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Let Iy be the saturated homogeneous ideal defining a codimension two Received 11 January 2019
arithmetically Cohen-Macaulay scheme X C P”, and let IXm denote its m-th Communicated by Lawrence
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ymbolic power. We are interested in when [,”’ = [f'. We survey what is
known about this problem when X is locally a complete intersection, and
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this classification allows one to: (1) simplify known results about symbolic Macaulay; locally complete
powers of ideals of points in P! x P'; (2) verify a conjecture of Guardo, intersection; points
Harbourne, and Van Tuyl, and (3) provide additional evidence to a conjec- in P! x P'
ture of Romer.
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1. Introduction

Throughout this paper, R = k[xy, ..., x,] where k is an algebraically closed field of characteristic

zero. For any non-zero homogeneous ideal I C R, the m-th symbolic power of I, denoted 1™, is
the ideal

o — ) (I"R, N R),
peAss(I)
where R, denotes the localization of R at the prime ideal p, and Ass(I) is the set of associated
primes of . In general, I C I, but the reverse containment may fail. The ideal containment
problem consists of determining the values of r and m for which I) C I'". holds. The papers of
Ein, Lazarsfeld, and Smith [12], Hochster and Huneke [25], and Bocci and Harbourne [5, 6] are
among the first papers to systematically study this problem. Recent work includes [4, 11, 23, 32,
37]; see also the surveys [9, 41] and book [8].
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A complementary problem, and one which we consider in this paper, is to ask for conditions
on I that force I = I for all m > 1. This problem is equivalent to asking when r=7m in the
ideal containment problem, the smallest value that r could have. A classical result in this direction
is a result of Zariski and Samuel [45, Lemma 5, Appendix 6] that states I = I for all m > 1
if I is generated by a regular sequence, or equivalently, a complete intersection. Ideals that have
the property I = I for all m > 1 are called normally torsion free because their Rees algebra
is normal. The normally torsion free squarefree monomial ideals were classified by Gitler,
Valencia and Villarreal [16]. They showed that a squarefree monomial ideal is normally torsion
free if and only if the corresponding hypergraph satisfies the max-flow min-cut property. Simis,
Vasconcelos and Villarreal [38] and separately Sullivant [40] showed that edge ideals of graphs
are normally torsion free if and only if the graph is bipartite. Furthermore, Olteanu [33] charac-
terizes normally torsion free ideals that are lexsegment. More recent work on the equality
between symbolic and ordinary powers includes Morey’s paper [31] on a local version of this
question, Guardo, Harbourne, and Van Tuyl’s paper [19] which identifies all the ideals of general
points in P! x P! that satisfy I"™ = I for all m > 1, and Hosry, Kim, and Validashti’s work
[26] which identifies some families of prime ideals P such that P™ # plm)

One family of ideals for which a complete answer is known to the question of when I"* = [(")
is the family of ideals defining a codimension two arithmetically Cohen-Macaulay subscheme of
P" that is also locally a complete intersection.

Theorem 1.1. Let I=Ix be the saturated homogeneous ideal defining a subscheme X C P"
such that

e codim(X) = 2;
o X is arithmetically Cohen-Macaulay;
o X is locally a complete intersection.

Then the following conditions are equivalent:

(@ I =1
by 1M =rpm forallm > 1;
(¢) I has at most n minimal generators.

Furthermore, if m <n, then I)((m) = I¥ regardless of the number of generators.

Theorem 1.1 is a graded version of work of Ulrich [43] and Morey [31] which considered local
versions of this problem. Given the current interest in the containment problem for homoge-
neous ideals, the purpose of Section 2 is to provide a proof of Theorem 1.1 in the graded case. In
fact, we give a slightly more general result by also proving a similar statement for codimension
three arithmetically Gorenstein schemes.

We are additionally interested in the graded minimal free resolutions (i.e., Betti numbers) of
ideals that meet the hypotheses of Theorem 1.1. Using the graded strands of a certain Koszul
complex, we show that under suitable technical hypotheses, one can construct the graded minimal
free resolutions of powers of perfect homogeneous ideals of codimension two (see Theorem 2.9). As
we describe in Remarks 2.10 and 2.11, these resolutions could also be constructed using [2, 24] or
[42]; we present a more targeted proof of this known result.

Our new contributions are in the remaining sections. In Section 3, we discuss the relative
importance of the different hypotheses in Theorem 1.1 by providing a menagerie of examples.
Among other things, we show that the assumption that X be arithmetically Cohen-Macaulay is
essential in codimension two. If it is dropped, then it might happen that all symbolic and
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ordinary powers of I are equal but I has more than » generators — see Example 3.1 and Theorem 3.3.
In contrast, we provide some evidence that the condition on the codimension can be extended to
codimension three in the ACM situation — see Examples 3.5 and 3.6. All of these considerations
lead us to ask Question 3.7 as an indication of possible future directions for this investigation.
Finally, we examine the hypothesis that X be locally a complete intersection and propose Conjecture
3.8. A collection of examples concerning ideals of fat points in P* (see Examples 3.9, 3.10 and 3.11)
which satisfy ") = I" is also provided.

In Section 4 we present an application of Theorem 1.1 to points in P' x P'. Specifically, we
verify the following statement, which was conjectured in [18, Conjecture 4.1]. (See Corollary 4.4
for a slightly more precise statement.)

Corollary 1.2. Let I =1Ix be the saturated defining ideal of an arithmetically Cohen-Macaulay set of

points in P' x P'. Then I®) = P if and only if I is a complete intersection or I is an almost com-
plete intersection (i.e., it has exactly three minimal generators).

