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ABSTRACT

Motivation: Cryo-Electron Tomography (cryo-ET) visualizes structure and spatial organization
of macromolecules and their interactions with other subcellular components inside single cells in
the close-to-native state at sub-molecular resolution. Such information is critical for the accurate
understanding of cellular processes. However, subtomogram classification remains one of the major
challenges for the systematic recognition and recovery of the macromolecule structures in cryo-ET
because of imaging limits and data quantity. Recently, deep learning has significantly improved the
throughput and accuracy of large-scale subtomogram classification. However often it is difficult to
get enough high-quality annotated subtomogram data for supervised training due to the enormous
expense of labeling. To tackle this problem, it is beneficial to utilize another already annotated
dataset to assist the training process. However, due to the discrepancy of image intensity distribution
between source domain and target domain, the model trained on subtomograms in source domain
may perform poorly in predicting subtomogram classes in the target domain.
Results: In this paper, we adapt a few shot domain adaptation method for deep learning based
cross-domain subtomogram classification. The essential idea of our method consists of two parts:
1) take full advantage of the distribution of plentiful unlabeled target domain data, and 2) exploit
the correlation between the whole source domain dataset and few labeled target domain data.
Experiments conducted on simulated and real datasets show that our method achieves significant
improvement on cross domain subtomogram classification compared with baseline methods.
Availability: https://github.com/xulabs/aitom
Contact: mxu1@cs.cmu.edu

Keywords Few Shot Domain Adaptation ·Macromolecule Classification · Cryo-electron Tomograms
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1 Introduction

Plentiful complex biochemical processes and subcellular activities sustain the dynamic and complex cellular environ-
ment, in which a mass of intricate molecular ensembles participate. A comprehensive analysis of these ensembles in
situ1 inside single cells would play an essential role in understanding the molecular mechanisms of cells. Cryo-electron
Tomography (cryo-ET), as a revolutionary imaging technique for structural biology, enables the in situ 3D visualiza-
tion of structural organization information of all subcellular components in single cells in a close-to-native state at
submolecular resolution. Thus cryo-ET can bring new molecular machinery insights of various cellular processes by
systematically visualizing the structure and spatial organizations of all macromolecules and their spatial interactions
with all other subcellular components in single cells at unprecedented resolution and coverage.

In particular, because of fractionated total electron dose over entire tilt series [1], we need to average multiple
subtomograms2 that contain identical structures in order to get high SNR subtomogram average representing higher
resolution of the underlying structure [2]. However, the macromolecule structures in a cell are highly diverse. Therefore,
it is necessary to first accurately classify these subtomograms into subsets of structurally identical macromolecules.
This is performed by subtomogram classification. Systematic structural classification of macromolecules is a vital
step for the systematic analysis of cellular macromolecular structures and functions [3] in many aspects including
macromolecular structural recovery. However, such classification is very difficult, because of the structural complexity
in cellular environment as well as the limit of data collection such as missing wedge effects [1]. Therefore, for successful
automatic and systematic recognition and recovery of macromolecular structures captured by cryo-ET, it is imperative
to have an efficient and accurate method for subtomogram classification.

With the technological breakthrough of cryo-ET and the development of image acquisition automation, collecting
tomograms containing millions of macromolecules is no longer the obstacle for researchers, and methods based on
deep-learning have been proposed to address the issue of high-throughput subtomogram classification thanks to the
high-throughput processing capability of deep learning. Different architectures of Convolutional Neural Network (CNN)
have been explored [4]. Despite the significant superiority in speed, accuracy, robustness and scalability compared
to traditional methods, these supervised deep learning based subtomogram classification methods often suffer from
the high demand of annotated data. Currently labeling is done by a combination of computational template search
and manual inspection. However, in practise, template search is time-consuming and quality control through manual
inspection is laborious. The complicated structure and distortion caused by noise make subtomogram images hard
to distinguish by the naked eyes even by experts, which is a major obstacle for the manual quality insurance of the
annotation.

