothesis that 
using machine learning algorithms with mechanical sensor 
inputs would improve the estimation of biological hip torque 
compared to the baseline method. LG ambulation was the 
only ambulation mode in which the ML models did not 
significantly improve torque tracking, despite an average 
reduction in hip torque RMSE of 38%. This was likely due to 

 
Figure 3. Performance of the hip torque estimation algorithms are 

shown as the average RMSE across all ambulation modes (a), and per 
ambulation mode for level ground (b), ramp ascent (c), and ramp 

descent (d) walking. Results are presented for the baseline, XGBoost, 

and neural network (NN) estimation methods and when trained using 
the mode independent (MODE IND) and mode dependent (MODE 

DEP) paradigms. Error bars represent +1 standard error of the mean. * 

indicates statistical significance (p<0.05). 
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Figure 4. Ground truth biological hip torque of a single step for each ambulation mode is shown alongside the estimates using the mode independent 
(MODE IND) and mode dependent (MODE DEP) baseline method and the MODE IND XGBoost and neural network (NN) models. The single-step 

RMSE for each method compared to the ground truth curve is shown in parentheses. Ramp ascent and descent data are shown for the 12.4° slope.  

the low variance in hip dynamics exhibited during steady-
state LG walking and the limited participant size of this study 
(N=5). These results promote the use of ML-based torque 
estimation to reduce the complexity and error in estimating 
hip torque using wearable sensors.  

We also hypothesized that training unique models for 
each ambulation mode (LG, RA, RD) would further improve 
hip torque estimation by reducing the system domain. As 
expected, the baseline method improved when fit using 
ambulation mode specific data. This was expected as hip 
torque profiles vary given different ambulation modes (Fig. 
4). Thus, if using the baseline method to estimate biological 
hip torque  during level ground and slope walking, 
ambulation mode should be used to delineate estimated 
profiles, requiring additional state estimators, such as an 
ambulation mode classifier [8], [10], [32], [33]. Unlike the 
baseline result, the XGBoost and NN algorithms resulted in 
no significant difference when comparing ambulation mode 
dependent and independent models and overall RMSE below 
0.119 Nm/kg regardless of ambulation mode dependency. 
This suggests that these algorithms were able to appropriately 
generalize the input feature space to hip torque estimation 
regardless of known ambulation mode. 

Additionally, the error in hip torque estimation of our 
study is favorable when compared to those computed using 
other methods. Forner-Cordero et al. reported hip torque 
estimation RMSE of approximately 0.15 Nm/kg using a 
pressure insole informed inverse dynamics approach during 
level ground walking [18]. In comparison, the average RMSE 
of estimated hip torque during level ground walking in our 
study was below 0.093 Nm/kg, regardless of ML algorithm 
and mode dependency. �	��
 	��
 �������
 presented a 
method of estimating biological hip torque using a 
feedforward neural network trained using combinations of 
several datatypes [23]. This method resulted in sagittal plane 
hip torque estimation RMSE of 0.20 Nm/kg, which was also 
larger than the comparable RMSE reported in our study. 
Additionally, assuming our reported RMSE of 0.093 Nm/kg 
during LG walking altered the estimated biological peak 
torque by this magnitude, it can be inferred that the metabolic 
benefit compared to unpowered walking reported in [5] 
would be altered from 6% to approximately 5.8%. Future 
research using these algorithms to modulate exoskeleton 
control online is needed since there are many confounding 
factors that may influence this prediction; however, this 

suggests that the estimation errors found in our study may be 
sufficiently low for exoskeleton control. 

One limitation of this study is that all ambulation data 
used for training and testing the algorithms were 
representative of steady-state locomotion. Conventionally, 
estimation of user state is often more challenging during 
transient locomotion, such as when turning during 
ambulation and transitioning between modes [32]. Thus, 
future analyses should investigate the ability of ML 
algorithms to estimate biological joint moments during 
transient ambulation. Similarly, it is possible that the model 
would need to be retrained to estimate joint torque during 
active exoskeleton assistance conditions due to the expected 
changes in biological joint kinematics and soft tissue 
deformation between the orthosis and wearer. Future research 
should investigate the robustness of this algorithm to 
assistance conditions. Additionally, the output of the trained 
ML algorithms was not smooth (Fig. 4) since no temporal 
relationship was enforced for the output of the ML models. 
This could cause instability if using raw model output for 
exoskeleton control and suggests the need for additional 
filtering techniques or sequence models. 

Another limitation of our study is that the machine 
learning models were trained on user specific data. This 
method of collecting training data is impractical as the initial 
biological hip torque data used to train the models required 
substantial processing for each subject. Given the 
repeatability of mechanical sensor data across subjects, it is 
likely that unified, user independent models can be trained 
that would not require individual subject data to estimate 
biological joint torque. Given the limited participant size, this 
analysis was outside the scope of our study, but presents an 
exciting opportunity to remove the burden of user specific 
model training. As such, the limited participant size (N=5) is 
another limitation of this study, suggesting the need for more 
subjects to further power our analysis.  

V. CONCLUSION 

Our study compared machine learning-based biological 
hip torque estimators informed by mechanical measurements 
onboard a robotic hip exoskeleton to a baseline method and 
to results of similar studies in the literature. The machine 
learning-based methods reduced estimated hip torque RMSE 
beyond the baseline method and reported literature values. 
Thus, hip torque estimation approaches using machine 
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learning are a viable method for accurate estimation. 
Additionally, the machine learning models were able to 
appropriately generalize to multiple ambulation modes and 
slopes regardless of ambulation mode dependent or 
independent training. This validates our method as a novel 
approach to estimating hip kinetics across ambulation modes 
without the need for additional domain knowledge. 
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