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Real-Time User-Independent Slope Prediction Using
Deep Learning for Modulation of Robotic Knee
Exoskeleton Assistance

Dawit Lee ™, Inseung Kang

Abstract—Ground slope incline is a critical environmental vari-
able that influences exoskeleton control parameters since human
biological joint demand is correlated to changes in slope incline.
Current literature methods take a heuristic approach by numeri-
cally calculating the slope incline from on-board mechanical sen-
sors. However, these methods often require a user-specific tuning
procedure and are prone to noise and sensor drift when tested in a
dynamic setting, such as overground locomotion. In this study, we
propose the use of a deep learning slope prediction model capable of
generalizing across users and terrain. To evaluate this approach, we
collected training data (N = 10) and utilized a convolutional neural
network to predict the inclination angle and actively modulate the
peak assistance magnitude of a bilateral robotic knee exoskeleton
in real-time. From online validation results (N = 3), our model
predicted the slope incline with an average RMSE of 1.5° dur-
ing treadmill and overground walking. Furthermore, our model
accurately predicted the slope incline in the extrapolated region
outside of the training data with an average RMSE of 1.7° during
treadmill and overground walking. Our study’s findings showcase
the feasibility of using deep learning models to actively modulate
exoskeleton assistance, translating this technology to more realistic
locomotion environments.

Index Terms—Convolutional neural network, deep learning,
robotic knee exoskeleton, slope prediction.

1. INTRODUCTION

XOSKELETON technology holds great promise for im-
E proving human mobility. The effectiveness of using these
exoskeletons for augmenting human locomotion has been inves-
tigated in various applications [1]-[3]. Several literature studies
have demonstrated successful results in human augmentation
during locomotion with exoskeleton assistance, such as reducing
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the metabolic cost of walking [4]-[7]. Additionally, these studies
have shown that the user’s benefit is influenced by varying
exoskeleton control parameters, such as the desired assistance
level, which is often directly correlated with the user’s biological
demand. [8]-[10].

The knee joint exhibits an increase in biological joint mo-
ment with an increase in slope incline during incline walk-
ing [11]. Therefore, to maintain maximal human-exoskeleton
performance across different slopes, active modulation of the
exoskeleton assistance level depending on the ground slope
incline is needed. However, current literature methods are only
evaluated at a static slope incline setting and have not explored
the feasibility of translating to dynamic incline settings [12],
[13]. Thus, to translate this exoskeleton technology to a real-
world scenario, such as an outdoor terrain where the ground
slope incline dynamically changes, a robust slope predictor that
can adapt to different terrain settings is required to actively
modulate the exoskeleton assistance.

Previously, different methods have been introduced in the
literature to estimate ground slope incline. One common method
is to estimate the slope incline by numerically integrating accel-
eration data from an inertial measurement unit (IMU) mounted
to the shank or foot [14]-[16]. However, these methods are
sensitive to sensor drift and may bias the estimated incline.
Moreover, these methods rely on the cyclical nature of walking to
determine the initial conditions for numerical integration or reset
accumulated drift. However, in a real-world walking scenario
where ground slope incline can dynamically change, the assump-
tion of cyclical walking is not valid anymore, and these IMU
integration-based methods may be unsuitable. Indeed, studies
of slope estimation using IMU integration have thus far only
been tested on static inclines. Other ground slope estimation
techniques measure joint angles and segment orientation with
mechanical sensors. Using these angles, the ground slope is
calculated with geometric relations [17], [18]. In addition to joint
angles, Shim et al. uses a pressure sensor to locate the center of
pressure at the foot, and ground slope is calculated using the
normal vector [19]. Sup et al. forgoes measuring joint angles
entirely, instead using an IMU to directly measure the foot’s
tilt based on the components of gravitational acceleration for a
knee-ankle powered prosthetic [20]. While these approaches suf-
fer less from drift issues and can adapt to varying slopes, they are
not without drawbacks. All existing slope estimation techniques
update ground slope estimation after heel strike. [14]-[20].