An intuitive idea to tackle the problem of insufficient annotated data is to utilize a separated auxiliary dataset, which
has abundant labeled samples, to assist subtomogram classification. Such auxiliary dataset is obtained from a separate
imaging source or from simulation. Therefore the auxiliary dataset and our target dataset have the same structural classes
but different image intensity distribution. The difference can be attributed to discrepant data acquisition conditions,
such as different Contrast Transfer Function (CTF), signal-to-noise ratio (SNR), resolution, backgrounds, etc. The
source domain is defined as the domain that the auxiliary dataset belongs to, and the target domain is defined as the
domain that the evaluation dataset belongs to. In our case, we assume that we have plenty of labeled subtomograms in
the source domain, but only few labeled samples in the target domain are accessible. This is due to the difficulty to
annotate the data in target domain. For example, the real cryo-ET data in the target domain acquired from cryo-ET (real
dataset) might be extremely time-consuming to annotate. On the other hand, we can generate simulated cryo-ET data in
the source domain on the computer as the separated auxiliary dataset to assist us to improve the prediction accuracy of
the real dataset in the target domain. Unfortunately, because of the image intensity distribution discrepancy between the
source domain and the target domain, a deep learning model trained on the source domain perform poorly on the target
domain due to dataset shift [5].

Domain Adaptation [6] is an effective way to solve this problem. This approach resolves the discrepancy of data
distribution between source domain and target domain. One type of domain adaptation fine-tunes a trained neural
network on source domain, which makes it perform well on both source domain and target domain. Another type of
domain adaptation transforms target/source data in order to make it get close to the image intensity distribution of
another domain [e.g. [7]]. Therefore, neural network doesn’t need to distinguish two domains, because their image
intensity distributions are similar by properly transforming the input data. Domain adaptation can also be categorized
into unsupervised and supervised approaches: Unsupervised domain adaptation (UDA) requires large amount of data
but doesn’t need target labels [e.g. [8]], while supervised domain adaptation (SDA) requires target labels to be given
[e.g. [9]]. Nowadays these two methods are the mainstream methods to reduce distribution discrepancy in source

1At their original locations.
2Subtomograms are subvolumes extracted from a tomogram, and each of them usually contains one macromolecule
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Figure 1: The flowchart of our method. The model whose edge is imaginary line represents that its parameters are
fixed. In Stage 1, an encoder fφ and a classifier g are initially trained using data in source domain (Section 2.1). In
Stage 2, a discriminator D is trained to identify the domain of each subtomogram (Section 2.2). In Stage 3, labeled data
in both domains are used to fine-tune the encoder fφ with the assistance of discriminator D (Section 2.3).

domain and target domain. However, in our cryo-ET dataset, the methods based on UDA and SDA have obvious defects:
(1) UDA can’t utilize the information of labeled data in target domain, therefore intra-class relationship between source
domain and target domain is neglected. (2) Often, due to annotation difficulty, there are too few labeled data in target
domain that SDA can’t reach satisfactory results.

Therefore, we propose a method for Few-Shot Domain Adaptation: Few-Shot Fine-Tuning domain adaptation(FSFT).
Few-Shot means that each class contains only very few labels in the target domain [e.g. [10]]. Generally, for each class,
we only use three to seven labels in the target domain. The flowchart of our method is presented on Figure 1. It contains
three components: encoder fφ, classifier g and discriminator D. Encoder fφ extracts every subtomogram into a feature
vector3; classifier g transforms each feature vector into a one-hot label, which presents the class of each subtomogram;
discriminator D identifies which domain the feature vectors belong to. The detailed training procedure is explained in
the following section.

We have evaluated our method on both simulated and real datasets. Compared with popular baseline methods, our
method achieves significantly higher classification accuracy. Additionally, related works and result analysis are
presented in supplementary document.

Our main contributions are summarized as follows:

• We are the first to use few-shot domain adaptation for cross-domain subtomogram classification.

• We directly train the discriminator without adversarial training in the training procedure, comparing to FADA
[10].

• We introduce a mechanism of partly-shared parameters of encoder fφ between source domain and target
domain. The layers whose parameters are shared by two domains are called domain-independent layers, and
the other layers are called domain-related layers (Section 2.2.1).

• We combine domain discrimination for the output of independent layers and shared layers (Section 2.2.2).

3Feature vectors represent the output of encoder fφ
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2 Methods

In this section, we describe our model in details. Our training strategy contains three stages. Stage 1: an encoder fφ and
a classifier g are initially trained using data in source domain (Section 2.1). Stage 2: a discriminator D is trained to
identify the domain of each subtomogram (Section 2.2). Stage 3: labeled data in both domains are used to fine-tune the
encoder fφ with the assistance of discriminator D (Section 2.3). Stage 2.1 is Unsupervised Domain Adaptation while
Stage 2.2 and Stage 3 are Supervised Domain Adaptation.

Algorithm 1 Overall algorithm
Input:

Encoder in source domain: f0 ◦ fs

Encoder in target domain: f0 ◦ f t
Classifier g, discriminator D.

