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IMPLICITIZATION OF TENSOR PRODUCT SURFACES

VIA VIRTUAL PROJECTIVE RESOLUTIONS

ELIANA DUARTE AND ALEXANDRA SECELEANU

Abstract. We derive the implicit equations for certain parametric surfaces
in three-dimensional projective space termed tensor product surfaces. Our
method computes the implicit equation for such a surface based on the knowl-
edge of the syzygies of the base point locus of the parametrization by means
of constructing an explicit virtual projective resolution.

1. Introduction

The residual resultant of a system of polynomial equations is a polynomial on
the coefficients of the system that vanishes if and only if the system has a solution
outside the zero set of another prescribed system of polynomial equations. Residual
resultants for projective space were introduced in [BEM01] and further developed
in [Bus01] for the case of P2. In this article we consider residual resultants over
P
1
k × P

1
k.

For projective space, the computation of the residual resultant relies on produc-
ing a free resolution of an ideal having the same vanishing locus as the residual
(colon) ideal of the two systems of polynomial equations. In this article we for-
mulate a similar approach to compute a residual resultant over P

1
k × P

1
k where

we replace the free resolution of the residual ideal with a virtual resolution. This
allows the derivation of the residual resultant from smaller, more manageable com-
plexes than the more standard free resolutions. Besides being shorter than their
free resolution counterparts, virtual resolutions also exhibit a closer relationship
with Castelnuovo–Mumford regularity than minimal free resolutions. We exploit
this relationship and present Algorithm 4.14 to compute residual resultants over
P
1
k × P

1
k.

Our motivation to study residual resultants over P1
k×P

1
k comes from implicitiza-

tion in geometric modeling. In this context, a tensor product surface is the closure
of the image Λ of a rational map λ : P1

k ×P
1
k ��� P

3
k defined by four bihomogeneous

polynomials p0, p1, p2, p3 ∈ k
[
P
1
k × P

1
k

]
= k[s, t, u, v] as

λ([s : t], [u : v]) = [p0(s, t, u, v) : p1(s, t, u, v) : p2(s, t, u, v) : p3(s, t, u, v)].

The base points of λ are the common zeros of the polynomials p0, p1, p2, p3. The
implicitization problem for tensor product surfaces consists in finding the equation
whose vanishing defines the surface Λ in P

3. This problem has its origins in the
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seminal papers [SC95,CGZ00] and has been considered further in [KSZ92,D’A02,
Bot11].

Three methods can be used to solve the implicitization problem for tensor prod-
uct surfaces: Gröbner bases, resultants, and Rees algebras. Gröbner basis methods
are the least satisfactory since they tend to be computationally intensive. Thus,
it is primarily the latter two techniques which are used. Since classical resultants
fail in the presence of base points, following the work of Busé [Bus01], we propose
the use of residual resultants over P1

k × P
1
k to solve the implicitization problem for

tensor product surfaces in this case. We present this approach in Algorithm 5.5.
The structure of this paper is as follows: in section 2 we give the necessary

background on residual resultants, with special attention to the case of biprojective
space. In section 4 we derive effective methods to compute the residual resultant
based on a virtual projective resolution for certain ideals of minors. In section 5 we
show how this theory can be applied to the implicitization problem for tensor prod-
uct surfaces. Finally, section 6 contains many completed examples that illustrate
our results.

Conventions. Throughout the paper N denotes the set of nonnegative integers.
A rational map λ : P1

k × P
1
k ��� P

3
k coresponds to a ring map S = k[P3

k] →
k[P1

k × P
1
k] = R. The coordinate ring R = k[P1

k × P
1
k] = k[s, t, u, v] is Z

2 graded
by deg(s, t) = (1, 0) and deg(u, v) = (0, 1). In R the bihomogeneous irrelevant
ideal is B = 〈s, t〉 ∩ 〈u, v〉, and we fix an ideal G defining the base point locus
of the rational map λ. The corresponding ideal sheaf is denoted G . We assume
throughout that the base locus is supported at a finite set of points. The coordinate
functions of the rational map λ are elements of G with indeterminate coefficients
from a polynomial ring C. These functions generate an ideal P = (p0, p1, p2, p3)
in the ring C[s, t, u, v]. Implicitization purposes lead to considering the ideal F =
(p0W − p3X, p1W − p3Y, p2W − p3Z) of the ring T = C[s, t, u, v,X, Y, Z,W ]. The
extension of the bihomogeneous irrelevant ideal to this ring is denoted B = BT , and
the implicit equation for the image of λ is the polynomial H ∈ S = k[X,Y, Z,W ]
such that F ∩ S = (H). Throughout, V (−) denotes the scheme-theoretic vanishing
locus of an ideal.

2. A residual resultant for P
1
k × P

1
k

In this section we give an overview of the theory and construction for a residual
resultant over a biprojective space. We closely follow the exposition in [BEM01]
and [Bus01], adapting the statements for the case of the variety Q = P

1
k × P

1
k.

Algebraically, classical resultant computations can be phrased as follows: given
commutative rings A = k[x0, . . . , xm] = k[Pm

k ] and C = k[Cij : 0 ≤ i ≤ n, 1 ≤ j ≤
dimk(Adi

)], where the latter is viewed as a ring of indeterminate coefficients, form
the polynomial ring T = C[x0, . . . , xm] = C ⊗k A and define a set of homogeneous
polynomials F0, . . . , Fm ∈ T

Fi(Cij , x0, . . . , xn) =
∑

mj∈Adi

Cijmj .

One is interested in finding a generator for the principal ideal I = (F0, . . . , Fm)∩C,
which is called the resultant of F0, . . . , Fm. The resultant is a unique (up to scaling
by constants) irreducible polynomial in C [GKZ08, Chapter 12]. The ring C is a
standard graded ring with deg(Cij) = 1. Denote by C1 the degree one generators
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of C. For a point c = (cij) ∈ Pk(C1) define the evaluation map at c to be the A-
module homomorphism ec : T → A, ec(Cij) = cij induced by the analogous k-linear
map C → k(c). The zero locus of the ideal I,

V (I) = {c ∈ Pk(C1) : V (ec(F0), . . . , ec(Fm)) 	= ∅},
consists of the coefficients c = (cij) for which the equations ec(F0), . . . , ec(Fm) have
common solutions in P

m
k .

We proceed to describe a modified version of this classical resultant termed the
residual resultant. If A is the coordinate ring of a variety Q and C, T are as above,
consider two sets of homogeneous polynomials g0, . . . , gn ∈ A and F0, . . . , Fm ∈
(g0, . . . , gn)T . The residual resultant is a generator for the principal ideal I = (F :
G)∩C, where F = (F0, . . . , Fm) and G = (g0, . . . , gn). The zero locus of this ideal,

V (I) = {c ∈ Pk(C1) : V (ec(F0), . . . , ec(Fm)) \ V (g0, . . . , gn) 	= ∅},
consists of the coefficients cij for which the equations ec(F0), . . . , ec(Fm) have com-
mon solutions outside the common zero locus of g0, . . . , gn in Q.

We now rephrase the problem in the language of algebraic geometry. The classi-
cal resultant is interpreted in this language in [Jou91, Jou95] and [GKZ08, Propo-
sitions 3.1 and 3.3]. Following the exposition in [BEM01], let Q be an irreducible
projective variety of dimension dim(Q) = m over the algebraically closed field k.
Consider m + 1 invertible sheaves L0, . . . ,Lm on Q, and let Vi = H0(Q,Li) be
the vector space spanned by the global sections of the sheaf Li. Proposition 2.1
sets up the residual resultant as a polynomial that captures the condition for a set
of global sections f0, . . . , fm (fi ∈ Vi) to vanish on the variety Q. This resultant is
a polynomial in the coefficients of each fi with respect to the basis of the vector
space Vi.

More precisely, given a set of polynomials Fi =
∑

bj∈Bi
Cijbj ∈ T expressed in

terms of fixed bases Bi for each vector space Vi, their resultant is a polynomial
ResV0,...,Vm

∈ C. For any c ∈ Pk(C1), if fi = ec(Fi), then ResV0,...,Vm
(f0, . . . , fm)

denotes the polynomial

ResV0,...,Vm
(f0, . . . , fm) = ec (ResV0,...,Vm

) .

From this point onward, we use the notation F0, . . . , Fm for elements of T and
f0, . . . , fm for specializations fi = ec(Fi) at some c ∈ Pk(C1).

Proposition 2.1 ([BEM01, Proposition 1]). Suppose that each Vi generates the
sheaf Li on Q and that Vi is very ample on a nonempty open subset U of Q. Then
there exists an irreducible polynomial on

∏m
i=0 Vi, denoted by ResV0,...,Vm

and called
the (V0, . . . , Vm)-resultant, which satisfies

ResV0,...,Vm
(f0, . . . , fm) = 0 ⇐⇒ ∃ x ∈ Q : f0(x) = · · · = fm(x) = 0.

Moreover, ResV0,...,Vm
is homogeneous in the coefficients of each fi, and of degree∫

Q

∏
j �=i c1(Lj).

We will follow the aforementioned result to define a residual resultant for Q =
P
1
k × P

1
k. This follows readily using the methods of [BEM01], but it is important

for our purposes to establish the notation in terms of sheaves on P
1
k × P

1
k instead

of Pn
k . For this reason we include a discussion of the setup below.

From this point on let R = k[s, t, u, v] denote the bigraded coordinate ring of
P
1
k × P

1
k over an algebraically closed field k, with deg(s) = deg(t) = (1, 0) and

deg(u) = deg(v) = (0, 1). Let R(a,b) denote the set of elements in R of bidegree
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(a, b). Recall that the smallest geometrically irrelevant ideal of P1
k × P

1
k is B =

(s, t)∩ (u, v). This yields a family of geometrically irrelevant ideals for P1
k×P

1
k, i.e.,

B = {p ∈ Spec(R) : B ⊆ p}.

Definition 2.2. The B-saturation of an ideal I ⊂ R is the ideal Isat =
⋃∞

i=0 I : Bi,
where I : Bi = {f ∈ R : fBi ∈ I}. The geometric importance of the B-saturation
stems from the fact that for bihomogeneous ideals I ⊆ R, the following varieties
agree that V (I) = V (Isat). Analogously, one defines the B-saturation of an R-

module M to be M sat =
⊕

d∈Z≥0×Z≥0
H0
(
M̃(d),P1

k × P
1
k

)
, where M̃ denotes the

sheafification of the module M .

Let Q = P
1
k×P

1
k = Proj(R) and consider a bihomogeneous ideal G = (g1, . . . , gn)

⊆ R, where deg gj = (kj , lj). Let G be the coherent sheaf of ideals associated to G.
Consider pairs of nonnegative integers (ai, bi), 0 ≤ i ≤ 2, such that (ai, bi) ≥ (kj , lj)
entrywise for all i, j, which yield the sheaves G (ai, bi) = G ⊗OQ

OQ(ai, bi) for

0 ≤ i ≤ 2. The vector space Vi = H0(Q,G (ai, bi)) is the set of polynomials
of degree (ai, bi) which belong to the saturation of the ideal G. We denote by

π : Q̃ → Q the blow-up of Q along the sheaf of ideals G . The inverse image of the

sheaf G̃ = π−1G · OQ is an invertible sheaf on Q̃. The sheaf G̃ ⊗ π∗(OQ(ai, bi)) is

denoted by G̃ (ai, bi).
Proposition 2.4 establishes the existence of a residual resultant polynomial, which

cuts out the locus of those polynomials f0, f1, f2 ∈ V0 × V1 × V2 for which the
common vanishing of f0, f1, f2 contains a point not in V (G). It also gives an
algebraic criterion for this geometric condition, namely that the saturations of the
two ideals G = (g1, . . . , gn) and F = (f0, f1, f2) with respect to B are distinct. In
order to establish this fact we need the following definition.

Definition 2.3. An ideal I ⊆ R is said to be locally a complete intersection if Ip
can be generated by a regular sequence for every prime ideal p ∈ Spec(R) \ B.

Proposition 2.4 ([BEM01, Proposition 3]). Let G = (g1, . . . , gn) ⊆ R be a codi-
mension two locally complete intersection ideal, with deg(gj) = (kj , lj). Choose
bihomogeneous polynomials fi ∈ Vi = H0(Q,G (ai, bi)) for i = 0, 1, 2 such that
F = (f0, f1, f2) and the following condition holds:

(ai, bi) ≥ (kj1 + 1, lj1) for some j1 and (ai, bi) ≥ (kj2 , lj2 + 1) for some j2.

Then there exists a polynomial in C =
∏2

i=0 k [Vi], denoted ResG ,{(ai,bi)}2
i=0

, which
satisfies

ResG ,{(ai,bi)}2
i=0

(f0, f1, f2) = 0 ⇔ ∃ x ∈ Q̃ : π∗(f0)(x) = π∗(f1)(x) = π∗(f2)(x) = 0

(1)

⇔ ∃ y ∈ P
1
k × P

1
k such that y ∈ V (F ) \ V (G)(2)

⇔ F sat 	= Gsat.(3)

Proof. Let i ∈ {0, 1, 2} and consider the vector space of global sections Vi =
H0(Q,G (ai, bi)). The sections s ∈ Vi generate the invertible sheaf G (ai, bi) on
an open subset of Q, namely Q \ Z, where Z is the zero-dimensional scheme
defined by G. Following [Har77, Ch.II.7.17.3] we blow-up P

1
k × P

1
k at the sub-

scheme defined by G . Then G̃ (ai, bi) is globally generated by the pullbacks π∗(s)
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for s ∈ H0(Q,G (ai, bi)). Thus for all i ∈ {0, 1, 2}, if we let Ṽi be the vector subspace

generated by the pullbacks π∗(s), s ∈ Vi then Ṽi generates G̃ (ai, bi) on Q̃.

