
 

Public Significance Statement 

Most theories of attention propose that attention visits locations in a scene in descending order of 

their priority, with attentional priority reflecting an object’s similarity to the target object or feature 

that the observer is looking for. Here we propose that the inverse is in fact true. Attention starts by 

evaluating peripheral information in parallel and rejecting unlikely targets as a function of their 

dissimilarity to the target; that is, attention moves up the similarity scale, not down. Furthermore, we 

propose that given the processing limitations of peripheral vision, attention cannot be properly guided 

by visual similarity at the top of the priority scale: Once similarity is sufficiently high, attention 

simply visits potential target locations at random. This new bottom-to-top conceptualization of 

attentional processing should be of wide interest to anyone working in an attention-related field, 

applied or theoretical. 
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A common assumption in attention theories is that attention prioritizes search items based on their 

similarity to the target. Here, we tested this assumption and found it wanting. Observers searched through 

displays containing candidates (distractors that cannot be confidently differentiated from the target by 

peripheral vision) and lures (distractors that can be). Candidates had high or low similarity to the target. 

Search displays were either candidate-homogeneous (all items of same similarity) or candidate- 

heterogeneous (equal numbers of each similarity). Response times to candidate-heterogeneous displays 

were equivalent to the average of high- and low-similarity displays, suggesting that attention was 

allocated randomly, rather than toward the high-similarity candidates first. Lures added a response time 

cost that was independent of the candidates, suggesting they were rejected prior to candidates being 

inspected. These results suggest a “reverse” prioritization process: Distributed attention discards least 

target-similar items first, while focused spatial attention is randomly directed to target-similar items. 
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Central to most theories of visual selection is the concept of 

attentional prioritization: the idea that early visual processing 

produces an ordered list of locations in the visual scene for 

attention to examine. The specifics of how this ordered list of 

locations is arrived at vary between theories, as does the term used 

to describe the priority “score” of a location. For instance, in 

Wolfe’s (1994, 2006) Guided Search, this “score” is referred to as 

“activation”, while in Zelinsky’s (2008) Target Acquisition Model 

it is referred to as “priority”, and it is referred to as saliency in Itti 

   and Koch’s (2000) saliency model (and its various later modifica- 
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tions, e.g., Navalpakkam & Itti, 2005, 2007). The higher this 

saliency score, the higher the attentional priority of that location. 

Attention is thought to inspect the scene by going down a priority 

list starting from the location with the highest activation. Locations 

already visited are “scratched off” the list through variants of an 

inhibition of return mechanism with varying degrees of memory 

for inspected locations (Itti & Koch, 2000; McCarley et al., 2003). 

Finally, the ranking in this priority list can be impacted by factors 

such as eye movements (because the resolution with which an item 

is processed depends on where it falls on the retina; Balas et al., 

2009; Rosenholtz, Huang, Raj, et al., 2012; Zelinsky, 2008) and 

noise (Wolfe, 1994, 2006). 

The key assumptions underlying this prioritization account are 

that (a) the visual system is able to compute (even if noisily) a 

priority score for each item in the scene that veridically reflects 

that item’s attentional importance (determined by that item’s sim- 
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ilarity to the target or its saliency, depending on the specific 

model), and (b) attention works down the list of priority scores. 

The goal of the present study is to demonstrate that there are 

problems with these assumptions. First, resolution and processing 

limitations in peripheral vision make the computation of the list 

difficult, if not impossible; as objects become more and more 

similar to the target template, peripheral analysis of those items 

becomes less and less reliable. Second, recent evidence suggests 

that the orderly discarding of items starts from the bottom of the 

similarity scale, not at the top, with least similar items being 

discarded faster than less dissimilar items (Lleras et al., 2019; 

Wang et al., 2017). Indeed, take displays like the ones shown in 

Figure 1. Wang et al. (2017) demonstrated through computational 

simulations that the reaction time (RT) to find the teddy bear in the 

scene in Figure 1a can be predicted by assuming that search starts 

by initially processing all the items in the scene. As time pro- 

gresses, peripheral analysis of the scene allows for items to be 

rejected (as nontargets) in parallel. This parallel rejection occurs in 

an orderly fashion with the least target-similar items (the white 

cars) being rejected first and the more target-similar items (the red 

dolls) being rejected later. Lleras et al. (2019) extended those 

findings to scenes composed of simpler colored geometric shapes 

(Figure 1b). The time to find the red triangle target in the scene is 

also predicted by assuming the same parallel rejection process of 

all nontarget items in Wang et al. (2017). Blue circles (lowest 

target-distractor similarity) are rejected first, followed by yellow 

triangles (medium target-distractor similarity) and then orange 

diamonds (highest target-distractor similarity). The important take- 

away from these results is that, even in the presence of higher- 

similarity items, RTs to find the target are impacted by the time 

taken to reject lower similarity items, suggesting these items are 

not “glossed over” by attentive processing. If attention had truly 

started “at the top” of the similarity scale and moved down from 

there, the lower similarity items ought to almost never have im- 

pacted RTs since the target should almost always be found before 

attention even visits the low-similarity distractors. Therefore, these 

results suggest attention starts at the bottom of the similarity scale, 

initially considering all search items as likely targets, and then it 

moves up that scale, rejecting more and more items that are 

unlikely to be the target. 

This orderly rejection of items that are unlikely to be the target 

continues until the remaining distractors are relatively similar to 

the target, at which point focused attention inspects these items in 

a random order (Buetti et al., 2016; Lleras et al., 2020). This 

proposal follows the target contrast signal theory, which posits that 

the output of early visual processing is a contrast value that 

indexes how dissimilar items in the scene are to the target. Rejec- 

tion of dissimilar items, having large contrast values (referred to as 

lures) takes time; this time cost increases logarithmically with the 

number of items that are rejected (e.g., Buetti et al., 2016; Lleras 

et al., 2020; Ng et al., 2018; Wang et al., 2017; Wang et al., 2018). 

The logarithmic increase in response times as a function of lures is 

indicative of a parallel, stochastic process for evaluating items in 

the display (Buetti et al., 2016; Lleras et al., 2020; Townsend & 

Ashby, 1983). Because of the resolution limitations of peripheral 

vision, rejection of similar items, having small contrast values 

(referred to as candidates) cannot occur in parallel. Candidate 

rejection requires focused attention and incurs a linear cost with 

the number of candidates. These items are not ordered by contrast 

values precisely because of the unreliability of those small contrast 

values. Thus, target contrast signal theory proposes that the in- 

spection of these target-similar items by attention is not guided by 

similarity but occurs in random order. 

There has yet to be direct evidence to support the major claim in 

target contrast signal theory that attentional scrutiny is random, or 

at least, not guided by similarity or “attentional priority.” Such 

evidence is crucial for the theory because one could have just as 

easily specified a model where the accumulated contrast (accumu- 

lated during the initial processing and rejection of lures) drives the 

deployment of attention toward accumulators with lower contrast 

values (i.e. toward locations with higher target-distractor similarity 

values). Such a “contrast-guided” selection mechanism would 

produce more efficient search by increasing the probability of 

selecting the target location (if, on average, there is a lower 

contrast value at the target location than at candidate locations), 

and more generally, by increasing the rate of evidence accumula- 

 
 

Figure 1 

Example Displays 
 

 
Note. Example displays from Wang et al. (2017)—left panel—and Lleras et al. (2019)—right 

panel. In these heterogeneous search displays, RTs to find the target (a teddy bear on the left 

and a red triangle on the right) are almost perfectly predicted by a model that incorporates the 

time taken to discount in parallel all the nontarget items in the display, with less similar items 

being rejected faster than more similar items. See the online article for the color version of this 

figure. 
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tion at the lowest-contrast locations (i.e. the slowest accumulating 

locations). Indeed, the major models of visual search subscribe to 

the account whereby the deployment of attention is prioritized 

toward items that are most similar to the target. One could also 

further imagine other kinds of rules that would prioritize some 

accumulators over others based on the information that was accu- 

mulated during the lure-rejection process. Yet, target contrast 

signal theory proposes that selection of items for focused attention 

unfolds without taking into account any of the information accu- 

mulated at the nonrejected location: It is indeed random with 

respect to the contrast (or similarity) to the target. 

