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Prioritization in Visual Attention Does Not Work the Way You Think It Does

Gavin J. P. Ng, Simona Buetti, Trisha N. Patel, and Alejandro Lleras
Department of Psychology, University of Illinois at Urbana—Champaign

A common assumption in attention theories is that attention prioritizes search items based on their
similarity to the target. Here, we tested this assumption and found it wanting. Observers searched through
displays containing candidates (distractors that cannot be confidently differentiated from the target by
peripheral vision) and /ures (distractors that can be). Candidates had high or low similarity to the target.
Search displays were either candidate-homogeneous (all items of same similarity) or candidate-
heterogeneous (equal numbers of each similarity). Response times to candidate-heterogeneous displays
were equivalent to the average of high- and low-similarity displays, suggesting that attention was
allocated randomly, rather than toward the high-similarity candidates first. Lures added a response time
cost that was independent of the candidates, suggesting they were rejected prior to candidates being
inspected. These results suggest a “reverse” prioritization process: Distributed attention discards least

target-similar items first, while focused spatial attention is randomly directed to target-similar items.

Public Significance Statement

Most theories of attention propose that attention visits locations in a scene in descending order of
their priority, with attentional priority reflecting an object’s similarity to the target object or feature
that the observer is looking for. Here we propose that the inverse is in fact true. Attention starts by
evaluating peripheral information in parallel and rejecting unlikely targets as a function of their
dissimilarity to the target; that is, attention moves up the similarity scale, not down. Furthermore, we
propose that given the processing limitations of peripheral vision, attention cannot be properly guided
by visual similarity at the top of the priority scale: Once similarity is sufficiently high, attention
simply visits potential target locations at random. This new bottom-to-top conceptualization of
attentional processing should be of wide interest to anyone working in an attention-related field,

applied or theoretical.
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Central to most theories of visual selection is the concept of
attentional prioritization: the idea that early visual processing
produces an ordered list of locations in the visual scene for
attention to examine. The specifics of how this ordered list of
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locations is arrived at vary between theories, as does the term used
to describe the priority “score” of a location. For instance, in
Wolfe’s (1994, 2006) Guided Search, this “score” is referred to as
“activation”, while in Zelinsky’s (2008) Target Acquisition Model
it is referred to as “priority”, and it is referred to as saliency in Itti
and Koch’s (2000) saliency model (and its various later modifica-
tions, e.g., Navalpakkam & Itti, 2005, 2007). The higher this
saliency score, the higher the attentional priority of that location.
Attention is thought to inspect the scene by going down a priority
list starting from the location with the highest activation. Locations
already visited are “scratched off” the list through variants of an
inhibition of return mechanism with varying degrees of memory
for inspected locations (Itti & Koch, 2000; McCarley et al., 2003).
Finally, the ranking in this priority list can be impacted by factors
such as eye movements (because the resolution with which an item
is processed depends on where it falls on the retina; Balas et al.,
2009; Rosenholtz, Huang, Raj, et al., 2012; Zelinsky, 2008) and
noise (Wolfe, 1994, 2006).

The key assumptions underlying this prioritization account are
that (a) the visual system is able to compute (even if noisily) a
priority score for each item in the scene that veridically reflects
that item’s attentional importance (determined by that item’s sim-
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ilarity to the target or its saliency, depending on the specific
model), and (b) attention works down the list of priority scores.
The goal of the present study is to demonstrate that there are
problems with these assumptions. First, resolution and processing
limitations in peripheral vision make the computation of the list
difficult, if not impossible; as objects become more and more
similar to the target template, peripheral analysis of those items
becomes less and less reliable. Second, recent evidence suggests
that the orderly discarding of items starts from the bottom of the
similarity scale, not at the top, with least similar items being
discarded faster than less dissimilar items (Lleras et al., 2019;
Wang et al., 2017). Indeed, take displays like the ones shown in
Figure 1. Wang et al. (2017) demonstrated through computational
simulations that the reaction time (RT) to find the teddy bear in the
scene in Figure la can be predicted by assuming that search starts
by initially processing all the items in the scene. As time pro-
gresses, peripheral analysis of the scene allows for items to be
rejected (as nontargets) in parallel. This parallel rejection occurs in
an orderly fashion with the least target-similar items (the white
cars) being rejected first and the more target-similar items (the red
dolls) being rejected later. Lleras et al. (2019) extended those
findings to scenes composed of simpler colored geometric shapes
(Figure 1b). The time to find the red triangle target in the scene is
also predicted by assuming the same parallel rejection process of
all nontarget items in Wang et al. (2017). Blue circles (lowest
target-distractor similarity) are rejected first, followed by yellow
triangles (medium target-distractor similarity) and then orange
diamonds (highest target-distractor similarity). The important take-
away from these results is that, even in the presence of higher-
similarity items, RTs to find the target are impacted by the time
taken to reject lower similarity items, suggesting these items are
not “glossed over” by attentive processing. If attention had truly
started “at the top” of the similarity scale and moved down from
there, the lower similarity items ought to almost never have im-
pacted RTs since the target should almost always be found before
attention even visits the low-similarity distractors. Therefore, these
results suggest attention starts at the bottom of the similarity scale,
initially considering all search items as likely targets, and then it

Figure 1
Example Displays

moves up that scale, rejecting more and more items that are
unlikely to be the target.

This orderly rejection of items that are unlikely to be the target
continues until the remaining distractors are relatively similar to
the target, at which point focused attention inspects these items in
a random order (Buetti et al., 2016; Lleras et al., 2020). This
proposal follows the target contrast signal theory, which posits that
the output of early visual processing is a contrast value that
indexes how dissimilar items in the scene are to the target. Rejec-
tion of dissimilar items, having large contrast values (referred to as
lures) takes time; this time cost increases logarithmically with the
number of items that are rejected (e.g., Buetti et al., 2016; Lleras
et al., 2020; Ng et al., 2018; Wang et al., 2017; Wang et al., 2018).
The logarithmic increase in response times as a function of lures is
indicative of a parallel, stochastic process for evaluating items in
the display (Buetti et al., 2016; Lleras et al., 2020; Townsend &
Ashby, 1983). Because of the resolution limitations of peripheral
vision, rejection of similar items, having small contrast values
(referred to as candidates) cannot occur in parallel. Candidate
rejection requires focused attention and incurs a linear cost with
the number of candidates. These items are not ordered by contrast
values precisely because of the unreliability of those small contrast
values. Thus, target contrast signal theory proposes that the in-
spection of these target-similar items by attention is not guided by
similarity but occurs in random order.

There has yet to be direct evidence to support the major claim in
target contrast signal theory that attentional scrutiny is random, or
at least, not guided by similarity or “attentional priority.” Such
evidence is crucial for the theory because one could have just as
easily specified a model where the accumulated contrast (accumu-
lated during the initial processing and rejection of lures) drives the
deployment of attention toward accumulators with lower contrast
values (i.e. toward locations with higher target-distractor similarity
values). Such a “contrast-guided” selection mechanism would
produce more efficient search by increasing the probability of
selecting the target location (if, on average, there is a lower
contrast value at the target location than at candidate locations),
and more generally, by increasing the rate of evidence accumula-

Note. Example displays from Wang et al. (2017)—Ileft panel—and Lleras et al. (2019)—right
panel. In these heterogeneous search displays, RTs to find the target (a teddy bear on the left
and a red triangle on the right) are almost perfectly predicted by a model that incorporates the
time taken to discount in parallel all the nontarget items in the display, with less similar items
being rejected faster than more similar items. See the online article for the color version of this

figure.
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tion at the lowest-contrast locations (i.e. the slowest accumulating
locations). Indeed, the major models of visual search subscribe to
the account whereby the deployment of attention is prioritized
toward items that are most similar to the target. One could also
further imagine other kinds of rules that would prioritize some
accumulators over others based on the information that was accu-
mulated during the lure-rejection process. Yet, target contrast
signal theory proposes that selection of items for focused attention
unfolds without taking into account any of the information accu-
mulated at the nonrejected location: It is indeed random with
respect to the contrast (or similarity) to the target.