Next we show that each G̃ (ai, bi) is very ample on an open subset U of Q̃.
Suppose (ai, bi) satisfies the inequality conditions in the statement of the propo-

sition. Let Sk be the subvariety of Q̃ defined by the vanishing of π∗(gjk), and

let Uk = Q̃ \ Sk for k = 1, 2. Set U = U1 ∩ U2. We show that the map

Γi : U → P(Ṽi), x �→ {π∗(f) | f ∈ Vi, π
∗(f)(x) = 0} is an embedding. Since a

point in P
1
k × P

1
k is a pair (p1, p2) where pi are points in the ith factor, there is a

form L1 of bidegree (1, 0) or L2 of bidegree (0, 1) that vanishes at the given point
but not at another point (q1, q2) ∈ P

1
k×P

1
k according to whether p1 	= q1 or p2 	= q2.

We say that such a form separates (p1, p2), (q1, q2). In the former case there is a

global section in Ṽi which is a multiple of L1gj1 and which separates π∗(p1, p2) and
π∗(q1, q2) in U . Analogously, if (p1, p2), (q1, q2) are separated by a form of bidegree

(0, 1), there is a global section in Ṽi which is a multiple of L2gj2 and which sepa-
rates π∗(p1, p2) and π∗(q1, q2) in U . A proof that the differential condition for very
ampleness holds follows in a similar fashion to [BEM01, Proposition 3] by the use

of the appropriate separating form in each case. We conclude that each G̃ (ai, bi) is
very ample on the nonempty open subset U .

The first equivalence of the conclusion follows by applying Proposition 2.1 to

the invertible sheaves G̃ (ai, bi) on Q̃. For (2) ⇒ (1) notice that if y 	∈ V (G) and

f0(y) = f1(y) = f2(y) = 0, then, for the unique x ∈ Q̃ such that π(x) = y, we
have π∗(f0)(x) = π∗(f1)(x) = π∗(f2)(x) = 0. The equivalence (2) ⇔ (3) follows
from the identities V (F ) = V (F sat) and V (G) = V (Gsat). It remains to show that
(3) ⇒ (1), equivalently, if π∗(f0), π

∗(f1), π
∗(f2) do not vanish simultaneously on

Q̃, then F sat = Gsat. Since G is locally a complete intersection, the sheaf G /G 2 is
locally free of rank 2. Hence, setting F to be the ideal sheaf corresponding to F ,
one sees that the inclusion F ↪→ G is a surjection locally at p ∈ X. Thus F = G ,
and hence F sat = Gsat holds true. �

More restrictive conditions on the generators of G allow us to define residual
resultants with respect to sections of additional degrees. Below are two sample
results of this flavor.

Proposition 2.5. Let G = (g1, . . . , gn) ⊆ R be a codimension two locally complete
intersection ideal, with deg(gj) = (a, b). Choose bihomogeneous polynomials fi ∈
Vi = H0(Q,G (a + 1, b)) for i = 0, 1, 2 such that F = (f0, f1, f2). If there exists
a form q ∈ R(a,b−1) so that 〈u, v〉q ⊆ G, then ResG ,(a+1,b) exists and satisfies the

conclusion of Proposition 2.4. Likewise if fi ∈ Vi = H0(Q,G (a, b + 1)) and there
exists a form p ∈ R(a−1,b) so that 〈s, t〉p ⊆ G then ResG ,(a,b+1) exists and satisfies
the conclusion of Proposition 2.4

Proof. As in the proof of Proposition 2.4 it suffices to prove that G̃ (a + 1, b) and

G̃ (a, b+1) are very ample on an open subset. We prove this for G̃ (a+1, b); a similar

argument works for G̃ (a, b+1) by interchanging the roles of q and p. Set gj1 , gj2 ∈ G,
and let U be the open set described in the proof of Proposition 2.4. It suffices to
show that sections in G (a+1, b) separate points x, y ∈ P

1
k ×P

1
k \ (V (gj1) ∪ V (gj2)).

Suppose I(x) = (�1, h1) and I(y) = (�2, h2) with �i ∈ R(1,0) and hi ∈ R(0,1). If �1
is not a multiple of �2, then the form �1gj1 ∈ G(a+1,b) vanishes at x and not at y.
If �1 is a multiple of �2, then h1 is not a multiple of h2. Pick a form � ∈ R(1,0)
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which is not a multiple of �1 and �2. Then the form �h1q ∈ G(a+1,b) separates x
and y. A similar argument as in the proof of Proposition 2.4 shows that sections

in G̃ (a+ 1, b) also separate tangents. Thus G̃ (a+ 1, b) is very ample. �
Proposition 2.6. Let G = 〈l1h2, l2h1〉 with lj ∈ R(1,0) and hj ∈ R(0,1), j ∈
{1, 2}. Choose bihomogeneous polynomials fi ∈ Vi = H0(Q,G (2, 1)) for i = 0, 1, 2
such that F = (f0, f1, f2). Then ResG ,(2,1) exists and satisfies the conclusion of

Proposition 2.4. Analogously, if fi ∈ Vi = H0(Q,G (1, 2)), then ResG ,(1,2) exists
and satisfies the conclusion of Proposition 2.4.

Proof. Following the proof of Proposition 2.4, it is only necessary to prove that

G̃ (2, 1) and G̃ (1, 2) are very ample on an open subset. We do the proof for G̃ (2, 1);

a similar argument works for G̃ (1, 2) by interchanging the roles of the lines li and
hi. Set U to be the open set in the proof of Proposition 2.4 with gj1 = l1h2

and gj2 = l2h1. It suffices to show that sections in G (2, 1) separate points x, y ∈
P
1
k×P

1
k\(V (gj1) ∪ V (gj2)). Note that x, y do not lie on any of the lines defined by the

forms l1, l2, h1, h2. Suppose I(x) = (L1, H1) and I(y) = (L2, H2) with Li ∈ R(1,0)

and Hi ∈ R(0,1). If L1 is not a multiple of L2, then the form gj1L1 ∈ G(2,1) vanishes
at x and not at y. If L1 is a multiple of L2, then H1 is not a multiple of H2. Write
H1 = ch1 + dh2; then the form l1l2H1 = cl2gj2 + dl2gj1 ∈ G(2,1) separates x, y.

A similar argument shows that sections in G̃ (2, 1) also separate tangents. Thus

G̃ (2, 1) is very ample on U . �
Remark 2.7. By the assumption on the codimension of G, the ideal sheaf G in
Propositions 2.4, 2.5 defines a zero-dimensional scheme. Propositions 2.4, 2.5 apply
when G defines a reduced set of points in P

1
k × P

1
k, since such an ideal is locally

a complete intersection by [CFG+16, Lemma 4.1]. However, not all ideals G that
fit the hypotheses of Proposition 2.4 define reduced sets of points in P

1
k × P

1
k. For

example, G = 〈s2t2, u2v2〉 is a (global) complete intersection, hence this ideal is
also locally a complete intersection, which is not reduced.

Suppose that the ideal sheaf G defines a zero-dimensional scheme Z composed
of p points P1, . . . , Pp. We denote by ei the multiplicity of the point Pi in Z. We
have

ei = dimk(OZ,Pi
), where OZ = OP

1
k×P

1
k
/G ,

and hence
∑p

i=1 ei = dimk H
0(Z,OZ).

Remark 2.8. One important aspect to recall from the proof of Proposition 2.1
[BEM01, Proposition 1] is that the incidence variety defined by

W̃ =

{
(x, f0, . . . , fm) ∈ Q̃×

m∏
i=0

P(Vi) : f0(x) = · · · = fm(x) = 0

}
⊆ Q̃×

m∏
i=0

P(Vi)

has codimension m+ 1. In the context of Proposition 2.4, m = dim Q̃ = 2 because

Q̃ is the blowup of P1
k × P

1
k at the scheme Z defined by G . Therefore the incidence

variety W̃ in this case is contained in Q̃ ×
∏2

i=0 P(Vi) and it is of codimension 3.

Let E denote the exceptional locus of the blow-up of P1
k × P

1
k at Z. Then Q̃ \E is

isomorphic to Q \ Z. The open set

U =

{
(x, f0, f1, f2) ∈ Q̃ \ E ×

2∏
i=0

P(Vi) : π
∗(f0)(x) = π∗(f1)(x) = π∗(f2)(x) = 0

}
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is dense in W̃ and isomorphic to

W =

{
(x, f0, f1, f2) ∈ (Q \ Z)×

2∏
i=0

P(Vi) : f0(x) = f1(x) = f2(x) = 0

}
.

Thus W is of codimension three in (Q \ Z)×
∏2

i=0 P(Vi).

In the next proposition we compute the degree of the residual resultant in the
coefficients of each polynomial fi. A general formula for this degree is given in
Proposition 2.1 [BEM01, Proposition 1], and the case for P2 is treated in [Bus01].
We will now deduce this degree for the residual resultant in P

1
k × P

1
k; the proof

follows the same lines as for P
2, except that the computation of the intersection

product is now performed on the blow-up of P1
k × P

1
k at Z.

Proposition 2.9. The polynomial ResG ,{(ai,bi)}2
i=0

is multihomogeneous in the co-
efficients of each Vi, of degree Ni for i = 0, 1, 2 with

N0 = a1b2 + b1a2 −
p∑

i=1

ei , N1 = a0b2 + b0a2 −
p∑

i=1

ei ,

and N2 = a0b1 + b0a1 −
p∑

i=1

ei.

Proof. We compute the integer N0; the computation of N1, N2 is carried out in a
similar fashion. Fix i = 0. By Propositions 2.1, N0 equals∫

˜Q

c1(G̃ (a1, b1))c1(G̃ (a2, b2)),

where c1(F ) denotes the first Chern class of the sheaf F over Q̃ and
∫

˜Q
denotes

the degree map on Q̃. Denote by H = π∗(h) and L = π∗(l) the pullbacks of generic
hyperplanes in P

1
k × P

1
k that generate the divisor class group Cl(P1

k × P
1
k)

∼= Z
2.

Each Ei, i = 1, . . . , p, denotes the exceptional divisor of the blow-up π above each
point Pi defined by G , and Ered

i the reduced scheme of Ei. Following [Ful84],

c1(G̃ (ai, bi)) = aiH + biL−
∑p

i=1 Ei. Since Ei ·Ej = 0 if i 	= j, H ·Ei = L ·Ei = 0,
and L2 = H2 = 0, we obtain∫

˜Q

c1(G̃ (a1, b1))c1(G̃ (a2, b2)) =

∫
˜Q

(a1H + b1L−
p∑

i=1

Ei)(a2H + b2L−
p∑

i=1

Ei)

=

∫
˜Q

a1b2H · L+ a2b1H · L+

p∑
i=1

E2
i .

Now let f1 (resp., f2) be generic global sections of G (a1, b1) (resp., G (a2, b2)), and
letDf1 := V (f1) (resp., Df2 := V (f2)) be the divisor corresponding to the vanishing
of the section f1 (resp., f2) in P

1
k × P

1
k. We have

π∗Df1 = D̃f1 +

p∑
i=1

Ei = D̃f1 +

p∑
i=1

miE
red
i and

π∗Df2 = D̃f2 +

p∑
i=1

Ei = D̃f2 +

p∑
i=1

niE
red
i ,
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where D̃f1 (resp., D̃f2) is the strict transform of Df1 (resp., Df2) and where mi

(resp., ni) is the multiplicity of f1 (resp., f2) at the point Pi [Ful84, Section 4.3].

Now D̃f1 · D̃f2 = 0, and since G is a local complete intersection, for each point
Pi ∈ Z we have mini = ei [Ful84, Section 12.4]. We deduce that

p∑
i=1

E2
i =

p∑
i=1

mini E
red
i

2
=

p∑
i=1

ei E
red
i

2
.

By the projection formulae, we know that
∫

˜Q
H · L = 1 and

∫
˜Q
Ered

i
2
= −1.

Therefore

N0 = a1b2 + b1a2 −
p∑

i=1

ei.

�

We shall give a method for the effective computation of the residual resultant
on P

1
k ×P

1
k in section 4 after reviewing the notion of virtual complexes on P

1
k × P

1
k,

which will prove useful in computing the residual resultants.