In the present study, we put this proposal to the test by exam- 

ining the extent to which participants prioritize candidates from 

high-to-low similarity or whether these candidates are instead 

inspected randomly. Consider a task in which an observer searches 

for a red T in a display of orange crosses (lures) and red Ls and 

“offset-Ls” (low- and high-similarity candidates, respectively; Fig- 

ure 2). Attentional prioritization theories (e.g., Ehinger et al., 2009; 

Najemnik & Geisler, 2005, 2008; Navalpakkam & Itti, 2005, 2007; 

Wolfe, 2006; Zelinsky, 2008) predict that attention should first 

visit the high-similarity candidates and will likely find the target 

even before visiting the low-similarity candidates and lures. That 

is to say, the target ought to have a priority score that is compa- 

rable to the high-similarity candidates but much higher than the 

low-similarity candidates and lures (blue bars in Figure 2). If this 

is the case, search times should not be impacted by the presence of 

lures and low-similarity candidates. The functional set size (Neider 

& Zelinsky, 2008) should thus be the number of high-similarity 

candidates, plus the target. We refer to this as the ideal prioriti- 

zation model. Note however that this is an “ideal” and unlikely 

scenario because activation values are inherently noisy (Wolfe, 

1994, 2006). Indeed, if this were not the case, then the target would 

always have the highest activation value and would be found with 

a single deployment of attention. Thus, the ideal prioritization 

model refers to a maximum prioritization (given noisy activation 

values) and represents the best a priority model could perform, and 

as such it represents an informative boundary condition to which 

we can compare human performance. Furthermore, even if acti- 

vation values are noisy, this model still ought to predict that 

attention completely ignores lures (when they are present) given 

their distinctiveness from the target template. 

 

Figure 2 

Example of Search Display (Top) and Depiction of Model Mechanisms (Bottom) 
 

 
Note. Top: A display with a target (red [gray] T), low-similarity candidates (red [gray] Ls), 

high-similarity candidates (red [gray] offset-Ls), and lures (thick orange [light gray] crosses). 

Bottom: Prioritization theories propose that early visual processing involves the calculation of 

activation values with some noise (blue[dark gray] bars; units are arbitrary). This results in a 

top-to-bottom prioritization of attention (even if imperfect) based on target-distractor simi- 

larity. On the other hand, target contrast signal theory proposes that early visual processing 

instead involves an evidence accumulation process toward a nontarget threshold with the goal 

of rejecting in parallel items that are visually distinct from the target. The evidence that is 

accumulated depends on target-distractor dissimilarity (green [gray] bars; units are arbitrary). 

See the online article for the color version of this figure. 
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In contrast, Target Contrast Signal Theory predicts that distrib- 

uted attention will spend time processing lures in parallel across 

the display. After rejecting those stimuli, attention ought to ran- 

domly scrutinize candidates, irrespective of their similarity relation 

to the target. In other words, the functional set size of attentional 

scrutiny would be that of all candidates (plus the target) regardless 

of their similarity to the target. This is because early visual 

processing involves a rejection of locations that have accumulated 

sufficient evidence to reach nontarget thresholds (green bars in 

Figure 2). Lure locations reach threshold in a systematic way, 

whereas candidate locations do not (Buetti et al., 2016; Lleras et 

al., 2020). These nonrejected locations are then randomly scruti- 

nized by focused attention. We refer to this as the random scrutiny 

model. 

Note that the two models represent the two extreme possibilities 

of how attention scrutinizes items: either completely randomly, or 

perfectly guided by the level of (noisy) activation of each item. In 

the Results sections we calculate a prioritization score that reflects 

the degree to which attention prioritizes items according to acti- 

vation levels, which can vary from 1 (perfect prioritization) to 0 

(random scrutiny), with negative numbers representing situations 

where revisitations to already scrutinized locations occur. 

We first present an experiment demonstrating that observers can 

differentiate between the two types of candidates (low- and high- 

similarity) that were used in Experiments 2 and 3 (see Figure 2)1. 

It is important to properly calibrate the stimuli to avoid potential 

misinterpretations. For instance, one could create candidates that 

are either too small or too similar to one another, such that they can 

only be distinguished from one another via direct foveation. In 

such scenarios, random scrutiny of candidates would necessarily 

be observed. Thus, the goal of Experiment 1 was to show that 

observers can (a) identify these stimuli in the periphery, even if 

imperfectly, and (b) that they do bear significantly different levels 

of similarity to the target. Using these well-calibrated stimuli, we 

then show, in Experiments 2 and 3, that the random scrutiny model 

is a better description of the data compared to the ideal prioritiza- 

tion model, indicating that serial attentional scrutiny is random and 

not prioritized by target-candidate similarity. 

 

Experiment 1 

The goal of this experiment was to determine whether partici- 

pants can identify the candidates, even if imperfectly, when they 

are presented in peripheral locations and surrounded by similar 

levels of low-level noise (i.e. the presence of lures), similar to the 

conditions used in Experiments 2 and 3. Displays were flashed 

briefly to prevent eye movements so that we could assess target- 

distractor discriminability at three different levels of target eccen- 

tricity, encompassing all eccentricities used in Experiments 2 and 

3. Participants were asked to report whether the candidate in the 

display was a T or not. This is the same perceptual discrimination 

that the visual system must perform to categorize stimuli in the 

Experiments 2 and 3. This experiment was preregistered on Open 

Science Framework (https://osf.io/9gktr/). The data and materials 

can be found at https://osf.io/5n2rt/. 

 

Participants 

Participants were recruited from the subject pool from the 

University of Illinois at Urbana–Champaign. Participants provided 

informed consent, which was approved by the Institutional Review 

Board at the University of Illinois at Urbana–Champaign, and were 

given course credit for taking part in the experiment. The study 

was run in accordance to the principles expressed in the Declara- 

tion of Helsinki. All participants had normal or corrected-to- 

normal vision and were determined to be noncolorblind using the 

Ishihara color plates before the start of the experiment. We planned 

on a sample size of 25 participants, which was determined to be 

sufficient to detect an effect of T2    .58 at 95% power and CY    
.05. This corresponded to the main effect of the increase in 

response times as a function of lure set size in search displays with 

lures and candidates (Experiment 3A in Buetti et al., 2016). Al- 

though the required sample size was determined to be 12, we 

decided to increase it to 25 to reduce measurement noise and to 

keep the sample size consistent across our many experiments on 

this topic. In total, 27 participants were recruited (14 Females, 

mean age 21.3). Data from the first two participants were 

excluded due to an error in the experimental code that resulted in 

an incorrect number of experimental trials. 

 
Stimuli and Procedure 

There were four kinds of stimuli: three candidates and one lure. 

The three candidates were: a red T (the target), a letter L, an 

“offset-L” that was created by shifting the vertical of the letter L 

by 0.2° to the right, and the lure, which was a thick orange plus 

sign (see Figure 2). All candidates were randomly presented in one 

of four possible orientations (rotated in clockwise steps of 90 

degrees) except for the letter T, which was rotated either 90 or 180 

degrees clockwise. All stimuli subtended .833 of visual angle and 

were randomly distributed across a 36-point grid. The 36 locations 

were equally distributed over three concentric rings with varying 

eccentricities (4.17, 7.73, and 14.3 degrees of visual angle). This 

concentric display was used to allow for a better estimation of the 

effect of eccentricity on target discriminability. On each trial, one 

of the 36 locations contained a candidate (T, L, or offset-L), while 

the remaining locations contained lures (orange crosses). Partici- 

pants responded to the identity of the candidate, which was always 

presented on each trial, by pressing the right arrow key if it was a 

T or the left arrow key if it was not a T (L or offset-L). Response 

buttons were counterbalanced across participants. In total, the 

target T candidate was presented on 50% of the trials, the L 

candidate was presented on 25% of the trials, and the offset-L 

candidate was presented on the remaining 25%. There were 720 

trials in total. 