Output:
Trained f0 ◦ fs, f0 ◦ f t, classifier g and discriminator D.

1: Train f0 ◦ fs and classifier g using source subtomograms (Stage 1)
2: Train f0 ◦ fs, f0 ◦ f t and g using unlabeled target subtomograms (Stage 2.1) by algorithm 2
3: Train discriminator D using labeled target and source subtomograms (Stage 2.2)
4: Fine-tune f0◦f t and classifier g with the assistance of discriminatorD and labeled target and source subtomograms

(Stage 3)

2.1 Stage 1: Initialize encoder fφ and classifier g

A series of subtomogram samples in source domain Xs = (xs, ys) are provided in this section. We apply a 3D encoder
fφ, which maps each subtomogram into a feature vector in embedding space. We introduce an embedding function
fφ(·) to represent the encoder fφ. Because the parameters of encoder fφ are partly shared between source domain and
target domain, the embedding function can be composited by two parts: the domain-related function f t(·) or fs(·), and
the domain-independent function f0(·). That’s to say, we apply f0 ◦ fs(·) for source domain and f0 ◦ f t(·) for target
domain.

The application of the partly-shared encoder fφ is based on the assumption that different domains have similar high
level feature (including details), because the structure of subtomograms in the same class but from different domains
are similar; but their low level features are different such as edges due to image intensity difference between domains.
The front part is more for low level features and the back part for high level features. In other words, the front parts of
encoder f0 of fφ extract the common structural features of both domains and remove the domain-related features such
as image parameters and SNR. The back parts fs and f t further extract their common feature into embedding space.
Second, a classifier g maps feature vectors into one-hot labels, which is represented by a prediction function g(·).

We update the encoders in source domain:f0 ◦fs and encoders in target domain:f0 ◦f t and classifier g by the following
equation:

θ ← θ − 1

n
β∇θ[−

n∑
i=1

ysi log(g ◦ f0 ◦ fs(xsi ))] (1)

The loss function is:

LC = −
n∑
i=1

ysi log(g ◦ f0 ◦ fs(xsi )) (2)

We set n as batch size. xsi represents the i-th subtomogram image, and ysi represents the i-th subtomogram label in each
subtomogram sample batch.

2.2 Stage 2: Train the discriminator D

After the first training step, the combination of encoders in source domain: f0 ◦ fs and encoders in target domain:
f0 ◦ f t and classifier g have a perfect performance in classification of source domain because plentiful labeled source
data Xs = (xs, ys) is supplied. Unfortunately, due to the different experimental imaging parameters in two domains,
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we can hardly reach satisfactory result in target domain. Thus, the essential part of our proposed method is utilizing
unlabeled data and few labeled data in target domain in order to improve its performance in target domain. According
to our experiments, even though the amount of labeled data in target domain is scarce, they are notably conductive to
the improvement of classification accuracy in test stage.

Inspired by [10], we devise a discriminator D for Domain Adaptation in the following stages. [10] trains the discrim-
inator D using adversarial training. The method is successful on the popular datasets such as MNIST, USPS and
SVHN, because the loss function is easy to design. However, unlike the traditional 2D images, the spatial and structural
information of our 3D subtomograms is very complicated and it is severely contaminated by noise. Therefore, it is
difficult to train a desirable network using adversarial training because discriminator D and encoders in source domain:
f0 ◦ fs and encoders in target domain: f0 ◦ f t are very hard to converge at the same time and their performance needs
to be synchronized. Thus, as much as adversarial training is able to reach a satisfactory result in the traditional image
datasets which have relatively high Signal-to-Noise-Ratio(SNR), when it comes to cryo-ET, the drawback of adversarial
training would be exposed. Therefore, instead of training discriminator D and encoders in source domain: f0 ◦ fs and
encoders in target domain: f0 ◦ f t alternately like adversarial training, in our model, the discriminator D is only trained
once, and the parameters of the encoders fs, f t, and f0 are not trained during the training of the discriminator D.

In this section, we aim at training a discriminator D to distinguish the domain of each feature vector, which is described
in detailed below.