3. Virtual resolutions in P
1
k × P

1
k and multigraded regularity

Free resolutions have played an important role in the effective computation of
resultants. It is shown in [GKZ08] that the classic projective resultant in P

n can
be computed via a Koszul complex. In a similar manner, [Bus01] and [BEM01]
use the Eagon–Northcott complex and variants of it to compute residual resultants
with respect to locally complete intersection ideals over P2

k and complete intersec-
tion ideals on P

n
k , respectively. The Castelnuovo–Mumford regularity of the ideal

resolved by this complex is a crucial ingredient for the computation of the residual
resultant, and the ability to explicitly exhibit a free resolution has the advantage
of giving a straightforward way to calculate the regularity. For P

1
k × P

1
k, general

recipes for the free resolutions of the analogous ideal are not available, even un-
der the above-mentioned assumptions. We overcome this obstacle by showing that
virtual resolutions in P

1
k × P

1
k have the same good properties that free resolutions

have for the computation of resultants and residual resultants in P
n, and we give

an explicit description for a virtual resolution of certain determinantal ideals.
Two bigraded rings are of central importance for the purpose of residual implic-

itization on P
1
k × P

1
k. The first is the coordinate ring R = k[s, t, u, v] of P1

k × P
1
k,

equipped with a natural Z2 grading obtained from viewing Z
2 as the Picard group

of P
1
k × P

1
k. For simplicity, we call rings graded by Z

2 bigraded. For a finitely
generated R-module M and a bidegree ν ∈ Z

2, the Hilbert function of M at ν is
HM (ν) = dimk Mν .

The second ring of interest is T = R ⊗k C, where C = k[Cij ] is a ring of
indeterminate coefficients as in section 2. Note that T is the coordinate ring of the
variety (P1

k × P
1
k)×

∏m
i=0 Vi and, moreover, B = BT is the irrelevant ideal for this

variety. We equip the ring T with a Z
2 grading given by degT (c⊗ r) = degR(r) for

any r ∈ R, c ∈ C. Thus T is a finitely generated C-algebra with R(0,0) = C. For

any bidegree ν ∈ Z
2 the bigraded component of T in bidegree ν, Tν = Rν ⊗k C, is

a free C-module minimally generated by a basis of Rν .
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3.1. Virtual resolutions in P
1
k×P

1
k. Virtual resolutions for P1

k×P
1
k, also known as

B-torsion complexes, have been discussed in the literature in [MS04] and [CDS07],
among others. Our interest in these complexes was sparked by [BES20].

An R-module M is B-torsion if BiM = 0 for some i.

Definition 3.1. A bigraded complex of free R-modules Pi =
⊕

j R(−aij ,−bij) of
the form

F : 0 −→ Pm
ϕm−→ · · · −→ P1

ϕ1−→ P0

is called a virtual resolution of a module M if (H0(F))
sat ∼= M sat and all the

homology modules Hi(F) with i > 0 are B-torsion. Note that every free resolution
is automatically a virtual resolution.

Virtual resolutions were introduced in [BES20], where it is pointed out how these
resolutions capture the geometry of subvarieties of products of projective spaces in
an optimal manner. For example, saturated ideals defining finite sets of points in P

2

have a Hilbert–Burch resolution. This is not the case for ideals of sets of points in
P
1
k×P

1
k; however, there is a virtual version of this theorem for points in biprojective

space.

Proposition 3.2 ([BES20, Corollary 4.2]). Every zero-dimensional subscheme Z
of P1

k × P
1
k has a virtual Hilbert–Burch resolution, i.e., there exists an (m+ 1)×m

matrix ϕ such that the complex 0 −→ Rm+1 ϕ−→ Rm is a resolution for Im(ϕ) and
V (Im(ϕ)) = Z.

Corollary 3.3. If G ⊆ R is an ideal defining a not necessarily reduced set of points
in P

1
k × P

1
k, there exists an ideal G′ such that Gsat = G′sat, and G′ has a Hilbert–

Burch resolution. Moreover, G is locally a complete intersection if and only if G′

is locally a complete intersection.

Proof. The first statement is an algebraic reformulation of Proposition 3.2, while
the second follows since Gsat = G′sat implies that Gp = G′

p for p ∈ Spec(R)\B. �

From a practical standpoint, there are two methods of producing virtual projec-
tive resolutions as in the above corollary. The first method, presented in [BES20,
Theorem 4.1], is to set G′ = G ∩ 〈s, t〉a or G′ = G ∩ 〈u, v〉a for a � 0. It is an
interesting and currently open problem to estimate the magnitude of the integer a
required to obtain an ideal G′ having a Hilbert–Burch resolution in this manner.

The second method, termed the virtual resolution of the pair (R/G, ν) in [BES20,
Theorem 3.1], produces a virtual projective resolution of R/G by fixing a degree ν
in the regularity region of R/G (see Definition 3.7) and considering the subcomplex
of the minimal free resolution of R/G consisting of the free modules of degrees
μ ≤ ν+(1, 1). While this approach always produces a virtual projective resolution,
it does not guarantee that the virtual resolution of the pair (R/G, ν) is a Hilbert–
Burch resolution. If successful, this method produces an ideal G′ generated by the
generators of G of degrees ≤ ν + (1, 1) which has fewer generators than G and of
lower degrees. This is a desirable feature from a computational perspective.

Example 3.4. Consider the ideal G = 〈s, u〉∩〈t, v〉 = 〈st, sv, tu, uv〉 of a set of two
points in P

1
k×P

1
k. A free resolution and a virtual resolution of G with G′ = 〈sv, tu〉

are shown below. Note how the virtual resolution is much simpler than the free
resolution and the ideal G′ = 〈sv, tu〉 defines the same variety as G.
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0 �� R ⎛⎜⎜⎝
v
−u
−t
s

⎞⎟⎟⎠
�� R4 ⎛⎜⎜⎝

−u −v 0 0
s 0 0 −v
0 t −u 0
0 0 s t

⎞⎟⎟⎠
�� R4 (

st tu sv uv
) �� G �� 0

0 �� R (
−sv
tu

)�� R2(
tu sv

)�� G′ �� 0.

This example is an instance of a more general phenomenon.

Example 3.5. If G defines a set Z of r general points in P
1
k × P

1
k, from [BES20,

Example 5.10] it follows that G has a virtual resolution

0 �� R(−2,−2p) �� R(−1,−p)2 �� R if r = 2p and

0 �� R(−2,−2p− 1) ��
R(−1,−p)⊕

R(−1,−p− 1)

�� R if r = 2p+ 1.

In particular, any set of general points in P
1
k×P

1
k is virtually a complete intersection.

Further details on which sets of points in P
1
k×P

1
k are virtual complete intersections

appear in [GLLM19].

The notion of virtual resolution can be extended to modules over the ring T ,
where the meaning of the word virtual is understood to be with respect to the
irrelevant ideal B = BT . To see why this is a natural extension we start by defining
a T -module M to be B-torsion if (B)iM = 0 for some i ≥ 0. The following lemma
shows that this notion is equivalent to the notion of B-torsion for R-modules.

Lemma 3.6. A T -module M is B-torsion if and only if M is B-torsion as an
R-module.

Proof. Denote by MR the structure of M as an R-module induced by the restriction
of scalars. The claim follows from the identity

(
B
iM
)
R
= BiMR. �

By analogy with Definition 3.1 we say that a bigraded complex of free T -modules
Pi =

⊕
j T (−aij ,−bij) of the form F : 0 −→ Pm −→ · · · −→ P1 −→ P0 is a virtual

resolution of a T -module M if (H0(F))
sat ∼= M sat and for i > 0 the homology

modules Hi(F) are B-torsion. In view of Lemma 3.6, F is a virtual resolution of
the T -module M if and only if it is a virtual resolution for the R-module MR.

3.2. Multigraded regularity: Strong and weak forms. In this paper we make
use of a notion of (weak) regularity developed in [MS04]. Although this applies to
modules over a polynomial ring graded by a finitely generated abelian group, we are
primarily interested in modules over the rings R and T introduced at the beginning
of this section, graded by the group Pic(P1

k × P
1
k) = Z

2 = Zc1 ⊕ Zc2, where c1, c2
are the standard basis vectors. To explain the notion of bigraded regularity define
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the sets

Sti =

{
{(r, s) ∈ Z

2 : r + s = −i− 1, r < 0, s < 0} for i > 0,

{(r, s) ∈ Z
2 : r + s = −i, r ≥ 0, s ≥ 0} for i ≤ 0,

=

{
{(−i,−1), (−i+ 1,−2), . . . , (−2,−i+ 1), (−1,−i)} for i > 0,

{(−i, 0), (−i− 1, 1), . . . , (1,−i− 1), (0,−i)} for i ≤ 0.

Definition 3.7. A module M over a bigraded ring is said to be weakly ν-regular
with respect to the irrelevant ideal B of that ring if Hi

B(M)μ = 0 for all i ≥ 0 and
μ ∈ Sti +ν +N

2. We denote by reg(M) the set of all elements μ ∈ Z
2 such that M

is weakly μ-regular; we call this set the regularity region of M .

As before, the notion of regularity for T -modules and R-modules are closely
related.

Lemma 3.8. For a T -module M and a bidegree μ ∈ Z
2, M is weakly μ-regular

with respect to B if and only if M is weakly μ-regular as an R-module with respect
to B.

Proof. By independence of basis for local cohomology Hi
B(M) ∼= Hi

B
(M) as T -

modules, whence Hi
B(M)μ = 0 if and only if Hi

B
(M)μ = 0. �

One of the main applications of (multigraded) regularity consists of controlling
the growth of Hilbert functions. Specifically, if M is a μ-regular bigraded module,
then the Hilbert function HM (ν) agrees with a polynomial PM (ν), termed the
Hilbert polynomial of M , for all values ν ∈

(
μ+ N

2
)
\ μ; see [MS05, Corollary

2.15.]. Furthermore, [MS04, Proposition 6.7] shows that if I is a B-saturated ideal
defining a finite set of points in P

1
k×P

1
k, then reg(R/I) is exactly the set of elements

μ ∈ Z
2 for which the Hilbert function HR/I(μ) is equal to the Hilbert polynomial

PR/I(μ).
An important observation from [MS04] is that the regularity region of a module

M can be estimated from any virtual projective resolution of M . We give a version
of this result adapted to our setup.

Proposition 3.9 ([MS04, Theorem 1.5]). Let M be a finitely generated bigraded
module. If 0 → P3 → P2 → P1 → P0 → M → 0 is a virtual projective resolution
for M , then

R =
⋃

σ:[3]→[2]

⎛⎝ ⋂
1≤i≤3

−cσ(1) − · · · − cσ(i) + reg(Pi)

⎞⎠ ⊆ reg(M).

Unlike the case where the grading group is Z, the minimal free resolution of a
bigraded moduleM does not completely determine its regularity region. This short-
coming is overcome be introducing a related notion of strong regularity developed
in [HW04].

Definition 3.10. A bigraded module M is said to be strongly (a, b)-regular if

Hi
(s,t)(M)(k,k′) = 0 ∀k ≥ a+ 1− i ∀k′,

Hi
(u,v)(M)(k,k′) = 0 ∀k′ ≥ b+ 1− i ∀k, and

Hi
(s,t,u,v)(M)(k+k′) = 0 ∀k + k′ ≥ a+ b+ 1− i.
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We denote by regs(M) the set of all pairs (a, b) ∈ Z
2 such that M is strongly

(a, b)-regular.

It is shown in [HW04, Corollary 4.5] that ν ∈ regs(M) implies ν ∈ reg(M).
The advantage of strong regularity is that it can be read from the minimal free
resolution for the module M . Indeed, [HW04, Theorem 4.10] shows that if for all i
the bigraded shifts in the ith homological degree of the minimal free resolution of
a module M belong to

DRegi(a, b) = Z
2
− + St−i +μ, where Z− = {n ∈ Z : n ≤ 0},

then M is strongly μ-regular and thus also weakly μ-regular.

3.3. Eagon–Northcott complex and bigraded regularity. We follow the no-
tation from the original paper by Eagon and Northcott [EN62]. Let R be a noe-
therian commutative ring, and let

α :
r⊕

i=1

R(−ci,−di) →
q⊕

i=1

R(−ei,−fi)

be a bihomogeneous map where q, r are positive integers with q ≤ r. Let Iq(α)
denote the ideal generated by the maximal minors of any matrix φα represent-
ing α with respect to a choice of bases X1, X2, . . . , Xr for the domain of α and
Y1, Y2, . . . , Yq for the target of α. Consider the free graded R-modules

K =
∧(

r⊕
i=1

R(−ci,−di)

)
=
∧

(X1, X2, . . . , Xr),

where deg(Xi) = (−ci,−di), and

S = Sym

(
q⊕

i=1

R(−ei,−fi)

)
= Sym(Y1, Y2, . . . , Yq),

where deg(Yi)=(ei, fi). SetKi=
∧i

(X1, X2, . . . , Xr) and Sj=Symj(Y1, Y2, . . . , Yq).

Let (−e,−f) =
∑q

i=1(−ei,−fi). The kth row of the matrix φα = (aij) determines
a Koszul differential Δk on K given by

Δk(Xi1 ∧ · · · ∧Xin) =

n∑
p=1

(−1)p+1akipXi1 ∧ · · · X̂ip · · · ∧Xin .