Each trial began with a fixation cross in the center of the screen 

for 500 ms. The display was then presented for 100 ms to prevent 

eye movements. The fixation cross remained visible on the screen 

during this time. The display then offset to a blank black screen for 

2500 ms, during which participants made their response. Upon 

response, the blank screen continued for another 1500 ms, after 

which the next trial began. All stimuli were presented against a 

black background on a 22-in. (400 mm X 300 mm) CRT monitor 

with a refresh rate of 85Hz and a screen resolution of 1024 X 768 

 
1 The order in which the experiments were carried out, chronologically, 

was: Experiment 2, Experiment 3, Experiment 1. We have chosen to 
present Experiment 1 first in order to highlight the fact that the candidates 
indeed differed in their similarity to the target. 
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pixels. Participants viewed the display unrestrained from a dis- 

tance of approximately 59 cm. All experiments were programmed 

using Psychopy (Peirce et al., 2019). 

 
Results 

All analyses, in this and the following experiments, were con- 

ducted in R (R Core Team, 2018). The definition of accuracy 

depends on the stimulus. For Ts, accuracy refers to the hit rate 

(responding T). For Ls and offset-Ls, accuracy refers to the correct 

rejection rate (responding not-T). A one-sample t test revealed that 

overall accuracy was significantly greater than chance (83% vs. 

50%), t(24) 23.92, p < .001, 95% CI of mean difference in 
accuracy: [0.30, 0.36]. A one-way ANOVA revealed that observ- 

ers differed in their accuracy depending on the candidate type (see 

Figure 3), F(2, 48)       66.17, pc   < .001, w2       .72,        .732 
(corrected for sphericity violations using the Greenhouse-Geisser 

procedure). Follow-up paired-samples t tests revealed that Ls were 

responded to more accurately than Ts, t(24) 8.71, p < .001, 95% 

CI: [0.10, 0.16] and offset-Ls, t(24)     15.079, p < .001, 95% CI: 
[0.15, 0.20]. Accuracy did not differ between Ts and offset-Ls 

(after applying the Bonferroni correction for multiple compari- 

sons), t(24) 2.28, p .0318, 95% CI: [0.0044, 0.088]. 

We also conducted an exploratory paired-samples t test to 

examine the difference in accuracy between the Ls and offset-Ls. 

Ls (M .93, SD .048) were responded to more accurately than 

offset-Ls (M     .76, SD     .069), t(24)     15.08, p < .001, 95% CI: 
[0.15, 0.20]. This provides further support that the Ls and offset-Ls 

were not confusable, even at brief presentation times of 100 ms. 

Accuracy is potentially an imperfect measure in this experiment 

since the decision criterion for each candidate is not the same. 

There is no need for the observer to discriminate between an L or 

offset-L or to identify it at all (all that is required is to decide that 

it is not the T). On the other hand, the observer has to identify that 

the candidate is the letter T in order to respond correctly. We thus 

present another measure of performance, d . Using the confusion 

matrix presented in Table 1, we calculated the hit rate and false 

alarm rate for each individual participant. D was then calculated. 

A one-sample t test revealed that d (M 1.98, SD 0.55) was 

significantly different from zero, t(24) 17.91, p < .001, 95% CI: 

[1.75, 2.21]. 

In addition, a one-way ANOVA revealed that d differed de- 

pending on candidate eccentricity, F(2, 48)     100.37, p < .001, 

w2 .80. Follow-up t tests revealed that d was smaller when the 
candidate was in the furthest eccentricity (14.3°; M 1.44, SD   

0.60) compared to the nearest eccentricity (4.17°; M 2.43, SD 

0.66), t(24) 11.23, p < .001, 95% CI: [0.80, 1.16] as well as the 
middle eccentricity (7.73°; M    2.35, SD     0.61), t(24)     12.31, 

p < .001, 95% CI: [0.76, 1.06]. There was no significant differ- 
ence between the middle and nearest eccentricities, t(24)    1.03, 

p .31, 95% CI: [-0.072, 0.21]. 

 
Discussion 

Experiment 1 demonstrated that, even under very short presen- 

tation times (100 ms), the visual system is able to discriminate 

between Ls, offset-Ls and Ts, albeit with less-than-perfect recog- 

nition performance. In addition, Ts were more confusable with 

offset-Ls, indicating that the two were more similar to each other 

than to the Ls. Performance, as measured by d , was the worst 

when the target was in the farthest eccentricity, although there was 

no difference between the middle and nearest eccentricities. This is 

not surprising, given that the decrease in resolution as a function of 

eccentricity is well-known. Importantly, d was still relatively high 

(1.44) even in the furthest eccentricity, especially considering that 

the exposure time was only 100 ms. In the following experiments, 

we show that although this information regarding visual similarity 

 
 

Figure 3 

Accuracy Scores and d= for Experiment 1 

Note. Left: Each dot (randomly jittered horizontally) represents the mean accuracy of an 

individual participant. The leftmost plot summarizes overall accuracy, demonstrating that 

observers are well above chance (50%, indicated by the dashed line) at identifying the target 

T from candidates L and offset-L. The higher accuracy for Ls than offset-Ls also confirms that 

offset-Ls were indeed more similar (confusable) with the T than the L stimuli, suggesting that 

offset-Ls were more likely to be confused with Ts due to their increased visual similarity. 

Right: Average d in Experiment 1. Each dot represents the mean d of an individual 

participant. Average d was relatively high, further suggesting that participants were able to 

differentiate between the different candidates. See the online article for the color version of 

this figure. 
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Table 1 

Confusion Matrix Used to Calculate d= in Experiment 1  

Response type T L or offset-L 
 

Respond ‘T’ Hit False alarm 

Respond ‘not T’ Miss Correct rejection 

 

 

is available to observers, they seemed reticent to use this informa- 

tion to guide attentional scrutiny. 

 
Experiment 2 

If attention scrutinizes items in decreasing order of target-distractor 

similarity (as proposed by the ideal prioritization model), then lures, 

which have very low target-distractor similarity, should not contribute 

to processing times. In addition, attention should visit the high- 

similarity candidates first and will probably find the target before 

visiting the low-similarity candidates. We examined the former by 

comparing response times of displays with and without lures. We then 

addressed the latter by using candidate-homogeneous displays to 

predict response times on candidate-heterogeneous displays. If atten- 

tion is guided by target-distractor similarity, then response times on 

candidate-heterogenous displays should be equivalent to response 

times of candidate-homogeneous displays with high-similarity dis- 

tractors of the same set size. 

 
Participants 

A group of new participants were recruited from the same pool of 

subjects as in Experiment 1. We planned on a sample size of 25 

participants, which would be more than sufficient to measure the 

difference between the two candidate search slopes with 95% power 

and CY .05. This corresponded to the main effect of lure set size 

(T2 .58) in search displays that contain both lures and candidates, 
which are similar to the stimuli used here (Experiment 3A in Buetti et 

al., 2016). Although the required sample size was determined to be 

12, we decided to increase it to 25 to reduce noise (i.e. to obtain more 

accurate estimates of each condition mean). Due to the nature of 

scheduling timeslots, 27 participants took part in this experiment in 

total (22 Females, mean age 19.1). There were 2 participants with 

accuracy rates lower than 80% who were excluded from the analyses. 

The final sample size was thus 25. 

 
Stimuli and Procedure 

All stimuli were identical to those used in Experiment 1. The 

study was designed as a 2 (lure presence: 0 or 24 lures) X 2 

(candidate set size: 4 or 8) X 3 (candidate type: homogenous 
high-similarity, homogenous low-similarity, or heterogenous) 

within-subjects experiment. The experiment was programmed 

such that all nontarget candidates were distributed evenly between 

the four quadrants of the search display; the same was done for the 

lures. Depending on the condition, there were thus 5, 9, 29, or 33 

items in the search display. All stimuli were randomly distributed 

across a 36-point grid which subtended 20 degrees of visual angle. 

The smallest distance between two stimuli was about 1.425 de- 

grees of visual angle. In contrast to Experiment 1, in Experiment 

2 (and Experiment 3), a square grid was used instead of a concen- 

tric grid. This was to maximize comparability between the setup in 

these experiments and that in Buetti et al. (2016). In Buetti et al. 

(2016), it was shown that lures increased response times in a 

logarithmic manner as compared to the linear effect of candidates. 