Current approaches inherently limit the system to after-the-
fact slope estimation which can induce delay in updating ex-
oskeleton control parameters. For instance, knee exoskeleton
controllers deliver large torque assistance during early stance,

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 24,2021 at 15:44:06 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2972-0082
https://orcid.org/0000-0002-5846-1550
https://orcid.org/0000-0001-9725-854X
https://orcid.org/0000-0002-7934-1195
https://orcid.org/0000-0002-5376-2258
mailto:dlee444@gatech.edu
mailto:ikang7@gatech.edu
mailto:ayu64@gatech.edu
mailto:dmolinaro3@gatech.edu
mailto:aaron.young@me.gatech.edu

3996

(A)
Jetson

Nano
Harness

Exoskeleton 52
Controller

Inertial

Knee
Actuator

Joint
Encoder

Terrain Park

Fig. 1. (A) Autonomous bilateral robotic knee exoskeleton. The exoskeleton
uses multiple mechanical sensors to record the user’s limb kinematics. Ad-
ditionally, the Jetson co-processor predicts the ground slope in real-time. (B)
Real-time control of the knee exoskeleton during overground incline walking is
shown using the height adjustable terrain park.

immediately after heel strike. Slope estimation techniques that
require sampling sensor data after heel strike would delay the
required assistance update for the controller. Machine learning
(ML) techniques can mitigate the limitations of these analytical
approaches. Previous literature studies in the wearable robotics
field have used several machine learning techniques for infer-
ence during various locomotor estimation tasks [21]-[27]. The
majority of these ML approaches utilize multiple mechanical
sensors on the device to improve the robustness of the estimator
via sensor fusion. This approach extracts feature information
from each sensor to accurately estimate the desired locomotor
variable. While there are several ML approaches that have been
explored in the field, neural networks have recently gained atten-
tion from different groups due to their success in approximating
high-dimensional functions for complex tasks. Most of the ML
models in these studies yield compelling results, but are often
trained on a user-specific basis, which is likely infeasible for
real-world deployment.

The main objective of this study was to develop and vali-
date a novel ground slope predictor that can actively modulate
the knee exoskeleton assistance magnitude independent of the
user. We utilized a sensor fusion approach using on-board me-
chanical sensors to train a deep convolutional neural network
(CNN)-based model from ten able-bodied subjects. CNNs have
previously been used for many upper-limb kinematic recognition
tasks [28]-[30]. Using our optimized model from an offline
analysis, we evaluated our model performance for both treadmill
and overground walking in multiple slope inclines with three
able-bodied subjects, randomly chosen from the subject group
for the initial training collection. The user-independent model
for each test subject was trained using the entire data set exclud-
ing the data set of each test subject. Our findings from this study
showcase the future direction of ML-based exoskeleton control
and the feasibility of translating this technology to more realistic
settings.

II. SLOPE PREDICTION

A. Robotic Knee Exoskeleton

Our study utilized a single degree-of-freedom, light-weight,
bilateral robotic knee exoskeleton that we recently developed,
capable of providing assistance torque in flexion and extension
(Fig. 1) [31]. The exoskeleton uses several on-board mechanical
sensors: 1) an absolute knee joint encoder (angular position and
velocity), 2) 6-axis inertial measurement units (IMUs) mounted
on the shank and thigh cuffs (accelerometer and gyroscope),
and 3) two force sensitive resistors (FSRs) placed at the user’s
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heel of each leg. The exoskeleton, running fully autonomously,
has an overall mass of 4.3 kg, including a 1.3 kg control box
and can generate a peak torque of 17.4 Nm. For this study, the
exoskeleton control loop and mechanical sensor data logging
were executed at 100 Hz on a microprocessor (myRIO, National
Instruments, USA). We implemented an additional co-processor
to the system for running real-time slope inference (Jetson Nano,
NVIDIA, USA). Data was transferred between the co-processor
and exoskeleton controller through an ethernet cable via TCP/IP
communication protocol.