The Eagon–Northcott complex associated to the map α is the complex given by

0 → Kr ⊗R Sr−q → · · · → Kq−i ⊗R Si → Kq+1 ⊗R S1 → Kq → R(−e,−f),

where the first map
∧q

α : Kq →
∧q

(
⊕q

i=1 R(−ei,−fi)) = R(−e,−f) maps Xi1 ∧
· · ·∧Xiq to the maximal minor Δi1,...,iq of φα determined by the columns i1, . . . , iq.
The rest of the differentials are specified on the basis elements of Kq−i ⊗R Si as
follows:

d(Xi1 ∧· · ·∧Xiq−i
⊗Y ν1

1 · · ·Y νq
q ) =

∑
j

Δj(Xi1 ∧· · ·∧Xiq−i
)⊗Y ν1

1 · · ·Y νj−1
j · · ·Y νq

q ,
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where ν1 + · · · + νs = i and the sum is over those indices j for which νj > 0.
With the degree conventions in place this is a complex of free bigraded modules
and bidegree (0, 0) maps. It is convenient to shift the complex above so that the
homological degree 0 component is generated in bidegree (0, 0). Henceforth we refer
to the shifted version below as the Eagon–Northcott complex EN(α):

(4) 0 → (Kr ⊗R Sr−q) (e, f) → · · · → (Kq+1 ⊗R S1) (e, f) → Kq(e, f) → R.

The principal application of the Eagon–Northcott complex is in resolving the
ideal of minors of matrices Iq(φα) when these ideals have maximum possible height,
i.e., ht (Iq(φα)) = r − q + 1. The following lemmas are important in establishing
the exactness and computing the homology of the Eagon–Northcott complex in our
case of interest.

Lemma 3.11. Using the notation of subsection 3.3, suppose r = q + h. Then

(1) if ht(Iq(α)) = h, then EN(α) has Hi(EN(α)) = 0 for i ≥ 2,
(2) if ht(Iq(α)) = h+ 1, then EN(α) is a resolution for Iq(α).

Proof. By [EN62, Theorem 1 Section 5], the homology of the complex EN(α)
satisfies

max{i : Hi (EN(α)) 	= 0} = r − q + 1− ht(Iq(α))

=

{
q + h− q + 1− h = 1 in case (1),

q + h− q + 1− h− 1 = 0 in case (2).

�

Remark 3.12. Suppose q ≤ r − 1 and consider a restriction

α′ :
r⊕

i=1,i �=i0

R(−ci,−di) →
q⊕

i=1

R(−ei,−fi)

of the map α defined above, which gives rise to the module

K ′ =
∧

(X1, . . . , X̂i0 , . . . , Xr).

Since K ′ is naturally a submodule of K, it follows from (4) that EN(α′) is a
subcomplex of EN(α). In particular, if the degrees of the generators of the free
module EN(α)i belong to DRegi(a, b), then so do the degrees of the generators of
the free module EN(α′)i implying that regs(Iq(φα)) ⊆ regs(Iq(φ

′
α)). In a similar

fashion, if R,R′ are the weak regularity regions of R/Iq(α) and R/Iq(α
′) specified

by Proposition 3.9, then R ⊆ R′.

Example 3.13. We illustrate by showing the Eagon–Northcott complex when G
is a complete intersection. Assume q = 2, r = 4, and (ei, fi) = (ki, li), while
(c1, d1) = (k1 + k2, l1 + l2) and (ci, di) = (a, b) for 2 ≤ i ≤ 4. The bigraded shifts
in the Eagon–Northcott complex are illustrated below, based on the degrees of the
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standard bases of the free modules in the complex (4), where (e, f) = (k1+k2, l1+l2):

0 ��

R(−3a+ 2k1,−3b+ 2l1)
⊕

R(−3a+ 2k2,−3b+ 2l2)
⊕

R(−3a+ k1 + k2,−3b+ l1 + l2)

��

R(−2a+ k1,−2b+ l1)
3

⊕
R(−2a+ k2,−2b+ l2)

3

⊕
R(−3a+ 2k1 + k2,−3b+ 2l1 + l2)

⊕
R(−3a+ k1 + 2k2,−3b+ l1 + 2l2)

��
R(−a,−b)3

⊕
R(−2a+ k1 + k2,−2b+ l1 + l2)

3

�� R.

The following result generalizes Example 3.13.

Proposition 3.14. Let α :
⊕n−1

i=1 R(−ci,−di)⊕R(−a,−b)3 →
⊕n

j=1 R(−ej ,−fj)

be a bidegree preserving map, and set (c, d) =
∑n−1

i=1 (ci, di) and (e, f)=
∑n

j=1(ej , fj).
Then the degrees of the minimal generators for the free R-modules in the complex
EN(α), listed by homological degree, are as follows:

degree shifts

0 (0, 0)
1 (a+ c− e, b+ d− f), (2a+ c− e− ci, 2b+ d− f − di)

(3a+ c− e− ci − cj , 3b+ d− f − di − dj), i �= j
2 (2a+ c− e− ej , 2b+ d− f − fj), (3a+ c− e− ci − ej , 2b+ d− f − di − fj)
3 (3a+ c− e− ei − ej , 3b+ d− f − fi − fj)

In particular, if a ≥ ej for some 1 ≤ j ≤ n and b ≥ fj for some 1 ≤ j ≤ n and
EN(α) is a virtual resolution for a module R/Iq(φα)), then the bigraded regularity
of R/Iq(φα)) can be estimated by

R(α) =

(
3a+ c− e− min

1≤i≤j≤n
(ei + ej), 3b+ d− f − min

1≤i≤j≤n
(fi + fj)

)
+ St−3 +N

2

⊆ reg (R/Iq(φα))) .

Proof. The shifts listed in the table follow from the graded structure of the complex
(4).

Denoting by Pi the free module in the ith homological degree in EN(α), we
claim that reg(Pi+1) ⊆ reg(Pi) + (1, 1) for 0 ≤ i ≤ 4. Using the fact that for
any two modules U, V reg(U ⊕ V ) = reg(U) ∩ reg(V ) ([MS04, Lemma 7.1]) one
can easily compute the regularity of a graded free R-module

⊕q
i=1 R(−mi,−ni) =

(max1≤i≤q mi,max1≤i≤q ni) + N
2. Thus, to establish the claim it is sufficient to

show that the maximum of the first components of the degrees listed in row i of
the table above is strictly smaller than the maximum of the first components of the
degrees listed in row i+ 1 of the table and the analogous statement for the second
components. For i = 0 this is clear, so we assume i > 0. Notice that a ≥ ej for
some 1 ≤ j ≤ n and b ≥ fj for some 1 ≤ j ≤ n ensures that each component of the
degrees listed in row i of the table above is strictly smaller than some component
of the degrees listed in row i+ 1, which establishes the claim.

In particular, reg(Pi+1) ⊆ reg(Pi) + (1, 1) implies that

−cσ(1)−· · ·−cσ(i)+reg(Pi) ⊆ −cσ(1)−· · ·−cσ(i)−cσ(i+1)+reg(Pi+1) for 0 ≤ i ≤ 2.
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The statement of Proposition 3.9 can now be simplified to say⋃
σ:[3]→[2]

(
−cσ(1) − cσ(2) − cσ(3) + reg(P3)

)
⊆ reg(M), i.e., reg(P3)+St−3 ⊆ reg(M).

Using the explicit formula for the regularity of a free module deduced above yields
the desired estimate(

3a+ c− e− min
1≤i≤j≤n

(ei + ej), 3b+ d− f − min
1≤i≤j≤n

(fi + fj)

)
+ St−3 +N

2

⊆ reg (R/Iq(φα)) .

�
For a depiction of the regularity regions obtained by applying this proposition

in various examples, see Examples 6.1, 6.2, 6.3, 6.5.

Remark 3.15. All the results of this section continue to hold verbatim for T -
modules. In particular, if α :

⊕n−1
i=1 T (−ci,−di)⊕T (−a,−b)3 →

⊕n
j=1 T (−ej ,−fj)

is a bidegree preserving map, (c, d) =
∑n−1

i=1 (ci, di), and (e, f) =
∑n

j=1(ej , fj),

then the region R(α) of Proposition 3.14 is contained in the regularity region of
Iq(T/Iq(φα)), provided that the Eagon–Northcott complex is a virtual projective
resolution for this module.

Note that the region R(α) only depends on the numerical information regarding
the degrees in which the domain and target of the map α are generated and not on
the rule defining α. In particular, applying an evaluation map to the source and

target of α induces an R-linear map ec(α) :
⊕n−1

i=1 R(−ci,−di) ⊕ R(−a,−b)3 →⊕n
j=1 R(−ej ,−fj) such that R(eC(α)) = R(α).

4. Effective computation of the residual resultant

4.1. Virtual resolutions for effective computations. Let G = (g1, . . . , gn) be
a bihomogeneous ideal. To emphasize the universality of the resultant in terms
of the generators of G we fix a presentation matrix ϕ for G having entries in
R = C ′[s, t, u, v], where C ′ is a coefficient ring for the generators of G. This is
equivalent to allowing the basepoints of the parameterization to have indeterminate
coordinates from the ring C ′. We shall refer to the matrix ϕ which fits in the exact

sequence R� ϕ−→ Rn → G → 0 as the syzygy matrix of G. For 0 ≤ i ≤ m, let
(ai, bi) ∈ N

2 and set C = k[Cα
ij : 0 ≤ i ≤ m, 1 ≤ j ≤ n], where for each pair i, j, the

index α enumerates the elements mα of a monomial basis of R(ai−kj ,bi−lj). Define

Hji =
∑

α Cα
ijmα, Fi =

∑n
j=1 Hjigj , so Hji ∈ T(ai−kj ,bi−lj) and Fi ∈ T(ai,bi). This

can be written concisely as
(5)[
F0 · · · Fm

]
=
[
g1 . . . gn

]
Ψ, where Ψ = [Hji]1≤j≤n,0≤i≤m ∈ Mn×(m+1)(T ).

Lastly, set F = (F0, . . . , Fm) and notice that the previous equation gives the con-
tainment F ⊆ G. We study the algebraic counterpart of the residual resultant
developed in Section 2. As mentioned previously, we denote by hji and ψ the
images of Hji and Ψ under any evaluation homomorphism ec : T → R.

We aim to express the residual resultant for the pair of ideals F, G in terms
of the minimal free resolution for the residual ideal I = F :T G. In turn, we
will approximate this resolution by a virtual projective resolution based on the
structure matrix Ψ defined above as well as the syzygy matrix ϕ for G. We start
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with a lemma that relates the ideal F :T G to the ideal of maximal minors of the
matrix ϕ⊕Ψ ∈ Mn×(�+m+1)(T ).

Lemma 4.1. Let F = (F0, . . . , Fm) ⊆ G = (g1, . . . , gn) be homogeneous ideals in T
with the sets of generators of the two ideals related by[

F0 · · · Fm

]
=
[
g1 . . . gn

]
Ψ.

Let ϕ denote the n× � matrix of syzygies of G. Then the following hold:

(1) In(ϕ⊕Ψ) ⊆ Ann(coker(ϕ⊕Ψ)) = F :T G.
(2) If ht(F :T G) = m−n+ �+2, then equality holds in the above containment.

Proof. Computing ranks along the exact sequence R� ϕ−→ Rn → R → R/G → 0
gives � ≥ n− 1 and thus �+m ≥ n; hence In(ϕ⊕Ψ) is the ideal of maximal minors
of ϕ⊕Ψ. Note that ϕ⊕Ψ appears in the following bigraded presentation for G/F:

m+�+1⊕
i=0

T (−ei,−di)
ϕ⊕Ψ−→

n⊕
i=1

T (−ki,−li) → G/F → 0.

A theorem of Buchsbaum–Eisenbud [BE77] on Fitting ideals, applied to the presen-
tation above, gives the containment below, with equality instead of the rightmost
containment when ht (In(ϕ⊕Ψ)) = m− n+ �+ 2:

(6) Ann (coker(ϕ⊕Ψ))
n ⊆ In(ϕ⊕Ψ) ⊆ Ann (coker(ϕ⊕Ψ)) .

Combining the containment above and the identity

Ann (coker(ϕ⊕Ψ)) = Ann(G/F) = (F :T G)

gives the first statement of the lemma. Furthermore, if ht(F :T G) = m−n+�+2, the
containment (6) and the generalized principal ideal theorem (see [Eis95, Exercise
10.9]) ht (In(ϕ⊕Ψ)) ≤ m− n+ �+ 2 yield ht (In(ϕ⊕Ψ)) = m− n+ �+ 2, which
gives the second statement of the lemma. �

Note that the identity In(ϕ ⊕ Ψ) = F :T G can hold even if the hypothesis of
statement (2) above is not met, as illustrated in Example 6.2.

Corollary 4.2. The statement of the lemma holds over the ring R whenever
F0, . . . , Fm and Ψ are specialized via evaluation to R.

We exploit the close relation between In(ϕ ⊕ Ψ) and F :T G established in
Lemma 4.1 to obtain a virtual resolution of F :T G. First, due to Proposition 3.2
we may assume that G is an ideal with a Hilbert–Burch resolution provided the
degrees of the generators of F are high enough. The exact meaning of this reduction
is made precise in the following proposition.