In addition, we show how Theorem 1.1 significantly simplifies earlier arguments of Guardo
and Van Tuyl [21] and Guardo, Harbourne, and Van Tuyl [18]. In fact, the original motivation
of this project was to prove [18, Conjecture 4.1]. We were initially able to verify this conjecture
using Peterson’s [35] results on quasi-complete intersections, which first suggested the importance
of being locally a complete intersection. Generalizing our specialized proof lead to the much
stronger results of this paper.

In the final section, we use the minimal graded free resolution given in Theorem 2.9 to verify
that for small powers of codimension two perfect ideals that are locally complete intersections, a
question of Romer [36] has an affirmative answer. In the case of ACM sets of points in P! x P*,
we also have a new proof of a result of Guardo and Van Tuyl [21].

2. Background results

The purpose of this section is two-fold. We first weave together the various strands in the litera-
ture to present a proof of Theorem 1.1, which is a graded version of known results. We then give
a description of the graded minimal free resolution of I"* under suitable hypotheses on I, again
using known results in the literature.

For the convenience of the reader, we first recall the relevant definitions. Let R = k[xq, ..., X,]
and denote by m the homogeneous maximal ideal m = (xo, ...,x,). For any homogeneous ideal
I CR, the saturation of I is the ideal defined by I = U I:m*. We say that an ideal I is
saturated if I=TI". A homogeneous ideal I C R is Cohen-Macaulay (or perfect)
if depth(R/I) = dim(R/I).

In the following, we denote by Ix the saturated homogeneous ideal defining a projective
scheme X. A subscheme X of P" is arithmetically Cohen-Macaulay (ACM) or arithmetically
Gorenstein if R/Ix is a Cohen-Macaulay ring or a Gorenstein ring, respectively. The codimension
of X is codim(X) = n — dim(X) = ht(Ix). The subscheme X is an almost complete intersection if
the number of minimal generators is one more than the codimension. A subscheme X is locally a
complete intersection if the localization of Ix at any prime ideal p such that p # m and Ix C p is
a complete intersection of codimension equal to the codimension of X. A subscheme X is a gen-
eric complete intersection if the localization of Iy at any minimal associated prime ideal of Ix is a
complete intersection of codimension equal to the codimension of X. Finally, a scheme X is equi-
dimensional if Iy is an unmixed ideal, that is, all of the associated primes of Iy have the
same height.

The next result is part of the folklore; we include a short proof for completeness.
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Lemma 2.1. Let X C P" be locally a complete intersection scheme of any codimension. Then I)((m) is
equal to the saturation of I}

Proof. We denote for brevity I = Ix. Let m be a positive integer and p € Ass(R/I™) \ {m}. Then
PRy € Ass(Ry/(I™),) = Ass(Ry/(I;)™) = Ass(Ry/I,), where the first equality holds because local-
ization commutes with taking powers of ideals and the second holds because I, is a complete
intersection and powers of complete intersections are unmixed ([45, Appendix 6, Lemma 5]).
Thus p € Ass(R/I) and the desired conclusion follows because the argument above yields that
Ass(R/I'™) is in Ass(R/I) U {m}. O

Remark 2.2. Lemma 2.1 can be rephrased to say that for a locally complete intersection scheme
X with ideal sheaf Ty, we have
K = @ H(T3(0)).

>0
Another way to interpret Lemma 2.1 is that the only possible embedded prime of I is the
maximal ideal m. Hence I = I if and only if depth(R/I"™) > 0.

In the following, u(J) stands for the cardinality of a minimal set of generators for an ideal J.
The next theorem gives necessary and sufficient conditions for the equality of ordinary and sym-
bolic powers for two families of ideals in terms of the number of generators of an ideal. Our
statement is more general than the one presented in the introduction since we can also say some-
thing about codimension three arithmetically Gorenstein schemes that are also locally a complete
intersection.

Theorem 2.3. Let I=1Ix be the saturated homogeneous ideal defining a subscheme X C P" such
that one of the two sets of assumptions listed below holds:

Assumptions I: Assumptions 1I:
o codim(X) =2 or codim(X) = 3;
o X is arithmetically Cohen-Macaulay; X is arithmetically Gorenstein;
o X is locally a complete intersection X is locally a complete intersection.

Then the following conditions are equivalent:

(@ IW=r1%
(b) I1m =pm forallm > 1;
(c) I has at most n minimal generators.

Furthermore, if m < n —1 for Assumptions II and n even, or if m<mn in all other cases, then
I )((m = IY regardless of the number of generators.

Proof. Recall that for any graded homogeneous ideal J of R = k[xy, ..., x,], if we localize at the max-
imal ideal m, then u(J) = u(Jw). Furthermore, depth(R/J) = depth(Ry/Jm) by [7, Proposition
1.5.15]. Therefore all of our assumptions localize and thus one can reduce to the case where I is an
ideal in a regular local ring R.

The implication (a) = (b) follows by the proofs of Morey’s results [31, Theorems 3.2 and 3.3]
and (b) = (c) follows by [31, Corollary 3.4]. Next we explain how the last conclusion and the
remaining implications follow in a more general context. Note that by [27, Theorem 2.3] the
classes of ideals considered in this theorem are licci (i.e., in the linkage class of a complete
intersection).
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For the remaining implications we reason as follows. Assume that I is a licci ideal that is
locally a complete intersection on the punctured spectrum of R and has p(I) <n. By [27,
Theorem 1.14] licci ideals have Cohen-Macaulay Koszul homology for their generating sequences.
Then [43, Remark 2.10 and Corollary 2.13] yield

depth(R/I") > n+1— u(I),Vm > 1.

Since p(I) < n, this estimate gives that depth(R/I") > 1,Vm > 1. Therefore the ideal I" is satu-
rated, and by Lemma 2.1 we conclude that I") = [". This gives that (c) = (b). Finally, (b) =
(a) is clear.