B. Exoskeleton Torque Controller

Our knee exoskeleton utilized a torque controller that gener-
ated knee extension assistance during the early stance phase
(0~30%) of the gait cycle [31]. The user’s heel strike was
detected using a force sensitive resistor (FSR) placed at the user’s
heel. Using this gait event marker, we estimated the user’s gait
phase, t;, using a time-based estimation method that computed
the quotient between the time since last heel strike and the user’s
average stride duration [32]. Given a peak assistance magnitude,
Tpeak-» and assistance duration, ?4, the torque command, 7;,
was updated using a parabola scaled to the desired target peak
assistance magnitude as a function of ¢; (1).
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o e 2‘0'5”(1)(3 0<t; <tq

Ti (D
0 tg <t

In this study, t4 was fixed to 30% of the gait cycle to provide
exoskeleton assistance through early stance. The exoskeleton
remained unpowered for the remainder of the gait cycle.

C. Initial Training Data Collection

We recruited ten able-bodied adults (4 females/6 males, mean
=+ standard deviation, 22.2 + 3.5 years, 173.1 4 8.6 cm, and
68.7 £ 8.5 kg) after providing informed written consent. Our
study was approved by the Georgia Institute of Technology
Institutional Review Board. All subjects were asked to walk on
a treadmill wearing the bilateral knee exoskeleton at a constant
walking speed of 1.0 m/s. Subjects walked at various inclination
levels starting from 0° to 10° of inclination at 2° increments
and walked for 2 minutes at each inclination level. Before the
subject started the first walking condition, level-ground, the
angle reading of the encoder was initialized to 0° and was not
re-initialized again throughout the data collection. The early
stance phase is where the knee undergoes positive power gener-
ation through an extension moment during slope walking [11].
Thus, the exoskeleton provided knee extension assistance during
the early stance phase of the gait cycle on both legs using the
exoskeleton torque controller. The peak assistance magnitude,
Tpeak> Was modulated based on the inclination level (s), such
that 7peqr was 1 Nm at 0° and was linearly increased by 1 Nm
for every 2° increment in slope, as shown in (2).

Tpeak = 0.55 + 1 )

This was based on the increase in the knee joint’s peak exten-
sion moment during early stance phase as inclination becomes
steeper [11]. Throughout the trials, all mechanical sensor data
from the right leg (knee joint encoder and shank and thigh IMUs)
were recorded for training the model.
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Convolutional Neural Network-based slope predictor for controlling the robotic knee exoskeleton. Raw mechanical sensor data over 350 ms is input

to the CNN model to predict the ground slope at heel contact during walking. The predicted slope updates the targeted knee assistance peak torque to adapt the
exoskeleton assistance to the inclination. Each hidden node of the fully-connected layers is activated using the ReLU function.

D. Convolutional Neural Network Model Optimization

We implemented a deep Convolutional Neural Network
(CNN), using three 1-dimensional convolutional layers and two
fully connected layers, to estimate the ground inclination at each
heel strike of the right leg (Fig. 2). CNNs remove the burden
of pre-processing the input data compared to hand-engineered
feature extraction and often learn better feature representations,
resulting in improved model performance [33]. Additionally,
CNNs reduce the number of learnable parameters compared
to fully connected networks by localizing the connections in
each layer as specified by the kernel shape, which reduces the
likelihood of overfitting. The input sequence length to the model
was fixed at 350 ms, which was selected to maximize the input
sequence length during the swing phase of gait. This allowed
for the maximum amount of information to be provided to the
network without including previous stance phase data that could
bias the estimate towards the previous ground inclination.

The forward pass of each convolutional layer of output chan-

;'» was computed using the learned filter (z;l)) and bias
(bglo)m’ ;) and activated using the rectified linear unit (ReLU),
where n is the number of input channels of the current layer
(D), x is the cross-correlation operator, and a'? is the windowed
exoskeleton sensor data, as shown in (3).

O

n—1
agl) = ReLU(bconv,j + Z Z](l7) * a’v(llil))J = 1’ 27 3 (3)
=0

The two fully connected layers included after the convolutional
layers were used to compute the estimated slope inclination
(8 € R) using the learned feature representation from the convo-
lutional layers. Thus, § was computed using the weights (w(®)

and biases (bgfg) of the fully connected layers and final output of
the convolutional layers (a®) as shown in (4) and (5).