Lemma 4.3. Suppose that G defines a zero-dimensional subscheme of P
1
k × P

1
k

and F is an arbitrary ideal of T . Then there exists an ideal G′ of R that has the
following properties:

(1) V (G) = V (G′),
(2) G′ has a Hilbert–Burch resolution,
(3) ResG ,{(ai,bi)}2

i=0
= ResG ′,{(ai,bi)}2

i=0
for (ai, bi) satisfying the condition in

Proposition 2.4,
(4) (F : G)sat = (F : G′)sat, where saturation is taken with respect to the ideal

B of T ,
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(5) a complex F of free T -modules is a virtual projective resolution for F : G if
and only if F is a virtual projective resolution for F : G′ as well.

Moreover, if the reduced subscheme of P1
k × P

1
k defined by G consists of r general

points and F ⊆ G is an ideal of T such that the generators of F have bidegrees lying
in the interior of the region S shown in Figure 1, then F ⊆ G′.

S =

r

r − 1

r − 2

rr − 1r − 2

Figure 1. Region S referred to in Lemma 4.3

Proof. Let G′ be the ideal given by Corollary 3.3, which establishes that it satisfies
properties (1) and (2) listed above. Note that property (1) is equivalent to Gsat =

G′sat and therefore G = G ′, which tautologically yields property (3).
For (4), consider p ∈ Spec(T ). If B 	⊆ p (equivalently B 	⊆ p), then the equality

Gsat = G′sat implies that Gp = G′
p, and therefore we have (F : G)p = Fp : Gp = Fp :

G′
p = (F : G′)p, which is equivalent to (F : G)sat = (F : G′)sat. For (5), recall that

F is a virtual resolution of F : G if and only if (H0(F))
sat

= (F : G)sat = (F : G′)sat

and Hi(F) is B-torsion for i > 0.
When the reduced locus of G consists of r general points, then G′ can be taken to

have one of the two types of resolutions presented in Example 3.5 or those obtained
from the ones presented by interchanging the two coordinates of each bidegree. By
Proposition 3.9 the region S is contained in the union of the regularity regions of
the two possible cyclic modules R/G′ afforded by the value of r. Note that S is
also contained in the regularity region of R/G because the resolutions in Example

3.5 are virtual projective resolutions for R/G. Because Gν = Gsat
ν = G′sat

ν = G′
ν for

any ν = μ+ (i, j) with μ ∈ S and i, j ∈ N with i+ j > 0 (denote this by ν ∈ S 0),
we have that F ⊆

⋃
ν∈S 0 Gν implies F ⊆

⋃
ν∈S 0 G′

ν ⊆ G′. �
The existence of a Hilbert–Burch resolution for G is a key ingredient in our

results, and from this point on we assume that G satisfies this property. We further
assume that m = 2 since this is the setup for a residual resultant over P

1
k × P

1
k.

Under these conditions ϕ ∈ Mn×(n−1)(T ) and the matrix ϕ ⊕ Ψ in Lemma 4.1 is
an n× (n+ 2) matrix.

Proposition 4.4. Assume that G ⊆ R has a Hilbert–Burch resolution, F = (F0, F1,
F2), and suppose that for every p ∈ Spec(R) \B with ht(p) = 2 there is an equality
Fp = Gp. Then the Eagon–Northcott complex EN(ϕ ⊕ Ψ) is a virtual resolution
for the module T/In(ϕ⊕ ψ).

Proof. Throughout this proof, let Min(I) denote the set of minimal primes of an
ideal I.
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Recall from Remark 2.8 that the incidence variety W ⊂ (Q \ Z) ×
∏2

i=0 Vi has
codimension three. Since V (F :T G) ⊆ W ∪Z, it follows that there is a containment

MinT (F :T G) ⊆ MinT (IW ) ∪ BT ∪MinT (G),

where BT and MinT (G) are the set of primes in B and MinR(G), respectively,
extended to T . Since Fp = Gp holds for any p ∈ Spec(R)\B with height of p equal
to two, it follows that in fact any prime of MinT (G) that is also an associated prime
of F :T G is in BT , thus the containment above reduces to

(7) MinT (F :T G) ⊆ MinT (IW ) ∪ BT .

Consider the T -module H =
⊕n+2

i=0 Hi (EN(ϕ⊕Ψ)). From [Eis95, Theorem
A2.59] it follows that In(ϕ⊕ ψ) annihilates H, therefore there is a containment

(8) MinT (H) ⊆ MinT (In (ϕ⊕Ψ)) .

The containments (F :T G)n ⊂ In (ϕ⊕Ψ) ⊆ (F :T G) noted in the proof of Lemma

4.1 imply
√
F :T G =

√
In (ϕ⊕Ψ), and hence MinT (In (ϕ⊕Ψ)) = MinT (F :T G).

Therefore, from equations (7), (8) we deduce

(9) MinT (H) ⊆ MinT (In (ϕ⊕Ψ)) = MinT (F :T G) ⊆ MinT (IW ) ∪ BT .

Let P be any ideal of T of height at least 3; in particular, this applies to any
P ∈ MinT (IW ) since the codimension of W is 3 by Remark 2.8. Then the com-
plex EN (ϕ⊕Ψ) ⊗T TP = ENTP

(ϕ⊕Ψ) is exact by Lemma 3.11(2) because
ht (In (ϕ⊕Ψ)P ) = ht(P ) ≥ 3. It follows that HP = 0 and therefore P is not
in the support of H, so P 	∈ AssT (H). This shows that the associated primes of H
have height 2 and further reduce equation (9) to

(10) MinT (H) ⊆ MinT (In (ϕ⊕Ψ)) ⊆ BT .

Therefore AnnT (H) = Q1∩Q2, where Q1 is 〈s, t〉-primary and Q2 is 〈u, v〉-primary.
Now 〈s, t〉a ⊆ Q1 for some a ≥ 0, and similarly 〈u, v〉b ⊆ Q2 for some b ≥ 0, hence
for m ≥ max{a, b} we have the desired conclusion

Bm = 〈s, t〉m ∩ 〈u, v〉m ⊆ Q1 ∩Q2 ⊆ AnnT (H).

�

Remark 4.5. Example 6.2 illustrates the fact that it is possible for the Eagon–
Northcott complex in Corollary 4.7 to be a virtual projective resolution while not
being a resolution, i.e., not being exact.

Remark 4.6. In the setup of this section, where Fi =
∑n

j=1 Hjigj for 0 ≤ i ≤ m,

Hji =
∑

α Cα
ijmα, and α runs over the elements mα of a monomial basis of

R(ai−kj ,bi−lj), the hypothesis that there is an equality Fp = Gp for every p ∈
Spec(R) \ B with ht(p) = 2 holds true whenever G is locally a complete intersec-
tion (see Lemma 4.8). However, we prefer to state Proposition 4.4 including this
hypothesis, since we shall use it in a slightly more general context in section 5 and
also draw a closer analogy with the following corollary.

Corollary 4.7. Suppose that G has a Hilbert–Burch resolution and the ideal F =
(f0, f1, f2) arising by specializing the coefficients of F0, F1, F2 to values in k satisfies
F sat = Gsat. Denote by ψ the corresponding specialization of the matrix Ψ in the
setup at the beginning of this section. Then the Eagon–Northcott complex EN(ϕ⊕
ψ) over R is a virtual resolution for the module R/In(ϕ⊕ ψ).
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Proof. By Corollary 4.2, the conclusion of Lemma 4.1 still holds for f0, f1, f2. The
hypothesis F sat = Gsat implies that Fp = Gp for all p ∈ Spec(R) \ B and thus
Min(F :R G) ⊆ B. Therefore the proof of Proposition 4.4 starting at equation (10)
applies to show that EN(ϕ⊕ ψ) is B-torsion as a complex over R. �

Lemma 4.8. Assume that G is a locally complete intersection ideal and Fi =∑n
j=1 Hjigj for 0 ≤ j ≤ m, where Hji =

∑
α Cα

ijm
α
j and mα

j runs over the elements

of a monomial basis of R(a−kj ,b−lj) for some (a, b) ∈ N
2. Then there is an equality

Fp = Gp for every p ∈ Spec(R) \ B with ht(p) = 2.

Proof. Let p ∈ Spec(R) \ B be an ideal with ht(p) = 2. We show that for any
pair i, j we have Hji 	∈ p. Assume the contrary, fix α0 in the indexing set of
monomials in R(a−kj ,b−lj), and consider the prime ideal q = p + (Cα

ij : α 	= α0).
Then Hji ∈ p implies that Cα0

ij mα0
j ∈ q, and since Cα0

ij 	∈ q this yields mα0
j ∈

q, which in turn implies that mα0

j ∈ q ∩ R = p for any α0. We deduce that

R(a−kj ,b−lj) = 〈s, t〉a−kj ∩ 〈u, v〉b−lj ⊆ p, and consequently p ∈ B, a contradiction.
Therefore the elements Hij become units in Tp. Since Gp is a complete intersection
with dimk(p)Gp/G

2
p = 2 and Fp ⊆ Gp is generated by 3 elements which are pairwise

independent in Gp/G
2
p, the equality Fp = Gp follows. �

4.2. A matrix representation for the residual resultant. The computation of
the residual resultant hinges on the following proposition, which identifies a matrix
whose rank drops when evaluated at any point of the residual resultant. In an
alternate terminology, the following proposition gives a matrix representation for
the residual resultant.

Proposition 4.9. Let g1, . . . , gn and f0, f1, f2 be polynomials in R with fi ∈ R(ai,bi)

related by the identities fi =
∑n

j=1 hjigj. Set G = (g1 . . . , gn), ψ = [hji], and
assume that G has a Hilbert–Burch syzygy matrix ϕ. Let θ be a presentation map
for the cyclic module R/In(ϕ⊕ ψ). The following statements are equivalent:

(1) ResG ,{(ai,bi)}2
i=0

(f0, f1, f2) 	= 0,

(2) V (In(ϕ⊕ ψ)) = ∅,
(3) the restriction of the map θ to degree ν is surjective for all degrees ν =

μ+ (p, p′) such that μ ∈ R(ϕ⊕ ψ), (p, p′) ∈ N
2 and p+ p′ > 0.

Proof.
(1) ⇔ (2) : By Proposition 2.4, the condition ResG,{(ai,bi)}s

i=1
(f0, f1, f2) 	= 0 is

equivalent to F sat = Gsat, which is equivalent to F sat :R Gsat = R. In view of Corol-
lary 4.2, this translates to

√
In(ϕ⊕ ψ)sat =

√
(F :R G)sat =

√
(F sat :R Gsat) = R,

that is, V (In(ϕ⊕ ψ)) = ∅.
(1) ⇒ (3) : By Proposition 2.4 ResG,{(ai,bi)}2

i=0
(f0, f1, f2) 	= 0 implies that F sat =

Gsat, whence Corollary 4.7 implies that the Eagon–Northcott complex is a virtual
projective resolution for R/In(ϕ⊕ψ) and this module is μ-regular for μ ∈ R(ϕ⊕ψ).
Since V (In(ϕ⊕ψ)) = V (F :R G) = ∅ by hypothesis and (1) ⇒ (2), we deduce from
[MS05, Corollary 2.15] that HR/In(ϕ⊕ψ)(ν) = 0 for bidegrees ν = μ + (p, p′) such

that (p, p′) ∈ N
2 and p+ p′ > 0. Since the cokernel of the restriction of the map θ

to degree ν is R/In(ϕ⊕ψ)ν , and by the previous considerations R/In(ϕ⊕ψ)ν = 0,
we deduce that this map is surjective.

For (3) ⇒ (2) we prove the contrapositive. Suppose that V (In(ϕ ⊕ ψ)) is not
empty. Due to the equality V (In(ϕ ⊕ ψ)) = V (F : G), there exists a point ξ ∈
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V (F ) \ V (G). Evaluating the following identity encompassing the expressions fi =∑n
j=1 hjigj and the fact that ϕ is a syzygy matrix for G at ξ,[

0 · · · 0 f0 f1 f2
]
=
[
g1 . . . gn

] [
ϕ⊕ ψ

]
shows that the rank of the matrix ϕ ⊕ ψ evaluated at ξ is not maximal (< n).
Hence all the maximal minors of ϕ⊕ψ vanish at ξ. Since all these minors generate
In(ϕ⊕ ψ) we deduce that for arbitrary ν ∈ N

2 any polynomial in the image of the
map θν vanishes at ξ. Since for any point ξ there exist polynomials in Rν that do
not vanish at ξ, it follows that the map θν is not surjective. �
Remark 4.10. Proposition 4.9 relates the nonvanishing of ResG ,{(ai,bi)}2

i=0
(f0, f1, f2)

to the presentation of the module R/In(ϕ⊕ψ) restricted to any bidegree in the inte-
rior of the region R(ϕ⊕ψ) described in Proposition 3.14. Note that by Remark 3.15
this region is stable under specialization, that is, R(ϕ⊕ ψ) = R(ϕ⊕Ψ).

We now proceed to convert Proposition 4.9 into an effective computational tool.

In order to make the matrix representation for the residual resultant explicit we
recall the first map of the Eagon–Northcott complex (4) associated to the matrix
ϕ⊕Ψ over T ,

d =

q∧
(ϕ⊕Ψ) :

⊕
{i1,...,iq}⊂[r]

TXi1 ∧ · · · ∧Xiq → T, Xi1 ∧ · · · ∧Xiq �→ Δi1,...,iq .

