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Abstract— Human augmentation through robotic exoskeleton
technology can enhance the user’s mobility for a wide range
of ambulation tasks. This is done by providing assistance
that is in line with the user’s movement during different
locomotion modes (e.g., ramps and stairs). Several machine
learning techniques have been applied to classify such tasks
on lower limb prostheses, but these strategies have not been
applied extensively to exoskeleton systems which often rely
on similar control inputs. Additionally, conventional methods
often identify modes at a discrete time during the gait cycle
which can delay the corresponding assistance to the user and
potentially reduce overall exoskeleton benefit. We developed
a gait phase-based Bayesian classifier that can classify five
ambulation modes continuously throughout the gait cycle using
only mechanical sensors on the device. From our five able-
bodied subject experiment with a robotic hip exoskeleton, we
found that implementing multiple models within the gait cycle
can reduce the classification error rate by 35% compared to
using a single model (p < 0.05). Furthermore, we found that
utilizing bilateral sensor information can reduce the error by
43% compared to using a unilateral information (p < 0.05).
Our study findings provide valuable information for future
exoskeleton developers to utilize different on-board mechanical
sensors to enhance mode classification for a faster update
rate in the controller and provide more natural and seamless
exoskeleton assistance between locomotion modes.

Index Terms— Exoskeleton, Machine Learning, Locomotion
Mode, Continuous Classification, Sensor Fusion

I. INTRODUCTION

Exoskeleton technology has drawn great attention for its
potential benefit in multiple domains [1]. Specifically, lower-
limb exoskeletons provide assistance at the joint during
locomotion to augment the user for improved mobility.
Accurately understanding the user’s intent during locomotion
is critical for controlling such devices. Different literature
studies have indicated that an optimal assistance profile
for these exoskeletons may vary depending on the user’s
locomotion mode (e.g., walking level ground vs. climb-
ing stairs) [2—4]. In order to maintain maximum human
exoskeleton performance, an accurate classification of the
user’s locomotion mode is beneficial. Different analytical
methods have been implemented in the literature to classify
locomotion modes such as deriving a slope angle from an
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inertial measurement unit [5]. However, these approaches
do not yield robust results in real-time implementation due
to inaccurate estimation (e.g., sensor noise and drift). One
possible solution is to incorporate a machine learning-based
(ML) classification strategy for its robustness in handling
measurement noise and real-time implementation capability
[6,7].

Several research groups in the wearable robotics field
have investigated different ML techniques to classify the
user’s locomotion mode [7-9]. Simon ef al. implemented
a mode-specific classifier using a delayed mode transition
decision for a robotic prosthesis achieving a classification
error less than 0.5% [10]. However, the study was limited
that the classifier was optimized specifically for a prosthesis
application. For example, the study combined the ramp
ascent and level ground modes as similar control parameters
are required between these two modes for a robotic prosthesis
control. However, this approach may not be a viable solution
for robotic hip exoskeletons considering the difference in
the hip kinetics between two modes. Long et al. utilized an
SVM-based mode classifier for a full lower-limb exoskeleton
achieving an error of 4% [11]. However, the study had
a limitation in causing a large delay (transition prediction
period being delayed up to a full step) in correctly classifying
the transition period. Jang et al. applied a fuzzy inference
system using the joint angle to classify the mode for a robotic
hip exoskeleton achieving a classification error of 3% [12].
However, the study was limited as the model was only trained
to classify stair and level ground modes and was not robust
to different walking speeds.

Another limitation in the current literature is that these
modes are classified in discrete times within the gait cycle.
Classification at discrete times during the gait cycle is done
to extract sensor information from a deterministic joint
configuration where the data is most reliable (e.g., heel
contact or toe off during the gait cycle). However, this could
potentially result in providing a delayed and inaccurate assis-
tance during the mode transition period. Ideally, transitioning
between locomotion modes should be automatic, seamless,
and natural to the user’s movement. Huang et al. mitigated
this problem, where multiple gait phase-dependent classifiers
were designed for a continuous mode classification for a
robotic prosthesis [6]. A similar strategy can be implemented
in the exoskeleton application and potentially improve the
performance in continuous classification. This prompted our
study to leverage similar methods of mode classification
using a robotic hip exoskeleton.