“
(&)

We trained both user-dependent and user-independent slope
prediction models for each subject using Python v3.7.1 and the
deep learning package, Pytorch v1.4.0. The complete model
architecture is shown in Fig. 2. Each model was trained using
the RMSprop optimizer, with a learning rate of 0.0001 and a
loss function computed as the root-mean-square error between
the labeled and predicted inclination angles. Using the user-
dependent method, models were trained using data specific to
a single subject. 8-fold cross-validation with early stopping

a® = ReLU(w™" a® + ()

§=w®" q@W 4 bgcsc)

criteria was used to prevent overfitting of the user-dependent
models. The best performing model for each subject was then
tested offline on 20% of the data, which was held-out during
the cross-validation training. The user-independent models were
trained using a leave-one-subject-out approach, in which each
model was trained using the entire dataset excluding the test
subject. These models were trained for 300 epochs without
monitoring the test subject score to prevent biasing the model’s
performance on the test subject data. Each user-independent
model was then evaluated on the novel subject data.

III. REAL-TIME VALIDATION

A. Experimental Protocol

To evaluate the online performance of our optimized user-
independent slope prediction model, three subjects walked with
the exoskeleton using our slope predictor. The range of tested
slope conditions was chosen to include slopes within the training
data of 0° to 10° (interpolation) and outside of the training
data above 10° (extrapolation) to quantify the model’s ability
to recognize previously unseen slopes. First, the subject was
asked to walk on a treadmill for 460 seconds while wearing
the powered knee exoskeleton as the treadmill dynamically
varied the ground slope between 0° to 14° at 1.0 m/s using a
predefined slope profile. The slope initially started at 0°, was
raised to 1°, increased to 13° in 2° increments, and reached 14°.
Then, the slope eventually traveled back to 0° in 2° decrements.
Afterwards, the subject was asked to walk on the overground
inclined ramp (5.2°, 7.8°, 9.2°, 11°, 12.4°, and 18°) at their
preferred walking speed. The CNN model updated the ground
slope prediction at heel-contact of the right leg, which was used
to scale the peak assistance magnitude in real-time for both legs
using (2) during walking.

B. Data Analysis

The slope prediction root-mean-square error (RMSE) was
computed using the difference between the ground-truth slope
and the predicted slope from the CNN model. For online testing
on overground walking, the RMSE for each slope was calculated
by averaging the RMSE for each slope for each subject across
the three subjects. The RMSE of interpolation and extrapolation
were separately calculated by averaging across RMSEs for
slopes less than or equal to 10° and slopes greater than 10° re-
spectively. Since the training data was collected during treadmill
walking, the data from treadmill walking were analyzed for both
offline and online analysis. For the offline analysis of treadmill
walking, the average RMSE of slopes for each subject was
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Fig. 3. Time series plot of a representative subject’s real-time treadmill slope

prediction instances (orange dots) with respect to the ground truth slope (black
line). The shaded grey region indicates the extrapolation region, and the white
region indicates the interpolation region.

separately averaged for both user-dependent and -independent
models. A two-tailed paired t-test was used to determine the
statistical difference between the offline test results of the user-
dependent and user-independent training methods in RMSEs.
The statistical test was conducted using SPSS Statistics 21.0
(IBM, Amonk, NY, USA) (o = 0.05). For overground walking,
the transition step between the level ground and the inclined
ramp was excluded for the analysis since the step involved
turning at a right angle and the training data collected on the
treadmill did not include turning. The data is presented as mean
+ standard error of mean (SEM).

IV. RESULTS

A. Overall Slope Prediction Performance

Our offline analysis resulted in a significant decrease in slope
prediction RMSE by the user-dependent CNN compared to the
user-independent model (p < 0.05). Specifically, the offline user-
dependent model resulted in a prediction RMSE of 0.61 £ 0.05°,
which was a 71.4% reduction compared to the user-independent
offline RMSE of 2.15 £+ 0.29°. When deployed in real-time, the
user-independent slope prediction model resulted in an average
RMSE of 1.51 £ 0.17° during treadmill walking across all
tested slopes (Fig. 3), which was similar to our offline result.
Additionally, the user-independent model performed similarly
in the overground condition with an overall RMSE of 1.58 +
0.17° (Fig. 4). Furthermore, the peak assistance magnitude in
the exoskeleton torque profile was simultaneously updated and
resulted in the overall RMSE of 0.75 £ 0.13 Nm and 0.79 +
0.07 Nm during treadmill walking and over-ground walking,
respectively (Fig. 5).