Here Δi1,...,iq is the maximal minor of ϕ⊕Ψ corresponding to the columns i1, . . . , iq,
and the T -module generated by Xi1 ∧· · ·∧Xiq is generated in degree deg(Δi1,...,iq ).

For ν ∈ Z
2, let dν denote the map d restricted to bidegree ν. Since for any bidegree

ν, Tν = C ⊗k Rν is a free C-module, we obtain a map of finitely generated free
C-modules:

dν :
⊕

{i1,...,iq}⊂[r]

Tν−deg(Δi1,...,iq )
→ Tν .

An explicit matrix representing the map dν can be obtained in four steps:

(1) fix a basis for the vector space
⊕

{i1,...,iq}⊂[r] Tν−deg(Δi1,...,iq )
,

(2) apply the map dν to this basis,
(3) fix a basis for Rν and express the result of step (2) in terms of this basis as

vectors with entries in C,
(4) form a matrix with entries in C denoted Θν having these vectors as columns.

Note that for step (1), a standard basis of this vector space consists of elements
mXi1 ∧ · · · ∧Xiq such that m is a monomial in R with deg(m) = ν − deg(Δi1,...,iq )
for some {i1, . . . , iq} ⊆ [n]. Then in step (2) one obtains dν(m) = m ·Δi1,...,iq .

For any bidegree ν ∈ Z
2 we denote by θν the image of the matrix Θν defined

above under an evaluation homomorphism. According to part (3) of Proposi-
tion 4.9, from this point onward we let ν be a bidegree such that ν = μ + (p, p′)
with μ ∈ R(ϕ ⊕ Ψ) and (p, p′) ∈ N

2, p + p′ > 0. When this holds we say that ν is
in the interior of R(ϕ⊕Ψ).

Proposition 4.11. If ν is in the interior of R(ϕ⊕Ψ), then any nonzero minor of
size dimk(Rν) of the matrix Θν is a multihomogeneous polynomial in the coefficients
Cα

ij of F0, F1, F2 and a multiple of ResG ,{(ai,bi)}2
i=0

.

In light of Proposition 4.9 this proof follows along the lines of the argument in
[Bus01]. We include the details for completeness.
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Proof. First observe that any minor ρ of the matrix Θν is multihomogeneous in the
coefficients of each Fi for i = 0, 1, 2. Indeed, if Fi is multiplied by a scalar λ ∈ k,
then the same is true for the column in ϕ⊕Ψ that corresponds to the coefficients
of λFi. Consequently, any column in Θν containing the coefficients of an element
m ·Δi1,...,is such that Δi1,...,is involves a column corresponding to the coefficients
of λFi is multiplied by a factor of λn. This implies that ρ is homogeneous of degree
n ·dimk Rν ·d in the coefficients of Fi, where d is the number of columns that appear
in the the submatrix of Θν that have a factor of λn.

Next, fix ρ to be a maximal minor of Θν . We want to show that ρ vanishes
at every point where the resultant vanishes, for this implies that ρ is a multiple

of ResG ,{(ai,bi)}2
i=0

. Let Q = P
1
k × P

1
k, and let Q̃ be the blow-up of P1

k × P
1
k along

the sheaf of ideals associated to G. Define Q̃0 = Q̃ \ E where E is the exceptional

divisor in Q̃. Let

Z0 = V
(
ResG ,{(ai,bi)}2

i=0

)
= {c = (cij) : ∃x ∈ Q̃0, π∗(f0) = π∗(f1) = π∗(f2) = 0},

i.e., Z0 is the set of coefficients such that the pullbacks of the sections f0, f1, f2
have a common root outside the exceptional divisor E. Suppose there is a choice of
coefficients c ∈ Z0 such that ec(ρ) 	= 0. This implies that θν is surjective because
ρ is a maximal nonvanishing minor of size dimk(Rν). However, since c ∈ Z0, the
specialized sections f0, f1, f2 have a common root in V (F )\V (G) by Proposition 2.4.
Using the equivalence (1) ⇔ (3) of Proposition 4.9 implies that θν cannot be
surjective, a contradiction. Therefore ec(ρ) = 0, and since c ∈ Z0 was arbitrary, ρ

vanishes on Z0. As Q̃0 is dense in Q̃, Z0 is also dense in Z = {c = (cij) : ∃x ∈
Q̃, π∗(f0) = π∗(f1) = π∗(f2) = 0}. Consequently, ρ vanishes on Z, i.e., ρ vanishes
at all the points where ResG,{(ai,bi)}2

i=0
vanishes. �

Proposition 4.12. For ν in the interior of R(ϕ ⊕ Ψ) and 0 ≤ i ≤ 2 there exists
a nonzero maximal minor of Θν of degree Ni in the coefficients of Fi, where Ni is
given in Proposition 2.9.

Proof. Without loss of generality we assume i = 0. Choose a specialization F =
(f0, f1, f2) such that F sat = Gsat and such that the ideal F ′ = (f1, f2) has height
two. In this case the variety V (F ′ :R G) has degree

deg(F ′ :R G) = deg(F ′)− deg(G) = a1b2 + b1a2 −
p∑

i=1

ei = N0.

Denote by ψ12 the submatrix of ψ consisting of the columns corresponding to the
coefficients of f1, f2. Since F ′ ⊆ F ′ :R G we deduce ht(F ′ :R G) ≥ ht(F ′) = 2.
In view of Lemma 4.1 and Lemma 3.11 we conclude that F ′ :R G = I2(ϕ ⊕ ψ12)
and EN(ψ ⊕ ψ12) is a resolution of R/(F ′ :R G). Moreover, by Corollary 4.7,
since F sat = Gsat it follows that EN(ϕ ⊕ ψ) is a virtual projective resolution for
R/I2(ϕ⊕ ψ).

Let R′ = R(ϕ ⊕ ψ12) denote the region specified by Proposition 3.9, which is
contained in the weak regularity region of R/In(ϕ ⊕ ψ12), and let R = R(ϕ ⊕ ψ)
be the corresponding region for R/In(ϕ ⊕ ψ). Using Remark 3.12, since ν ∈ R it
follows that ν ∈ R′, hence R/In(ϕ ⊕ ψ12) is also ν-regular. By [MS05, Corollary
2.15] we deduce that HR/(F ′:RG)(ν) = N0. Therefore

dimk (In (ϕ⊕ ψ12))ν = dimk(F
′ :R G)ν = dimk Rν −N0.
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Denote by θ12 the matrix corresponding to the Eagon–Northcott complex of ϕ ⊕
ψ12. Following the discussion before Proposition 4.11, the image of this matrix,
(In (ϕ⊕ ψ12))ν , is the vector space

Spank
{
m ·Δi1,...,iq : none of the columns i1, . . . , iq

involve the column of coefficients of F0} .

Hence we can choose exactly dimk Rν − N0 columns in the matrix θν that are
independent and do not involve the coefficients of F0; therefore the same is true
for the matrix Θν . Denote the submatrix consisting of these columns by Θν,F1,F2

.
Next, by Proposition 4.9 it follows that the map θν is surjective and thus its image
has dimension dimk Rν . Thus the vector space

Spank
{
m ·Δi1,...,iq : one column in i1, . . . , iq is a coefficient column of F0

}
has dimension N0. Therefore there exists N0 linearly independent columns in θν
that only involve the coefficients of F0, and the same is true for Θν . Denote the sub-
matrix given by these columns matrix by Θν,F0

. The columns of Θν,F1,F2
together

with the columns of Θν,F0
span a vector space of dimension dimk Rν , hence the

maximal minor corresponding to these columns is a maximal nonvanishing minor
of Θν . Furthermore, since the entries of Θν are linear in the coefficients of F0, the
determinant of this minor has degree N0 in the coefficients of F0, as desired. �

Proposition 4.13. The greatest common divisor of the maximal minors of the
matrix Θν is exactly ResG ,{(ai,bi)}2

i=0
.

Proof. Let d be the greatest common divisor of the maximal minors of Θν . Proposi-
tion 4.11 implies that d is a multiple of ResG,{(ai,bi)}2

i=0
. However, Proposition 4.12

states that the degree of d in the coefficients of F0 is less than or equal to N0, and
on the other hand Proposition 2.9 implies that ResG,{(ai,bi)}2

i=0
has degree N0 in

the coefficients of F0. Therefore the degree of d in the coefficients of F0 is equal to
N0. The same argument for i = 1, 2 allows us to conclude that d = ResG,{(ai,bi)}2

i=0

since they have the same degree with respect to all sets of coefficients. �

Proposition 4.13 gives a practical method to compute the residual resultant.
Note that Lemma 4.8 yields that the Eagon–Northcott complex gives a virtual
projective resolution in this context.

Algorithm 4.14 (Computation of the residual resultant).
Input: G a locally complete intersection ideal with syzygy matrix ϕ, Ψ as in

equation (5).

(1) Pick ν in the interior of the regularity region R(ϕ⊕Ψ).
(2) Compute the matrix Θν as explained before Proposition 4.11.
(3) Compute a maximal minor δi of degree Ni in the coefficients of Fi for

0 ≤ i ≤ 2.
(4) Return gcd (det(δ0), det(δ1), det(δ2)).

Examples illustrating this algorithm can be found in section 6.1.

Remark 4.15. Steps (3) and (4) in the above algorithm are computationally expen-
sive. However, we can replace these two steps by the computation of the determi-
nant of the bidegree ν strand of the complex EN(ϕ⊕Ψ). Briefly, the determinant
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of a complex is an alternating product of minors of the matrices of the differen-
tials in the complex. Theorem 34 in [GKZ08, Appendix A] establishes an equality
between the the gcd of the maximal minors of the first differential of a complex
and the determinant of a complex under certain hypotheses. Such hypotheses are
satisfied for the complex EN(ϕ ⊕ Ψ), and therefore we can use determinants of
complexes in this setting. We refer the reader to Appendix A in [GKZ08] for a
detailed construction of the determinant of a complex. Although computing the
determinant of a complex can also be computationally expensive, by comparison it
is faster than computing the gcd of the maximal minors.

5. Implicitization of tensor product surfaces

We now describe the specific setting of interest for our paper. First we establish
the relation between the residual resultant and the implicit equation of Λ, and
immediately after we give explicit steps for its computation. Setting the coordinate
ring of P3

k to be S = k[X,Y, Z,W ], our goal is to find the equation H ∈ S defining
the algebraic variety

Λ=im(λ)=
{
[x : y : z : w]∈P

3
k : p0w − p3x = p1w − p3y = p2w − p3z=0

}
=V (H),

where λ : P1
k × P

1
k ��� P

3
k is a rational map as described in the introduction.

Let P = 〈p0, p1, p2, p3〉 be the ideal of R generated by the polynomials that
define the parameterization λ, and set T = R ⊗k S. We assume that the pi have
no common factors and that P is a height two ideal in R that defines a local
complete intersection set of points. Let G = P sat denote the B-saturated ideal
that defines the set of points in P

1
k × P

1
k, and set G to be the sheaf of ideals on

P
1
k × P

1
k associated to G. Since P sat = G, the sheaf G (a, b) is generated by its

global sections p0, p1, p2, p3 on P
1
k × P

1
k \ V (G). We denote by π : Q̃ → P

1
k × P

1
k the

blow-up of P1
k × P

1
k along G , and by p̃i the global section π∗(pi) of the sheaf G̃(a,b)

for i = 0, 1, 2, 3. Since G̃(a,b) is an invertible sheaf on Q̃ and p̃0, p̃1, p̃2, p̃3 are global
sections that generate it, we deduce that there is a morphism

λ̃ : Q̃ → P
3

such that λ̃∗O(1) ∼= G̃(a,b) and λ̃∗(x) = p̃0, λ̃
∗(y) = p̃1, λ̃

∗(z) = p̃2, λ̃
∗(w) = p̃3

([Har77, Ch.II.7]). As Q̃ is projective and irreducible, we have λ̃∗(Q̃) = deg(Q̃/Λ)Λ,

where Λ is the rational surface in P
3 and deg(Q̃/Λ) is the degree of the surjective

map λ̃ : Q̃ → Λ.
Let β be the following regular map:

β : U = P
1
k × P

1
k \ V (G) −→ P

3

[s : t]× [u, v] �→ (p0 : p1 : p2 : p3).

Proposition 5.1. The degree of Λ divides

2ab−
p∑

i=1

ei,

where ei is defined before Remark 2.8, and it is equal to this number when β is
birational.

Licensed to Univ of Nebraska-Lincoln. Prepared on Wed May 26 10:12:56 EDT 2021 for download from IP 129.93.169.156.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3046 ELIANA DUARTE AND ALEXANDRA SECELEANU

Proof. We have deg(λ̃∗(Q̃)) = deg(Q̃/Λ) · deg(Λ). Next, we compute deg(λ̃∗(Q̃))
by

deg(λ̃∗(Q̃)) =

∫
˜Q

c1(λ̃
∗O(1))2 =

∫
˜Q

c1(G̃(a,b))
2 = 2ab−

p∑
i=1

ei.

The last equality above follows from the same computation as in the proof of

Proposition 2.9. Thus deg(λ̃∗(Q̃)) = 2ab −
∑p

i=1 ei, which proves the first part of
the statement.