Working still under the assumption that I is a licci ideal that is locally a complete intersection
on the punctured spectrum of R, then [43, Remark 2.10] gives that depth(R/I) > n+2 —
ht(I) —j for all j such that 1 <j<mn+2—ht(I). Assume that ht(I) = 2. Then for m < n =
n+ 2 —ht(I), the depth estimate above gives depth(R/I") > n — m > 0. Again, the ideal I" is
saturated, and by Lemma 2.1 we conclude that I = ["'. Now assume that ht(I) = 3. In this
case the depth estimate above yields that I = [" for m < n — 1. When X is an arithmetically
Gorenstein variety of codimension 3 (Assumptions II), we may also consider the complex D,
defined in [30]. The strand ®,, of the complex will be a resolution for I'" by [30, Theorem 6.25],
which gives depth(R/I") =n+1—min{u(I),1+2[ZL|} > n—2|2H| For m=n—1 we
obtain depth(R/I"™!) > 0 if n is odd. This proves the last statement in our theorem. O

Remark 2.4. The two classes of ideals considered in Theorem 2.3 are licci (linked to complete
intersections). The equivalence of parts (b) and (c) of Theorem 2.3 remains valid in the case of
licci ideals I. Indeed, the implication (¢) = (b) is shown above and (b) = (c) follows from the
estimate depth(R/I"™) =n+1— pu(I) for m > 0 discussed in the preceding proof. It would be
interesting to investigate whether the equivalence between these statements and condition (a)
remains valid for licci ideals. We pose this problem as Question 3.7 (iii).

Remark 2.5. Cases of Theorem 2.3 were previously known.

(i) If X is a set of points in P, then I§(m> # I for any m > 2 if and only if X is not a com-
plete intersection. This follows from [29, Theorem 2.8], which gives that R/I} is not
Cohen-Macaulay for any m > 2 unless X is a complete intersection.

(i) If C C P? is a curve that is locally a complete intersection and is an almost complete inter-
section, then Theorem 2.3 gives [35, Corollary 2.7].

(iii) A connection between the number of generators and the equality of the regular and sym-
bolic powers in a special case can be found in [28, Corollary 2.5]. In particular, if R is a
regular local ring with dimR = 3, and if P is a height two prime ideal with three or more
generators, it is shown that P" # P") for all m > 1. See also the discussion of [17,
Remark 1.27].

(iv)  As we will show in Section 4, any ACM set of points in P! x P! is also locally a complete
intersection. Theorem 2.3 thus implies that if X is any ACM set of points in P! x P!, then
we get I)((2> = I%. This was first shown in [18]. See also Corollary 4.4.

Remark 2.6. The big height of an ideal I, denoted bigheight(I), is the maximum among the
heights of the minimal primes of I. Huneke asked if I = I for all m < bigheight(I), then is it
true that I") = [" for all m > 12 In [18] it was shown that the answer to this question is negative by
showing that when X is an ACM set of reduced points in P' x P!, then bigheight(Ix) = 2, but one

needs to check if I)(f) = 1)3( to guarantee that I)((m) =I¢ forall m > 1.1In fact, Theorem 2.3 shows that
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we may have to check powers arbitrarily larger than bigheight(I) to guarantee that 1) = [" for
allm > 1.

The remainder of this section is devoted to describing the graded minimal free resolution of
I" when I is a perfect ideal of codimension two under some additional hypotheses. The length of
these complexes determines whether I = I™) and hence are closely connected to Theorem 2.3.

Let us start with some preparation.

Lemma 2.7. Consider a complex of finitely generated R-modules

9 Do
0— F,—F, | — -+ — Fp—M—0,

where the modules Fy, ..., F, are free R-modules. If the complex has homology of finite length, 0y is
surjective, and p < n, then the complex is exact.

Proof. Break the complex into short exact sequences and compute local cohomology, or apply the
New Intersection Theorem [34]. O

Recall that a homomorphism ¢ : F — G of free R-modules is called minimal if its image is
contained in mG. This means that any coordinate matrix of ¢ has no unit entries.

Lemma 2.8. Let I C R be a homogeneous ideal admitting a free graded presentation
F%G —1— 0.

Then, for every integer m > 0, there is a complex of graded R-modules

0— A\"F— A" Fosym'c — \" Fosym’G — -

— N’F®Sym™ G — F© Sym™'G — Sym"G — Sym"I — 0

whose right-most map is surjective. Moreover, if ¢ is a minimal map, then all the maps in the com-
plex above are minimall.

Proof. Let Syml denote the symmetric algebra of I. A presentation for SymI can be obtained
from the given presentation of I by applying the symmetric algebra functor, which yields the
exact sequence

F®SymG — Sym G — SymI — 0.

Concretely, if rank G =r and t,...,t, are new indeterminates, then the surjection Sym G =
R[t;,....t;] — Syml is obtained by mapping each of the variables f; to a generator f; of I. We view
this as a bigraded map, by assigning deg(#;) = (1,deg(f;)) and declaring that each element g € R
has bidegree (0,deg(g)) in Sym G. We shall refer to the first component of this bigrading as the
t-degree. If rankF =s, then the kernel of the map SymG — SymI is the ideal C=
(3im1 @4ti | 1 <j <s), where ¢ are the entries of a coordinate matrix representing ¢. In this
notation, the short exact sequence above gives SymI = (Sym G)/C.
The Koszul complex K, on the generators of the ideal C of Sym G takes the following form:

s—1

s 1
0— N\F(=s)@SymG — A\ F(-s+1)®@SymG — --- — N\ F(~1) © Sym G — Sym G — 0.

It is a complex of free Sym G-modules and the graded twists refer to the t-grading. The linear
strand in t-degree m of the Koszul complex is the following complex of free R-modules, which
also appears in [13, p. 597]:
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m m—1 m—2
0— AF— )\ FepSym' G — A ForSym’G — ---

2
— /\F@RSym’"*2 G — FopSym™ ' G — Sym™ G.
Moreover, the given presentation for SymI induces the exact sequence
F® Sym™ 'G — Sym™G — Sym™I — 0.

