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Abstract—Machine learning (ML) algorithms present an
opportunity to estimate joint Kinetics using a limited set of
mechanical sensors. These estimates could be used as a
continuous reference signal for exoskeleton control, able to
modulate exoskeleton assistance in real-world environments. In
this study, sagittal plane biological hip torque during level
ground, incline and decline walking was calculated using
inverse dynamics of human subject data. Subsequently, this
torque was estimated using neural network (NN) and XGBoost
ML models. Model inputs consisted solely of mechanical sensor
data onboard a robotic hip exoskeleton. These results were
compared to a baseline method of estimating hip torque as the
mean torque profile during ambulation. On average across
conditions, the NN and XGBoost models estimated biological
hip torque with an RMSE of 0.116+0.015 and 0.108+0.011
Nm/kg, respectively, which was significantly less than the
baseline estimation that had an RMSE of 0.300+0.145 Nm/kg
(p<0.05). Fitting the baseline method to ambulation mode
specific data significantly reduced overall RMSE by 59.3%;
however, the ML models were still significantly better than the
baseline method (p<0.05). These results show that machine
learning algorithms can estimate biological hip torque using
only mechanical sensors onboard a hip exoskeleton better than
simply using an average torque profile. This suggests that these
estimation models could be suitable for modulating exoskeleton
assistance. Additionally, no evidence suggested the need to train
separate ML models for each ambulation mode as estimation
RMSE was not significantly different across unified and
separated ML models.

Index Terms — Biological Torque Estimation, Machine
Learning, Regression, Exoskeleton, Ambulation

[. INTRODUCTION

Many active hip exoskeletons have resulted in muscle-
level and metabolic benefits using assistance profiles
representative of or abstracted from biological joint torque
[1]-[6]. Most of these successes have been limited to steady-
state treadmill walking; however, many user and
environmental state estimation algorithms have been
developed that may be used to modulate the assistance shape
and magnitude given a predefined lookup table and scaling
functions [7]-[10]. Unfortunately, this approach requires
many state estimates (e.g. walking speed, incline and gait
phase) and predefined ambulation modes and transitions,
which limits the scope and likelihood of accurate exoskeleton
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assistance modulation. Given these limitations, it remains
unclear how well this approach would modulate bio-inspired
assistance during multimodal, overground walking.

Direct estimation of biological joint torque is an
alternative approach that would provide continuous estimates
from a single estimator, reducing the complexity and rigidity
of previous approaches. This estimate could be used as a
reference signal or phase variable for an exoskeleton
controller generalizable to real-world ambulation. Wearable
sensors, such as inertial measurement units (IMUs),
electrogoniometers and  rotary  encoders  onboard
exoskeletons, provide an alternative approach to measuring
joint kinematics; however, analytical approaches to
estimating biological joint torque also require measurements
of external loads, such as ground reaction forces (GRFs)
during the stance phase of gait. One innovative approach to
this problem is the use of pressure or force sensors embedded
in footwear to estimate the GRFs on the body [11]-[16].
Using these GRF measurements and wearable kinematic
sensors, model-based inverse dynamics solutions can be
computed without the need for external sensors, such as force
plates [17]-[20]. Unfortunately, this method can be limited
by the resolution of pressure insole measurements [14] and
requires sensor information of distal segments and joints to
estimate biological torque, resulting in complex, multi-joint
measurement systems [17], [19]. Additionally, these inverse
dynamics methods can be highly sensitive to anthropometric
features, especially when using generalized models [17].