Now we consider the following diagram, where E denotes the exceptional divisor
of the blow-up π:

Q̃ \ E
˜λ|

˜Q\E ��

π

��

P
3

U = P
1
k × P

1
k \ V (G)

β �� P3

Since by construction λ̃ is unique and since the vertical map is an isomorphism

outside the exceptional divisor, we deduce that λ̃ |
˜Q\E= β◦π and hence deg(Q̃/Λ) =

deg(U/β(U)), which is one if π is birational. �

The next proposition establishes the relation between residual resultants in P
1
k×

P
1
k and the implicitization problem for tensor product surfaces with basepoints.

Proposition 5.2. Suppose that (a, b) ≥ (ki, li) for all i, (a, b) ≥ (kj1 + 1, lj1) for
some j1, and (a, b) ≥ (kj2 , lj2 + 1) for some j2. Then

ResG ,(a,b)(p0 −Xp3, p1 − Y p3, p2 − Zp3) = H(X,Y, Z, 1)deg(U/β(U))(11)

with deg(U/β(U)) = 1 if β is birational.

Proof. The residual resultant is defined as a general resultant over the blow-up of

P
1
k × P

1
k along G . Let ξ denote a point in Q̃ \ V (p̃3), and let W̃ denote the variety

{ξ × (x, y, z) | p̃0(ξ)− xp̃3(ξ) = p̃1(ξ)− yp̃3(ξ) = p̃2(ξ)− zp̃3(ξ) = 0}.

Note that considering only points in Q̃ \ V (p̃3) for the incidence variety is not a
restriction. Indeed, if ξ is such that p̃3(ξ) = 0, then for some i ∈ {0, 1, 2} we must

have p̃i(ξ) 	= 0 because p̃0, p̃1, p̃2, p̃3 generate the sheaf G̃ (a, b) on Q̃. Thus ξ cannot
be a solution of the system p̃0(ξ)− xp̃3(ξ) = p̃1(ξ)− yp̃3(ξ) = p̃2(ξ)− zp̃3(ξ) = 0.
Consider the following diagram:

W̃
π2 ��

π1

��

P
3 \ V (W )

Q̃ \ V (p̃3)
π �� P1

k × P
1
k \ V (G)

β

��

The cycle in P
3 that represents the residual resultant is exactly π2∗(W̃ ), i.e., π2∗(W̃ )

= deg(W̃/π2(W̃ ))Λ (in the generic case we have deg(W̃/π2(W̃ )) = 1). As the blow-
up π is an isomorphism outside the exceptional divisor, the equation that defines

π2∗(W̃ ) vanishes if and only if the point (x, y, z, 1) ∈ P
3 is in Λ. We deduce that

ResG ,(a,b)(p0 −Xp3, p1 − Y p3, p2 − Zp3) = H(X,Y, Z, 1)deg(
˜W/π2(˜W )).
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Now the map β |P1
k×P

1
k\V (p3) makes the above diagram commute, and since π is

birational, we deduce that deg(W̃/π2(W̃ )) = deg(U/β(U)). �
Remark 5.3. It follows from Proposition 2.9 that in the case where deg(f0) =
deg(f1) = deg(f2) = (a, b), then ResG ,{(a,b)} has degree 2ab−

∑p
i=1 ei in the coeffi-

cients of f0, f1, and f2. Looking at the degrees of the polynomials in equation (11)
from Proposition 5.2, we deduce that 2ab−

∑p
i=1 ei = deg(U/β(U)) · deg(H). This

yields an alternate proof of the first assertion in Proposition 5.1.

Proposition 5.2 establishes that the residual resultant of F = (F0, F1, F2) =
(p0 − Xp3, p1 − Y p3, p2 − Zp3) with respect to G computes the implicit equation
H = 0. To use the methods presented in section 4 to compute the implicit equa-
tion of a tensor product surface via residual resultants, we assume that the given
parameterization has a special form. To set up a parametrization λ we start with
a locally complete intersection ideal G = 〈g1, . . . , gn〉 ⊆ R of height two with a
Hilbert–Burch resolution and four bihomogenous polynomials p0, p1, p2, p3 ∈ R(a,b)

related by

(12)
[
p0 p1 p2 p3

]
=
[
g1 · · · gn

]
[hji], hji ∈ R(a−ki,b−li).

Second, we assume P sat = Gsat. The importance of this assumption is clarified
in the following Lemma 5.4 and guarantees that we can use the Eagon–Northcott
complex of In(ϕ⊕Ψ) to find suitable degrees in the regularity region of T/In(ϕ⊕Ψ).

Lemma 5.4. Suppose that G is a locally complete intersection ideal and P sat =
Gsat. Then the ideal F = (p0 − Xp3, p1 − Y p3, p2 − Zp3) has the property that
Fp = Gp for any ideal p ∈ SpecR \ B with ht(p) = 2.

Proof. Let p ∈ Spec(R) \ B be an ideal with ht(p) = 2. Since P sat = Gsat it
follows that Pp = Gp, and since Gp is a complete intersection it is furthermore the
case that dimk(p) Pp/P

2
p = 2. Now Fp ⊆ Pp is generated by 3 elements which are

pairwise independent in Pp/P
2
p , thus the equality Fp = Gp follows. �

Using the relation from equation (12), we can write the polynomials F0 = p0 −
Xp3, F1 = p1 − Y p3, F2 = p2 − Zp3 from Proposition 5.2 as

(13)
[
F0 F1 F2

]
=
[
p0 −Xp3 p1 − Y p3 p2 − Zp3

]
=
[
g1 · · · gn

]
Ψ.

Based on Algorithm 4.14 we derive a version that is tailored to the implicitization
problem.

Algorithm 5.5 (Implicitization algorithm).
Input: G a locally complete intersection ideal, P as in equation (12) such that

P sat = Gsat.

(1) Set Ψ =
[
hi0 −Xhi3 hi0 − Y hi3 hi2 − Zhi3

]
1≤i≤n

as in equation (13).

(2) Pick ν in the interior of the regularity region R(ϕ⊕Ψ).
(3) Compute the matrix Θν as explained before Proposition 4.11.
(4) Compute a maximal minor δi of degree Ni in the coefficients of Fi for

0 ≤ i ≤ 2.
(5) Return gcd (det(δ0), det(δ1), det(δ2)).

Examples illustrating this algorithm can be found in section 6.2.
For practical applications it is important to estimate the size of the matrix

Θν which governs the complexity of this algorithm. We estimate the size of this
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matrix for the case when G is a complete intersection ideal with generators of
degree (k, l). This applies to general base points as illustrated in Example 3.5.
Assuming as in Example 3.13 that the entries of Ψ have degree (a − k, b − l), we
see that the matrix ϕ ⊕ Ψ has three minors of degree (a, b) and three of degree
(2a − 2k, 2b − 2l). One may choose ν = (ν1, ν2) = (3a − 2k + i, 3b − 2l + j) ∈
R(ϕ⊕Ψ) for (i, j) ∈ St−3 = {(3, 0), (2, 1), (1, 2), (0, 3)} based on Proposition 3.14.
The remarks preceding Proposition 4.11 give that Θν has size

(3(ν1 − a+ 1)(ν2 − b+ 1) + 3(ν1 − 2a+ 2k + 1)(ν2 − 2b+ 2l + 1))×(ν1+1)(ν2+1)

= 3 ((2a− 2k + i+ 1)(2b− 2l + j + 1) + (a+ i+ 1)(b+ j + 1))

×(3a− 2k + i+ 1)(3b− 2l + j + 1).

We wish to write this in terms of the degree of the tensor product surface, (a, b).
The smallest size is attained when Ψ is a matrix of degree (1, 1) forms, that is,
(a, b) = (k + 1, l + 1). This yields the best case estimate,

3((i+ 3)(j + 3) + (a+ i+ 1)(b+ j + 1))× (a+ i+ 3)(b+ j + 3) = O(3ab× ab).

The largest size is attained when (k, l) is assumed negligible in comparison with
(a, b), yielding a worst-case estimate of order O(15ab× 9ab).

Comparing our methods with the results in [Bot11] where implicitization of ten-
sor product surfaces of bidegree (a, b) is realized based on matrices of size on the
order of 2ab × 2ab, we see that our method can in the best case scenario be more
efficient, but as the degree of the tensor product surface grows farther apart from
the degree of G, our matrices become progressively larger than those proposed by
[Bot11].

Remark 5.6. If the hypothesis P sat = Gsat is not satisfied, Algorithm 5.5 no longer
applies since the presentation map Θ for R/In(ϕ⊕Ψ) described in Proposition 4.9
is no longer surjective when restricted to any bidegree. However, given a bidegree
ν ∈ N

2, if the dimension of the cokernel of Θν is c, then the proof of Proposition
4.11 shows that the resultant divides the greatest common divisor of the generators
of the cth Fitting ideal of Θν , i.e., the minors of size (dimk Rν − c)× (dimk Rν − c)
for Θν . This is illustrated in Example 6.4.

Remark 5.7. As highlighted in Remark 4.15, steps (3) and (4) can be replaced by
the computation of the determinant of a complex. Determinants of complexes are
also used in syzygy approach methods for implicitization of triangular and tensor
product surfaces; see for instance [Cha06,Bus01,Bot11]. More importantly, in the
context of implicitization it is sufficient to compute Θν . The matrix Θν is known
as an implicit matrix representation of the surface. Matrix representations are a
useful alternative to implicit equations to represent a surface. A detailed account
of their use in geometric modeling is outlined by Busé [Bus14].

6. Examples

6.1. Examples of computing residual resultants.

Example 6.1 (Residual resultant of one reduced point). We compute the residual
resultant ResG,(1,1), where G = 〈s, v〉 is the defining ideal of the reduced point
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[0 : 1]× [1 : 0] in P
1
k × P

1
k. Consider the system

F0 = (uc00 + vc01)s+ (sc02 + tc03)v,
F1 = (uc10 + vc11)s+ (sc12 + tc13)v,
F2 = (uc20 + vc21)s+ (sc22 + tc23)v,

and let T = C ⊗R, where C = k[cij ] is the ring of generic coefficients. The ideal G
is a complete intersection and the matrix ϕ⊕Ψ is

ϕ⊕Ψ =

(
−v uc00 + vc01 uc10 + vc11 uc20 + vc21
s sc02 + tc03 sc12 + tc13 sc22 + tc23

)
.

To calculate ResG,(1,1), we find a bidegree ν as in Remark 4.10 and compute the
matrix Θν . Let J denote the ideal I2(ϕ ⊕ Ψ). From Proposition 3.14, since the
numerical parameters for this example are (a, b) = (c, d) = (e, f) = (1, 1) and
(e1, f1) = (1, 0), (e2, f2) = (0, 1), we obtain the estimate

R =

(
3a+ c− e− min

1≤i≤j≤n
(ei + ej), 3b+ d− f − min

1≤i≤j≤n
(fi + fj)

)
+ St−3 +N

2

= (3, 3) + St−3 + N
2

=
(
(3, 0) + N

2
)
∪
(
(2, 1) + N

2
)
∪
(
(1, 2) + N

2
)
∪
(
(0, 3) + N

2
)
⊆ reg(R/J).

(A) (B)

Figure 2. Example 6.1: (A) regularity region R(ϕ ⊕ Ψ); (B)
strong regularity region.

We can choose any ν in the interior of the regularity region to set up Θν . For
ν = (2, 2), Θ(2,2) is a 9× 24 matrix. We can alternatively use the notion of strong
regularity to find bidegrees such that T/J is ν-regular. The two regularity regions
are shown in Figure 2. Computing the minimal free resolution for J withMacaulay2
[GS02] yields

0 → T (−1,−2)⊕T (−2,−1)⊕T (−2,−2) → T (−1,−1)2⊕T (−1,−2)3⊕T (−2,−1)3

→ T (−1,−1)6 → T → T/J → 0,

and hence (
(1, 0) + N

2
)
∪
(
(0, 1) + N

2
)
= regs(T/J) ⊆ reg(T/J).

This means we can compute the determinant of the EN complex restricted to bide-
gree (1, 1) to find the residual resultant of the system. This yields the matrix Θ(1,1)

of size 6× 12. The residual resultant is

ResG ,(1,1)=− c03c11c20 − c03c12c20 + c01c13c20 + c02c13c20 + c03c10c21 − c00c13c21

+ c03c10c22 − c00c1,3c22 − c01c10c23 − c02c10c23 + c00c11c23 + c00a12c23.
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For this example we can compute ResG ,(1,1) in a much simpler way. Indeed, we can
rewrite the system above as a linear system having three unkowns su, sv, tv. This
system has the coefficient matrix

ρ =

⎛⎝ c00 c01 + c02 c03
c10 c11 + c12 c13
c20 c21 + c22 c23

⎞⎠ ,

hence the system has a solution whenever this determinant is zero. Indeed, one can
check that the displayed equation above gives ResG,(1,1) = det(ρ).

Example 6.2 (Residual resultant of two complete intersection points). We com-
pute the residual resultant ResG ,(1,2), where G = 〈uv, s〉 is a complete intersection

defining a set of two reduced complete points in P
1
k × P

1
k that lie on the same line

in one of the rulings. Consider the system

F0 = (sc00 + tc01)uv + (u2c02 + uvc03 + v2c04)s,
F1 = (sc10 + tc11)uv + (u2c12 + uvc13 + v2c14)s,
F2 = (sc20 + tc21)uv + (u2c22 + uvc23 + v2c24)s.