It should be noted that Madison et al. (2018) compared perfor- 

mance across these two different grid arrangements and found the 

difference across grids on RTs to be fairly minimal. In the heter- 

ogenous displays, the number of high- and low-similarity candi- 

dates were always equal (i.e. 2 or 4 of each depending on the total 

candidate set size). In total, there were 12 different types of 

displays. Each participant observed a block of 480 fully random- 

ized trials with 40 trials for each display type. 

Each trial began with the presentation of a central fixation cross for 

1 s before the display of the search array, which remained on screen 

until a response was made. Participants responded to the orientation of 

the target letter T by pressing either the left or right button on a 

keyboard. Feedback was given in the form of a loud beep whenever 

an error was made; no feedback was given for correct trials. 

 

Results 

Average accuracy was high (M   94.6%, SD    5.32%). There 

was no speed–accuracy trade-off (Table A1 in the Appendix). 

Effect of Lures on Candidate-Homogeneous Displays 

Trials with incorrect or no responses were excluded from analyses. 

We first conducted a 2 (lure presence) by 2 (candidate type) analysis 

of variance (ANOVA) on the observed search slopes in the candidate- 

homogenous displays. Presence of lures did not significantly affect 

the linear search slopes, F(1, 24)   0.057, p    .81, T2    .0024. 
Linear search slopes were higher for high-similarity candidates (170 

ms/item) compared to low-similarity candidates (79 ms/item), F(1, 

24) 70.88, p < .001, T2 .75. The large (more than double) 
difference between the linear search slopes for low- and high- simi- 
larity candidates confirmed that the two types of candidates differed 

greatly in terms of their similarity to the target. Finally, the interaction 
between candidate type and lure presence was not statistically signif- 

icant, F(1, 24) 0.21, p .65, T2 .0088. The Bayes factor was 
computed to compare the null hypothesis “No effect of lure presence 

on search slopes” to the alternative hypothesis (nonzero effect of lure 

presence), using the BayesFactor package in R (Morey & Rouder, 

2018). The data was more likely under the null, with moderate 

support, BF01 6.34. Thus, the presence of lures did not meaning- 

fully affect the linear search slopes. 

The same ANOVA was conducted on intercept values as the 

dependent variable. Intercept values were significantly increased 

by the presence of lures (928 vs. 708 ms), F(1, 24) 8.65, p   

.00713, T2    .27, but not candidate type, F(1, 24)    0.69, p    .41, 

T2     .028. The interaction was not significant, F(1, 24)      0.33, 

p     .57, T2     .014. In other words, there was a constant cost of 
120 ms to process displays containing lures that was independent 

from the number of candidates and candidate-target similarity (see 

Figure 4), consistent with the predictions of the target contrast 

signal theory. 

Attentional Scrutiny in Candidate-Heterogeneous 

Displays 

Next, we turn to the main question of whether attentional 

scrutiny is prioritized as a function of target-distractor similarity or 
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Figure 4 

Response Times (in ms) in Experiment 2 

 
RTheterogenous 

RThigh + RTlow 

2 
 

 
 

Note. The x-axis represents the number of candidates plus the target. Two 

observations are evident here. First, the presence of lures did not signif- 

icantly affect search slopes (dotted vs. solid lines). Second, search slopes 

were steeper for high-similarity candidates compared to low-similarity 

candidates (red [gray] circles vs. blue [dark gray] triangles), while that for 

the mixed displays were in between (green [light gray] squares). Error 

bars indicate 95% confidence intervals. See the online article for the color 

version of this figure. 

 

 
 

in fact random. To evaluate the ideal prioritization model and the 

random scrutiny model, we used response times from the 

candidate-homogeneous displays to predict response times in the 

candidate-heterogeneous displays. Four predictions, corresponding 

to the four different conditions (2 levels of candidate similarity X 
2 levels of lure presence), were made. First, mean search slopes 

were calculated, for each subject and each condition, for the 

candidate-homogenous displays by fitting the equation: 

RThigh = H X (number of candidates + 1) + ch 

RTlow = L X (number of candidates + 1) + cl 

H and L represent the search slopes (see Figure 4) for high- and 

low-similarity displays respectively, and ch and cl represent the 

intercepts for high- and low-similarity displays respectively. The 

term “+1” denotes that the functional set size is simply the number 
of candidates plus the target. The ideal prioritization model pre- 
dicts that response times in heterogeneous displays would be 

dependent on only the number of high-similarity candidates plus 

the target. Thus, response times in heterogeneous displays were 

predicted using the following equation: 

RTheterogenous = H X (set sizehigh + 1) + ch 

The random scrutiny model predicts that response times in 

heterogeneous displays would be independent of candidate-target 

similarity. Thus, the functional set size in this condition is simply 

the sum of the number of all high and low candidates, plus the 

target (in other words, all the candidates that are present in the 

display, plus the target). Mathematically, this is equivalent to 

the average response times for high- and low-similarity displays, at 

any given functional set size: 

Figure 5 shows that the ideal prioritization model systematically 

underpredicts response times (average deviation error 252 ms), 

while the random scrutiny model makes predictions that show 

near-perfect correspondence with the observed response times 

(average deviation error 16 ms). The dashed line (y x) 

indicates where the points would fall for a model that perfectly 

predicts response times with zero error. 

Individual-level predictions also show the same pattern of re- 

sults. Figure 6 shows the within-subject residuals (observed– 

predicted response times). Within-subject residuals from the ideal 

prioritization model (left panel) show large variability that in- 

creases with set size, indicating poor correspondence between the 

model and the observed data. In addition, the systematic under- 

prediction by the model increases with set size. On the other hand, 

the residuals from the Random Scrutiny Model (right panel) are 

centered around zero and show little variability, suggesting good 

correspondence between the model and the observed data. 

Next, we examined the performance of both models by quanti- 

fying the overall prediction error of each model. Traditional null 

hypothesis significance testing is problematic when the goal is to 

provide evidence for a null effect (zero prediction error by the 

Random Scrutiny Model). Thus, we calculated Bayes Factors in 

lieu of p values. Separate Bayes factors were calculated for each 

model, for a one-sample t test comparing the residuals (observed— 

predicted response times, shown in Figure 5) against zero. BF01 

denotes evidence in favor of the null hypothesis (prediction error 

is not meaningfully different from zero), while BF10 denotes 

evidence in favor of the alternate hypothesis (prediction error is 

meaningfully different from zero). The Bayes Factors indicated 

 

 
Figure 5 

Observed Versus Predicted Response Times for the Ideal Prior- 

itization and Random Scrutiny Models 
 

 
Note. The Random Scrutiny model (green [gray] circles) makes near- 

perfect predictions, while the Ideal Prioritization model (blue [black] 

triangles) systematically underpredicts response times. Different condi- 

tions are indicated at the top of the figure. The dashed y x line indicates 

where the predicted values would fall on if predictions were perfect. Error 

bars indicate 95% confidence intervals of the observed means. See the 

online article for the color version of this figure. 
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Figure 6 

Within-Subject Residuals Displayed in Violin Plots 
 

 
Note. Each plot shows the observed minus predicted response times of all participants in 

the four predicted conditions (from left to right): two low similarity (2L) candidates plus 

two high-similarity (2H) candidates with no lures, two low plus two high-similarity 

candidates with 24 lures, four low plus four high-similarity candidates with no lures, and 

four low plus four high-similarity candidates with 24 lures. In the box-plots, the box 

indicates the interquartile range and the horizontal marker indicates the median. Each 

circle represents individual data points, while the shaded area shows the probability 

density of the data. Dashed lines indicate y 0 (no prediction error). Left: residuals from 

the ideal prioritization model show mean residuals that differ substantially from zero, 

with large variability, indicating poor correspondence between the predicted and observed 

data. Right: residuals from the random scrutiny model are centered around zero and show 

little variability, suggesting good correspondence between the random scrutiny model’s 

predicted response times and the observed data. See the online article for the color version 

of this figure. 