In the present study, we put this proposal to the test by exam-
ining the extent to which participants prioritize candidates from
high-to-low similarity or whether these candidates are instead
inspected randomly. Consider a task in which an observer searches
for a red T in a display of orange crosses (lures) and red Ls and
“offset-Ls” (low- and high-similarity candidates, respectively; Fig-
ure 2). Attentional prioritization theories (e.g., Ehinger et al., 2009;
Najemnik & Geisler, 2005, 2008; Navalpakkam & Itti, 2005, 2007;
Wolfe, 2006; Zelinsky, 2008) predict that attention should first
visit the high-similarity candidates and will likely find the target

Figure 2

NG, BUETTL PATEL, AND LLERAS

even before visiting the low-similarity candidates and lures. That
is to say, the target ought to have a priority score that is compa-
rable to the high-similarity candidates but much higher than the
low-similarity candidates and lures (blue bars in Figure 2). If this
is the case, search times should not be impacted by the presence of
lures and low-similarity candidates. The functional set size (Neider
& Zelinsky, 2008) should thus be the number of high-similarity
candidates, plus the target. We refer to this as the ideal prioriti-
zation model. Note however that this is an “ideal” and unlikely
scenario because activation values are inherently noisy (Wolfe,
1994, 2006). Indeed, if this were not the case, then the target would
always have the highest activation value and would be found with
a single deployment of attention. Thus, the ideal prioritization
model refers to a maximum prioritization (given noisy activation
values) and represents the best a priority model could perform, and
as such it represents an informative boundary condition to which
we can compare human performance. Furthermore, even if acti-
vation values are noisy, this model still ought to predict that
attention completely ignores lures (when they are present) given
their distinctiveness from the target template.

Example of Search Display (Top) and Depiction of Model Mechanisms (Bottom)

Activation score
(Blue)

T T

Target

High-similarity
candidate

(udaun)
uoi32alal 10) 22UdPIAg

7+

Low-similarity Lure
candidate

Note. Top: A display with a target (red [gray] T), low-similarity candidates (red [gray] Ls),
high-similarity candidates (red [gray] offset-Ls), and lures (thick orange [light gray] crosses).
Bottom: Prioritization theories propose that early visual processing involves the calculation of
activation values with some noise (blue[dark gray] bars; units are arbitrary). This results in a
top-to-bottom prioritization of attention (even if imperfect) based on target-distractor simi-
larity. On the other hand, target contrast signal theory proposes that early visual processing
instead involves an evidence accumulation process toward a nontarget threshold with the goal
of rejecting in parallel items that are visually distinct from the target. The evidence that is
accumulated depends on target-distractor dissimilarity (green [gray] bars; units are arbitrary).
See the online article for the color version of this figure.
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In contrast, Target Contrast Signal Theory predicts that distrib-
uted attention will spend time processing lures in parallel across
the display. After rejecting those stimuli, attention ought to ran-
domly scrutinize candidates, irrespective of their similarity relation
to the target. In other words, the functional set size of attentional
scrutiny would be that of all candidates (plus the target) regardless
of their similarity to the target. This is because early visual
processing involves a rejection of locations that have accumulated
sufficient evidence to reach nontarget thresholds (green bars in
Figure 2). Lure locations reach threshold in a systematic way,
whereas candidate locations do not (Buetti et al., 2016; Lleras et
al., 2020). These nonrejected locations are then randomly scruti-
nized by focused attention. We refer to this as the random scrutiny
model.

Note that the two models represent the two extreme possibilities
of how attention scrutinizes items: either completely randomly, or
perfectly guided by the level of (noisy) activation of each item. In
the Results sections we calculate a prioritization score that reflects
the degree to which attention prioritizes items according to acti-
vation levels, which can vary from 1 (perfect prioritization) to 0
(random scrutiny), with negative numbers representing situations
where revisitations to already scrutinized locations occur.

We first present an experiment demonstrating that observers can
differentiate between the two types of candidates (low- and high-
similarity) that were used in Experiments 2 and 3 (see Figure 2)'.
It is important to properly calibrate the stimuli to avoid potential
misinterpretations. For instance, one could create candidates that
are either too small or too similar to one another, such that they can
only be distinguished from one another via direct foveation. In
such scenarios, random scrutiny of candidates would necessarily
be observed. Thus, the goal of Experiment 1 was to show that
observers can (a) identify these stimuli in the periphery, even if
imperfectly, and (b) that they do bear significantly different levels
of similarity to the target. Using these well-calibrated stimuli, we
then show, in Experiments 2 and 3, that the random scrutiny model
is a better description of the data compared to the ideal prioritiza-
tion model, indicating that serial attentional scrutiny is random and
not prioritized by target-candidate similarity.

Experiment 1

The goal of this experiment was to determine whether partici-
pants can identify the candidates, even if imperfectly, when they
are presented in peripheral locations and surrounded by similar
levels of low-level noise (i.e. the presence of lures), similar to the
conditions used in Experiments 2 and 3. Displays were flashed
briefly to prevent eye movements so that we could assess target-
distractor discriminability at three different levels of target eccen-
tricity, encompassing all eccentricities used in Experiments 2 and
3. Participants were asked to report whether the candidate in the
display was a T or not. This is the same perceptual discrimination
that the visual system must perform to categorize stimuli in the
Experiments 2 and 3. This experiment was preregistered on Open
Science Framework (https://ost.io/9gktr/). The data and materials
can be found at https://osf.io/5n2rt/.

Participants

Participants were recruited from the subject pool from the
University of Illinois at Urbana—Champaign. Participants provided

informed consent, which was approved by the Institutional Review
Board at the University of Illinois at Urbana—Champaign, and were
given course credit for taking part in the experiment. The study
was run in accordance to the principles expressed in the Declara-
tion of Helsinki. All participants had normal or corrected-to-
normal vision and were determined to be noncolorblind using the
Ishihara color plates before the start of the experiment. We planned
on a sample size of 25 participants, which was determined to be
sufficient to detect an effect of T3 .58 at 95% power and CY
.05. This corresponded to the main effect of the increase in
response times as a function of lure set size in search displays with
lures and candidates (Experiment 3A in Buetti et al., 2016). Al-
though the required sample size was determined to be 12, we
decided to increase it to 25 to reduce measurement noise and to
keep the sample size consistent across our many experiments on
this topic. In total, 27 participants were recruited (14 Females,
mean age 21.3). Data from the first two participants were
excluded due to an error in the experimental code that resulted in
an incorrect number of experimental trials.

Stimuli and Procedure

There were four kinds of stimuli: three candidates and one lure.
The three candidates were: a red T (the target), a letter L, an
“offset-L” that was created by shifting the vertical of the letter L
by 0.2° to the right, and the lure, which was a thick orange plus
sign (see Figure 2). All candidates were randomly presented in one
of four possible orientations (rotated in clockwise steps of 90
degrees) except for the letter T, which was rotated either 90 or 180
degrees clockwise. All stimuli subtended .833 of visual angle and
were randomly distributed across a 36-point grid. The 36 locations
were equally distributed over three concentric rings with varying
eccentricities (4.17, 7.73, and 14.3 degrees of visual angle). This
concentric display was used to allow for a better estimation of the
effect of eccentricity on target discriminability. On each trial, one
of the 36 locations contained a candidate (T, L, or offset-L), while
the remaining locations contained lures (orange crosses). Partici-
pants responded to the identity of the candidate, which was always
presented on each trial, by pressing the right arrow key if it was a
T or the left arrow key if it was not a T (L or offset-L). Response
buttons were counterbalanced across participants. In total, the
target T candidate was presented on 50% of the trials, the L
candidate was presented on 25% of the trials, and the offset-L
candidate was presented on the remaining 25%. There were 720
trials in total.

Each trial began with a fixation cross in the center of the screen
for 500 ms. The display was then presented for 100 ms to prevent
eye movements. The fixation cross remained visible on the screen
during this time. The display then offset to a blank black screen for
2500 ms, during which participants made their response. Upon
response, the blank screen continued for another 1500 ms, after
which the next trial began. All stimuli were presented against a

black background on a 22-in. (400 mm X 300 mm) CRT monitor
with a refresh rate of 85Hz and a screen resolution of 1024 X 768

! The order in which the experiments were carried out, chronologically,
was: Experiment 2, Experiment 3, Experiment 1. We have chosen to
present Experiment 1 first in order to highlight the fact that the candidates
indeed differed in their similarity to the target.
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pixels. Participants viewed the display unrestrained from a dis-
tance of approximately 59 cm. All experiments were programmed
using Psychopy (Peirce et al., 2019).