2.2.1 Stage 2.1: Preprocessing of encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t

In this stage, we adjust the parameters of encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t.
By doing this, the encoder f0 ◦ f t is easier to extract the information of subtomograms of target domain. We use a
discriminator D to assist encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t to confuse two
domains; on the other hand, in order to make the discriminator D distinguish two domains well, our encoders in source
domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t must have the ability to confuse two domains. That’s to say, at
the beginning the distributions of feature vectors T s := {f0 ◦ fs(xs

i )} and T t := {f0 ◦ f t(xt
i)} in the two domains

shouldn’t have too much notable discrepancy. Otherwise, it would be so easy for the discriminator D to identify which
domain every subtomogram belongs to, and its identification ability can hardly be improved. Therefore, the training
of discriminator D relies on encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t, and the
training of encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t relies on discriminator D too.
Unfortunately, neither discriminator D and encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t

are fully trained. The encoders fs, f t, and f0 in two domains are all pre-trained on the source data Xs = (xs, ys), so
the parameter of the encoder f0 ◦ f t in target domain is identical to the encoder f0 ◦ fs in source domain. The model
trained on data in source domain can hardly extract the feature in target domain very well, which becomes a major
obstacle to train a discriminator D.

In order to solve this problem, we use the following tactics. 1) Stage 2.1: Apply unsupervised domain adaptation (UDA)
to encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t. 2) Stage 2.2: Train a discriminator D
with the help of encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t. 3) Stage 3: Optimize
encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t with the help of discriminator D. The
detailed algorithm of Stage 2.1 is discussed as follows.

The encoder f0 ◦ fs trained by source data Xs = (xs, ys) is pre-trained in the first stage (Equation 1), which we
discussed in detail in the Section 2.1. We apply UDA for encoders in source domain: f0 ◦ fs and encoders in target
domain: f0 ◦ f t in both domains before training a discriminator D. UDA utilizes unlabeled data in target domain to
enable our network the ability to initially confuse the data in two domains.

Specifically, for UDA, inspired by [11], deep correlation alignment (CORAL) is applied to encoders in source domain:
f0 ◦ fs and encoders in target domain: f0 ◦ f t to reduce the domain distribution discrepancy between feature vectors
T s and T t in source and target domains. We implement this method by appending CORAL loss to original classification
loss. CORAL loss measures the distribution discrepancy between source domain and target domain in embedding space.
We select a set of feature vectors Ds in source domain from T s and a set of feature vectors Dt in target domain from
T t.

Specifically, CORAL loss is defined as:
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LCORAL =
‖Cs − Ct‖2F

4d2
, (3)

where ‖ · ‖F is the Frobenius norm; Cs is the covariance matrix of Ds and Ct is the covariance matrix of Dt; and d is
the dimension of the feature vectors Ds and Dt. Cs and Ct are calculated by the following equations:

Cs =
1

ns − 1

[
DsTDs − 1

ns (1
TDs)T (1TDs)

]
, (4)

Ct =
1

nt − 1

[
DtTDt − 1

nt (1
TDt)T (1TDt)

]
, (5)

where 1 denotes a column vector whose every element is 1; ns := |Ds| is number of feature vectors in Ds; and
nt := |Dt| is the number of feature vectors in Dt.

The combined loss is defined as:

Ltotal = LCORAL + LC, (6)

where LC is the classification loss defined in 2.

The model architecture of UDA is shown in Figure 2. Generally, LCORAL and LC are opposite: trying to diminish
LCORAL must cause category confusion to encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t
and classifier g and vice versa. We set α as 500 such that our model can reach a desirable result on target domain.

We simultaneously input data from two domains, and each batch contains data in both target domain and source domain.
We acquire Cs and Ct by calculating the batch covariance [11] of subtomograms. In other words, Ds denotes the
feature vectors in a subtomogram batch from source domain, and Dt denotes the feature vectors in a subtomogram
batch from target domain.

Algorithm 2 Unsupervised Domain Adaptation Training
Input:

Subtomograms Xs in source domain.
Subtomograms Xt in target domain.

Output:
Trained encoders f0 ◦ fs and f0 ◦ f t and classifier g.

1: for m epochs do
2: for k steps do
3: Acquire feature vectors batch Ds and Dt from Xs and Xt

4: Calculate the covariance matrix Cs and Ct according to equations 4 and 5.
5: Update the parameters of encoders f0 ◦ fs and f0 ◦ f t and classifier g by minimizing 6.
6: return encoders f0 ◦ fs and f0 ◦ f t and classifier g.