According to Proposition 2.9, ResG ,(1,2) is of degree 2 in the coefficients of each Fi.
We set up the matrix

ϕ⊕Ψ

=

(
−s sc00 + tc01 sc10 + tc11 sc20 + tc21
uv u2c02 + uvc03 + v2c04 u2c12 + uvc13 + v2c14 u2c22 + uvc23 + v2c24

)
.

Let J denote the ideal I2(ϕ⊕Ψ). In a similar fashion as in Example 6.1, we compute
the regularity region for R/J specified in Proposition 3.14 as illustrated in Figure 3.
From this region it follows that we may use ν = (1, 6). The matrix Θ(1,6) is of size
14 × 30. The strong regularity region in this case is depicted in Figure 3 (right)

(A) (B)

Figure 3. Example 6.2: (A) Regularity region R(ϕ ⊕ Ψ); (B)
strong regularity region.

and is given by
regs(T/J) =

(
(1, 2) + Z

2
+

)
∪
(
(0, 3) + Z

2
+

)
.

Estimating the regularity of T/J using the strong regularity region allows the use
of the bidegree ν = (1, 3), for which the matrix Θ(1,3) is an 8 × 12 matrix. The
polynomial ResG ,(1,2) contains 141 terms.

In this example, it is true that F : G = I2(ϕ⊕Ψ), but not for the reason given in
the the hypothesis of Lemma 4.1(2). The Eagon–Northcott complex obtained from
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the matrix ϕ ⊕ Ψ is a virtual projective resolution for I2(ϕ ⊕ Ψ), but it is not a
resolution for this ideal since it is not exact. This is to be expected considering the
proof of Lemma 3.11 because ht(I2(ϕ⊕Ψ)) = 2. However, this allows us to estimate
the regularity of T/I2(ϕ⊕Ψ) using Proposition 3.14 as pictured in Figure 3.

6.2. Examples of implicitization. In this section we illustrate the techniques
we developed in the previous sections to compute the implicit equation of a map
P
1
k × P

1
k → P

3 defined by four bihomogeneous polynomials of bidegreee (a, b).

Example 6.3. Let I = 〈s, u〉 ∩ 〈t, v〉 be the ideal from Example 3.4 which defines
two noncollinear points in P

1
k × P

1
k. This set is pictured below together with its

Hilbert function:

s t

u
v

�

�

HX =

0 1 2 3

0 1 2 2 2
1 2 2 2 2
2 2 2 2 2
3 2 2 2 2

Let G = 〈sv, tu〉, and denote by g1, g2 the two generators of G. Here G is a complete
intersection with resolution

0 �� R (
−sv
tu

)�� R2(
tu sv

)�� G �� 0.

Note that Gsat = I, so, while G is not saturated, V (G) = V (I), and therefore
the complex displayed above is a Hilbert–Burch virtual resolution for I. Next we
consider the ideal P = 〈p0, p1, p2, p3〉, where

[
p0 p1 p2 p3

]
=
[
g1 g2

]
h and h

is the 2× 4 matrix

h =

[
s t 0 0
0 0 s t

]
.

The bihomogeneous polynomials p0 = s2v, p1 = stv, p2 = stu, p3 = t2u define a
parameterization of a tensor product surface of bidegree (2, 1) with two basepoints
given by V (P ). Note that the homogeneous implicit equation for this surface is
easily obtained and equal to Y Z −XW = 0. Since the primary decomposition of
the ideal P is P = (s2, st, t2) ∩ (s, u) ∩ (t, v) ∩ (u, v), it follows that P sat = Gsat.
We obtain the matrix Ψ by writing[

p0 −Xp3 p1 − Y p3 p2 − Zp3
]

=
[
g1 g2

] [h01 − h31X h11 − h31Y h21 − h31Z
h02 − h32X h12 − h32Y h22 − h32Z

]
︸ ︷︷ ︸

Ψ

.

The ideal G satisfies the conditions in Proposition 2.6, hence ResG ,(2,1) exists. To
obtain the implicit equation using a residual resultant we set up the matrix Θν for
a bidegree ν according to Remark 4.10. On one hand we compute the regularity
region of EN(φ ⊕ Ψ) following Proposition 3.14. On the other hand we compute
the strong regularity region determined by a minimal free resolution of T/J . The
regions found by these two methods and the shifts in the minimal free resolution
of R/J are displayed in Figure 4.
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(A) (B)

(C) i Shifts in homological degree i
1 (2, 0), (2, 1)
2 (2, 1), (3, 0), (3, 1)
3 (3, 1), (2, 1), (3, 0), (3, 2)
4 (3, 2)

Figure 4. Example 6.3: (A) regularity region from Proposition
3.14; (B) strong regularity; and (C) bigraded shifts of a minimal
free resolution of T/J .

Note that in this example, the two methods of estimating the regularity region
for the module T/In(ϕ⊕Ψ) agree as shown in Figure 4. Now for ν = (3, 0) one has

Θν =

⎡⎢⎢⎣
0 0 1 0 0 0

−Y 0 −Z 1 1 0
X −Y 0 −Z −Z 1
0 X 0 0 0 −Z

⎤⎥⎥⎦ ,

whence I4(Θν) = 〈Y Z −X〉 gives the implicit equation restricted to the affine set
W = 1. The method in [Bot11] for ν = (2a − 1, b − 1) = (3, 0) also produces a
matrix representation of the implicit equation of size 4× 6.

Example 6.4. Using the same setup as in Example 6.3, we change the entries of
the matrix h that determines the parametrization ideal P . Set

h =

[
su sv 0 tu+ sv
0 tu su tv

]
,

so P = 〈s2u v, t2u2 + s2v2, s t u2, s t u v + t2u v + s2v2〉. The generators of P define
a tensor product surface of bidegree (2, 2) with two basepoints. The support of P
and G is the same; however, the primary decomposition of P reveals that the point
corresponding to (s, u) has multiplicity 2 in the scheme defined by P . However, the
primary component corresponding to this point in P is (s, u2), therefore this ideal
is still locally a complete intersection and our results apply.

In this case we cannot use the Eagon–Northcott complex EN(ϕ⊕Ψ) to compute
bidegrees in the regularity region of T/I2(ϕ⊕Ψ) because the first homology module
of EN(ϕ ⊕ Ψ) is not B-torsion. In fact, the first homology is a torsion module
supported at the point with multiplicity 2 i.e., 〈s, u〉. This shows the necessity of
the hypothesis of Proposition 4.4.

The free resolution of T/I2(ϕ ⊕ Ψ) is 0 → T 5 → T 23 → T 32 → T 19 →
T 6 → C, and the strong regularity region regs (T/In(ϕ⊕Ψ)) =

(
(2, 4) + Z

2
+

)
∪(

(3, 3) + Z
2
+

)
∪
(
(4, 2)Z2

+

)
is depicted in Figure 5. Therefore for ν = (5, 2) the

Licensed to Univ of Nebraska-Lincoln. Prepared on Wed May 26 10:12:56 EDT 2021 for download from IP 129.93.169.156.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TENSOR PRODUCT SURFACES 3053

(A)

(B) i Shifts in homological degree i
1 (2, 2)
2 (4, 2), (2, 4), (4, 3), (3, 2), (3, 3), (2, 3)
3 (4, 3), (4, 4), (4, 5), (3, 4), (3, 5), (5, 4), (2, 3), (4, 2), (5, 3)
4 (3, 5), (5, 3), (3, 4), (5, 4), (5, 5)
5 (4, 4), (4, 5), (5, 4), (5, 5)

Figure 5. Example 6.4: (A) strong regularity and (B) shifts in
the resolution for T/In(ϕ⊕Ψ).

18 × 24 matrix Θ(5,2) provides the implicit equation. The method in [Bot11] for
ν = (2a− 1, b− 1) = (3, 1) also produces a matrix representation of size 8× 11.

Although (3, 2) is not inside the strong regularity region, we can use this bidegree
to set up a 12× 12 matrix Θν whose determinant vanishes, but that has an 11× 11
maximal minor whose determinant is a multiple of the implicit equation of the
tensor product surface:

Θ(3,2),11×11=

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 1 0 0
−1 0 0 0 0 0 0 0 −X 0 −Y + 1
X 0 Y − 1 0 0 0 Z 0 0 0 0
0 0 0 0 1 0 −1 0 −X 1 −Y
X −1 Y 0 −X − Y 0 Z 0 −Z −X Z
0 X 0 Y − 1 X 0 0 Z 0 0 −Z
0 0 −1 0 −X 1 0 −1 0 −X Z
X X Y Y 0 −X − Y Z Z 0 −Z 0
0 0 0 0 0 X 0 0 0 0 0
0 0 0 −1 0 −X 0 0 0 0 0
0 X 0 Y 0 0 0 Z 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠.

The implicit equation is the degree 5 factor of

X ·
(
X4Y +X3Y Z +X2Y Z2 +X Y 2Z2 +X Y Z3 −X4 − 2X2Z2 − Z4

)
.

The 11× 11 minors of Θν yield, in addition to the above minor, the polynomials

(Y−1)·
(
X4Y +X3Y Z +X2Y Z2 +X Y 2Z2 +X Y Z3 −X4 − 2X2Z2 − Z4

)
and

Z ·
(
X4Y +X3Y Z +X2Y Z2 +X Y 2Z2 +X Y Z3 −X4 − 2X2Z2 − Z4

)
,

thus the greatest common divisor of these minors is the implicit equation.
In this example the cokernel of Θ(3,2) is 1-dimensional, and the sum of the mul-

tiplicities of the basepoints is three, but there are two basepoints. This illustrates
the observation made in Remark 5.6 that the residual resultant can be recovered
as a divisor of the submaximal minors of Θ(3,2) even if the base points in P have
higher multiplicity than the points in G.
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Example 6.5. We continue with the setup from Example 6.3 and change h to

h� =

⎛⎜⎜⎜⎜⎝
4
9 s u+ t u+ s v + 9

5 t v 10 s u+ 1
2 t u+ 2

3 s v +
2
3 t v

1
3 s u+ 10

7 t u+ 9
4 s v +

2
9 t v

8
5 s u+ 1

2 t u+ 5
7 s v +

2
3 t v

s u+ 4
5 t u+ s v + 5

8 t v 2 s u+ 7
3 t u+ s v + 9

5 t v
3
5 s u+ 7

3 t u+ s v + 8 t v 4
5 s u+ 7

3 t u+ 3
10 s v +

7
9 t v

⎞⎟⎟⎟⎟⎠ .

This choice of h determines the ideal P and a tensor product surface of bidegree
(2, 2) with two basepoints V (P ) and P sat = Gsat. We use Proposition 3.14 to
obtain the regularity region of EN(ϕ⊕Ψ) depicted in Figure 6. The resolution of
T/I2(ϕ⊕Ψ) is

0 → T 119 → T 171 → T 71 → T 24 → T 6 → T.

(A) (B)

Figure 6. Example 6.5: (A) regularity region of EN(ϕ⊕Ψ) and
(B) strong regularity region with corner (14, 11).

The strong regularity region for this example is considerably worse than the
regularity provided by Proposition 3.14. For ν = (3, 3), Θν is a matrix of size
16×24. Although the point ν = (2, 3) is not in the interior of the regularity regions
in Figure 6, the matrix Θν provides a 12× 12 determinantal representation for the
implicit equation of the surface. The method in [Bot11] for ν = (2a−1, b−1) = (3, 1)
produces a matrix representation of size 8× 10. Botbol’s method gives the implicit
equation as a quotient of two determinants, whereas the residual resultant gives a
representation as a single determinant.

7. Open problems

The results we present open the avenue for a more detailed study of virtual
resolutions from a computational point of view and for their use in elimination
theory. We formulate some questions that we encountered in our investigations
and of possible further generalizations of residual resultants.

Question 7.1. The computation of the residual resultant ResG ,{(ai,bi)}2
i=0

relies on

the availability of Hilbert–Burch resolutions of points in P
1
k × P

1
k. As highlighted

after Corollary 3.3, it is always possible to find Hilbert–Burch for any ideal of points.
However, there could be several different choices for this type of complex. Given
a set of points in P

1
k × P

1
k, what are all possible virtual Hilbert–Burch resolutions

of the defining ideal of the points? Is it possible to formulate an algorithm to
construct them? How does the choice of virtual Hilbert–Burch resolution affect
Algorithms 4.14 and 5.5?
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Question 7.2. The regularity region R(α) that we present in Proposition 3.14
makes the computation of the residual resultant feasible. However, as we observed
in Examples 6.2, 6.4, and 6.5 we can choose a bidegree ν /∈ R(α) for which the
computation still holds. Are there better bounds on the regularity region of the
module T/In(ϕ⊕Ψ) to compute the residual resultant?

Question 7.3. We generalized residual resultants in P
2 [Bus01] to residual resul-

tants in P
1
k × P

1
k and computed them by using virtual resolutions. Is it possible to

generalize residual resultants in P
n from [BEM01] to residual resultants in multi-

projective spaces and use virtual resolutions to compute them?
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[Bus14] L. Busé, Implicit matrix representations of rational Bézier curves and surfaces,
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