Results

All analyses, in this and the following experiments, were con-
ducted in R (R Core Team, 2018). The definition of accuracy
depends on the stimulus. For Ts, accuracy refers to the hit rate
(responding T). For Ls and offset-Ls, accuracy refers to the correct
rejection rate (responding not-T). A one-sample ¢ test revealed that
overall accuracy was significantly greater than chance (83% vs.
50%), #(24) 23.92, p < .001, 95% CI of mean difference in
accuracy: [0.30, 0.36]. A one-way ANOVA revealed that observ-
ers differed in their accuracy depending on the candidate type (see
Figure 3), F(2, 48)  66.17, p. < .001, w3 .72, ¢  .732
(corrected for sphericity violations using the Greenhouse-Geisser
procedure). Follow-up paired-samples ¢ tests revealed that Ls were
responded to more accurately than Ts, #(24) 8.71, p < .001, 95%
CI: [0.10, 0.16] and offset-Ls, #(24)  15.079, p < .001, 95% CTI:
[0.15, 0.20]. Accuracy did not differ between Ts and offset-Ls
(after applying the Bonferroni correction for multiple compari-
sons), #(24) 2.28, p .0318, 95% CI: [0.0044, 0.088].

We also conducted an exploratory paired-samples ¢ test to
examine the difference in accuracy between the Ls and offset-Ls.
Ls (M .93, SD .048) were responded to more accurately than
offset-Ls (M .76,SD  .069), 1(24) 15.08, p < .001,95% CI:
[0.15, 0.20]. This provides further support that the Ls and offset-Ls
were not confusable, even at brief presentation times of 100 ms.

Accuracy is potentially an imperfect measure in this experiment
since the decision criterion for each candidate is not the same.
There is no need for the observer to discriminate between an L or
offset-L or to identify it at all (all that is required is to decide that
it is not the T). On the other hand, the observer has to identify that

Figure 3

Accuracy Scores and d= for Experiment 1

NG, BUETTL PATEL, AND LLERAS

the candidate is the letter T in order to respond correctly. We thus
present another measure of performance, d-. Using the confusion
matrix presented in Table 1, we calculated the hit rate and false
alarm rate for each individual participant. - was then calculated.
A one-sample ¢ test revealed that d (M 1.98, SD 0.55) was
significantly different from zero, #24) 17.91, p < .001, 95% CI:
[1.75, 2.21].

In addition, a one-way ANOVA revealed that d differed de-
pending on candidate eccentricity, F(2, 48) 100.37, p < .001,

w7 .80. Follow-up ¢ tests revealed that d=was smaller when the
candidate was in the furthest eccentricity (14.3°; M 1.44, SD

0.60) compared to the nearest eccentricity (4.17°; M 2.43, SD

0.66), 1(24) 11.23, p < .001, 95% CI: [0.80, 1.16] as well as the
middle eccentricity (7.73% M 2.35,SD  0.61), #(24) 1231,

p < .001, 95% CI: [0.76, 1.06]. There was no significant differ-
ence between the middle and nearest eccentricities, #(24)  1.03,

p 31, 95% CI: [-0.072, 0.21].

Discussion

Experiment 1 demonstrated that, even under very short presen-
tation times (100 ms), the visual system is able to discriminate
between Ls, offset-Ls and Ts, albeit with less-than-perfect recog-
nition performance. In addition, Ts were more confusable with
offset-Ls, indicating that the two were more similar to each other
than to the Ls. Performance, as measured by d-, was the worst
when the target was in the farthest eccentricity, although there was
no difference between the middle and nearest eccentricities. This is
not surprising, given that the decrease in resolution as a function of
eccentricity is well-known. Importantly, d was still relatively high
(1.44) even in the furthest eccentricity, especially considering that
the exposure time was only 100 ms. In the following experiments,
we show that although this information regarding visual similarity

1.0

0.7

Accuracy

0.6

0Sf========-me-emeee————-

0.9 e
2.5
0.8 4
L
L]

3.0

T
Overall i

T
Offset-L 1.04

Note. Left: Each dot (randomly jittered horizontally) represents the mean accuracy of an
individual participant. The leftmost plot summarizes overall accuracy, demonstrating that
observers are well above chance (50%, indicated by the dashed line) at identifying the target
T from candidates L and offset-L. The higher accuracy for Ls than offset-Ls also confirms that
offset-Ls were indeed more similar (confusable) with the T than the L stimuli, suggesting that
offset-Ls were more likely to be confused with Ts due to their increased visual similarity.
Right: Average d—in Experiment 1. Each dot represents the mean d of an individual
participant. Average d-was relatively high, further suggesting that participants were able to
differentiate between the different candidates. See the online article for the color version of

this figure.
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Table 1

Confusion Matrix Used to Calculate d= in Experiment 1

Response type T L or offset-L
Respond ‘T’ Hit False alarm
Respond ‘not T* Miss Correct rejection

is available to observers, they seemed reticent to use this informa-
tion to guide attentional scrutiny.

Experiment 2

If attention scrutinizes items in decreasing order of target-distractor
similarity (as proposed by the ideal prioritization model), then lures,
which have very low target-distractor similarity, should not contribute
to processing times. In addition, attention should visit the high-
similarity candidates first and will probably find the target before
visiting the low-similarity candidates. We examined the former by
comparing response times of displays with and without lures. We then
addressed the latter by using candidate-homogeneous displays to
predict response times on candidate-heterogeneous displays. If atten-
tion is guided by target-distractor similarity, then response times on
candidate-heterogenous displays should be equivalent to response
times of candidate-homogeneous displays with high-similarity dis-
tractors of the same set size.

Participants

A group of new participants were recruited from the same pool of
subjects as in Experiment 1. We planned on a sample size of 25
participants, which would be more than sufficient to measure the
difference between the two candidate search slopes with 95% power

and CY .05. This corresponded to the main effect of lure set size

(T$ .58) in search displays that contain both lures and candidates,
which are similar to the stimuli used here (Experiment 3A in Buetti et

al., 2016). Although the required sample size was determined to be
12, we decided to increase it to 25 to reduce noise (i.e. to obtain more
accurate estimates of each condition mean). Due to the nature of
scheduling timeslots, 27 participants took part in this experiment in
total (22 Females, mean age 19.1). There were 2 participants with
accuracy rates lower than 80% who were excluded from the analyses.
The final sample size was thus 25.

Stimuli and Procedure

All stimuli were identical to those used in Experiment 1. The
study was designed as a 2 (lure presence: 0 or 24 lures) X 2
(candidate set size: 4 or 8) X 3 (candidate type: homogenous
high-similarity, homogenous low-similarity, or heterogenous)
within-subjects experiment. The experiment was programmed
such that all nontarget candidates were distributed evenly between
the four quadrants of the search display; the same was done for the
lures. Depending on the condition, there were thus 5, 9, 29, or 33
items in the search display. All stimuli were randomly distributed
across a 36-point grid which subtended 20 degrees of visual angle.
The smallest distance between two stimuli was about 1.425 de-
grees of visual angle. In contrast to Experiment 1, in Experiment
2 (and Experiment 3), a square grid was used instead of a concen-

tric grid. This was to maximize comparability between the setup in
these experiments and that in Buetti et al. (2016). In Buetti et al.
(2016), it was shown that lures increased response times in a
logarithmic manner as compared to the linear effect of candidates.
It should be noted that Madison et al. (2018) compared perfor-
mance across these two different grid arrangements and found the
difference across grids on RTs to be fairly minimal. In the heter-
ogenous displays, the number of high- and low-similarity candi-
dates were always equal (i.e. 2 or 4 of each depending on the total
candidate set size). In total, there were 12 different types of
displays. Each participant observed a block of 480 fully random-
ized trials with 40 trials for each display type.

Each trial began with the presentation of a central fixation cross for
1 s before the display of the search array, which remained on screen
until a response was made. Participants responded to the orientation of
the target letter T by pressing either the left or right button on a
keyboard. Feedback was given in the form of a loud beep whenever
an error was made; no feedback was given for correct trials.

Results

Average accuracy was high (M 94.6%, SD  5.32%). There
was no speed—accuracy trade-off (Table Al in the Appendix).