B. Generalizability of Slope Prediction

The online user-independent model generalized well to ex-
trapolation tasks of previously unseen slopes (> 10°), with the
largest average extrapolation RMSE of 2.09 + 0.30° occurring
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prediction of ground slope. The top shows the slope prediction in real-time
and bottom shows the corresponding torque command generated from the slope
prediction. Black dotted lines indicate the ground truth for slope and torque.

at the 12.4° overground condition (Fig. 4). When tested on
the treadmill, the extrapolation conditions resulted in a 0.1°
increase in slope prediction RMSE compared to the interpolation
conditions (Fig. 6). The overground test yielded a similar result,
as the extrapolation conditions increased the RMSE by 0.6°
compared to the overground interpolation conditions.

V. DISCUSSION

On average, our CNN model predicted walking inclination
within 2.1° across all offline and online test conditions. Our
offline analysis showed that the user-dependent slope predictor
resulted in an RMSE of 0.61 + 0.05°, which was significantly
lower than the user-independent RMSE of 2.15 + 0.29° (p <
0.05). The accuracy presented in this work showcases the use
of a deep learning approach to predict the slope incline. The
offline user-dependent model result in this paper outperformed
our previous offline user-dependent neural network slope es-
timator using a hip exoskeleton, 1.4° RMSE [24]. Comparing
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the accuracy to other methods, previous works integrating IMU
signals for slope estimation, Sabatini et al. and Lopez et al.
reported 0.87° and 2.86° [15], [16]. Additionally, the methods
relying on joint angles and leg geometry Kim ez al. and Zou et al.
reported absolute slope estimation errors of 1.52° and 0.39°, re-
spectively [17], [18]. While the accuracy our ML approach does
not always outperform other methods, we emphasize that the
strength and novelty of ML lies in its predictive power and ability
to adapt to dynamically varying incline as a user-independent
solution.

The user-dependent predictor performed significantly better
than the user-independent model in our offline analysis. How-
ever, the user-dependent approach presents complications for
real-world deployment given the need to collect subject-specific
data. Conversely, the user-independent predictor is immediately
ready for online deployment regardless of the user’s anthro-
pometry or gait patterns, which provides real-world viability for
our exoskeleton controller. Specifically, no subject-specific data
or sensor normalization was required during our online user-
independent validation other than initializing the encoder angle
during exoskeleton startup. Additionally, the user-independent
model performed competitively during online testing (1.46°
RMSE) compared to the offline result (2.15° RMSE) for 0 to 10°
treadmill walking. This indicates that our initial data collection
appropriately captured the variability in mechanical sensor data
across users and that the kinematic patterns of the user’s limbs
described by the sensor data were globally generalizable across
subjects. However, the offline result suggests that user-specific
data can further improve accuracy and that self-adapting systems
that learn user-specific gait patterns online could be beneficial.