A more robust continuous mode classification will require
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an update rate equivalent to at least a pseudo real-time
level (e.g., 50 Hz or more). To achieve this, we can utilize
the user’s gait phase information by segmenting the gait
cycle into multiple phases and generating an ML model
that can maximize the classification accuracy at a given
window of gait phase [13]. While increasing the number of
models within the gait cycle can improve the overall model
performance, it may reduce feasibility due to limitations
in real-time implementation (e.g., on-board microproces-
sor’s memory capacity and the resolution of the gait phase
estimator). Therefore, an optimal number of ML models
that can achieve both high performance and robust real-
time capability needs to be explored. Additionally, it may
be possible to improve the overall model performance by
leveraging the bilateral nature of an exoskeleton system. For
example, in the case of transitioning to the next mode with
a trailing limb, the contralateral leg’s sensor information can
aid the trailing limb’s classification accuracy by starting to
capture feature information about the next locomotion mode
during the transition gait cycle.

Bayesian classifiers are a commonly used ML approach
for mode classification due to their simplicity in translating
to a real-time device [14,15]. Literature studies have shown
different strategies to further improve the overall model accu-
racy by fusing gait time history information such as through
a Dynamic Bayesian Network (DBN) that can reduce the
steady-state error [16]. While these ML-based methods have
been validated in different literature studies (e.g., robotic
prostheses), the in-depth analysis of improving the ML
model performance in continuous classification, especially
in an exoskeleton application, has not been explored.

In this study, we conducted a human subject experiment
where the user ambulated in a terrain environment con-
sisting of different locomotion modes (i.e., level ground,
ramps, and stairs) while wearing a robotic bilateral hip
exoskeleton. Utilizing only the on-board mechanical sensor
data during the experiment, we investigated varying com-
plexity of Bayesian ML strategies (Naive Bayes, Linear
Discriminant Analysis, and Quadratic Discriminant Analysis)
to train our mode classifier. The central hypothesis of this
study is that utilizing the user’s gait phase information as
well as bilateral sensor information from the exoskeleton
will improve the overall ML model accuracy. Additionally,
we hypothesize that utilizing more complex Bayesian ML
algorithms will improve the overall accuracy due to their
strengths in maximizing the class separation. This study will
provide meaningful information for the future exoskeleton
developers as our study limits sensing to only mechanical
sensors easily available within a commercial hip exoskeleton
device [17]. Our research findings will help to create a
high-level controller that can infer the user’s environmental
information to provide more optimal exoskeleton assistance.

II. METHODS
A. Robotic Hip Exoskeleton

Our study utilized an autonomous bilateral robotic hip
exoskeleton presented in our previous study (Fig. 1A) [18].
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Fig. 1. (A) Robotic bilateral hip exoskeleton. Two symmetrically mounted

IMUs and hip joint encoders measure the user’s bilateral movement. (B)
Terrain park utilized for the data collection. The platform height can be
adjusted for different inclines. (C) Five specific ambulation modes for the
classification task. Mode transition (yellow) points were defined as the initial
heel contact of the next mode.

Briefly, the exoskeleton uses a series elastic actuator (SEA)
at the hip joint for closed loop torque control in the sagittal
plane. The exoskeleton houses several on-board mechanical
sensors: an absolute magnetic encoder (Orbis, Renishaw,
UK) measuring the user’s hip joint angle and a 6-axis (ac-
celerometer + gyroscope) inertial measurement unit (Micro
USB, Yost Lab, USA) (IMU) measuring the user’s thigh
limb orientation. All sensors and actuators were controlled
through an on-board microprocessor (myRIO, National In-
struments, USA). All mechanical sensor data were sampled
and recorded at 100 Hz. For this study, the exoskeleton used a
zero impedance controller where the SEA mitigated residual
interaction torque between the human and the exoskeleton
with a residual RMS torque < 0.25 Nm.