Effect of Lures on Candidate-Homogeneous Displays

Trials with incorrect or no responses were excluded from analyses.
We first conducted a 2 (lure presence) by 2 (candidate type) analysis
of variance (ANOV A) on the observed search slopes in the candidate-
homogenous displays. Presence of lures did not significantly affect
the linear search slopes, F(1, 24) 0.057,p .81, Ts  .0024.
Linear search slopes were higher for high-similarity candidates (170
ms/item) compared to low-similarity candidates (79 ms/item), F(1,
24) 70.88, p < .001, T% .75. The large (more than double)
difference between the linear search slopes for low- and high- simi-
larity candidates confirmed that the two types of candidates differed
greatly in terms of their similarity to the target. Finally, the interaction
between candidate type and lure presence was not statistically signif-
icant, F(1, 24) 021, p .65, T?,.0088. The Bayes factor was
computed to compare the null hypothesis “No effect of lure presence
on search slopes” to the alternative hypothesis (nonzero effect of lure
presence), using the BayesFactor package in R (Morey & Rouder,
2018). The data was more likely under the null, with moderate
support, BFo1 6.34. Thus, the presence of lures did not meaning-
fully affect the linear search slopes.

The same ANOVA was conducted on intercept values as the
dependent variable. Intercept values were significantly increased
by the presence of lures (928 vs. 708 ms), F(1, 24) 8.65, p
.00713, T3 .27, but not candidate type, F(1,24) 0.69,p .41,
Ts  .028. The interaction was not significant, F(1, 24) 0.33,

p .57, T3  .014. In other words, there was a constant cost of
120 ms to process displays containing lures that was independent

from the number of candidates and candidate-target similarity (see
Figure 4), consistent with the predictions of the target contrast
signal theory.

Attentional Scrutiny in Candidate-Heterogeneous
Displays

Next, we turn to the main question of whether attentional
scrutiny is prioritized as a function of target-distractor similarity or
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Figure 4
Response Times (in ms) in Experiment 2
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Note. The x-axis represents the number of candidates plus the target. Two
observations are evident here. First, the presence of lures did not signif-
icantly affect search slopes (dotted vs. solid lines). Second, search slopes
were steeper for high-similarity candidates compared to low-similarity
candidates (red [gray] circles vs. blue [dark gray] triangles), while that for
the mixed displays were in between (green [light gray] squares). Error
bars indicate 95% confidence intervals. See the online article for the color
version of this figure.

in fact random. To evaluate the ideal prioritization model and the
random scrutiny model, we used response times from the
candidate-homogeneous displays to predict response times in the
candidate-heterogeneous displays. Four predictions, corresponding
to the four different conditions (2 levels of candidate similarity X
2 levels of lure presence), were made. First, mean search slopes
were calculated, for each subject and each condition, for the
candidate-homogenous displays by fitting the equation:

RThigh = HX (number of candidates + 1) + ch

RTiow = L X (number of candidates + 1) + cl

H and L represent the search slopes (see Figure 4) for high- and
low-similarity displays respectively, and ¢, and ¢, represent the
intercepts for high- and low-similarity displays respectively. The
term “+1” denotes that the functional set size is simply the number
of candidates plus the target. The ideal prioritization model pre-
dicts that response times in heterogeneous displays would be
dependent on only the number of high-similarity candidates plus
the target. Thus, response times in heterogeneous displays were
predicted using the following equation:

RTheterogenoux =HX (Sel Sizehigh + 1) + ch

The random scrutiny model predicts that response times in
heterogeneous displays would be independent of candidate-target
similarity. Thus, the functional set size in this condition is simply
the sum of the number of all high and low candidates, plus the
target (in other words, all the candidates that are present in the
display, plus the target). Mathematically, this is equivalent to
the average response times for high- and low-similarity displays, at
any given functional set size:

RThigh + RTlow

RT, heterogenous — 2

Figure 5 shows that the ideal prioritization model systematically
underpredicts response times (average deviation error 252 ms),
while the random scrutiny model makes predictions that show
near-perfect correspondence with the observed response times
(average deviation error 16 ms). The dashed line (y x)
indicates where the points would fall for a model that perfectly
predicts response times with zero error.

Individual-level predictions also show the same pattern of re-
sults. Figure 6 shows the within-subject residuals (observed—
predicted response times). Within-subject residuals from the ideal
prioritization model (left panel) show large variability that in-
creases with set size, indicating poor correspondence between the
model and the observed data. In addition, the systematic under-
prediction by the model increases with set size. On the other hand,
the residuals from the Random Scrutiny Model (right panel) are
centered around zero and show little variability, suggesting good
correspondence between the model and the observed data.

Next, we examined the performance of both models by quanti-
fying the overall prediction error of each model. Traditional null
hypothesis significance testing is problematic when the goal is to
provide evidence for a null effect (zero prediction error by the
Random Scrutiny Model). Thus, we calculated Bayes Factors in
lieu of p values. Separate Bayes factors were calculated for each
model, for a one-sample 7 test comparing the residuals (observed—
predicted response times, shown in Figure 5) against zero. BFo:
denotes evidence in favor of the null hypothesis (prediction error
is not meaningfully different from zero), while BFio denotes
evidence in favor of the alternate hypothesis (prediction error is
meaningfully different from zero). The Bayes Factors indicated

Figure 5
Observed Versus Predicted Response Times for the Ideal Prior-
itization and Random Scrutiny Models
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Note. The Random Scrutiny model (green [gray] circles) makes near-
perfect predictions, while the Ideal Prioritization model (blue [black]
triangles) systematically underpredicts response times. Different condi-
tions are indicated at the top of the figure. The dashed y x line indicates
where the predicted values would fall on if predictions were perfect. Error
bars indicate 95% confidence intervals of the observed means. See the
online article for the color version of this figure.
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Figure 6
Within-Subject Residuals Displayed in Violin Plots
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Note. Each plot shows the observed minus predicted response times of all participants in
the four predicted conditions (from left to right): two low similarity (2L) candidates plus
two high-similarity (2H) candidates with no lures, two low plus two high-similarity
candidates with 24 lures, four low plus four high-similarity candidates with no lures, and
four low plus four high-similarity candidates with 24 lures. In the box-plots, the box
indicates the interquartile range and the horizontal marker indicates the median. Each
circle represents individual data points, while the shaded area shows the probability
density of the data. Dashed lines indicate y 0 (no prediction error). Lefi: residuals from
the ideal prioritization model show mean residuals that differ substantially from zero,
with large variability, indicating poor correspondence between the predicted and observed
data. Right: residuals from the random scrutiny model are centered around zero and show
little variability, suggesting good correspondence between the random scrutiny model’s
predicted response times and the observed data. See the online article for the color version

of this figure.

moderate evidence that the residuals from the random scrutiny
model did not meaningfully differ from zero (BFoi 5.46),
indicating that predictions from this model were almost perfect. On
the other hand, there was strong evidence that the residuals from
the ideal prioritization model were meaningfully different from
zero, indicating poor correspondence between the model’s predic-
tions and the observed data (BFio 2.15 X 10'2).

The ideal prioritization model represents the boundary case
whereby the visual system perfectly prioritizes all high-similarity
candidates before low-similarity candidates, in terms of what could
be expected if prioritization was sufficiently adequate to clearly
separate low- and high-similarity candidates. This is likely too
extreme, given that the visual system is inherently noisy, but it still
provides us with a lower boundary for best RT performance. In
contrast, the random scrutiny model can be seen as an upper
boundary for how slow RT performance can be expected to be. We
can then quantify the degree of prioritization by a ratio of two
difference scores: the difference between the observed RT and the
predicted RT by the random scrutiny model, divided by the dif-
ference between the predicted ideal prioritization RT and the
predicted random scrutiny RT. In other words,

Prioritization Score = RTgs = Rops
RTrs — RT1p

where RT,, is the observed response time, and RTxsand RT;»are
the predicted response times for the random scrutiny and ideal
prioritization models respectively. If prioritization were perfect,
this ratio would be 1. This is because R7,;,, would be equal to R7p
(i.e. the observed response times would be equal to the response
times predicted by ideal prioritization model) and therefore, the

terms in the numerator and denominator will be identical. If there
were no prioritization at all (i.e. scrutiny is completely random),
this ratio would be zero. This is because R7,; would be equal to
RTys (i.e. the observed response times would be equal to the
response times predicted by the random scrutiny) and therefore,
the numerator would be zero. Finally, if R7, is systematically
larger than RTys, this would indicate that participants are taking
even longer to respond than they would if they visited all the items
(in random order). In other words, systematically negative values
would indicate that participants are revisiting previously inspected
candidates. The grand means, averaged across conditions and
participants, were calculated for RTy,, RTgs, and RTjpto yield a
prioritization score of 0.073, suggesting that there was minimal
prioritization, if any, of candidates based on their similarity to the
target.