Combining the two complexes gives the desired conclusion. The differentials in the family of
complexes described above involve only the elements ¢;;, thus minimality for any of these com-

plexes is equivalent to the minimality of ¢. O

The above family of complexes can be used to extract information on the minimal free reso-
lution for the powers of I in several cases. We introduce the notation V(J) = {p € Proj(R)|] C
p,p # m} for the elements of the punctured spectrum of R containing J.

Theorem 2.9. Consider a graded minimal free resolution of a homogeneous perfect ideal I C R =
k[xo, ..., xn] of codimension two

0—-FL%G-T1—0.

Let m be a positive integer and assume further that I is locally a complete intersection and
min{rank G — 1,m} < n. Then Sym™I = I"" and the complex in Lemma 2.8 is a graded minimal
free resolution of I".

Proof. In view of our Lemma 2.8, it is sufficient to verify that the complex therein is acyclic and
that the canonical surjection Sym™ I — I"™ is in fact an isomorphism Sym™I = . We continue
with the notation introduced in the proof of Lemma 2.8.

Localizing the short exact sequence 0 — F — G — I — 0 at p € V(I) yields the direct sum of
a minimal free resolution for the height two complete intersection I, = (f,g) and an isomorph-
ism 0 — Ry, — Ry — 0. This gives Cygpy,,...¢) = (fti — gtas 13, .- 1), thus C is a complete inter-
section in R[t;,...t;|. Similarly, when localizing at primes p not containing I, K, becomes the
Koszul complex on the variables ¢, ..., t; and thus K, and all of its graded strands are exact com-
plexes when localized at p # m. Therefore the homology of the graded strands of K, has finite
length. Applying Lemma 2.7, we conclude that the complex in Lemma 2.8 is exact when m < n.

Furthermore, by [42, Theorem 5.1], the isomorphism Sym™I = I" holds true if u(l,) <
depth R, for all prime ideals p containing I such that depth R, < min{u(I),m}. For p € V(I),
using the fact that I is locally a complete intersection, we have u(I,) = ht(I,) = depthI, <
depth R,. Next we analyze the possibility that p = m is among the primes that satisfy depthR, <
min{p(I),m}. This occurs when n+ 1 = depth Ryy < min{u(I), m} = min{rank G, m}. Since by
hypothesis we have min{rank G — 1,m} < n, it must be the case that u(I) =rankG=n+1<
m. But in this case, u(ly) =rankG =n+ 1= depthR,, thus the desired conclusion that
Sym™I = I" follows. O

Remark 2.10. The proof of [42, Theorem 5.1] shows that the locally complete intersection
hypothesis in Theorem 2.9 can be weakened to u(I,) < depth R, for all primes containing I and
such that depth R, < min{u(I), m}.

Remark 2.11. Previously known approaches to obtaining Theorem 2.9:

(i) Lemma 2.8 and Theorem 2.9 could also be obtained by applying the results of [24]. In par-
ticular, the complex of Lemma 2.8 is the approximation complex of [24] constructed from
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the minimal free resolution of a perfect ideal of codimension two. We prefer to give a
more explicit description of this complex for future use in Section 5.

(i) In [2, Theorem 5.4], the resolutions of powers of an ideal that satisfies htIj(¢) >
u(I) +1 —j are given. This provides an alternate proof of our Theorem 2.9.

It is of interest to record here the minimal free resolution that we obtain in the special cases
of m=2 and m=3 for ACM curves in P*. This will be useful in Section 4.

Corollary 2.12. Let X be an arithmetically Cohen-Macaulay curve in P that is locally a complete

intersection, and let 0 — F5G — Ix — 0 be a graded minimal free resolution.
(a) The graded minimal free resolution of I% is

2
0—>/\F—>F®G—>Sym2GHI§(—>0.

(b)The graded minimal free resolution of I is

3 2
OH/\Fﬂ/\F®GHF®Sym2GHSym3GHI§(HO.

Remark 2.13. (i) The above result applies in particular to any smooth space curve that is arith-
metically Cohen-Macaulay.

(ii) Note that any arithmetically Cohen-Macaulay union of lines in P> such that no three lines
meet in a point is locally a complete intersection. Again, the above result applies to configurations
of this type.

3. Remarks on the hypotheses

In this section we comment on the importance of the various hypotheses in our results in Section
2, especially Theorem 2.3, and we give examples to indicate various ways that they might
be weakened.

3.1. The ACM hypothesis

The assumption that X is arithmetically Cohen-Macaulay is essential in Theorem 2.3. If it is
dropped, then it might happen that all symbolic and ordinary powers of I are equal but I has
more than n generators. This is illustrated by Example 3.1.

Example 3.1. Let X be the union of 5 lines in P’ defined by 5 general points in P' x P! (see
Section 4 for more on points in P! x P'). This configuration has codimension two and is locally
a complete intersection, but is not ACM. However, from [19, Theorem 3.1.4], I = Ix has 6 min-
imal generators and I = I" for all m > 1. A similar phenomenon holds for s =2, or 3 general
points in P' x P'. The case of s=2 general points (i.e., two skew lines in P* or even in P") is
also discussed in [20, Remark 4.2]. Note that all the cases of this example are non-ACM cases.

It is interesting to notice that for 5 general lines in P* the picture is quite different, but still
shows that the ACM hypothesis is necessary for the final statement of Theorem 2.3.