B. Human Subject Data Collection

The study was approved by the Georgia Institute of
Technology Institutional Review Board, and informed written
consent was obtained for all subjects. Five able-bodied
subjects with an age of 23.0 &+ 2.1 years, height of 1.76 £
0.08 m, and body mass of 74.3 & 83.3 kg were asked to walk
on an in-lab terrain park consisting of over ground ramps and
stairs while wearing the robotic hip exoskeleton (Fig. 1B).
The terrain park height was adjusted and set to four different
stair heights (10.16 cm, 12.7 cm, 15.24 c¢cm, and 17.78 cm)
and ramp slopes (7.8°, 9.2°, 11.0°, and 12.4°) throughout the
experiment. Each subject walked in 5 different locomotion
mode conditions: level ground (LG), ramp ascent (RA), ramp
descent (RD), stair ascent (SA), and stair descent (SD). For
each mode (except for LG), the subject walked from LG to
the desired mode and back to LG to allow for the inclusion
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Fig. 2.

Continuous locomotion mode classification strategy. Different features are extracted from mechanical sensors (encoder and IMU data) on the

exoskeleton. The user’s gait phase information is utilized to choose a relevant phase-based mode classifier during the gait cycle. The classifier’s output of
likelihood along with the prior probability in the Dynamic Bayesian Network computes the MAP estimate to classify the user’s locomotion mode.

of different mode transitions (Fig. 1C). For a given incline
level in each mode, the subject performed 8 trials where 4
trials the subject made the transitions with their left leg and
4 trials the subject made the transition with their right leg.
Thus, a total of 128 trials were conducted per subject plus
an additional set of 8 trials over flat level ground of similar
length to the terrain trials. Throughout the experiment, the
order of ramp and stair heights was randomized, and the
exoskeleton was controlled in a zero impedance mode for all
conditions. During all walking conditions, on-board bilateral
mechanical sensor (hip joint encoder and thigh IMU) data
were recorded.

C. Data Processing and Feature Extraction

To process the data to train the classifier, we defined the
mode transition point as the initial heel contact of the next
mode. Using the peak hip extension configuration (minimum
hip joint angle during the gait cycle) as the gait segmentation
point, we labeled the user’s gait phase. Utilizing this informa-
tion, we relabeled the data before/after the heel strike as the
prior and posterior mode, respectively. Using the processed
data, we followed a standard literature practice in the time
domain for the feature extraction. Finalized features were
minimum, maximum, mean, standard deviation, and latest
value for a given window size [19].

D. Machine Learning Model Optimization

Three different Bayesian classifiers were implemented to
classify the locomotion mode: Naive Bayes (NB), Linear
Discriminant Analysis (LDA), and Quadratic Discriminant
Analysis (QDA) (Fig. 2). Bayesian classifiers have been well
defined in the literature and have shown excellent perfor-
mance in real-time implementation due to their simplicity,
in particular LDA represents a gold-standard classifier for
both upper and lower limb prosthetic applications [20,21].
We implemented these machine learning algorithms to train
a user dependent model based on each subject’s data. For all
the model optimization processes, we conducted an 8-fold
leave-one-trial-out validation for each subject where one trial
from each type of trial was left in the testing set. Initially, we
conducted a standard feature extraction window size sweep
for each model. We varied the window size from 100 ms
to 800 ms in increments of 50 ms sliding at a 10 ms rate.
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All three models showed similar trends and we finalized the
feature window size to be 600 ms.

E. Phase Dependent Mode Classifier

Due to the non-stationary nature of the signals throughout
the gait cycle, the extracted features can gradually change
in a cyclical manner over the decision boundaries in the
feature space. In order to mitigate such phenomenon, we
segmented the signal data into different phases of the gait
cycle. By doing so, we made the features lie more tightly to
each other within a phase allowing the classifier to better
draw the decision surfaces. We segmented the gait cycle
into equal intervals, trained multiple models, and developed
corresponding phase-based classifiers. To find the optimal
number of classifiers within the gait cycle, we systematically
swept through the different number of models for each
algorithm (up to 8 models per gait cycle). We started with
the feature window size of 600 ms and iteratively swept to
ensure the optimal number of phase models and window size
were converged.

FE. Implementation of Dynamic Bayesian Network

Dynamic Bayesian Network (DBN) is a filtering technique
used often in a time history-based classification leveraging a
Markov assumption with a probabilistic representation (Fig.
2) [22]. At any point in time, DBN calculates the maximum
a posteriori (MAP) estimate from a posterior probability,
P(C|Z) (Eq. 1).