 

 
moderate evidence that the residuals from the random scrutiny 

model did not meaningfully differ from zero (BF01 5.46), 

indicating that predictions from this model were almost perfect. On 

the other hand, there was strong evidence that the residuals from 

the ideal prioritization model were meaningfully different from 

zero, indicating poor correspondence between the model’s predic- 

tions and the observed data (BF10 2.15 X 1012). 
The ideal prioritization model represents the boundary case 

whereby the visual system perfectly prioritizes all high-similarity 

candidates before low-similarity candidates, in terms of what could 

be expected if prioritization was sufficiently adequate to clearly 

separate low- and high-similarity candidates. This is likely too 

extreme, given that the visual system is inherently noisy, but it still 

provides us with a lower boundary for best RT performance. In 

contrast, the random scrutiny model can be seen as an upper 

boundary for how slow RT performance can be expected to be. We 

can then quantify the degree of prioritization by a ratio of two 

difference scores: the difference between the observed RT and the 

predicted RT by the random scrutiny model, divided by the dif- 

ference between the predicted ideal prioritization RT and the 

predicted random scrutiny RT. In other words, 

Prioritization Score = 
RTRS - RTObs

 

RTRS - RTIP 

where RTObs is the observed response time, and RTRS and RTIP are 

the predicted response times for the random scrutiny and ideal 

prioritization models respectively. If prioritization were perfect, 

this ratio would be 1. This is because RTObs would be equal to RTIP 

(i.e. the observed response times would be equal to the response 

times predicted by ideal prioritization model) and therefore, the 

 
terms in the numerator and denominator will be identical. If there 

were no prioritization at all (i.e. scrutiny is completely random), 

this ratio would be zero. This is because RTObs would be equal to 

RTRS (i.e. the observed response times would be equal to the 

response times predicted by the random scrutiny) and therefore, 

the numerator would be zero. Finally, if RTObs is systematically 

larger than RTRS, this would indicate that participants are taking 

even longer to respond than they would if they visited all the items 

(in random order). In other words, systematically negative values 

would indicate that participants are revisiting previously inspected 

candidates. The grand means, averaged across conditions and 

participants, were calculated for RTObs, RTRS, and RTIP to yield a 

prioritization score of 0.073, suggesting that there was minimal 

prioritization, if any, of candidates based on their similarity to the 

target. 

 

Experiment 3 
 

Experiment 2 revealed two main findings. First, the presence of 

lures slows down search, but it does so without impacting the 

search rate through the candidates (corroborating Buetti et al.’s, 

2016 findings). More importantly, there was little evidence that 

attentional scrutiny of candidates was prioritized based on 

candidate-target similarity despite large differences in terms of 

candidate-target similarity (as indexed by large differences in 

search slopes and also supported by the discrimination data from 

Experiment 1). Instead, there was more evidence for random 

scrutiny. In this experiment, we sought to replicate these findings 

using a target detection task. 
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Method 

This experiment was preregistered on Open Science Framework 

(https://osf.io/8rkny/). The data and materials can be found at 

https://osf.io/5n2rt/. 

Participants 

All participants were recruited from the same subject pool and 

did not take part in Experiments 1 and 2. As described in the 

preregistration, we planned on a sample size of 25 participants, 

which would be more than sufficient to measure the difference 

between the two candidate search slopes with 95% power and CY   
.05. This corresponded to the main effect of candidate similarity 

in Experiment 2 (T2    .747). Although the required sample size 
was determined to be 6, we decided to increase it to 25 to reduce 

noise and to keep the sample size consistent with Experiment 2, 

allowing better comparability in terms of data precision. In 

total, 33 participants were recruited (23 Females, mean age 

19.4). Due to a computer error, there were no data from 2 

participants. Of the remaining 31 participants, 10 had accuracy 

rates lower than 90%, which was our initial accuracy exclusion 

criterion. We thus lowered this criterion to 85%, as described in 

the preregistration, to minimize data loss. We then analyzed the 

data from the first 25 subjects that met the 85% accuracy 

inclusion criteria. 

Design and Procedure 

The stimulus and apparatus were identical to Experiment 2 with 

the exception that, in Experiment 3, displays only contained can- 

didates and no lures. The task was to report the presence or 

absence of the target by pressing either the left or right arrow key. 

The assignment of response buttons was randomized between 

participants. There were three independent variables: candidate 

display type (high-similarity, low-similarity, mixed-similarity), to- 

tal candidate set size (4 or 8), and target presence (present or 

absent). All other aspects of the design and procedure were iden- 

tical to Experiment 2. 

 
Results 

Accuracy was high overall (M 93.5%, SD   0.03%). There 

was no speed–accuracy trade-off (see Table A2 in the Appendix). 

A 2 (candidate similarity) by 2 (target presence) ANOVA was 

conducted on the search slopes in homogenous displays. Linear 

search slopes were significantly steeper for high-similarity dis- 

plays (246 ms/item) compared to low-similarity displays (95 ms/ 

item), F(1, 24) 103.15, p < .001, T2 .81. Linear search slopes 
were also significantly steeper on target-absent trials (244 ms/ 

item) compared to target-present trials (97 ms/item), F(1, 24) 

154.70, p < .001, T2     .87. The interaction between candidate 

type and target presence was significant, F(1, 24)      18.65, p < 
.001, T2      .44. These results are illustrated in Figure 7. Target- 
absent slopes in high-similarity displays were 2.35 times that of 

target-present displays while this ratio was 3.02 in the low- 

similarity displays, suggesting that quitting rules could be influ- 

enced by target-distractor similarity. Importantly, the fact that the 

ratio of the target-absent-to-present search slopes were at least 2:1 

indicated that the search processes through the candidate stimuli 

were inefficient both in this experiment as well as in Experiment 

Figure 7 

Mean Response Times (in ms) in Experiment 3 
 

 
Note. The x-axis represents the number of candidates. Two observations 

are evident here. Search slopes were steeper on target-absent trials (dotted 

vs. solid lines). Second, search slopes were steeper for high-similarity 

candidates compared to low-similarity candidates (red [gray] circles vs. 

blue [black] triangles). The green (light gray) squares represent the 

observed response times for the heterogeneous displays. Error bars indi- 

cate 95% confidence intervals. See the online article for the color version 

of this figure. 

 

 
 

2 where identical stimuli were used and that self-terminating 

quitting rules halted search on target-present displays (Treisman & 

Gelade, 1980; Wolfe, 1998; Wolfe et al., 2010). 

Next, as in Experiment 2, we compared the Random Scrutiny 

Model with the Ideal Prioritization Model. Predicted response 

times were calculated with the same method described in Exper- 

iment 2. Note that model comparison was done using only the 

target-present data, since both models make the same prediction 

for target-absent trials (all items would be scrutinized before the 

observer decides to quit the search). Figure 8 shows the within- 

subject residuals (observed–predicted response times). Experi- 

ment 3 replicated the results from Experiment 2. There was 

moderate evidence that the within-subject residuals from the 

random scrutiny model did not differ meaningfully from zero 

(BF01 4.02). The residuals also showed little variability. 

Overall, this model produced near-perfect predictions. In con- 

trast, the within-subject residuals from the ideal prioritization 

model were meaningfully different from zero (BF10       1504.89) 

and increased with set size, indicating poor predictive power of 

the model. The prioritization score was -0.15, again indicating 
minimal prioritization and perhaps a small tendency for revis- 

iting already inspected  candidates. 

Finally, we also analyzed target-absent trials. Although these 

data do not differentiate between the two models (in both cases 

it is expected that observers will not quit until after having 

scrutinized all items in the display), they revealed an unex- 

pected finding. Target-absent response times in candidate- 

heterogeneous displays were much longer than what would be 

predicted based on target-absent response times observed in 

candidate-homogeneous displays, and the residuals increased 

with set size. 
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Figure 8 

Within-Subject Residuals, for Experiment 3, Displayed in Violin Plots 
 

 
Note. Each violin plot shows the observed minus predicted response times for all participants 

in the two predicted conditions: 2 low similarity plus 2 high-similarity candidates or 4 of each. 