Example 3.2. Let X be the union of 5 general lines Ly, ...,Ls in P°. Again, X is not ACM, but
codim(X) = 2 and X is locally a complete intersection. Then for I = Ix we have

1? £ P,
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Indeed, for any three mutually distinct indices {i,j,k} C {1,2,3,4,5} with i<j < k let Q be
the quadric containing the lines L; L; and Li. Altogether there are 10 such quadrics. The ideal I
is then generated by the following products of the quadrics

Fi = Q123Qu4s5, F» = Qu45Q35, F3 = Q235Q124, F4 = Q124Q345, F5 = Q345Q123,
Fs = Q125Q234, F7 = Q234Qu35, Fs = Q135Q124, Fo = Q134Qu45, F10 = Q345Q125.

These generators not only vanish along all lines but they vanish along one of the lines to order 2.
Since there is a cubic vanishing along 4 general lines in P*, this gives rise to 10 septics vanishing
to order 2 along all five lines. Hence there are elements of degree 7 in I®) but the initial degree
of I* is 8. This example shows that the final statement of Theorem2.3 also requires the
ACM hypothesis.

Nevertheless, the condition that X be ACM in Theorem 2.3 seems not to be essential if we
allow the codimension to go up. Indeed, it is of interest to seek results about symbolic powers for
non-ACM subschemes, possibly of higher codimension. We first give a simple such result.

Theorem 3.3. Let C = C; U C, be a disjoint union of two complete intersections of dimension r in

P¥*1 Then I = I(Cm) for all positive integers m.

Proof. For i=1, 2, we have that [ = I(C'i") for all m since I¢, is generated by a regular sequence
(see [45, Lemma 5, Appendix 6]). Thus

= (Igle)" =12 12 =12 N1z =10 NI =127,

The first and third equalities are true because for disjoint ACM subschemes of dimension r in
P?"1, the intersection of the ideals is equal to the product thanks to a special case of Théoreme
4 and the subsequent Corollaire in [39, pp. 142-143]. O

The following example shows that even the assumption that C be a disjoint union, in

Theorem 3.3, is not always needed.

Example 3.4. Consider the union, C, of two planes in P* meeting at a point P. At P, C not only
fails to be locally a complete intersection, but in fact it fails to be locally Cohen-Macaulay, since
C is a cone over two skew lines in P? with vertex at P. Yet a similar argument as given in the
proof of Theorem 3.3 shows that I{! = Iém) for all m > 1. In particular, it is worth noting that
the powers of I do not pick up an embedded point at P.

3.2. The hypothesis on low codimension

As noted in Remark 2.4 It is conceivable that the equivalence of the three statements (a), (b) and
(¢) in Theorem 2.3 may hold in higher codimension as long as the ideal is locally a complete
intersection and linked to a complete intersection. We offer some evidence toward this conjecture
below. In the following example we give “essentially” the same licci ideal, viewed in P> and in P*.
In both cases the ideal is locally a complete intersection (in fact smooth) and is ACM. It has four
minimal generators, so the condition that I has at most n minimal generators fails in the case of
P? but is satisfied in the case of P*. This example was obtained using CoCoA [1].

Example 3.5. Consider a sufficiently general complete intersection of type (1,1,2) in P* and (sep-
arately) also in P*. In each case, link this ideal using a sufficiently general complete intersection
of type (2, 2, 2). Both in P* and in P*, the residual will be ACM of codimension 3, and an easy
mapping cone argument shows that the residual has 4 minimal generators and Hilbert function
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(1,4,6,6,...). In P* the residual is a set of 6 distinct points, and in P* the residual is a smooth
curve of degree 6 and genus 2, so both are locally complete intersections. Indexing by the ambi-
ent space, we denote these ideals by I3 and I, respectively. One can check by hand or with a com-
puter algebra program that the Betti diagram of both I5 and I, is

0o 1 2 3
0: 1 - - -
1: - 4 2 -
2: - - 3 2
Tot: 1 4 5 2.

Then one can check with a computer algebra program that the Betti diagram of both I7 and I3 is

0 1 2 3 4

- 10 8 1 -
- = 9 8 1
Tot:| 1 10 17 9 1.

B W N = O
I
I
I
|
|

By the Auslander-Buchsbaum formula, this means that I§ is not saturated, hence I% #* Igz). On
the other hand, it means that IZ is saturated; then since I, is locally a complete intersection, we

get 2 =1 (although I? is not ACM). We have verified on CoCoA that in fact If = I\"
for1 <k<7.

An additional piece of evidence that the hypothesis on the codimension might be weakened is
provided by ideals of scrolls P! x P"<P**"!. Note that the ideals defining these scrolls are not
even licci, as can be shown by applying the criterion in [44, Theorem 2.8].

Example 3.6 (Scrolls). Let X be the scroll P! x P" — P**™! embedded by the Segre embedding.
The ideal J of X is determined by the 2 x 2 minors of a generic 2 x (n + 1) matrix. By [10,
Corollary 7.3] we have J (m) — m for all m > 1. Indeed, in the notation of the just cited corollary,
we have ] = I,, n=2 and £ = 2.

n+1
2
P?**1. The variety we get has codimension n. When n=2 or n=3, it is true that the number of
minimal generators is smaller than the dimension of the projective space. The latter, in particular,
gives further evidence for Question 3.7 below. But as soon as n > 4, we get an example where
the number of minimal generators is larger than the dimension of the projective space (violating
part (c) of Theorem 2.3) but nevertheless the statements of (a) and (b) are true.
With the above examples and comments in mind, we pose the following questions:
Question 3.7. Let X C P" be an ACM subscheme that is locally a complete intersection.
(i) If codim(X) = 3, are conditions (a), (b) and (c) of Theorem 2.3 still equivalent?
(ii) If codim(X) > 3, are conditions (a) and (b) of Theorem 2.3 still equivalent?
(iii) If Iy is linked to a complete intersection, are conditions (a), (b) and (c) of Theorem 2.3
still equivalent?