Experiment 3

Experiment 2 revealed two main findings. First, the presence of
lures slows down search, but it does so without impacting the
search rate through the candidates (corroborating Buetti et al.’s,
2016 findings). More importantly, there was little evidence that
attentional scrutiny of candidates was prioritized based on
candidate-target similarity despite large differences in terms of
candidate-target similarity (as indexed by large differences in
search slopes and also supported by the discrimination data from
Experiment 1). Instead, there was more evidence for random
scrutiny. In this experiment, we sought to replicate these findings
using a target detection task.
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Method

This experiment was preregistered on Open Science Framework
(https://osf.io/8rkny/). The data and materials can be found at
https://osf.io/5n2rt/.

Participants

All participants were recruited from the same subject pool and
did not take part in Experiments 1 and 2. As described in the
preregistration, we planned on a sample size of 25 participants,
which would be more than sufficient to measure the difference

between the two candidate search slopes with 95% power and CY
.05. This corresponded to the main effect of candidate similarity

in Experiment 2 (T§  .747). Although the required sample size
was determined to be 6, we decided to increase it to 25 to reduce
noise and to keep the sample size consistent with Experiment 2,
allowing better comparability in terms of data precision. In
total, 33 participants were recruited (23 Females, mean age
19.4). Due to a computer error, there were no data from 2
participants. Of the remaining 31 participants, 10 had accuracy
rates lower than 90%, which was our initial accuracy exclusion
criterion. We thus lowered this criterion to 85%, as described in
the preregistration, to minimize data loss. We then analyzed the
data from the first 25 subjects that met the 85% accuracy
inclusion criteria.

Design and Procedure

The stimulus and apparatus were identical to Experiment 2 with
the exception that, in Experiment 3, displays only contained can-
didates and no lures. The task was to report the presence or
absence of the target by pressing either the left or right arrow key.
The assignment of response buttons was randomized between
participants. There were three independent variables: candidate
display type (high-similarity, low-similarity, mixed-similarity), to-
tal candidate set size (4 or 8), and target presence (present or
absent). All other aspects of the design and procedure were iden-
tical to Experiment 2.

Results

Accuracy was high overall (M 93.5%, SD 0.03%). There

was no speed—accuracy trade-off (see Table A2 in the Appendix).
A 2 (candidate similarity) by 2 (target presence) ANOVA was
conducted on the search slopes in homogenous displays. Linear
search slopes were significantly steeper for high-similarity dis-
plays (246 ms/item) compared to low-similarity displays (95 ms/
item), F(1,24) 103.15, p < .001,5T? .81. Linear search slopes
were also significantly steeper on target-absent trials (244 ms/
item) compared to target-present trials (97 ms/item), F(1, 24)
154.70, p < .001, T3 .87. The interaction between candidate
type and target presence was significant, F(1, 24)  18.65, p <
.001, T .44. These results are illustrated in Figure 7. Target-
absent slopes in high-similarity displays were 2.35 times that of
target-present displays while this ratio was 3.02 in the low-
similarity displays, suggesting that quitting rules could be influ-
enced by target-distractor similarity. Importantly, the fact that the
ratio of the target-absent-to-present search slopes were at least 2:1
indicated that the search processes through the candidate stimuli
were inefficient both in this experiment as well as in Experiment

Figure 7
Mean Response Times (in ms) in Experiment 3
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Note. The x-axis represents the number of candidates. Two observations
are evident here. Search slopes were steeper on target-absent trials (dotted
vs. solid lines). Second, search slopes were steeper for high-similarity
candidates compared to low-similarity candidates (red [gray] circles vs.
blue [black] triangles). The green (light gray) squares represent the
observed response times for the heterogeneous displays. Error bars indi-
cate 95% confidence intervals. See the online article for the color version
of this figure.

2 where identical stimuli were used and that self-terminating
quitting rules halted search on target-present displays (Treisman &
Gelade, 1980; Wolfe, 1998; Wolfe et al., 2010).

Next, as in Experiment 2, we compared the Random Scrutiny
Model with the Ideal Prioritization Model. Predicted response
times were calculated with the same method described in Exper-
iment 2. Note that model comparison was done using only the
target-present data, since both models make the same prediction
for target-absent trials (all items would be scrutinized before the
observer decides to quit the search). Figure 8 shows the within-
subject residuals (observed—predicted response times). Experi-
ment 3 replicated the results from Experiment 2. There was
moderate evidence that the within-subject residuals from the
random scrutiny model did not differ meaningfully from zero
(BFo1 4.02). The residuals also showed little variability.
Overall, this model produced near-perfect predictions. In con-
trast, the within-subject residuals from the ideal prioritization
model were meaningfully different from zero (BFio 1504.89)
and increased with set size, indicating poor predictive power of
the model. The prioritization score was —0.15, again indicating
minimal prioritization and perhaps a small tendency for revis-
iting already inspected candidates.

Finally, we also analyzed target-absent trials. Although these
data do not differentiate between the two models (in both cases
it is expected that observers will not quit until after having
scrutinized all items in the display), they revealed an unex-
pected finding. Target-absent response times in candidate-
heterogeneous displays were much longer than what would be
predicted based on target-absent response times observed in
candidate-homogeneous displays, and the residuals increased
with set size.


https://osf.io/8rkny/
https://osf.io/5n2rt/

publishers.

pyrighted by the American Psychological Association or one of its allied

This document is coy

This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

ATTENTION PRIORITIZATION DOESN’T START AT THE TOP

Figure 8
Within-Subject Residuals, for Experiment 3, Displayed in Violin Plots
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Note. Each violin plot shows the observed minus predicted response times for all participants
in the two predicted conditions: 2 low similarity plus 2 high-similarity candidates or 4 of each.
In the box-plots, the box indicates the interquartile range and the horizontal marker indicates
the median. Each circle represents individual data points, while the shaded area shows the
probability density of the data. Dashed lines indicate y 0 (no prediction error). Lefi:
residuals from target-present trials. Residuals from the random scrutiny model (green [gray])
showed little variability around 0, suggesting good correspondence with the model. On the
other hand, residuals from the Ideal Prioritization Model (blue [dark gray]) were not centered
around zero and showed large variability, indicating poor correspondence between the
predicted and observed data. Right: residuals from target-absent trials. Both models make the
same predictions for target-absent trials, since both predict that all items will be scrutinized
before the observer quits the search. There was a systematic underprediction, suggesting that
candidate heterogeneity lengthened the quitting rule above and beyond what would be
predicted based on candidate homogeneous displays. See the online article for the color
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version of this figure.

Discussion

Overall, Experiments 2 and 3 both provided strong support for
the random scrutiny model. In spite of large differences in terms of
candidate-target similarity (as indexed by search slopes), there was
no evidence that observers prioritized high-similarity candidates
during attentional scrutiny. Although the ideal prioritization model
represented an “ideal” boundary scenario for perfect prioritization,
the prioritization score could have measured any degree of prior-
itization from 0% to 100%, if any were present. Not even modest
amounts of prioritization were observed.

Interestingly, both the random scrutiny and ideal prioritization
models underpredicted target-absent response times in candidate-
heterogenous displays. There are two potential explanations for
this observation. First, it is known that distractor heterogeneity
increases response times and changes the rate of evidence accu-
mulation (Duncan & Humphreys, 1989; Lleras et al., 2019). Sec-
ond, and more likely, it could be that candidate heterogeneity
impacted the quitting rule in inefficient search tasks by several
hundreds of milliseconds, perhaps as a result of revisiting previ-
ously rejected candidates before the observer can be confident of
a target-absent response. This second explanation appears to be
more likely. Although it is possible that the search slopes measured
in the candidate-homogenous displays do not accurately reflect the
rate of search in candidate-heterogenous displays, this is unlikely
given the data from target-present trials. If search slopes measured
in candidate-homogeneous displays were inaccurate or did not
reflect the search rate through heterogeneous displays, the random
scrutiny model (based on those homogeneous search slopes) would
have failed to predict performance in the target-present heteroge-

neous conditions. It is evident from Figure 8 that the residuals for
the target-present predictions are smaller and less variable, while
that for the target-absent trials were more variable and increased
with set size. Thus, it is unlikely that the underprediction stems
from an erroneous measurement of search slopes, but rather a
result of revisitations to previously inspected candidates. Thus, the
results suggest that candidate heterogeneity impacts a nonvisual
process in search. It might be that it increases the noise in the
memory representations of locations that have been inspected or
that it decreases the amount of locations that are remembered. This
phenomenon deserves further study, and these hypotheses could be
tested by monitoring eye movements of participants as they com-
plete a candidate heterogeneous search task.