In the box-plots, the box indicates the interquartile range and the horizontal marker indicates 

the median. Each circle represents individual data points, while the shaded area shows the 

probability density of the data. Dashed lines indicate y    0 (no prediction error). Left: 

residuals from target-present trials. Residuals from the random scrutiny model (green [gray]) 

showed little variability around 0, suggesting good correspondence with the model. On the 

other hand, residuals from the Ideal Prioritization Model (blue [dark gray]) were not centered 

around zero and showed large variability, indicating poor correspondence between the 

predicted and observed data. Right: residuals from target-absent trials. Both models make the 

same predictions for target-absent trials, since both predict that all items will be scrutinized 

before the observer quits the search. There was a systematic underprediction, suggesting that 

candidate heterogeneity lengthened the quitting rule above and beyond what would be 

predicted based on candidate homogeneous displays. See the online article for the color 

version of this figure. 

 

Discussion 

Overall, Experiments 2 and 3 both provided strong support for 

the random scrutiny model. In spite of large differences in terms of 

candidate-target similarity (as indexed by search slopes), there was 

no evidence that observers prioritized high-similarity candidates 

during attentional scrutiny. Although the ideal prioritization model 

represented an “ideal” boundary scenario for perfect prioritization, 

the prioritization score could have measured any degree of prior- 

itization from 0% to 100%, if any were present. Not even modest 

amounts of prioritization were observed. 

Interestingly, both the random scrutiny and ideal prioritization 

models underpredicted target-absent response times in candidate- 

heterogenous displays. There are two potential explanations for 

this observation. First, it is known that distractor heterogeneity 

increases response times and changes the rate of evidence accu- 

mulation (Duncan & Humphreys, 1989; Lleras et al., 2019). Sec- 

ond, and more likely, it could be that candidate heterogeneity 

impacted the quitting rule in inefficient search tasks by several 

hundreds of milliseconds, perhaps as a result of revisiting previ- 

ously rejected candidates before the observer can be confident of 

a target-absent response. This second explanation appears to be 

more likely. Although it is possible that the search slopes measured 

in the candidate-homogenous displays do not accurately reflect the 

rate of search in candidate-heterogenous displays, this is unlikely 

given the data from target-present trials. If search slopes measured 

in candidate-homogeneous displays were inaccurate or did not 

reflect the search rate through heterogeneous displays, the random 

scrutiny model (based on those homogeneous search slopes) would 

have failed to predict performance in the target-present heteroge- 

neous conditions. It is evident from Figure 8 that the residuals for 

the target-present predictions are smaller and less variable, while 

that for the target-absent trials were more variable and increased 

with set size. Thus, it is unlikely that the underprediction stems 

from an erroneous measurement of search slopes, but rather a 

result of revisitations to previously inspected candidates. Thus, the 

results suggest that candidate heterogeneity impacts a nonvisual 

process in search. It might be that it increases the noise in the 

memory representations of locations that have been inspected or 

that it decreases the amount of locations that are remembered. This 

phenomenon deserves further study, and these hypotheses could be 

tested by monitoring eye movements of participants as they com- 

plete a candidate heterogeneous search task. 

 

General Discussion 

Many models of visual search propose that items are scrutinized 

by attention using some form of similarity-based prioritization, 

whereby to-be-scrutinized items are grossly ordered in terms of 

their similarity to the target, from highest to lowest. Attention 

and/or eye movements then simply visits these items by moving 

down that list (Ehinger et al., 2009; Najemnik & Geisler, 2005, 

2008; Navalpakkam & Itti, 2005, 2007; Rao et al., 2002; Wolfe, 

2006; Zelinsky, 2008). These prioritization accounts make two 

main predictions that the present study demonstrated were incor- 

rect. First, according to these accounts, distractors that are very 

different from the target (lures) ought to almost never impact 

search times since attention would not visit these items due to their 

very low priority. However, the results from Experiment 2 showed 

that the presence of lures added a cost to overall processing times, 
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in line with results from Buetti et al. (2016). Not only do these 

items contribute to search times, prior results also showed that the 

costs to reject lure items from consideration are systematically 

related to lure-target similarity (Buetti et al., 2016; Lleras et al., 

2019; Ng et al., 2018; Wang et al., 2017). Second, similarity-based 

prioritization accounts propose that distractors that are relatively 

similar to the target will be scrutinized according to their similarity 

to the target, with high similarity items having a larger attentional 

priority. In contrast to these predictions, the results from Experi- 

ments 2 and 3 showed that observers inspected high- and low- 

similarity candidates in a random order, or at least in an order that 

was not based on similarity-ratings to the target template. This was 

observed in spite of large differences in discriminability between 

low- and high-similarity candidates (as indexed by substantial 

differences in search slopes in candidate-homogeneous displays) 

and in spite of the fact that observers could reliably differentiate 

between the two candidates (Experiment 1). 

In sum, the current results suggest that attentional prioritization 

does not work in the manner than many theorists propose. There is 

an initial stage of distributed attention during which items that are 

sufficiently dissimilar from the target are discarded via peripheral 

visual analysis. It takes time to reject these dissimilar items, with 

more similar items taking longer. Once peripheral analysis has 

discarded these unlikely targets, focused attention is deployed to 

the nonrejected locations in an order that is not determined by 

target-distractor similarity. This makes sense given that peripheral 

analysis suffers from severe computational limitations, thus, it is 

difficult for peripheral vision to produce an orderly ranking of 

candidate items. From this perspective, distractor rejection starts at 

the bottom of the similarity scale, not at the top, as is often 

understood. We refer to this orderly rejection of distractors as 

being bottom-to-top. 

The proposal that there is a bottom-to-top attentional prioritiza- 

tion in visual search is consistent with what has been observed 

previously with displays intermixing lures and candidates in a 

more systematic fashion (Buetti et al., 2016; Ng et al., 2019). The 

results from these studies showed that when candidates and lures 

were both present in a display, there was a time cost associated 

with rejecting lures that was independent from the time spent 

searching through the candidates. This was reflected by search 

times increasing logarithmically with lure set size while search 

efficiency through candidates remained constant as lure set size 

varied, indicating that candidate scrutiny was occurring after lure 

rejection. Bottom-to-top attentional prioritization is also consistent 

with results on search with lure-heterogeneous displays (Lleras et 

al., 2019; Wang et al., 2017). When multiple types of lures were 

present in a display, the lures that were most dissimilar were 

rejected earlier and the less dissimilar lures took longer to be 

rejected (see Figure 4), with all lures present in the display con- 

tributing to performance. 

 
How Are Candidates Inspected? 

The target contrast signal theory proposes that the output of the 

dissimilarity-based parallel rejection process responsible for re- 

jecting lures is a list of locations of the remaining items (candi- 

dates). This list does not contain a precise visual description of 

these unrejected items precisely because of the resolution limits of 

peripheral vision during parallel processing (Rosenholtz, Huang, 

& Ehinger, 2012; Rosenholtz, Huang, Raj, et al., 2012). As such, 

candidates are neither ordered by contrast values nor indexed by 

target-distractor similarity. Focused attention will thus visit these 

locations in a random order without being biased by the similarity 

relation between the remaining items and the target. Importantly, 

Experiment 1 demonstrated that participants could reliably differ- 

entiate (although not perfectly) between low- and high-similarity 

candidates. In addition, the search slopes for displays containing 

high-similarity candidates were much higher than the slopes for 

displays containing low-similarity candidates, further confirming 

that the two differed in their similarity to the target. Despite this, 

Experiments 2 and 3 demonstrated that, in a search display con- 

taining multiple types of candidates, the degree of reliability of this 

candidate evaluation was not sufficiently adequate to be trusted as 

a source for attentional guidance, or, alternatively, the effort re- 

quired to use this unreliable information may be too great. Atten- 

tion was thus deployed in a random manner rather than being 

guided by target-distractor similarity. 

Admittedly, other factors might come into play during atten- 

tional scrutiny. For instance, attention (and/or eye movements) 

might be deployed to whichever target-likely location is closest to 

current fixation or to a midpoint between target-likely locations 

(Zelinsky, 2012). Or, participants might use systematic scanning 

strategies (top-to-bottom, left-to-right, etc.) to visit all nonrejected 

locations. Aside from non-similarity-based scrutiny strategies, it is 

possible that there could be some form of imperfect similarity- 

based prioritization where only some of the high-similarity candi- 

dates are prioritized. However, given the near-perfect prediction of 

the random scrutiny model, this seems unlikely. Furthermore, as 

indicated by the overall prioritization score, a top-to-bottom pri- 

oritization based on candidate-target similarity is infrequent at 

best. 