Notice that the ideal J has ( > minimal generators and the corresponding scroll lies in
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3.3. The hypothesis of being locally a complete intersection

We now address the assumption that X is locally a complete intersection. For many of the results
in this paper, Lemma 2.1 has been important. It says that the property that a reduced subscheme
X C P" is locally a complete intersection implies that its powers do not pick up non-irrelevant
embedded components, so that the failure of a power to be a symbolic power comes only from
the failure to be saturated. It is natural to ask if the converse holds; that is, one might ask if the
following statement is true: If X is not locally a complete intersection, then I defines a scheme
with embedded components.

We have seen in Example 3.4 that this is not the case. On the other hand, it is not hard to
verify that if X consists of three lines in P? meeting at a point, then X is ACM but I does have
an embedded point; so even though I3 is saturated, it is not equal to I§(2 ). We make the following
conjecture, which is also based on other computer experiments. Example 3.4 shows that it is not
true without the assumption that X C IP°.

Conjecture 3.8. Let X C P° be a subvariety (reduced and unmixed) of codimension 2. Assume that
there is a point P € X such that the localization of Ix at P is not a complete intersection. Then for
any integer m > 2, the saturation of I} has an embedded component at P. In particular,

I)((m) #Iy for all m > 2.

The above conjecture has been proved in [3, Theorem 4.4] for irreducible varieties X. We now
give some examples related to this conjecture.

Example 3.9. Recall that a fat points scheme in P" is defined by an ideal of the form J =
I(P)™ N---NI(P)™, where {Pi,...,P;} CP" is a finite set of distinct points and my, ..., m; are
non-negative integers. We denote the fat points scheme by m;P; + - - - + mP;. By Remark 2.5(i),
if J is the ideal of a reduced set of points in P? (so J is radical), then J(™ = J" for all m > 1 (if
and) only if J is a complete intersection. However, the situation is more subtle for fat points.
There are examples of nonreduced ideals J = I(P;)™ N---NI(P;)™ of fat points all of whose
powers are symbolic. Since a nonradical fat points ideal is never locally a complete intersection,
this shows that Conjecture 3.8 is false without the assumption that X is a variety, where variety
here means any reduced subscheme of P" (not necessarily irreducible).

It is an interesting but open problem to classify those ideals I of fat points in P* whose powers
are all symbolic. Of course, if J = I'¥) where I is a radical complete intersection ideal of points in
P", then JIM = [im) = ptm — (I™ =J™, so J is a fat points ideal and all powers of J are sym-
bolic. A sufficient condition for J™ = J™ for all m > 1 to hold for an ideal J of fat points in P?
is given in [23, Proposition 3.5]: if J is of the form J = I¥) where I is a radical ideal of n points
in P?, and if «(J)B(J) — *n = 0, where «(]) is the least degree of a non-zero form in J and B(J)
is the least degree d such that the base locus of the linear system J; is 0-dimensional, then all
powers of ] are symbolic. So for example, if I is either the ideal of five general points in P* or the
ideal of a star configuration in P?, then J™ = J™ holds for all m > 1 for J =1?® (see [23,
Corollary 3.9 and Lemma 3.11]; see also [15]). In neither case is I a complete intersection; in par-
ticular I? # I? for these examples.

Example 3.10. We now recall examples of radical ideals I(m) of points in P2 given in [32]. The
results of [32] show that the powers of I (m)("') are all symbolic but I (m)("') is not a power of a
complete intersection and (as long as m > 3) the criterion given in [23, Proposition 3.5] does not
apply. (For example, for m =4, we have o(I(4)) = 16 and B(I(4)) = 20, but m*n = 16(19).) Fix
some integer m > 3 and consider the ideal
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I(m) = (x(y" = 2"),y(2" — x™),2(x™ — y™)) C R = k[x,y,2].

This ideal is the homogeneous ideal of a set of m* + 3 points, which has been dubbed a Fermat

point configuration. By Theorem 2.3 (c), we know I(m)® = I(m)*. However, for each positive
integer j one has by [32, Proposition 4.1]

I(m)(mj) _ (I(m)(m))j.

Example 3.11. The examples given above of ideals ] = I(P;)™ N ---NI(P;)™ of fat points whose
powers are all symbolic all have the property that gcd(m;, ..., m;) # 1, but this is not essential.
Examples with gcd(my, ...,m;) = 1 are given in [6, Example 5.1]. In particular, let ] be the ideal
of Z=(d —1)P, + P, + - - - 4 Py where Py, ..., P,; are general points in P* and d > 2. It is shown
in [6] that J™ = J(" and noted there that there is no m > 1 such that J™ is a power of any
ideal which is prime, radical, or a complete intersection. As noted in [6], further examples can be
obtained from this using the action of the Cremona group. These examples, Example 3.9 above,
and the case m=3 of Example 3.10 have the property that «(J)B(J) — >_;m? =0, where a(J)
and f(J) are as defined in Example 3.9. Thus, perhaps [23, Proposition 3.5] can be generalized to
ideals of fat points rather than just for certain powers of certain radical ideals. However Example
3.10 shows this would still not cover all cases of ideals of fat points whose powers are
all symbolic.

4. Application 1: points in P! xP’

In this section we apply the main results of Section 2, namely Theorem 2.3, to ACM sets of
points in P! x P'. In particular, we show how our new results give new short proofs to results in
[18, 21].

We begin with a quick review of the relevant definitions and notation. For a more thorough
introduction to this topic, see [22]. The polynomial ring k[xo,x;, X2, x3] with the bigrading given
by degxy = degx; = (1,0) and degx, = degx; = (0, 1) is the coordinate ring of P* x P!. A point
P=lag:a] x [bo: by] in P! x P! has a bihomogeneous ideal Ip = (a;xy — apx1, b1x; — boxs). A
set of points X = {P;, ..., P} C P! x P! is associated to the bihomogeneous ideal Iy = N pexIp. If
we only consider the standard grading of this ideal, then Iy defines a union X of lines in P°. In
order to apply the results of the previous sections, we first require the following lemma.