3DConv1 3DConv2 3DConv3 3DConv4

3DConv1 3DConv2 3DConv3 3DConv4

Source 
Data

Target 
Data

Shared

CORAL Loss

Classifier
Cross Entropy 

Loss

Figure 2: Our model architecture of Unsupervised Domain Adaptation. domain-related layers contain the first and
second Convolution Block and domain-independent layers contain the third and last Convolution Block. That’s to say,
the parameters in the domain-independent layers are shared by data in source domain and target domain.
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2.2.2 Stage 2.2: Update the parameters of discriminator D

In this stage, we aim at training a discriminator D to differentiate two different domains. In order to fully utilize the
label of target domain, inspired by [10], we design the discriminator D to identify whether two subtomograms are from
the same domain and whether they belong to the same category. We consider the condition that the labeled data in target
domain is scarce (For example, not more that 7 samples are labeled in each class). These labeled target samples are
utilized in this step. We train a discriminator D in order to distinguish feature vectors T s and T t from source domain
and target domain with the parameters of encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t

and classifier g fixed. We combine all of the feature vectors in source domain T s and labeled feature vectors T t
l , and

pair feature vectors in W = T s ∪ T t
l . There are four kinds of pair combinations: 1) two paired feature vectors coming

from the same domain and category, 2) from the same domain but different categories, 3) from different domains but
the same category and 4) from different domains and categories. Therefore, we divide all pairs into 4 groups: G1, G2,
G3 and G4 to correspond four kinds of pair combination above. The discriminator D learns to classify each pair into
one of the four groups. In each training process, we obtain minibatch by selecting a certain number of feature vector
pairs from the 4 groups. The parameters of discriminator D are updated by the following equation:

θ ← θ − 1

n
β∇θ

[
−

n∑
i=1

gi log(D
(
t1i , t

2
i )
)]

(7)

where n denotes the size of minibatch. (t1i , t2i ) represents the i-th feature vector pair from minibatch, and t1i , t
2
i ∈W .

gi ∈ {G1, G2, G3, G4} represents the group ID of the i-th pair of minibatch. We use the function D(·) to denote the
discriminator D.

The architecture of discriminator is showed in Figure 3. The discriminator D contains the 3D discriminator and 1D
discriminator corresponding to our partly-shared encoder fφ. The output of domain-independent layers (feature vectors
T s, T t) and output of domain-related layers are both discriminated, because we assume that the input distribution of
domain-independent layers has low correlation with domain variation. 3D discriminator distinguishes output domain
of domain-related layers. 1D discriminator integrates the output of 3D discriminator and feature vectors T s, T t then
calculates the group ID of each pairs.

Encoder fs

Encoder ft

Encoder f0

Classifier g

Conv 
Discriminator

Discriminator DCD Loss

Cross Entropy Loss

Encoder f0

Classifier g

Concat

Cross Entropy Loss

Concat

Source 
Data

Target 
Data

Figure 3: Our model architecture of Supervised Domain Adaptation (Stages 2.2 and 3).

2.3 Stage 3: Fine-tune the encoder fφ

After training the discriminator D, we fine-tune the encoders in source domain: f0 ◦ fs and encoders in target domain:
f0 ◦f t and classifier g again with the parameters of discriminatorD frozen. We need to make discriminatorD confused
between G1 and G2, and also between G3 and G4 by updating the parameters of encoders in source domain: f0 ◦ fs

and encoders in target domain: f0 ◦ f t, which is measured by the domain-class discriminator (DCD) loss [10]:

LDCD = −E
[
yG1 log

(
D(G2)

)
− yG3 log

(
D(G4)

)]
, (8)

where yGi
represents the ID of Gi. Therefore the total loss can be denoted as:

Ltotal = γLDCD + Ls + Lt, (9)
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where Ls and Lt are the cross entropy loss functions to the classification of source domain and target domain.

Algorithm 3 Supervised Domain Adaptation Training
Input:

Cryo-ET data in source domain: Xs.
Labeled cryo-ET data in target domain: Xt.

Output:
Trained encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t, classifier g and discriminator
D.

1: Sample groups G1,G2,G3 and G4

2: for m epochs do
3: Update D with encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t and classifier g fixed

by minimizing 7.
4: for m epochs do
5: Update encoders in source domain: f0 ◦ fs and encoders in target domain: f0 ◦ f t and classifier g with

discriminator D fixed by minimizing 9.
6: return encoders f0 ◦ fs and f0 ◦ f t, classifier g and discriminator D

3 Results

3.1 Datasets

3.1.1 Simulated Subtomograms

The simulated subtomograms of 353 voxels are generated similar to [12]. Two simulated subtomogram dataset batches
S1, S2 are provided to realize the domain adaptation process. S1 is acquired through 2.2mm spherical aberration,
-10µm defocus and 300kV voltage. S2 is acquired through 2mm spherical aberration, -5µm defocus and 300kV voltage.
Each dataset batch contains four datasets with different SNR levels (0.03, 0.05, 0.1, 0.5, 1000). Specifically, there are
43 macromolecular classes in each dataset. All of macromolecular classes are collected from PDB2VOL program [13],
and each class in each dataset contains 100 subtomograms.