We should note that attentional prioritization of a subset of 

candidates is possible under certain circumstances. For instance, 

memory of previously seen search displays can guide attention 

during search. Response times are typically faster for targets that 

appear in search displays that have previously been presented to 

the observer compared to completely novel displays (Chun, 2000). 

This phenomenon is known as Contextual Cueing, and has been 

observed with different repeated contexts, including spatial layout 

(Chun & Jiang, 1998), identity (Chun & Jiang, 1999; Goujon et al., 

2007), as well as the motion trajectory (Chun & Jiang, 1999) of the 

search items. Memory from the repetition of context leads to a 

prioritization of attention toward locations where the target is 

likely to be found (Chun & Jiang, 1998; Goujon et al., 2007, but 

see Annac et al., 2019). The repetition of scene layouts does seem 

to guide the deployment of attention (Geyer et al., 2010; Johnson 

et al., 2007), which raises the possibility that scene-based spatial 

memories increase the conspicuity (or priority) of the target and its 

immediate candidate neighbors. Such memory traces can clearly 

aid attentional prioritization, and they can do so quite quickly, 

starting 100 ms post display onset (e.g., Chaumon et al., 2008; 

Conci et al., 2019). This makes it possible that memories of spatial 

layout boost early display segmentation processes, prioritizing a 

subset of candidates over another. Interestingly, while the repeti- 

tion of candidate-stimuli context (either over the entire scene or 

just over the area immediately surrounding the target) prioritizes 

attentional deployment to specific regions in the scene, repetition 

of lure-stimuli context does not. Although the presence of lures 
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slows down RTs, repetition of their spatial context does not pro- 

duce a prioritization signal to guide attention faster toward the 

target location (Ng et al., 2019; but see Geyer et al., 2010). Finally, 

rewards can also influence the prioritization of locations during 

attentional scrutiny. In studies that examine the influence of re- 

ward on search behavior, search items or locations are assigned 

different rewards for finding the target. Typically, search items 

that are assigned higher rewards are found more quickly and with 

greater accuracy (Won & Leber, 2016). In addition, eye move- 

ments (and thus overt attention) have been observed to prioritize 

rewarded locations in visual search tasks (Eckstein et al., 2015; 

Liston & Stone, 2008). In search with multiple targets, observers 

make more eye movements to high-reward targets compared to 

low-reward targets (Navalpakkam et al., 2010). 

 
Why Does Lure Rejection Take Time? 

In Experiment 2, the presence of lures slowed down search in a 

manner that was not affected by the number of candidates. As 

described above, this provided further support for one of the main 

proposals of target contrast signal theory: that peripheral vision 

initially considered all items in the display as potential targets. An 

alternate possibility is that the presence of lures may slow down 

performance for low-level reasons. That is, it is possible that the 

presence of lures might increase the local contrast of candidates 

and therefore their attentional pull. However, this is unlikely. If 

anything, a candidate surrounded by lures will have less (not more) 

contrast than when it sits by itself surrounded by a solid black 

background. Still, one might argue that the individual attentional 

pull of any given candidate increases when lures are present 

because it breaks down the otherwise homogeneity effect produced 

by a lot of very similar candidates (when no lures are present). 

Though this is possible, such a mechanism would predict that 

search through these more “attentionally-sticky” candidates would 

be slower than search through the candidates that have not been 

made more salient by lures. Yet, the present data, as well as 

previous data (Buetti et al., 2016; Ng et al., 2019), have shown that 

search efficiency through the candidates is identical with or with- 

out lures present in the display. For instance, in all search condi- 

tions in Experiment 2, candidate search functions with and without 

lures were parallel (see Figure 4). 

The increase in response times in the presence of lures in 

Experiment 2 might be consistent with other models. In Itti and 

Koch’s (2000) saliency model, a lure that is surrounded by can- 

didates would have a higher saliency compared to a lure that is 

surrounded by other lures (or appearing in isolation), because in 

this model saliency reflects local feature contrasts. The increase in 

RT could thus be a result of additional shifts of attention triggered 

to these high-contrast lure locations, rather than by a process of 

rejecting lures, more generally. But, again, it is well known that the 

initial Itti and Koch model does poorly at predicting search per- 

formance in displays using simple geometric stimuli like ours (see 

Itti & Koch, 2000). If one considers attention-tuned versions of the 

saliency model that are meant to perform well in visual search 

tasks (e.g., Navalpakkam & Itti, 2005, 2007), these models would 

not predict an RT slow-down in the presence of lures. Indeed, the 

point of optimally tuning attention to the target features (Naval- 

pakkam & Itti, 2005, 2007) is precisely to cut-off from possible 

examination items that do not contain features similar to the target. 

The FLNN (Farthest-Labeled Nearest Neighbor) model may 

also be able to provide an explanation for why response times 

increased in the presence of lures (Avraham et al., 2008). Accord- 

ing to the FLNN model, search starts with the random selection of 

an item in the search display. If this item turns out to not be the 

target, then attention selects another item that is most dissimilar 

from the currently selected item. If this item is still not the target, 

then the next item that is selected will be one that is the most 

dissimilar from all previously selected items. This process repeats 

until the target is selected. Thus, when lures are present in a 

display, it is possible that a lure will be selected at first, which 

would delay the eventual selection of the target, incurring some 

delay that would not exist if no lures were present. Furthermore, if 

a candidate is selected (by chance) after the first attention move- 

ment, the farthest neighbor would be a lure stimulus (as opposed 

to another candidate or the target itself) because lures are much 

more different from candidates than the target is from the candi- 

dates (by definition). Thus, the second attention movement would 

likely be directed toward a lure. As a result, in candidate-attended- 

first trials, the presence of lures would also result in longer RTs 

when lures are present compared to when they are not. It is 

important, however, to remember that the FLNN model was de- 

signed to predict accuracy under limited exposure durations. Some 

modifications would be needed to translate accuracy predictions 

into RT predictions in displays that are present until response. It 

would be interesting to see if the model could be adapted to 

account for the RT laws that we now know govern efficient search 

with fixed targets (e.g., logarithmic increases in RT as set size 

increases when participants are viewing lure-homogeneous dis- 

plays with a fixed target in mind; the finding that these logarithmic 

slopes systematically vary as a function of lure-target similarity, 

see Buetti et al., 2016; Ng et al., 2018; Wang et al., 2018; and the 

heterogeneity search cost function, see Lleras et al., 2019; Wang et 

al., 2017). It is entirely possible that it might be able to capture 

these effects—we just do not know yet. That being said, the more 

critical theoretical contribution of the FLNN model is that it views 

selection in a fundamentally different way from similarity-based 

models, proposing that selection is guided by dissimilarity values 

instead. This focus on dissimilarity (as opposed to similarity) does 

make the model more in line with our target contrast signal theory 

than with more traditional similarity-based models of selection 

during search. 

 
Does Candidate Heterogeneity Slow Down RTs? 

The deviations from predictions observed on target-absent trials 

could be interpreted as being indicative of interitem interactions 

that impact how the visual system treats candidates in heteroge- 

neous displays. In other words, because participants took so much 

longer to terminate target-absent trials, one could argue that this 

slow down indicates the visual system has a tougher time rejecting 

candidates when they appear among different candidates than 

when they appear by themselves in homogeneous conditions. It is 

indeed true that, generally speaking, distractor heterogeneity in- 

creases response times (Duncan & Humphreys, 1989; Lleras et al., 

2019; Wang et al., 2017). But the mechanism by which this 

happens is unclear. For efficient search, our lab has demonstrated 

that this heterogeneity slowdown is likely the result of local 

interitem interactions that facilitate parallel rejection of lures when 
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nearby lures are similar to one another (Lleras et al., 2019). 

Duncan and Humphreys (1989) argued that heterogeneity breaks 

down grouping effects (and groups can be rejected as a whole), so 

performance is worse in heterogeneous conditions because there 

are more items/groups to reject than under homogeneous condi- 

tions. 