Lemma 4.1. Let X C P! x P! be any set of points. Then Iy is locally a complete intersection.

Proof. We will consider a point P € P! x P! as the line in P’ that is defined by the ideal Ip =
(a1x0 — apx1, b1xa — boxs). We now show that the union of lines in P? coming from a union of
points in P' x P! in this way is locally a complete intersection. There is no problem at a smooth
point, so we must determine how two or more such lines can meet at a single point. Let C be a
union of such lines.

The planes of the form a;xy — agx; form the pencil of planes, A;, through the line 4; defined by xo =
x; = 0. Similarly, the planes of the form b;x, — box; form the pencil of planes, A,, through the line 1,
defined by x, = x; = 0. Notice that 4, and 4, are disjoint. A point P in P' x P!, then, corresponds to
the line of intersection of a plane in A; and a plane in A,. Given any point A in P> not on either 4, or 4,,
there is a unique element of A; and a unique element of A, passing through A. Hence two lines of C can-
not meet at a point not on one of the two lines, 4; or A,. Now assume that A € 4; (the case A € 1, is
identical). In order for two or more lines of C to meet at A, it must be that the plane H4 € A, containing
A is fixed, while the plane in A, is not. Hence lines meeting at A all lie on Hy, and so are coplanar. But
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any plane curve is a complete intersection, so the same holds for any localization. Therefore, any set of
points in P! x P! defines a union of lines in P* that is locally a complete intersection. O

First we give a short proof of [18, Theorem 1.1].

Theorem 4.2. Let X C P' x P! be an ACM set of points. Then I} = I)((m) for all m > 1 if and
only if b = 1{.

Proof. We will view X as a union of lines in P>. By Lemma 4.1, X is locally a complete intersec-
tion. Now apply Theorem 2.3. O

In [18], it was also asked what sets of points X C P! x P! satisfy I )3( =% and, in particular, if there is
a geometric classification of such points. The authors proposed such a classification. We require the fol-
lowing notation. Let 7, : P! x P! — P! denote the natural projection onto the first factor. If X C
P! x P! is a finite set of reduced points, 7,(X) = {A,, ..., Ay} is the set of distinct first coordinates that
appear in X. Fori = 1, ..., h, seto; = |[X N @iy (A;)|, ie., the number of points in X whose first coordin-
ate is A;. After relabeling the A/s so that o; > a4 fori =1,....,h — 1, we set ox = (o, ..., oap).

Remark 4.3. One of the themes of the monograph [22] is to demonstrate that when X is an
ACM set of points in P' x P!, many of the homological invariants of I, e.g., bigraded Betti
numbers, Hilbert function, can be computed directly from the tuple ox. As shown in the next

corollary, ax can also be used to determine when I)(("O =Iy.
We now prove [18, Conjecture 4.1]. In fact, we give a slightly stronger version.

Corollary 4.4. Let X C P! x P! be any ACM set of points. Then

@ B=I1Y.
(b)  The following are equivalent:
(i) I3 defines an ACM scheme;
(i) = I)(f) is the saturated ideal of an ACM scheme;
(iii) X is a complete intersection;
(iv) ox = (a,a,...,a) for some integer a > 1.
(c)  The following are equivalent:
Qi L= I)<(3) is the saturated ideal of a non-ACM scheme;
(ii)  Ix is an almost complete intersection;
(i) ox = (a...a,b,...,b) for integers a > b > 1.

Proof. Since X (viewed as a union of lines in P?) is locally a complete intersection, for any m the

condition that I = I)((m) is equivalent to the condition that I{ is saturated., Equivalently,
proj-dim(I¥) < 2. In the former case the scheme it defines is ACM; in the latter case it is not.
Part (a) was first proved in [18, Theorem 2.6], but it also follows from Corollary 2.12 (a). From
Corollary 2.12 (a) we see that the scheme defined by I2 is ACM if and only if A°F =0, i.e.,
rank(F) = 1, meaning that X is a complete intersection.

That I} is the saturated ideal of an ACM scheme is equivalent by Corollary 2.12 (b) to A\*F =
0, which means again that X is a complete intersection. The equivalence of (iii) and (iv) in (b) is
[22, Theorem 5.13]. This proves (b).

To prove (c) we need the resolution to be one step longer, which is equivalent to A*F # 0
and A\’ F =0, i.e., F has rank 2, meaning that Ix has three minimal generators. By [22, Corollary
5.6], Ix has three minimal generators if and only if there exist integers a, b with a > b such that
ox = (a,...,a,b,...,b). 0
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Guardo and Van Tuyl give an algorithm [21, Algorithm 5.1] to compute the bigraded Betti
numbers for any set of double points in P! x P! provided that the support is ACM. Although we
will not reproduce the algorithm here, it was shown that the bigraded Betti numbers of a set of
double points only depend upon the tuple oy = (oy, ..., o) describing the support X. We can
now deduce this result from our new work.

Corollary 4.5. Let Z C P! x P! be a set of fat points where every point has multiplicity two. If X is
the support of Z and if X is ACM, then there exists an algorithm to compute the bigraded Betti
numbers of I, using only .

Proof. Because X is ACM, the bigraded minimal free resolution of Iy can be computed directly
from oy (see [22, Theorem 5.3]). By Corollary 4.4, I, = )((2) = I%. We can then use Corollary 2.12
to compute the bigraded resolution of I3 using the bigraded resolution of Ix. In particular, the

bigraded Betti numbers of I, only depend upon knowing oy. O

Note that one can use Corollary 2.12 to write out all the bigraded Betti numbers. Although we
will not do this here, we will show how to compute the bigraded Betti numbers of triple points
whose support is an ACM set of points that is an almost complete intersection. Except for the
result in the remark below, we are not aware of any similar results of this type.