General Discussion

Many models of visual search propose that items are scrutinized
by attention using some form of similarity-based prioritization,
whereby to-be-scrutinized items are grossly ordered in terms of
their similarity to the target, from highest to lowest. Attention
and/or eye movements then simply visits these items by moving
down that list (Ehinger et al., 2009; Najemnik & Geisler, 2005,
2008; Navalpakkam & Itti, 2005, 2007; Rao et al., 2002; Wolfe,
2006; Zelinsky, 2008). These prioritization accounts make two
main predictions that the present study demonstrated were incor-
rect. First, according to these accounts, distractors that are very
different from the target (lures) ought to almost never impact
search times since attention would not visit these items due to their
very low priority. However, the results from Experiment 2 showed
that the presence of lures added a cost to overall processing times,
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in line with results from Buetti et al. (2016). Not only do these
items contribute to search times, prior results also showed that the
costs to reject lure items from consideration are systematically
related to lure-target similarity (Buetti et al., 2016; Lleras et al.,
2019; Ng et al., 2018; Wang et al., 2017). Second, similarity-based
prioritization accounts propose that distractors that are relatively
similar to the target will be scrutinized according to their similarity
to the target, with high similarity items having a larger attentional
priority. In contrast to these predictions, the results from Experi-
ments 2 and 3 showed that observers inspected high- and low-
similarity candidates in a random order, or at least in an order that
was not based on similarity-ratings to the target template. This was
observed in spite of large differences in discriminability between
low- and high-similarity candidates (as indexed by substantial
differences in search slopes in candidate-homogeneous displays)
and in spite of the fact that observers could reliably differentiate
between the two candidates (Experiment 1).

In sum, the current results suggest that attentional prioritization
does not work in the manner than many theorists propose. There is
an initial stage of distributed attention during which items that are
sufficiently dissimilar from the target are discarded via peripheral
visual analysis. It takes time to reject these dissimilar items, with
more similar items taking longer. Once peripheral analysis has
discarded these unlikely targets, focused attention is deployed to
the nonrejected locations in an order that is not determined by
target-distractor similarity. This makes sense given that peripheral
analysis suffers from severe computational limitations, thus, it is
difficult for peripheral vision to produce an orderly ranking of
candidate items. From this perspective, distractor rejection starts at
the bottom of the similarity scale, not at the top, as is often
understood. We refer to this orderly rejection of distractors as
being bottom-to-top.

The proposal that there is a bottom-to-top attentional prioritiza-
tion in visual search is consistent with what has been observed
previously with displays intermixing lures and candidates in a
more systematic fashion (Buetti et al., 2016; Ng et al., 2019). The
results from these studies showed that when candidates and lures
were both present in a display, there was a time cost associated
with rejecting lures that was independent from the time spent
searching through the candidates. This was reflected by search
times increasing logarithmically with lure set size while search
efficiency through candidates remained constant as lure set size
varied, indicating that candidate scrutiny was occurring after lure
rejection. Bottom-to-top attentional prioritization is also consistent
with results on search with lure-heterogeneous displays (Lleras et
al., 2019; Wang et al., 2017). When multiple types of lures were
present in a display, the lures that were most dissimilar were
rejected earlier and the less dissimilar lures took longer to be
rejected (see Figure 4), with all lures present in the display con-
tributing to performance.

How Are Candidates Inspected?

The target contrast signal theory proposes that the output of the
dissimilarity-based parallel rejection process responsible for re-
jecting lures is a list of locations of the remaining items (candi-
dates). This list does not contain a precise visual description of
these unrejected items precisely because of the resolution limits of
peripheral vision during parallel processing (Rosenholtz, Huang,

& Ehinger, 2012; Rosenholtz, Huang, Raj, et al., 2012). As such,
candidates are neither ordered by contrast values nor indexed by
target-distractor similarity. Focused attention will thus visit these
locations in a random order without being biased by the similarity
relation between the remaining items and the target. Importantly,
Experiment 1 demonstrated that participants could reliably differ-
entiate (although not perfectly) between low- and high-similarity
candidates. In addition, the search slopes for displays containing
high-similarity candidates were much higher than the slopes for
displays containing low-similarity candidates, further confirming
that the two differed in their similarity to the target. Despite this,
Experiments 2 and 3 demonstrated that, in a search display con-
taining multiple types of candidates, the degree of reliability of this
candidate evaluation was not sufficiently adequate to be trusted as
a source for attentional guidance, or, alternatively, the effort re-
quired to use this unreliable information may be too great. Atten-
tion was thus deployed in a random manner rather than being
guided by target-distractor similarity.

Admittedly, other factors might come into play during atten-
tional scrutiny. For instance, attention (and/or eye movements)
might be deployed to whichever target-likely location is closest to
current fixation or to a midpoint between target-likely locations
(Zelinsky, 2012). Or, participants might use systematic scanning
strategies (top-to-bottom, left-to-right, etc.) to visit all nonrejected
locations. Aside from non-similarity-based scrutiny strategies, it is
possible that there could be some form of imperfect similarity-
based prioritization where only some of the high-similarity candi-
dates are prioritized. However, given the near-perfect prediction of
the random scrutiny model, this seems unlikely. Furthermore, as
indicated by the overall prioritization score, a top-to-bottom pri-
oritization based on candidate-target similarity is infrequent at
best.

We should note that attentional prioritization of a subset of
candidates is possible under certain circumstances. For instance,
memory of previously seen search displays can guide attention
during search. Response times are typically faster for targets that
appear in search displays that have previously been presented to
the observer compared to completely novel displays (Chun, 2000).
This phenomenon is known as Contextual Cueing, and has been
observed with different repeated contexts, including spatial layout
(Chun & Jiang, 1998), identity (Chun & Jiang, 1999; Goujon et al.,
2007), as well as the motion trajectory (Chun & Jiang, 1999) of the
search items. Memory from the repetition of context leads to a
prioritization of attention toward locations where the target is
likely to be found (Chun & Jiang, 1998; Goujon et al., 2007, but
see Annac et al., 2019). The repetition of scene layouts does seem
to guide the deployment of attention (Geyer et al., 2010; Johnson
et al., 2007), which raises the possibility that scene-based spatial
memories increase the conspicuity (or priority) of the target and its
immediate candidate neighbors. Such memory traces can clearly
aid attentional prioritization, and they can do so quite quickly,
starting 100 ms post display onset (e.g., Chaumon et al., 2008;
Conci et al., 2019). This makes it possible that memories of spatial
layout boost early display segmentation processes, prioritizing a
subset of candidates over another. Interestingly, while the repeti-
tion of candidate-stimuli context (either over the entire scene or
just over the area immediately surrounding the target) prioritizes
attentional deployment to specific regions in the scene, repetition
of lure-stimuli context does not. Although the presence of lures
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slows down RTs, repetition of their spatial context does not pro-
duce a prioritization signal to guide attention faster toward the
target location (Ng et al., 2019; but see Geyer et al., 2010). Finally,
rewards can also influence the prioritization of locations during
attentional scrutiny. In studies that examine the influence of re-
ward on search behavior, search items or locations are assigned
different rewards for finding the target. Typically, search items
that are assigned higher rewards are found more quickly and with
greater accuracy (Won & Leber, 2016). In addition, eye move-
ments (and thus overt attention) have been observed to prioritize
rewarded locations in visual search tasks (Eckstein et al., 2015;
Liston & Stone, 2008). In search with multiple targets, observers
make more eye movements to high-reward targets compared to
low-reward targets (Navalpakkam et al., 2010).

Why Does Lure Rejection Take Time?

In Experiment 2, the presence of lures slowed down search in a
manner that was not affected by the number of candidates. As
described above, this provided further support for one of the main
proposals of target contrast signal theory: that peripheral vision
initially considered all items in the display as potential targets. An
alternate possibility is that the presence of lures may slow down
performance for low-level reasons. That is, it is possible that the
presence of lures might increase the local contrast of candidates
and therefore their attentional pull. However, this is unlikely. If
anything, a candidate surrounded by lures will have less (not more)
contrast than when it sits by itself surrounded by a solid black
background. Still, one might argue that the individual attentional
pull of any given candidate increases when lures are present
because it breaks down the otherwise homogeneity effect produced
by a lot of very similar candidates (when no lures are present).
Though this is possible, such a mechanism would predict that
search through these more “attentionally-sticky” candidates would
be slower than search through the candidates that have not been
made more salient by lures. Yet, the present data, as well as
previous data (Buetti et al., 2016; Ng et al., 2019), have shown that
search efficiency through the candidates is identical with or with-
out lures present in the display. For instance, in all search condi-
tions in Experiment 2, candidate search functions with and without
lures were parallel (see Figure 4).