Machine learning (ML), along with other data-driven
regression approaches, present an alternative method of
estimating biomechanical measures with reduced modeling
and measurement complexity [21], [22]. Jacobs and Ferris
demonstrated the ability of a single-layer feedforward neural
network to estimate ankle torque given various sets of
wearable sensor data [11]. Howell et al. used linear
regression to map pressure insole information to ankle and
knee kinetics in able-bodied and post-stroke participants [16].
Additionally, Hahn and O’Keefe quantified the results of
lower limb torque estimation via a feedforward neural
network using demographic, anthropometric, kinematic, and
electromyographic data [23]. Though these ML approaches
mitigate many of the limitations of analytical model-based
approaches, they still have limitations. Primarily, previous
research in ML-based torque estimation often uses pressure
insole measurements, maintaining the mechanical and
practical limitations of such sensors [14], has been limited to
simple ambulation, such as level ground walking, and often
focuses on estimation of the knee and ankle joint torques,
omitting biological hip torque estimation.

This gap has prompted our study to quantify the
performance of biological hip torque estimation across
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multiple ambulation modes, using a wearable sensor suite
limited to those onboard a robotic hip exoskeleton (one
encoder and one IMU). The sensors were integrated into the
device, which provides practical benefits when considering
the ease of putting on and taking off the exoskeleton
compared to any additional wearable sensors. Using this data,
estimation of biological hip torque was evaluated using two
ML algorithms: a multi-layer feedforward neural network
and the eXtreme Gradient Boosting algorithm, XGBoost
[24]. The biological hip torque estimates were compared to a
baseline method representative of normative hip torque
profiles used as traditional inputs for bio-inspired exoskeleton
control. Since these normative torque profiles have been
sufficient for augmenting ambulation in controlled, steady-
state environments [1]-[3], it is important that our proposed
ML-based algorithms maintain or exceed this accuracy. Thus,
our first hypothesis was that these ML models decrease
RMSE of sagittal plane biological hip torque compared to the
baseline method. Additionally, given that our method omitted
direct measurement of the GRF during walking, it is likely
that domain knowledge of the environment can increase the
performance of each algorithm. Thus, we also hypothesized
that training and testing each algorithm using ambulation
mode specific data would further decrease estimated
biological hip torque RMSE compared to models fit using
data from all investigated ambulation modes. Therefore, our
study expands on the ideas of using machine learning
algorithms to improve biological torque estimation by using
only exoskeleton sensors and applying these methods to
various ambulation modes.

II. METHODS

A.  Experimental Design and Measurements

This study was approved by the Georgia Institute of
Technology Institutional Review Board, and all subjects
provided written informed consent for the completion of the
experiment. Five able-bodied subjects (age: 23.0+2.1 years;
body mass: 74.3+8.3 kg; height: 1.76+0.08 m) completed
walking trials at various level ground (LG), ramp ascent
(RA), and ramp descent (RD) angles of 0°, £7.8°, £9.2°,
+11.0°, and +12.4°. Eight trials were completed for each
slope condition, resulting in 24 LG and 32 RA and RD
steady-state steps per subject for each leg (multiple steps per
trial). The slope conditions were conducted in random order
to remove potential bias in the hip dynamics.

Biomechanical data were collected using two methods: 1)
wearable sensors onboard an autonomous robotic hip
exoskeleton used as the input for the evaluated torque
estimation models of this study and 2) external stationary
sensors used to compute biological torque for ground truth
measurements (Fig. 1). Bilateral wearable sensor data were
collected using a robotic hip exoskeleton operated in zero
impedance mode, which was controlled using a zero torque
control reference signal regulated by a PD controller and
torque measurement from series elastic actuators (SEAs)
[25]. Flexion/extension hip joint angles were measured using
absolute magnetic encoders (Orbis, Renishaw, UK) mounted
along the axis of actuation of the exoskeleton. Additionally,
six-axis acceleration and gyroscopic data were collected from
IMUs (Micro USB, Yost Lab, USA) mounted on each thigh
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orthosis of the exoskeleton. The wearable sensor data were
collected at a 100 Hz sampling frequency.