Criap = argmazx(P(C|Z)) (1

Posterior probability is computed by taking the Hadamard
product of the classifier’s likelihood, P(Z|C'), and the prior
probability, P(C) (Eq. 2).

P(Z|C) o P(C)
P(Z)

Current time step’s prior probability is calculated based

on the previous time step’s posterior probability and the

transition probability matrix, ®, learned from the training
data set (Eq. 3).

P(C|7) = 2

P(C);=P(Clz)t—1 x P 3)
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The final classified mode is the class with the maximum
posterior probability. We trained the DBN using the same
training data set used for training each classifier.

G. Model with Unilateral and Bilateral Features

To analyze the effect of leveraging the bilateral nature of
the hip exoskeleton, we investigated the effect of adding
the contralateral leg’s feature information when training
the classifier. Utilizing feature information from the other
side can improve the overall model performance especially
during the transition gait cycle. We evaluated the model
performance by calculating the model’s steady-state error
and mode transitional error. Additionally, we analyzed the
unilateral and bilateral model performances by differentiating
the testing trials into leading and trailing trials for each leg
and calculating the steady-state and transitional error.

H. Statistical Analysis

We conducted a three-way repeated measures analysis of
variance (ANOVA) to compare the model performance across
all conditions (o = 0.05). A Bonferroni post-hoc correction
for a multivariate analysis was used to compute the statistical
differences between each condition (SPSS Statistics 21.0,
IBM, USA).

III. RESULTS

A. Phase Dependent Mode Classifier

For all models, similar trends were shown where the
overall classification error converged after 5 phase models.
Iterative results indicate that the overall model architecture
was optimal with a 600 ms window size (same size as the
initial window size sweep) with 5 models within the gait
cycle (Fig. 3). Across all algorithms, using 5 phase models
reduced the relative classification errors by 35.62 £+ 10.01%
compared to the 1 phase model (p < 0.05).
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Fig. 3. Phase dependency model sweep results. 5 phase models with 600
ms feature window size were shown to be the optimal number of models
for maximal classification performance across all ML algorithms.
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B. Overall Algorithm Performance

For all conditions, QDA reduced the relative transitional
errors by 61.74 £+ 13.38% and 36.99 + 13.92% compared
to NB and LDA, respectively (p < 0.05) (Fig. 4A). Across
all conditions, LDA reduced the relative transitional errors
by 41.50 £+ 14.60% compared to NB (p < 0.05). Across all
models, models with DBN reduced the relative steady-state
errors for both unilateral and bilateral feature conditions by
26.79 + 8.00% and 21.49 £ 12.48% compared to models
without DBN, respectively (p < 0.05), while no statistical
differences were shown in transitional errors.

NB and LDA using bilateral features reduced the relative
steady-state errors by 53.73 £ 19.19% compared to using
unilateral feature information (p < 0.05) while QDA did not
show any statistical difference between the two conditions (p
= 0.153) (Fig. 4B). Similarly, LDA and QDA using bilateral
features reduced the relative transitional errors by 33.72 +
14.52% compared to using unilateral feature information (p
< 0.05). All models during the trailing limb condition had an
average of 42.91 £ 18.98% lower transitional errors than the
models during the leading limb condition (p < 0.05) (Fig.
5).

IV. DISCUSSION

Our study explored three key features in enhancing the
locomotion mode classification performance using different
ML algorithms for a robotic hip exoskeleton: 1) configuring
the optimal number of ML models within the gait cycle,
2) comparing different complexity of Bayesian classifier
performance, and 3) evaluating the effect of using unilat-
eral vs. bilateral feature information. Along with these key
features, implementing DBN further improved the ML model
performance by reducing the relative steady-state errors by
24% across models (p < 0.05) and had no significant effect
on transitional errors.

First, we accept the hypothesis that increasing the number
of ML models within the gait cycle does improve the overall
mode classification accuracy which was shown consistently
across all three classifier types. The optimal number of
models to be used within the gait cycle was 5. Interestingly,
this optimal phase number is relevant to the gait phase
segmentation from a gait biomechanics perspective which
correlated closely to stance/swing phase dynamics (e.g., 3
models in stance and 2 models in swing phase).