3.1.2 Real Subtomogram Datasets

We test our model on two real subtomogram datasets S1 and S2. S1 is extracted from rat neuron tomograms [14],
containing Membrane, Ribosome, TRiC, Single Capped Proteasome, Double Capped Proteasome and NULL class(the
subtomogram with no macromolecule). Its SNR is 0.01, and the tilt angle ranges from −50◦ to +70◦.

S2 is a single particle dataset from EMPIAR [15], containing Rabbit Muscle Aldolase, Glutamate Dehydrogenase,
DNAB Helicase-helicase, T20S Proteasome, Apoferritin, Hemagglutinin and Insulin-bound Insulin Receptor. Its SNR
is 0.5, with tilt angle range −60◦ to +60◦, size 283 voxels, and voxel spacing 0.94nm.

3.2 Classification Results

We conduct experiments respectively with finetune, FADA and our methods on simulated datasets and real datasets, and
compare the results of these methods. Finally, we demonstrate the superiority of our method on the simulated and real
datasets.

3.2.1 Results of Simulated Datasets

In this experiment, As is denoted as source domain and At is denoted as target domain. For facilitating computation,
we randomly sample 100 subtomograms from each class. Table 1 presents the prediction accuracy in these methods.

3.2.2 Results of Cross-domain Prediction of Real Subtomograms

The real datasets are acquired in the very complicated environment, causing the heterogeneity of subtomograms and
very low SNR comparing to simulated dataset. This characteristic of experimantal datasets poses a challenge to the
macromolecule classification.

8
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Table 1: The classification accuracy of the dataset from target domain. The result in each cell represents the accuracy
of CORAL [11], Sliced Wasserstein Distance[16], finetune, FADA and our method from top to bottom. The highest
accuracy in each cell is highlighted. It shows that the prediction accuracy of our method surpasses the baseline methods
in most of the cases.

Target Domain

Source Domain

SNR 1000 0.5 0.1 0.05 0.03

1000

0.470 0.066 0.049 0.034 0.024
0.442 0.148 0.095 0.078 0.063
0.513 0.211 0.083 0.062 0.050
0.664 0.404 0.185 0.161 0.146
0.761 0.518 0.253 0.196 0.177

0.5

0.189 0.369 0.219 0.125 0.104
0.321 0.374 0.244 0.144 0.150
0.387 0.416 0.204 0.137 0.111
0.660 0.577 0.328 0.255 0.171
0.601 0.532 0.332 0.254 0.203

0.1

0.107 0.24 0.237 0.188 0.166
0.125 0.250 0.230 0.166 0.143
0.280 0.285 0.263 0.184 0.147
0.415 0.436 0.297 0.231 0.170
0.513 0.456 0.332 0.257 0.218

0.05

0.034 0.147 0.197 0.145 0.13
0.057 0.170 0.126 0.152 0.150
0.184 0.238 0.203 0.191 0.137
0.280 0.292 0.231 0.205 0.176
0.439 0.374 0.292 0.256 0.235

0.03

0.045 0.117 0.115 0.122 0.127
0.061 0.123 0.098 0.088 0.106
0.089 0.190 0.166 0.166 0.148
0.276 0.229 0.202 0.194 0.177
0.218 0.243 0.211 0.200 0.200

Five simulated datasets in As and At with different SNR(1000, 0.5, 0.1, 0.05, 0.03) are utilized. Each of the simulated
dataset acts as source domain, and their classes are the same as target domain. and two real subtomogram datasets
are acted as the target domain. Table 2 shows the classification results on all of the methods. The result in each cell
represents the prediction accuracy in real dataset, and the confusion matrices have been showed in 4. Additionally, 3
and 7 labeled samples are selected in target domain for supervised training in FADA and our method.

Figure 4: The confusion matrix in our method and baseline method. In view that FADA is far more better than other
baselines, we compare the confusion matrix in our method to those in FADA. The left is the confusion matrix of FADA,
the right is the confusion matrix of our method.
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Table 2: The classification accuracy on the real dataset. The row of the cell denotes which method is utilized and the
column of the cell denotes the SNR of source domain. The first row is FADA and the second row is our method. It is
obvious that the superiority of our method increases as the SNR becomes lower comparing to FADA.