Motion capture measurements were collected at 200 Hz
using a 36-camera Vicon motion capture system (Oxford
Metric, Oxford, UK). GRFs were measured at 1000 Hz using
Bertec force plates (Bertec, Columbus, Ohio, USA). These
data were filtered using a zero-lag second order Butterworth
filter with cutoff frequencies of 6 and 20 Hz, respectively.
Ground truth biological hip torque was then computed using
a biomechanical analysis in OpenSim v3.3 [26], [27].
Unfortunately, the exoskeleton impeded the ability to
measure marker data directly attached to the biological pelvis
and instead required placement of markers on the exoskeleton
frame. Thus, additional care was taken to ensure appropriate
scaling of the Gait2354 model used in our analysis via a two-
step method. First, the model’s anthropometry was scaled to
that of the subject using motion capture data without wearing
the exoskeleton, which included markers on the subject’s left
and right anterior superior iliac spine, posterior superior iliac
spine, and greater trochanter. The resulting model was then
scaled a second time, replacing these biological markers with
those placed on the exoskeleton frame; however, the
segmental properties were not updated during this second
scaling operation, which only mapped the newly placed
markers to the segments of the biologically scaled model.
Since the exoskeleton frame fit snugly to the pelvis and upper
body, the biomechanical model was simplified by adding the
measured mass of the exoskeleton to the modeled torso (~8
kg). Thus, our model assumed the orientation of the
exoskeleton frame aligned with that of the biological pelvis
and was validated by comparing hip dynamics with and
without the exoskeleton during the ambulatory tasks of this
study using pilot data. Inverse kinematics and dynamics were
sequentially computed using the Inverse Kinematics Tool and
Inverse Dynamics Tool in OpenSim. The interaction torque
between the exoskeleton and human was actively mitigated
using the zero impedance control strategy, quantified to be an
average of 0.25 Nm in a previous study [25], and was
neglected when computing biological torque. The computed
biological hip torque was normalized to the subject’s body
mass and filtered using a 6 Hz zero-lag second order
Butterworth lowpass filter to remove discontinuities resulting
from force plate contact interactions at heel strike and toe off.

Exoskeleton Exoskeleton
Actuator Electronics
Pack
Rotary
IMU
Encoder
Exoskeleton Motion
Orthoses =— Capture
Markers

Incline/Decline
Adjustable
Ramp
Figure 1. The experimental setup and sensors used to collect
biomechanical data are shown. Blue labels denote components onboard
the hip exoskeleton, and red labels are used to denote otherwise.
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Figure 2. The analysis workflow used to estimate biological hip torque in the sagittal plane is shown. Hip joint angle, measured using a rotary encoder,
and thigh acceleration and gyroscopic data, measured using an inertial measurement unit mounted on the exoskeleton thigh orthosis, are used to estimate
hip torque via the biological torque estimator algorithm. This algorithm consisted of windowing the mechanical sensor data and transforming the
information into several features (minimum, maximum, mean, standard deviation, and latest value). The feature data was input to one of two machine

learning algorithms used in this study to estimate biological hip torque.

B. Hip Torque Estimation Algorithms

Two ML algorithms were implemented to estimate
biological hip torque: a feedforward neural network (NN) and
the gradient boosting algorithm, XGBoost [24]. The NN was
used since similar methods have been successful in
estimating joint kinematics, GRFs, and biological torque
using a variety of wearable sensors [11], [21], [23]. The NN
was trained and tested in Python 3.6 using Keras [28] running
a TensorFlow [29] backend. The exponential linear unit
(ELU) was used as the activation function given its reported
fast learning benefits [30]. The number of hidden layers and
nodes of the NN were determined during hyperparameter
optimization (see Section II.D). A symmetric number of
nodes per layer was used to limit the number of permutations
of network sizes completed in our hyperparameter sweep.

XGBoost is a gradient boosting algorithm that uses
unique regression trees to estimate residual error and has had
success across a wide variety of regression problems [24].
We implemented this algorithm using the XGBoost module
in Python 3.6. Four hyperparameters were tuned: the learning
rate/shrinkage coefficient (1) used to control the influence
each regression tree had on the total estimate; the minimum
gain required to further split a node of the regression tree (y);
the regularization term (A); and finally, the maximum allowed
depth of each regression tree (see Section I1.D).