The online performance validation of our user-independent
predictor demonstrated reliable real-time prediction of ground
slope incline. During treadmill walking, the incline RMSE be-
tween the interpolation and extrapolation region showed similar
prediction performance with only a 0.1° difference in average
RMSE. This result indicated that the ML model was capable
of extrapolating the slope prediction outside of the slope ranges
that were seen within the training data set, up to 40% of the range
of training data for treadmill. Interestingly, the overground test
showed a larger increase in RMSE of 0.6° between the inter-
polated and extrapolated conditions compared to the treadmill
test; however, this larger increase may have been because the
overground test included larger slope inclines, up to 18°, than
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the treadmill result. Nevertheless, the prediction RMSE during
the overground extrapolated conditions, 1.86° RMSE, was still
below the RMSE produced by our offline analysis and suggests
that our slope prediction model appropriately generalized to a
wide range of slopes up to 80% larger than those included in
the training data. This result also indicates the feasibility of
using a model trained on treadmill-based data, which is easy to
collect and label, for slope prediction during overground walk-
ing, which is more representative of community locomotion.
One possible explanation for this result is that the subject’s
treadmill walking speed might have been representative of their
self-selected overground walking speed, especially since the
average adult’s preferred walking speed at a 7° inclined surface
is 1.0 m/s [34], which was the walking speed on the treadmill for
this experiment. Therefore, walking at similar speeds between
the training and test data may be an important consideration
for developing future ML-based estimators for gait variables.
Another interesting result observed from the overground trial
was at the maximum incline setting (18°). The observed joint
kinematics during an uphill walking at an extreme incline was
more representative of stair ascent [35], [36]. Given that our
maximum testing condition was comparably steep, we expected
that our slope predictor performance would start to degrade as
the user’s gait dynamics would start to deviate further from the
ones seen in the training data set. However, our ML model only
had an RMSE increase of 0.67° from the interpolation region
illustrating the power of neural network in generalizing the
prediction slopes which would not have been possible using a
conventional heuristic method shown in the literature.

There were several limitations of the study that can be ad-
dressed in the future to improve the performance of the slope pre-
diction model. 1) The training data was collected from ten able-
bodied adults. Given that we used a user-independent method
for this study, the performance of the model may have been
improved if we collected the training data from a larger number
of participants. 2) The training data was only collected during
steady-state walking on a treadmill. It is likely that including
gait mode transitions and varied walking speeds will improve
the performance and generalizability of the slope prediction
model. 3) Similarly, we trained and tested our model using a
single exoskeleton controller. Future research should explore the
generalizability of the slope estimator to changes in exoskeleton
control, such as changes in magnitude or assistance shape, espe-
cially if the controller changes user leg swing dynamics. 4) Our
study only investigated slope prediction during incline walking.
This work should be extended to include decline walking and
could likely be applied to the prediction for other continuous gait
environment variables, such as the stair height. It is possible that
other neural network variants, such as a many-to-one LSTM
model, that do not rely on a constant input window size may
also be well-suited for this task; however, these models would
require additional toe-off sensing to reinitialize the hidden/cell
states for each new swing phase, which our current device does
not include.

Our study was also limited by the low number of subjects
that participated in the online validation of our slope prediction-
based controller. Additionally, our study limited the scope of
analysis to evaluating the accuracy and generalizability of the
slope prediction model. Also, due to the limitation in the walking
platform, the range of slope tested for treadmill and overground
was different. Future studies should investigate the impact in
human biomechanical outcomes of using this controller during
various locomotion tasks.
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VI. CONCLUSION

This study presented the design and real-time validation of
a novel user-independent slope prediction model used to scale
assistance magnitude of a bilateral knee exoskeleton. Our model
used a deep convolutional neural network to predict the ground
slope using multiple mechanical sensors on-board the exoskele-
ton, resulting in accurate real-time slope prediction across a
wide variety of inclines during both treadmill and overground
locomotion, with an overall RMSE of 1.51 £+ 0.17° and 1.58
=+ 0.17°, respectively. We tested our system online under slope
conditions within and outside the range of slopes in the training
data and found that the model sufficiently generalized slope
prediction to extrapolation tasks with a maximum RMSE of
2.1°, which is an improvement from comparable systems in
the literature. Therefore, our study introduces and evaluates a
completely autonomous, end-to-end exoskeleton system capa-
ble of adjusting assistance magnitude with respect to changes
in biological joint demand. This is an exciting step towards
autonomous exoskeleton solutions for real-world community
ambulation.

ACKNOWLEDGMENT

The authors thank the subjects who participated in the study.
The authors also acknowledge Pratik Kunapuli and Bailey
McLain for help with the initial study design.

REFERENCES

[1] G.S. Sawicki, O. N. Beck, I. Kang, and A. J. Young, “The exoskeleton ex-
pansion: Improving walking and running economy,” J. NeuroEngineering
Rehabil., vol. 17, no. 1, pp. 1-9, 2020.

[2] T. Zhang and H. Huang, “A lower-back robotic exoskeleton: Industrial
handling augmentation used to provide spinal support,” IEEE Robot.
Automat. Mag., vol. 25, no. 2, pp. 95-106, Jun. 2018.