Second, we explored the effect of model complexity in
the overall classifier’s performance. For both unilateral and
bilateral feature conditions, each step of model complexity
yielded significantly better transitional error results. How-
ever, similar trend was not exhibited in the steady-state error
results. Mainly, QDA using bilateral features increased the
steady-state error compared to QDA using unilateral features.
This may be due to the “curse of dimensionality” [23] that
the number of features provided to the QDA model was not
backed by the size of the data set which can cause the model
to overfit. While it was outside the scope of this study, it
is possible that future studies with robust feature selection
optimizations to reduce the dimensionality could benefit the
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QDA algorithms in the case of the bilateral sensors which
have a feature dimension of 70. Therefore, we reject the
hypothesis that increasing the model complexity does not
yield better performance, but rather, there is an optimal level
of complexity in the ML algorithm that can maximize the
classification accuracy. This study indicates that the LDA
algorithms again represent the right level of complexity for
Bayesian mode classification, similar to many results in the
literature for locomotion mode classification [24,25].

Lastly, we accept the hypothesis that utilizing the bilateral
feature information can further improve the ML model’s
performance. Our result showed that fusing bilateral features
can reduce the overall classification error rate by 43%
which aligns with a relevant literature study that used a
full lower-limb neuromechanical signals from able-bodied
subjects yielding a 32% error rate reduction [25]. Our lead-
ing/trailing analysis indicates that utilizing the contralateral
leg’s feature information can help the ML model to improve
the performance during the transitional gait cycle. This is
mainly due to the contralateral leg providing meaningful
information (in the trailing limb situation) as it will have
already transitioned into the next mode.

Our continuous mode classifiers showed comparable re-
sults to relevant literature studies. Huang et al. implemented
a continuous phase-based algorithm to a robotic prosthesis
and showed approximately 1% steady-state error during the
stance phase and 5% during the swing phase [6]. However,
our models showed consistent performances (our best per-
forming model has less than 1% steady-state error) regardless
of where the user is in during the gait cycle. Long et al.
achieved an error of 4% for a full lower-limb exoskeleton
[11]. However, the study utilized several distal mechanical
sensors (e.g., 6 ground reaction force sensors) which may
not be accessible for a robotic hip exoskeleton. Currently,
the state-of-the-art locomotion mode classifier for a robotic
hip exoskeleton has 3% classification error [12]. One of the
main limitations of this study was the model’s capability
in classifying once per gait cycle. Additionally, the study
was limited that the model only classified stair and level
ground modes. Our comparable result (only testing on level
ground and stair modes) to this study outperformed with an
error of 1.3%. Our study expanded from these limitations
and illustrated the feasibility of classifying continuously in
all five ambulation modes.

One limitation of our study is the limited number of
subjects (N=5). Low subject number limited our capability
of investigating our model performance and associated sta-
tistical results. Another limitation of our study is that our
study mainly focused on the device data collected during
a zero impedance mode. Our previous studies indicate that
depending on the exoskeleton’s assistance level, user’s gait
dynamics can change [26,27]. This can potentially create
variance in the sensor signals, which may affect the clas-
sifier’s accuracy. Additionally, as our study only investigated
an able-bodied subject’s data set, the effect of asymmetric
gait (e.g., hemiplegic gait due to stroke) on the mode
classifier is unknown. Future studies should include sensor
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data with different types of exoskeleton assistance and gait
pattern to train a more robust ML model. Lastly, our study
was limited that it was an offline analysis. Literature studies
indicate that real-time mode classification can have an effect
on mode classification error which is not accounted for
in offline analyses [20]. Therefore, ML model performance
validation in real-time implementation is needed for future
studies.

V. CONCLUSION

Our study investigated ML strategies for improving the
continuous locomotion mode classification for a robotic hip
exoskeleton. We found that using an optimal number of clas-
sifiers during the gait cycle can reduce the classification error
up to 35% compared to using a single model. Moreover, our
results showed that leveraging the contralateral leg’s sensor
information can further improve the classifier’s performance
by 43% compared to using only the ipsilateral leg’s sensor
data. Our approach validated the feasibility of utilizing only
the on-board mechanical sensors on the exoskeleton to accu-
rately and continuously classify the user’s locomotion mode
in a bilateral robotic hip exoskeleton. Future work can utilize
our findings and translate the locomotion mode classifier to
a real-time control of the powered hip exoskeleton.
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