Both torque estimation models were compared to a
baseline method. The baseline method was implemented by
fitting an average curve given the computed hip torque across
subjects. Thus, this method predicted the average hip
dynamics curve as the provided estimate, which represents
the common method of determining a generic biological hip
torque profile used in exoskeleton controllers [1]-[3].

C. Feature Transformation

A general workflow was developed to implement the two
investigated ML algorithms for estimating biological hip
torque (Fig. 2). Each hip torque estimation algorithm was
trained using only the unilateral mechanical sensor data of
the corresponding side of measured hip torque. The hip
encoder angle, 3-axis thigh acceleration, and 3-axis thigh
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gyroscopic data were segmented into temporal windows and
were transformed to five useful, but computationally simple
features types (35 features total as inputs) containing
temporal and proportional information: mean, standard
deviation, minimum, maximum, and latest values [31], [32].
Bilateral feature information was omitted since our study
only included symmetric, steady-state hip dynamics which is
not always the case in real-world ambulation (e.g. ambulation
mode transitions). Thus, including bilateral information in
our study could result in overfitting of the model to
symmetric gait, leading to unrealistic conclusions about
estimation accuracy.

D. Algorithm Training and Testing

A test set composed of one step per leg from each
ambulation condition was removed from the dataset until
final testing of the tuned models. During hyperparameter
tuning of each algorithm, 8-fold leave-one-step-out cross
validation was used with early stopping criteria based on the
rate of validation loss to prevent underfitting or overfitting
of the models. Each fold of the validation set contained a
single step from each ambulation mode condition. The
validation dataset was the same for all hyperparameter and
feature selection methods to ensure a fair comparison. Model
testing consisted of a similar leave-one-step-out approach;
however, each model was tested on a single step at a time to
quantify test error for each ambulation mode.

Hyperparameter optimization of both machine learning
algorithms was completed to ensure the model architectures
were appropriate for generalizing the mechanical sensor data
to biological hip torque. We implemented a directed search of
unique hyperparameters for each algorithm, starting with a
large sweep over the hyperparameter space. An initial
window size of 250 ms was used for the first step of this
search, as recommended for an ambulation mode prediction
system using a similar feature set [33]. The subset of
hyperparameters resulting in lowest RMSE to the validation
dataset and lowest model complexity were used in a second
parameter sweep, which included testing window sizes
varying from 100 ms to 500 ms in increments of 50 ms. The
resulting set of hyperparameters and window size that

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 24,2021 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.



minimized RMSE while limiting model complexity (i.e.
hidden nodes/layers and maximum tree depth) and window
size was then selected using the elbow method for all later
analyses [34]. The selected NN hyperparameters were three
hidden layers, 30 nodes per layer, and a 350 ms window. The
selected XGBoost hyperparameters were maximum tree
depth of 6, 1 0f 0.05, y of 0, L of 1, and a 350 ms window.

Using these selected hyperparameters, sequential forward
feature-type (mean, std., min., max., latest) selection and
sequential forward channel-type (encoder angle, accel x-y-z,
gyro x-y-z) selection were run using both machine learning
algorithms to remove less relevant features and mitigate the
“curse of dimensionality” [35]. Feature-type selection of both
the NN and XGBoost methods resulted in minimum RMSE
using only mean, standard deviation, and latest value feature
types. Thus, the minimum and maximum feature types were
removed from all further analyses. Channel-type selection
was also run both before and after feature-type selection for
both algorithms. Minimum RMSE was achieved by using all
available sensor channels for both algorithms.

E. Ambulation Mode Dependency

Ambulation mode dependent and independent methods
were used when fitting the ML and baseline models. These
two conditions represent a premise in which the ambulation
mode is known or unknown to the exoskeleton, respectively,
which provides insight into the need of ambulation mode
classification algorithms when implementing these
estimators during real-world ambulation. The mode
dependent condition was completed by training and testing
individual models and baseline torque profiles for each
ambulation mode (LG, RA, RD). In contrast, the mode
independent condition used unified ML models and a
baseline torque profile regardless of ambulation mode.