[3] A.J. Young and D. P. Ferris, “State of the art and future directions for
lower limb robotic exoskeletons,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 25, no. 2, pp. 171-182, Feb. 2017.

[4] D. Lee, E. C. Kwak, B. J. McLain, I. Kang, and A. J. Young, “Effects
of assistance during early stance phase using a robotic knee orthosis
on energetics, muscle activity, and joint mechanics during incline and
decline walking,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 4,
pp- 914-923, Apr. 2020.

[5] A.J.Young, H. Gannon, and D. P. Ferris, “A biomechanical comparison of
proportional electromyography control to biological torque control using
a powered hip exoskeleton,” Front. Bioeng. Biotechnol., vol. 5, pp. 1-17,
Jun. 2017.

[6] Y. Ding, M. Kim, S. Kuindersma, and C. J. Walsh, “Human-in-the-loop
optimization of hip assistance with a soft exosuit during walking,” Sci.
Robot., vol. 3, no. 15, 2018, Paper eaar5438.

[7] J.Zhanget al., “Human-in-the-loop optimization of exoskeleton assistance
during walking,” Science, vol. 356, no. 6344, pp. 1280-1284, 2017.

[8] 1. Kang, H. Hsu, and A. Young, “The effect of hip assistance levels
on human energetic cost using robotic hip exoskeletons,” IEEE Robot.
Automat. Lett., vol. 4, no. 2, pp. 430-437, Apr. 2019.

[9] B. Quinlivan et al., “Assistance magnitude versus metabolic cost reduc-

tions for a tethered multiarticular soft exosuit,” Sci. Robot, vol. 2, no. 2,

pp. 1-10, 2017.

S. Galle, P. Malcolm, S. H. Collins, and D. De Clercq, “Reducing the

metabolic cost of walking with an ankle exoskeleton: Interaction between

actuation timing and power,” J. Neuroeng. Rehabil., vol. 14, no. 1, p. 35,

2017.

J. R. Montgomery and A. M. Grabowski, “The contributions of ankle,

knee and hip joint work to individual leg work change during uphill and

downhill walking over a range of speeds,” Roy. Soc. Open Sci., vol. 5,

no. 8, 2018, Art. no. 180550.

E.J.Park et al., “A hinge-free, non-restrictive, lightweight tethered exosuit

for knee extension assistance during walking,” IEEE Trans. Med. Robot.

Bionics, vol. 2, no. 2, pp. 165-175, May 2020.

M. K. MacLean and D. P. Ferris, “Energetics of walking with a robotic

knee exoskeleton,” J. Appl. Biomech., vol. 35, no. 5, pp. 320-326, 2019.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Q. Li, M. Young, V. Naing, and J. M. Donelan, “Walking speed and slope
estimation using shank-mounted inertial measurement units,” in Proc.
IEEE Int. Conf. Rehabil. Robot., Jun. 2009, pp. 839-844.

A. M. Lépez, D. Alvarez, R. C. Gonzilez, and J. C. Alvarez, “Slope
estimation during normal walking using a shank-mounted inertial sensor,”
Sensors, vol. 12, no. 9, pp. 11910-11921, 2012.

S. C. Sabatini, Martelloni, “Assessment of walking features from foot
inertial sensing,” IEEE Trans. Biomed. Eng., vol. 52, no. 3, pp. 486-494,
Mar. 2005.

C. Zou, R. Huang, J. Qiu, Q. Chen, and H. Cheng, “Slope gra-
dient adaptive gait planning for walking assistance lower limb ex-
oskeletons,” IEEE Trans. Automat. Sci. Eng., 2020. to be published,
doi: 10.1109/TASE.2020.3037973.

C. Kim, Kim, “Real-time gait phase detection and estimation of gait speed
and ground slope for a robotic knee orthosis,” in Proc. IEEE Int. Conf.
Rehabil. Robot., 2015, pp. 392-397.

C.H. K. B. Shim, Han, “Terrain feature estimation method for a lower limb
exoskeleton using kinematic analysis and center of pressure,” Sensors,
vol. 19, no. 20, 2019, Art. no. 4418.