Corollary 4.6. Let Z C P! x P! be a homogeneous set of triple points (i.e., where every point has
multiplicity three) and let X denote the support of Z. If Iy is an almost complete intersection with
ox = (a,...,a,b,...,b), then I, has a bigraded minimal free resolution of the form

S—— >~

c d

0—>F2—>F1—>F0—>Iz—>0
where

Fy = R(—3c —3d,0)®R(—3¢c — 2d, — b)®R(—2c — 2d, — a)DR(—3c —d, —2b)PR(—2c—d, —b—a)D
R(—c—d, —2a)®R(—3c, — 3b)DR(—2¢, —2b — a)DR(—c, — b — 2a)DR(0, — 3a)

F; = R(—c¢, — 3a)®R(—2c, —2a — b)®BR(—3¢c, —a — 2b)OR(—c — d, —2a — b)BR(—2c —d, —a—2b)D
R(—3c—d, —3b)BR(—2c — d, — 2a)®R(—3c —d, —a— b)DR(—2c —2d, —a — b)D
R(—3¢ —2d, — 2b)®R(—3c — 2d, — a)DR(—3c — 3d, — b)

F, =R(—3c—2d, —b—a)®R(—3c —d, —a —2b)DR(—2c —d, —2a — b).

Proof. Because Iy is an almost complete intersection, Corollary 4.4 implies that I = If) =1;. So

the bigraded resolution of I, can be computed using Corollary 2.12 if we know the bigraded reso-
lution of Ix. But by [22, Theorem 5.3] the bigraded resolution of an almost complete intersection
Ix with oy = (a,...,a,b,...,b) is
S—— >~
c d

0— R(—c—d, —b)®R(—c, —a) — R(—c — d,0)BR(—c, — b)BR(0, — a) — Ix — 0.
O

Remark 4.7. In the previous statement, the set of fat points all have multiplicity three. Favacchio
and Guardo [14] have generalized this result. In particular, they have shown that if Z is set of fat

points in P' x P! whose support is an almost complete intersection, one can weaken the
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hypothesis that the fat points are all homogeneous of degree three to construct a set of nonhomo-

geneous fat points (in a controlled fashion), and still prove that Ig"> =TI forallm > 1.

5. Application 2: a question of Romer

In this last section we show how one can use Theorem 2.9 to give further evidence for a question
of Romer [36]. We begin by defining and introducing the relevant notation.

Let I be a homogeneous ideal of R = k[x, ..., x,]. The graded minimal free resolution of R/I
has the form

0—F—F_,—--—F—=R—=R/I—=0

where F; = @jcz, R(—])ﬁ’f (®/D " The number p = proj — dim(R/I) is the projective dimension, and
the numbers f8; ;(R/I) are the (i, j)-th graded Betti numbers of R/I. The i-th Betti number of R/I
is fi(R/I) = Zjez Bij(R/T).

Romer [36] initiated an investigation into the relationship between the i-th Betti numbers of I
and the shifts that appear in the graded minimal free resolution. In particular, Romer asked the
following question.

Question 5.1. Let I be a homogeneous ideal of R = k[xy, ..., x,]. Does the following bound hold for
alli=1,..,p:

BN < ,(p 1

) i

where M; := max{j | f;;(R/I) # 0}?
Romer showed that Question 5.1 is true for all codimension two Cohen-Macaulay ideals, while
Guardo and Van Tuyl [21] verified the question for any set of double points in P! x P! whose

support is ACM. We now use Theorem 2.9 to extend the family of known positive answers to
Question 5.1. In the statement below, recall that o(I) = min{i | (I); # 0}.

Theorem 5.2. Consider a homogeneous perfect ideal I C R of codimension two that is also locally a
complete intersection. Fix an integer m € {1, ...,n}. Then

1

BR/T™) < (i—1)(m+

I |HM forall 1<i<m+1
— i)
J#i

where M; := max{j | B, ;(R/I) # 0}.

Proof. If m=1, then this result follows from [36, Corollary 5.2]. Let d = u(I). By the Hilbert-
Burch Theorem, the ideal I has a minimal resolution of the form:

0—-R™T SRS T—0.

Furthermore, the minimal generators of I are given by the (d —1) x (d — 1) minors of the
Hilbert-Burch matrix. Since every entry of this matrix is either 0 or has degree > 1, we have
o(I) > d — 1. In particular, for all m > 2, we have d < ma(I).

Because of our hypotheses on I and m, Theorem 2.9 implies that the complex of Lemma 2.8 is
a graded minimal free resolution of I"", and consequently, proj-dim(R/I") = m + 1 and for all
1<i<m+1,
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Bi(R/I™) = dimk(/ﬂ\Rd1 ®Sym’"”1(Rd)> = (f_f) (dzinl i)‘

We have o(I") = ma(I). As a result, for each i=1,..,m+1, B;;(R/I")=0 for all j<
ma(I) 4+ (i — 1). So, because d < mo(I), we have

d+(i—-1)<mo(I)+(i—-1)<M; foralli=1,...,m+1.
Combining these pieces together now gives
d=1)(d=2)---(d—i+1)(d—-i)(d+m—i)---(d)(d—1)!

BiR/TY) = (- D)(d— ) (m+1—0)i(d—1)!
_(@d—i+)[d—i+2) - (d=1)(d)(d+]1)-(d+m—i)
(i— Dl(m+1—1i)
- (d)d+1)---(d—i—=2))((d+i)(d+i+1)---(d+m))
= (= Di(m+1—1)
MMy - Mi (Mg My
(- Dl(m+1— i)
This now verifies the inequality. O

We can reprove and extend [21, Theorem 6.1] which first proved the case m =2.

Corollary 5.3. Let X CP' x P! be an ACM set of points. If I=1Iy, then Question 5.1 has an
affirmative answer for I'"" with m=1, 2 and 3.
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