Target Domain
1000 0.5 0.1 0.05 0.03

Source Domain

3 shot
S1

0.801 0.626 0.453 0.535 0.538
0.732 0.720 0.608 0.606 0.586

S2
0.705 0.731 0.793 0.748 0.655
0.788 0.733 0.891 0.849 0.774

7 shot
S1

0.842 0.664 0.760 0.679 0.690
0.774 0.805 0.791 0.719 0.701

S2
0.959 0.952 0.947 0.953 0.796
0.833 0.969 0.971 0.954 0.958

4 Conclusion

Recently, Cryo-Electron Tomography emerges as a powerful tool for systematic in situ visualization of the structural
and spatial information of macromolecules in single cells. However, due to high structural complexity and the imaging
limits, the classification of subtomograms is very difficult. Supervised deep learning has become the most powerful
method for large scale subtomogram classification. However, the construction of high quality training data is laborious.
In such case it is beneficial to utilize another already annotated dataset to train neural network model. However, there
often exists a systematic image intensity distribution difference between the annotated dataset and target dataset. In such
case the model trained on another annotated dataset may have a poor performance in target domain. In this paper, we
propose a Few-shot Domain Adaptation method to for cross-domain subtomogram classification. Our method combines
Unsupervised Domain Adaptation and Supervised Domain Adaptation: we first train a discriminator D to identify the
domain of each subtomogram, and we utilize the discriminator D to assist us the process of SDA. To the best of our
knowledge, this is the first work to apply semi-supervised Domain Adaptation on subtomogram classification. We
conduct experiments on simulated dataset and real dataset, and the prediction accuracy of our methods surpasses the
baseline methods. Therefore, our method can be effectively applied to the subtomogram classification from a new
domain with only a few labeled samples supplied. Our work represents an important step toward fully utilizing deep
learning for subtomogram classification, which is critical for the large-scale and systematic in situ recognition and
recovery of macromolecular structures in single cells captured by cryo-ET.

Funding

This work was supported in part by U.S. National Institutes of Health (NIH) grant P41GM103712 and R01GM134020,
U.S. National Science Foundation (NSF) grant DBI-1949629 and IIS-2007595, and Mark Foundation for Cancer
Research grant 19-044-ASP. XZ was supported by a fellowship from Carnegie Mellon University’s Center for Machine
Learning and Health.

A Few Shot Domain Adaptation for in situ Macromolecule Structural Classification in
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A.1 Related work

Current analysis of cryo-ET includes template matching [17]. First we create the templates for every class; and for
every subtomogram, we calculate the matching score between the template and itself. The method is straight-forward
and easy to realize, but the computation complexity is unbearable, especially on the data which has countless classes
and more dimensions compared to traditional images. What’s more, because of the intense disruption of noise, the error
rate of this method is very high.

Another method utilizes unsupervised subtomogram classification (e.g. [18]). Now there are a set of subtomograms
which correspond to k classes. First we initialize k class centers, each of which represents the average of subtomograms
in each class, and therefore all of subtomograms can be classified by computing the distance to k class centers. Second,
after labeling all of subtomograms, we redirect k class centers by calculating average of labeled subtomograms in each
class. By computing the two above steps iteratively, we can approximately obtain the label of every subtomogram. This
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method doesn’t require the label of any subtomogram, reducing the workload of labeling our data. Nevertheless, even if
some tactics eliminating noises has been elaborated in this paper, the noises are still remaining a severe problems in our
subtomogram classification, which extremely affect the performance in this method adversely.

There is another straightforward resolution that we can implement transfer learning into subtomogram classification. We
generate simulated dataset in the computer as source domain and set real dataset as target domain. With the development
of Neural Network, many Deep Learning models use this tactic to solve this problem. [19] proposed an unsupervised
classification method with transfer learning. First we train a CNN model by simulated dataset. In the second stage, we
remove the last layer from the original model and then extract the feature vector of the real dataset. In the end, we apply
k-means clustering to the feature vector of the real dataset.

Recently [20] applies Unsupervised Domain Adaptation to subtomogram classification, in order to resolve the situation,
in which source domain(train dataset) and target domain(test dataset) have different image intensity distribution. Even
though it reaches a desirable performance in target domain, there still remains limitations because no label in target
domain is utilized; what’s more, adversarial training is used in this paper. In Section 2.2, we have discussed in detail
that adversarial training is hard to be convergent when using Cryo-ET. Comparing to this paper, we success to utilize
the label information in target domain and further improve its performance.