F. Statistical Analysis

A two-way repeated measures analysis of variance
(ANOVA) was used to determine significant differences
within and between the hip torque estimation algorithms and
ambulation mode dependence using a 0.05 alpha level of
significance. A post hoc multiple comparisons test using a
Bonferroni-correction was used to compute statistical
differences between each condition. SPSS Statistics 21.0
(IBM, Amonk, NY, USA) was used for all statistical tests.

III. RESULTS

A. Algorithm Performance

There were no statistical differences in estimated hip
torque RMSE between the NN and XGBoost models (Fig. 3).
When trained using the mode independent method, the
XGBoost algorithm reduced estimated hip torque RMSE by
73.3+4.5%, 38.4%30.8%, 77.3£2.9%, and 71.7£7.6%
compared to the baseline method for the aggregate, LG, RA,
and RD results, respectively. Similarly, when trained using
the mode dependent method, the XGBoost algorithm reduced
RMSE by 39.3£5.0%, 43.2423.1%, 48.1+4.5%, and
26.6£11.1% relative to the baseline method for the aggregate,
LG, RA, and RD results, respectively. These reductions in
error were significant for all pairwise comparisons except for
those of the LG results (p<0.05). Comparing the NN hip
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Figure 3. Performance of the hip torque estimation algorithms are
shown as the average RMSE across all ambulation modes (a), and per
ambulation mode for level ground (b), ramp ascent (c), and ramp
descent (d) walking. Results are presented for the baseline, XGBoost,
and neural network (NN) estimation methods and when trained using
the mode independent (MODE IND) and mode dependent (MODE
DEP) paradigms. Error bars represent +1 standard error of the mean. *
indicates statistical significance (p<0.05).

torque to the baseline method yielded similar statistical
comparisons, other than the mode dependent RD result
(p<0.05) (Fig. 3d).

B. Ambulation Mode Dependency Comparison

Training the XGBoost and NN models with ambulation
mode dependency compared to the mode independent
method did not result in a significant difference in hip torque
estimation RMSE (Fig. 3). Unlike the machine learning
methods, fitting the baseline method with ambulation mode
specific data significantly reduced RMSE by 59.3+7.8%,
57.4+£9.9%, and 64.8+14.3% for the aggregate, RA, and RD
results, respectively (p<0.05). Mode dependency did not
result in significantly different RMSE when fitting the
baseline method for the LG result given the similarity in LG
hip torque compared to the averaged hip torque across
ambulation modes (Fig. 4).

IV. DISCUSSION

Our study presented a novel method of estimating
biological hip torque during multiple ambulation modes
using only mechanical sensors onboard an autonomous hip
exoskeleton. In general, we accepted our hypothesis that
using machine learning algorithms with mechanical sensor
inputs would improve the estimation of biological hip torque
compared to the baseline method. LG ambulation was the
only ambulation mode in which the ML models did not
significantly improve torque tracking, despite an average
reduction in hip torque RMSE of 38%. This was likely due to
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Figure 4. Ground truth biological hip torque of a single step for each ambulation mode is shown alongside the estimates using the mode independent
(MODE IND) and mode dependent (MODE DEP) baseline method and the MODE IND XGBoost and neural network (NN) models. The single-step
RMSE for each method compared to the ground truth curve is shown in parentheses. Ramp ascent and descent data are shown for the 12.4° slope.

the low variance in hip dynamics exhibited during steady-
state LG walking and the limited participant size of this study
(N=5). These results promote the use of ML-based torque
estimation to reduce the complexity and error in estimating
hip torque using wearable sensors.