G. Sup, Varol, “Upslope walking with a powered knee and ankle prosthetic:
Initial results with an amputee subject,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 19, no. 1, pp. 71-78, Feb. 2011.

A. J. Young and L. J. Hargrove, “A classification method for user-
independent intent recognition for transfemoral amputees using powered
lower limb prostheses,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24,
no. 2, pp. 217-225, Feb. 2016.

I. Kang, P. Kunapuli, and A. J. Young, “Real-time neural network-based
gait phase estimation using a robotic hip exoskeleton,” IEEE Trans. Med.
Robot. Bionics, vol. 2, no. 1, pp. 28-37, Feb. 2020.

H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B.
Englehart, “Continuous locomotion-mode identification for prosthetic legs
based on neuromuscular-mechanical fusion,” IEEE Trans. Biomed. Eng.,
vol. 58, no. 10, pp. 2867-2875, Oct. 2011.

I. Kang, P. Kunapuli, H. Hsu, and A. J. Young, “Electromyography (emg)
signal contributions in speed and slope estimation using robotic exoskele-
tons,” in Proc. IEEE 16th Int. Conf. Rehabil. Robot., 2019, pp. 548-553.
J.-Y. Jung, W. Heo, H. Yang, and H. Park, “A neural network-based
gait phase classification method using sensors equipped on lower limb
exoskeleton robots,” Sensors, vol. 15, no. 11, pp. 27738-27759, 2015.

K. Seo et al., “RNN-based on-line continuous gait phase estimation from
shank-mounted imus to control ankle exoskeletons,” in Proc. IEEE 16th
Int. Conf. Rehabil. Robot., 2019, pp. 809-815.

J. Yang et al., “Machine learning based adaptive gait phase estimation
using inertial measurement sensors,” in Proc. Des. Med. Devices Conf.,
Amer. Soc. Mech. Eng. Digit. Collection, 2019.

T. Bao, S. A. R. Zaidi, S. Xie, P. Yang, and Z.-Q. Zhang, “A cnn-Istm
hybrid framework for wrist kinematics estimation using surface elec-
tromyography,” IEEE Trans. Instrum. Measurem., vol. 70, pp. 1-9, 2020,
arXiv:1912.00799.

C. Ma, C. Lin, O. W. Samuel, L. Xu, and G. Li, “Continuous es-
timation of upper limb joint angle from semg signals based on sca-
Istm deep learning approach,” Biomed. Signal Process. Control, vol. 61,
2020, Art. no. 102024.

Y. Hu, Y. Wong, W. Wei, Y. Du, M. Kankanhalli, and W. Geng, “A
novel attention-based hybrid cnn-rnn architecture for semg-based gesture
recognition,” PLoS one, vol. 13, no. 10, 2018, Paper €0206049.

D. Lee, B. J. McLain, I. Kang, and A. J. Young, “Biomechanical compar-
ison of assistance strategies using a bilateral robotic knee exoskeleton,” in
IEEE Trans. Biomed. Eng. (Under Review), IEEE, 2020.

C. L. Lewis and D. P. Ferris, “Invariant hip moment pattern while walking
with a robotic hip exoskeleton,” J. Biomech., vol. 44, no. 5, pp. 789-793,
2011.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097-1105.

C. M. Wall-Scheffler, “Sex Differences in incline-walking among hu-
mans,” (in English), Integr Comp Biol, vol. 55, no. 6, pp. 1155-1165,
Dec 2015, doi: 10.1093/icb/icv072.

J. Camargo, A. Ramanathan, W. Flanagan, and A. Young, “A compre-
hensive, open-source dataset of lower limb biomechanics in multiple
conditions of stairs, ramps, and level-ground ambulation and transitions,”
J. Biomech., vol. 119, 2021, Art. no. 110320.

D. A. Winter, “Kinematic and kinetic patterns in human gait: Variability
and compensating effects,” Hum. Movement Sci., vol. 3,no. 1-2, pp. 51-76,
1984.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 24,2021 at 15:44:06 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.1109/TASE.2020.3037973.


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