There are two mainstream ways for current Unsupervised Domain Adaptation methods to decrease image intensity
distribution. First, the training dataset is used to optimize our model and later the parameter of this model is fine-tuned
by test dataset. Even if the label information of test dataset isn’t available, some of its global features, such as mean
and covariance, can still be calculated. This kind of information is crucial for us to fine-tune the parameters of our
model. For instance, [11] and [21] use this way as domain adaptation. The second way is transforming the data in target
domain, making its distribution more similar to the data in source domain. Compared to the first way, parameters of
the model would not be fine-tuned. For instance, [7] use this way as domain adaptation. In this paper, whitening and
re-coloring, which utilizes the covariance of data in source domain and data in target domain, are applied to data in
source domain. The source data being transformed are used to train the classification model. Because transformed
source data has the similar distribution with target data, the model can reach a desirable result on target domain.

Compared to Unsupervised Domain Adaptation, Few-shot Domain Adaptation utilizes the whole data in source domain
and very few labeled data in target domain. The core idea is very similar to Few Shot Learning[22]: we require our
model to learn the features in very few images. However, the two fields still have very significant difference. Few shot
learning needs to learn the image features whose labels aren’t presented in training dataset, while few shot domain
adaptation needs to learn the image features whose domain are different from training dataset.

A.2 Time complexity

We test the time complexity of FSFT and other Deep Learning methods, which is presented in Table 3.

Table 3: This table lists cost time of five Deep Learning method. FSFT costs less time than SWD and Fine-tune while
costs more time than FADA and CORAL.

Model Time Cost(s)
CORAL 323.66

SWD 1797.37
Fine-tune 1002.08

FADA 554.80
FSFT 921.36

From the table, CORAL, as the simplest method, costs the least time. Compared to FADA, FSFT add Deep CORAL as
one of crucial stage, and its model is more complex. These changes introduce more computation, in order to have a
better performance in subtomogram classification.

A.3 Result Analysis

We conduct some experiments to analyze to verify the effectiveness of FSFT. We generate 23 classes for the simulated
datasets S1 and S2 which are mentioned in Section 3.1.1. In this section, we want to verify the effectiveness of each
stage and each contribution we proposed. All the experiments in this section are conducted on these datasets.

Firstly, in the task of subtomogram classification, we split the whole training procedure into 3 stages which are tightly
linked. We verify that each stage plays an important role in improving the classification precision. Table 4 presents
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the improvement of each stage in FSFT. Unsupervised Domain Adaptation is used in Stage 2 and Supervised Domain
Adaptation is used in Stage 3. The combination of them enable encoders f0 ◦ f t to adapt the target domain.

Table 4: We calculate the classification accuracy in each stage. This table shows that in Stage 2.1, Deep CORAL
method improves the accuracy from 37.2% to 70.9%; In Stage 2.2, we only update the parameter of discriminator, so
the prediction accuracy is the same as Stage 2.1. In Stage 3, Fine-tune the encoder fφ improves the accuracy from
70.9% to 95.3%

Stage Accuracy
Stage 1 37.2%

Stage 2.1 70.9%
Stage 2.2 70.9%
Stage 3 95.3%

Secondly, the contributions mentioned in Section 1 are effective in improving the performance of FSFT. In order to
verify their effectiveness, we remove each contribution in FSFT and test its performance in target domain. In table 5,
FSFT method we proposed realizes the best performance, while others can’t reach the optimal accuracy compared to
FSFT.

Table 5: Accuracy of ablation study. Row 1 corresponds to FSFT we proposed; Row 2 corresponds to FSFT without
Stage 2.1; Row 3 corresponds to FSFT which use GAN to train discriminator and encoder; Row 4 corresponds to FSFT
which only use 1D discriminator.

Model Accuracy
FSFT 95.3%

FSFT without CORAL 79.1%
FSFT with GAN 94.2%

FSFT without 3D Discriminator 95.1%

Figure 5: This picture shows how α affect the prediction accuracy.

A.4 Hyper-parameter Adjustment

In this section, we discuss how to choose the hyper-parameter, for example, α in equation 6. In figure 5, the best result
is 0.954%. Accuracy, as α changes, the accuracy nearly stays constant. The value of α will have little effect on the
performance of our model.
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