The increase in response times in the presence of lures in
Experiment 2 might be consistent with other models. In Itti and
Koch’s (2000) saliency model, a lure that is surrounded by can-
didates would have a higher saliency compared to a lure that is
surrounded by other lures (or appearing in isolation), because in
this model saliency reflects local feature contrasts. The increase in
RT could thus be a result of additional shifts of attention triggered
to these high-contrast lure locations, rather than by a process of
rejecting lures, more generally. But, again, it is well known that the
initial Itti and Koch model does poorly at predicting search per-
formance in displays using simple geometric stimuli like ours (see
Itti & Koch, 2000). If one considers attention-tuned versions of the
saliency model that are meant to perform well in visual search
tasks (e.g., Navalpakkam & Itti, 2005, 2007), these models would
not predict an RT slow-down in the presence of lures. Indeed, the
point of optimally tuning attention to the target features (Naval-
pakkam & Itti, 2005, 2007) is precisely to cut-off from possible
examination items that do not contain features similar to the target.

The FLNN (Farthest-Labeled Nearest Neighbor) model may
also be able to provide an explanation for why response times
increased in the presence of lures (Avraham et al., 2008). Accord-
ing to the FLNN model, search starts with the random selection of
an item in the search display. If this item turns out to not be the
target, then attention selects another item that is most dissimilar
from the currently selected item. If this item is still not the target,
then the next item that is selected will be one that is the most
dissimilar from all previously selected items. This process repeats
until the target is selected. Thus, when lures are present in a
display, it is possible that a lure will be selected at first, which
would delay the eventual selection of the target, incurring some
delay that would not exist if no lures were present. Furthermore, if
a candidate is selected (by chance) after the first attention move-
ment, the farthest neighbor would be a lure stimulus (as opposed
to another candidate or the target itself) because lures are much
more different from candidates than the target is from the candi-
dates (by definition). Thus, the second attention movement would
likely be directed toward a lure. As a result, in candidate-attended-
first trials, the presence of lures would also result in longer RTs
when lures are present compared to when they are not. It is
important, however, to remember that the FLNN model was de-
signed to predict accuracy under limited exposure durations. Some
modifications would be needed to translate accuracy predictions
into RT predictions in displays that are present until response. It
would be interesting to see if the model could be adapted to
account for the RT laws that we now know govern efficient search
with fixed targets (e.g., logarithmic increases in RT as set size
increases when participants are viewing lure-homogeneous dis-
plays with a fixed target in mind; the finding that these logarithmic
slopes systematically vary as a function of lure-target similarity,
see Buetti et al., 2016; Ng et al., 2018; Wang et al., 2018; and the
heterogeneity search cost function, see Lleras et al., 2019; Wang et
al., 2017). It is entirely possible that it might be able to capture
these effects—we just do not know yet. That being said, the more
critical theoretical contribution of the FLNN model is that it views
selection in a fundamentally different way from similarity-based
models, proposing that selection is guided by dissimilarity values
instead. This focus on dissimilarity (as opposed to similarity) does
make the model more in line with our target contrast signal theory
than with more traditional similarity-based models of selection
during search.

Does Candidate Heterogeneity Slow Down RTs?

The deviations from predictions observed on target-absent trials
could be interpreted as being indicative of interitem interactions
that impact how the visual system treats candidates in heteroge-
neous displays. In other words, because participants took so much
longer to terminate target-absent trials, one could argue that this
slow down indicates the visual system has a tougher time rejecting
candidates when they appear among different candidates than
when they appear by themselves in homogeneous conditions. It is
indeed true that, generally speaking, distractor heterogeneity in-
creases response times (Duncan & Humphreys, 1989; Lleras et al.,
2019; Wang et al., 2017). But the mechanism by which this
happens is unclear. For efficient search, our lab has demonstrated
that this heterogeneity slowdown is likely the result of local
interitem interactions that facilitate parallel rejection of lures when
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nearby lures are similar to one another (Lleras et al., 2019).
Duncan and Humphreys (1989) argued that heterogeneity breaks
down grouping effects (and groups can be rejected as a whole), so
performance is worse in heterogeneous conditions because there
are more items/groups to reject than under homogeneous condi-
tions.

In theory, something along these lines could be happening
(i.e. grouping of homogeneous candidates making candidate-
homogeneous conditions easier than candidate-heterogeneous con-
ditions), but it is unclear whether it happened in our experiments.
Note that the visual processes involved in the rejection of a
candidate are agnostic with regard to the presence or absence of
the target. Indeed, if the observer already knows that the current
trial is a target-present or target-absent trial, then there would be no
need to search since the observer could already make their re-
sponse. Thus, if there are heterogeneity effects in the target absent
trials, the same ones ought to be present in the target present trials.
However, no evidence of such heterogeneity effects were observed
in target present trials: Performance in the candidate-homogeneous
conditions (where candidate-heterogeneity effects are impossible)
perfectly predicted performance in target-present trials in candi-
date heterogeneous conditions, across both set sizes, both in Ex-
periment 2 (with and without lures) and in Experiment 3. Further-
more, it is also important to remember the placement of the stimuli
in our experiments: Candidates were placed on the search grid
such that they would be equally distributed across all four quad-
rants (so, one per quadrant when 4 were present and two per
quadrant when 8 were present). Thus, in set size 5 (1 target, 2 Ls
and 2 offset Ls), in three out of four quadrants, the candidates were
by themselves (or sometimes accompanied by lures in Experiment
2). Given the size of each grid quadrant (10X10 degrees of visual
angle), intercandidate interactions across quadrants and across
such large spacing would be quite unlikely. It is also important to
note that performance in the set size 9 condition, where such
interactions (if they existed) would be possible within each quad-
rant, was exactly the same as performance in the set size 5
condition: We were equally successful at predicting performance
across both set sizes across the two experiments. In sum, it is
unlikely that there were candidate— candidate interactions between
the two types of candidates in target-present trials, and by exten-
sion, in target-absent trials, in our experiments. What is more
likely, we believe, is that candidate heterogeneity changes the
quitting rule for target absent trials (likely a nonvisual process),
inviting more revisitations (e.g., candidate heterogeneity might
disrupt the memory representations of what items or locations have
been already visited and rejected). Note that quitting rules in
target-absent trials are notoriously difficult to understand, let alone
predict (Cho & Chong, 2019; Chun & Wolfe, 1996; Fleck et al.,
2010; Mitroff et al., 2015; Wolfe & Van Wert, 2010).

As discussed in the introduction, the ideal prioritization model
represented (from the start) a lower boundary condition: how fast
search could unfold in heterogeneous displays if participants were
able to perfectly prioritize high-similarity candidates. Yet, as men-
tioned above, there are both empirical and theoretical reasons to
have expected candidate heterogeneity to slow down performance,
such that even if items were perfectly prioritized by similarity,
actual performance on heterogeneous displays would have been
slower than what would have been predicted based on high-
similarity candidate homogeneous performance. The point of this

ideal prioritization model was to serve as a boundary condition
regarding how good performance could be in the heterogeneous
condition. On the other extreme, there was the random scrutiny
model: Performance should not be worse than this model because
it is a model that does not care about candidates’ similarity to the
target. The experiments could have shown RTs somewhere in the
middle between these two extremes: neither perfectly prioritized
nor perfectly random. In that case, the RTs could have been the
result of either some form of poor prioritization or (simply) a
slowdown due to candidate heterogeneity. What we found instead,
in six separate conditions (four predictions in Experiment 2 and
two predictions in Experiment 3), is that RTs in the heterogeneous
condition perfectly matched the RTs predicted by the random
scrutiny model. So, although it is theoretically possible that there
was a slow-down due to heterogeneity, it would be quite a coin-
cidence that the heterogeneity slowdown was exactly of the correct
magnitude to match the RTs predicted by the random scrutiny
model across six separate conditions (and two separate groups of
subjects). In our opinion, that is highly unlikely, but it is nonethe-
less possible.