We also hypothesized that training unique models for
each ambulation mode (LG, RA, RD) would further improve
hip torque estimation by reducing the system domain. As
expected, the baseline method improved when fit using
ambulation mode specific data. This was expected as hip
torque profiles vary given different ambulation modes (Fig.
4). Thus, if using the baseline method to estimate biological
hip torque  during level ground and slope walking,
ambulation mode should be used to delineate estimated
profiles, requiring additional state estimators, such as an
ambulation mode classifier [8], [10], [32], [33]. Unlike the
baseline result, the XGBoost and NN algorithms resulted in
no significant difference when comparing ambulation mode
dependent and independent models and overall RMSE below
0.119 Nm/kg regardless of ambulation mode dependency.
This suggests that these algorithms were able to appropriately
generalize the input feature space to hip torque estimation
regardless of known ambulation mode.

Additionally, the error in hip torque estimation of our
study is favorable when compared to those computed using
other methods. Forner-Cordero et al. reported hip torque
estimation RMSE of approximately 0.15 Nm/kg using a
pressure insole informed inverse dynamics approach during
level ground walking [18]. In comparison, the average RMSE
of estimated hip torque during level ground walking in our
study was below 0.093 Nm/kg, regardless of ML algorithm
and mode dependency. Hahn and O’Keefe presented a
method of estimating biological hip torque wusing a
feedforward neural network trained using combinations of
several datatypes [23]. This method resulted in sagittal plane
hip torque estimation RMSE of 0.20 Nm/kg, which was also
larger than the comparable RMSE reported in our study.
Additionally, assuming our reported RMSE of 0.093 Nm/kg
during LG walking altered the estimated biological peak
torque by this magnitude, it can be inferred that the metabolic
benefit compared to unpowered walking reported in [5]
would be altered from 6% to approximately 5.8%. Future
research using these algorithms to modulate exoskeleton
control online is needed since there are many confounding
factors that may influence this prediction; however, this

suggests that the estimation errors found in our study may be
sufficiently low for exoskeleton control.

One limitation of this study is that all ambulation data
used for training and testing the algorithms were
representative of steady-state locomotion. Conventionally,
estimation of user state is often more challenging during
transient locomotion, such as when turning during
ambulation and transitioning between modes [32]. Thus,
future analyses should investigate the ability of ML
algorithms to estimate biological joint moments during
transient ambulation. Similarly, it is possible that the model
would need to be retrained to estimate joint torque during
active exoskeleton assistance conditions due to the expected
changes in biological joint kinematics and soft tissue
deformation between the orthosis and wearer. Future research
should investigate the robustness of this algorithm to
assistance conditions. Additionally, the output of the trained
ML algorithms was not smooth (Fig. 4) since no temporal
relationship was enforced for the output of the ML models.
This could cause instability if using raw model output for
exoskeleton control and suggests the need for additional
filtering techniques or sequence models.

Another limitation of our study is that the machine
learning models were trained on user specific data. This
method of collecting training data is impractical as the initial
biological hip torque data used to train the models required
substantial processing for each subject. Given the
repeatability of mechanical sensor data across subjects, it is
likely that unified, user independent models can be trained
that would not require individual subject data to estimate
biological joint torque. Given the limited participant size, this
analysis was outside the scope of our study, but presents an
exciting opportunity to remove the burden of user specific
model training. As such, the limited participant size (N=5) is
another limitation of this study, suggesting the need for more
subjects to further power our analysis.

V. CONCLUSION

Our study compared machine learning-based biological
hip torque estimators informed by mechanical measurements
onboard a robotic hip exoskeleton to a baseline method and
to results of similar studies in the literature. The machine
learning-based methods reduced estimated hip torque RMSE
beyond the baseline method and reported literature values.
Thus, hip torque estimation approaches using machine

795

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 24,2021 at 15:37:49 UTC from IEEE Xplore. Restrictions apply.



learning are a viable method for accurate estimation.
Additionally, the machine learning models were able to
appropriately generalize to multiple ambulation modes and
slopes regardless of ambulation mode dependent or
independent training. This validates our method as a novel
approach to estimating hip kinetics across ambulation modes
without the need for additional domain knowledge.
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