Limitations and Future Directions
Eye Movements

In this study, eye movements were not measured. Thus, the
observed results most likely arose from a combination of both
overt and covert attentional processes. It is highly likely that overt
attention, as a result of eye movements, were being measured here.
Even in efficient search tasks, observers overwhelmingly tend to
choose to move their eyes, even when the task can be completed
more quickly and efficiently without eye movements (Ng et al.,
2018; Zelinsky, 2008). Currently, target contrast signal theory does
not differentiate between overt and covert attention at this time,
and it is worth noting that voluntary deployment of covert attention
takes about the same time as voluntary eye movements (~200 ms,
see Wolfe et al., 2000). Nevertheless, this is an important avenue
for future work since much of the theory relies on the differences
between foveal versus peripheral processing, especially when de-
termining which stimuli are candidates and which are lures.

Candidate Discriminability and Crowding

In Experiment 1, there was only one candidate among 35 lures.
There was thus no visual crowding of the candidate by other
candidates. This raises the concern that discriminability of candi-
dates in Experiments 2 and 3 might thus have been poorer due to
crowding by candidates because in those experiments, there were
always several candidates present in the display at the same time.
That said, we have some confidence in our results because perfor-
mance was relatively high in Experiment 1 even under brief
exposure times of 100 ms and also because in Experiments 2 and
3, the search display was constrained such that the nontarget
candidates were distributed evenly between the four quadrants of
the search display. Thus, at set size 5 (1 target and four candi-
dates), the target was either by itself in its own quadrant (75% of
trials) or, at most, with one additional candidate nearby. Overall,
three out of the four quadrants only contained 1 candidate on each
trial. At set size 9, most of the time, the target appeared alongside
one additional candidate in its own quadrant (and in 25% of trials
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with just two candidates in the same quadrant). Three out of four
quadrants contained just two candidates on every trial. Given the
size of our displays (quadrants were about 10 degrees of visual
angle in width height), the concerns about candidate— candidate
crowding are therefore relatively minor. Thus, while candidate—
candidate crowding was possible, it probably did not play too
much of a role in terms of substantially lowering the discriminabil-
ity of the target in the periphery in Experiments 2 and 3 compared
to what was measured in Experiment 1.

Stimulus Dependency

Experiment 1 showed that the L and offset-L candidates could
be reliably differentiated even at exposure times of 100 ms. We
believe this indicates that this information was available to the
visual system although it was not used to prioritize the deployment
of attention in Experiments 2 and 3. However, it is possible that
our results might be overly dependent on the specific types of
stimuli we used. Therefore, it might be important to continue to
test this hypothesis with more varied stimuli. It is indeed possible
that there exist some sets of stimuli that are similar enough to the
target template to be deemed as candidates, yet with sufficiently
large differences in terms of their similarity to the target that the
attentional system might be able to use differences in target-
candidate similarity to prioritize candidates by similarity. It would
be challenging, however, to create such a set of stimuli. Whether
an item is a candidate or a lure depends on whether parallel
processing can reject that item as a nontarget given the processing
limitations of peripheral vision. Although this is mainly deter-
mined by the features of the stimulus, an important factor is also
the location of the stimulus in the visual field. A stimulus could act
like a candidate in the far periphery but act like a lure in the near
periphery, where the resolution of parallel processing might be
sufficient to reject it as a distractor. Thus, in such sets of stimuli,
any observed prioritization would have to be carefully assessed so
that it might not be confused with eccentricity effects (leading to
better rejection of candidates near fixation).

It is also a limitation that candidate similarity was defined only
in the shape dimension (candidates had the same color as the
target). We could have run the same experiments defining candi-
date similarity in the color dimension (and keeping target and
candidates shapes identical). There is often a sense that color is
“special” in terms of its ability to guide attention. Therefore, one
might be concerned that the results are unique to the way we
designed our stimuli, perhaps because participants could have first
tuned to color to reject lures and then tune to shape to try to tackle
the candidates. This sequential tuning of attention to different
feature dimensions might somehow impact how well prioritization
can be achieved. However, recent work from our lab helps assuage
these concerns. In Buetti et al. (2019), we demonstrated that when
a target differs from lures across both color and shape, search is not
“guided” first by color then by shape. Using stimuli very similar to
the ones used here, Buetti et al. (2019) demonstrated that search
for a target defined by a given color and shape is perfectly
predicted by the degree of its color distinctiveness (evaluated when
all shapes are identical, on a separate group of participants) and
shape distinctiveness (evaluated with all colors are identical, also
on a separate group of participants), simultaneously. This simul-
taneous and independent computation of color and shape distinc-

tiveness occurs even when one feature dimension (say color)
carries a much more distinctive signal than the other (shape).
Performance on 90 different conditions (mixing different types of
colors, shapes and set sizes) was almost perfectly predicted by this
simultaneous color + shape guidance account. Therefore, in spite
of intuitions that might suggest that in tasks such as the one we
used here one feature (color) is prioritized more or before the other
(shape), what actually happens is that the visual system is com-
puting both color and shape differences simultaneously (maybe
over different brain regions) and using a combined distinctiveness
signal to “guide” attention (rejecting lures, direct attention toward
candidates). Thus, given that both color and shape distinctiveness
signals are computed simultaneously and combined together to
guide attention irrespective of which feature dimensions carries a
larger distinctiveness signal, we feel confident that the results
would have been similar had we used color to define candidates
(rather than shape).

In terms of generalizability, it would also be important to test
our results with images that are more complex (e.g., photos of
real-world stimuli) and also to explore presentation of these stimuli
in more complex, realistic backgrounds (as opposed to black
backgrounds). While we believe there is no clear reason why our
results would not generalize well to those stimuli, the increased
visual complexity of these images would move us closer to eco-
logically valid vision.

Conclusion

In a series of experiments, we demonstrated that the idea that
attentional scrutiny prioritizes items in terms of decreasing target-
distractor similarity is incorrect. Attention does not prioritize items
in a top-to-bottom manner. For items that are potential targets (i.e.
candidates in our terminology), attentional scrutiny occurs at ran-
dom (or at least in a manner that is not ordered by target-distractor
similarity). Furthermore, counter to the standard top-to-bottom
prioritization account, processing items that are quite dissimilar to
the target (i.e. lures) and therefore ought to never impact perfor-
mance are in fact processed by (distributed) attention, resulting in
systematic time costs involved in rejecting those items. These
results are in line with the target contrast signal theory: Items are
instead rejected in a bottom-to-top manner, in reverse order of their
similarity to the target. This orderly rejection process continues up
to the point where the visual system is unable to reject target-
similar items with sufficiently high confidence because of limita-
tions in peripheral processing. That being said, there are certainly
other sources of attentional guidance that may play a role in
directing attention to likely target locations that are not similarity-
based. For example, contextual cueing, rewards, and top-down
strategies have been shown to reduce search times (Chun & Jiang,
1998; Kristjansson et al., 2010; Smilek et al., 2006). We propose
that in the absence of such sources of information, attentional
scrutiny is best characterized by a random process rather than one
that involves a top-down similarity-based prioritization that starts
with the most target-similar distractors and moves down the sim-
ilarity scale.
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Appendix

Accuracy for Experiments 2 and 3

Table Al
Accuracy Broken Down by Condition for Experiment 2

Mean Mean
Candidate similarity Lures Candidates accuracy (%) RT (ms)
Low 0 4 97.8 1132
8 98.0 1465
24 4 97.5 1357
8 97.0 1652
g High 0 4 94.6 1541
8 89.9 2214
24 4 94.3 1732
8 90.7 2422
Mixed 0 4 95.3 1350
8 93.5 1859
24 4 94.7 1586
8 92.5 2028

Note. Slower conditions also had lower accuracy, indicating that there were no speed—accuracy tradeoffs in the experiment.
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Table A2
Accuracy Broken Down by Condition for Experiment 3
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2
z Trial type
S g Candidate similarity (target presence) Candidates Mean accuracy (%) Mean RT (ms)
S 2 Low Absent 4 98.9 1192
£ 3 8 99.4 1766
g 3 Present 4 96.1 1260
£ 2 8 93.3 1450
E g High Absent 4 95.6 2018
<2 8 91.9 3400
£ & Present 4 87.2 1638
22 8 83.6 2226
25 Mixed Absent 4 95.7 1750
=7 8 94.6 2954
= Present 4 91.6 1452
g = 8 89.8 1880
4 'é Note. Slower conditions also had lower accuracy, indicating that there were no speed—accuracy tradeoffs in the experiment.
3] o Received December 10, 2019
z g Revision received October 2, 2020