In theory, something along these lines could be happening 

(i.e. grouping of homogeneous candidates making candidate- 

homogeneous conditions easier than candidate-heterogeneous con- 

ditions), but it is unclear whether it happened in our experiments. 

Note that the visual processes involved in the rejection of a 

candidate are agnostic with regard to the presence or absence of 

the target. Indeed, if the observer already knows that the current 

trial is a target-present or target-absent trial, then there would be no 

need to search since the observer could already make their re- 

sponse. Thus, if there are heterogeneity effects in the target absent 

trials, the same ones ought to be present in the target present trials. 

However, no evidence of such heterogeneity effects were observed 

in target present trials: Performance in the candidate-homogeneous 

conditions (where candidate-heterogeneity effects are impossible) 

perfectly predicted performance in target-present trials in candi- 

date heterogeneous conditions, across both set sizes, both in Ex- 

periment 2 (with and without lures) and in Experiment 3. Further- 

more, it is also important to remember the placement of the stimuli 

in our experiments: Candidates were placed on the search grid 

such that they would be equally distributed across all four quad- 

rants (so, one per quadrant when 4 were present and two per 

quadrant when 8 were present). Thus, in set size 5 (1 target, 2 Ls 

and 2 offset Ls), in three out of four quadrants, the candidates were 

by themselves (or sometimes accompanied by lures in Experiment 

2). Given the size of each grid quadrant (10X10 degrees of visual 
angle), intercandidate interactions across quadrants and across 

such large spacing would be quite unlikely. It is also important to 

note that performance in the set size 9 condition, where such 

interactions (if they existed) would be possible within each quad- 

rant, was exactly the same as performance in the set size 5 

condition: We were equally successful at predicting performance 

across both set sizes across the two experiments. In sum, it is 

unlikely that there were candidate– candidate interactions between 

the two types of candidates in target-present trials, and by exten- 

sion, in target-absent trials, in our experiments. What is more 

likely, we believe, is that candidate heterogeneity changes the 

quitting rule for target absent trials (likely a nonvisual process), 

inviting more revisitations (e.g., candidate heterogeneity might 

disrupt the memory representations of what items or locations have 

been already visited and rejected). Note that quitting rules in 

target-absent trials are notoriously difficult to understand, let alone 

predict (Cho & Chong, 2019; Chun & Wolfe, 1996; Fleck et al., 

2010; Mitroff et al., 2015; Wolfe & Van Wert, 2010). 

As discussed in the introduction, the ideal prioritization model 

represented (from the start) a lower boundary condition: how fast 

search could unfold in heterogeneous displays if participants were 

able to perfectly prioritize high-similarity candidates. Yet, as men- 

tioned above, there are both empirical and theoretical reasons to 

have expected candidate heterogeneity to slow down performance, 

such that even if items were perfectly prioritized by similarity, 

actual performance on heterogeneous displays would have been 

slower than what would have been predicted based on high- 

similarity candidate homogeneous performance. The point of this 

ideal prioritization model was to serve as a boundary condition 

regarding how good performance could be in the heterogeneous 

condition. On the other extreme, there was the random scrutiny 

model: Performance should not be worse than this model because 

it is a model that does not care about candidates’ similarity to the 

target. The experiments could have shown RTs somewhere in the 

middle between these two extremes: neither perfectly prioritized 

nor perfectly random. In that case, the RTs could have been the 

result of either some form of poor prioritization or (simply) a 

slowdown due to candidate heterogeneity. What we found instead, 

in six separate conditions (four predictions in Experiment 2 and 

two predictions in Experiment 3), is that RTs in the heterogeneous 

condition perfectly matched the RTs predicted by the random 

scrutiny model. So, although it is theoretically possible that there 

was a slow-down due to heterogeneity, it would be quite a coin- 

cidence that the heterogeneity slowdown was exactly of the correct 

magnitude to match the RTs predicted by the random scrutiny 

model across six separate conditions (and two separate groups of 

subjects). In our opinion, that is highly unlikely, but it is nonethe- 

less possible. 

 

Limitations and Future Directions 

Eye Movements 

In this study, eye movements were not measured. Thus, the 

observed results most likely arose from a combination of both 

overt and covert attentional processes. It is highly likely that overt 

attention, as a result of eye movements, were being measured here. 

Even in efficient search tasks, observers overwhelmingly tend to 

choose to move their eyes, even when the task can be completed 

more quickly and efficiently without eye movements (Ng et al., 

2018; Zelinsky, 2008). Currently, target contrast signal theory does 

not differentiate between overt and covert attention at this time, 

and it is worth noting that voluntary deployment of covert attention 

takes about the same time as voluntary eye movements (~200 ms, 
see Wolfe et al., 2000). Nevertheless, this is an important avenue 

for future work since much of the theory relies on the differences 

between foveal versus peripheral processing, especially when de- 

termining which stimuli are candidates and which are lures. 

Candidate Discriminability and Crowding 

In Experiment 1, there was only one candidate among 35 lures. 

There was thus no visual crowding of the candidate by other 

candidates. This raises the concern that discriminability of candi- 

dates in Experiments 2 and 3 might thus have been poorer due to 

crowding by candidates because in those experiments, there were 

always several candidates present in the display at the same time. 

That said, we have some confidence in our results because perfor- 

mance was relatively high in Experiment 1 even under brief 

exposure times of 100 ms and also because in Experiments 2 and 

3, the search display was constrained such that the nontarget 

candidates were distributed evenly between the four quadrants of 

the search display. Thus, at set size 5 (1 target and four candi- 

dates), the target was either by itself in its own quadrant (75% of 

trials) or, at most, with one additional candidate nearby. Overall, 

three out of the four quadrants only contained 1 candidate on each 

trial. At set size 9, most of the time, the target appeared alongside 

one additional candidate in its own quadrant (and in 25% of trials 
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with just two candidates in the same quadrant). Three out of four 

quadrants contained just two candidates on every trial. Given the 

size of our displays (quadrants were about 10 degrees of visual 

angle in width height), the concerns about candidate– candidate 

crowding are therefore relatively minor. Thus, while candidate– 

candidate crowding was possible, it probably did not play too 

much of a role in terms of substantially lowering the discriminabil- 

ity of the target in the periphery in Experiments 2 and 3 compared 

to what was measured in Experiment 1. 

Stimulus Dependency 

Experiment 1 showed that the L and offset-L candidates could 

be reliably differentiated even at exposure times of 100 ms. We 

believe this indicates that this information was available to the 

visual system although it was not used to prioritize the deployment 

of attention in Experiments 2 and 3. However, it is possible that 

our results might be overly dependent on the specific types of 

stimuli we used. Therefore, it might be important to continue to 

test this hypothesis with more varied stimuli. It is indeed possible 

that there exist some sets of stimuli that are similar enough to the 

target template to be deemed as candidates, yet with sufficiently 

large differences in terms of their similarity to the target that the 

attentional system might be able to use differences in target- 

candidate similarity to prioritize candidates by similarity. It would 

be challenging, however, to create such a set of stimuli. Whether 

an item is a candidate or a lure depends on whether parallel 

processing can reject that item as a nontarget given the processing 

limitations of peripheral vision. Although this is mainly deter- 

mined by the features of the stimulus, an important factor is also 

the location of the stimulus in the visual field. A stimulus could act 

like a candidate in the far periphery but act like a lure in the near 

periphery, where the resolution of parallel processing might be 

sufficient to reject it as a distractor. Thus, in such sets of stimuli, 

any observed prioritization would have to be carefully assessed so 

that it might not be confused with eccentricity effects (leading to 

better rejection of candidates near fixation). 

It is also a limitation that candidate similarity was defined only 

in the shape dimension (candidates had the same color as the 

target). We could have run the same experiments defining candi- 

date similarity in the color dimension (and keeping target and 

candidates shapes identical). There is often a sense that color is 

“special” in terms of its ability to guide attention. Therefore, one 

might be concerned that the results are unique to the way we 

designed our stimuli, perhaps because participants could have first 

tuned to color to reject lures and then tune to shape to try to tackle 

the candidates. This sequential tuning of attention to different 

feature dimensions might somehow impact how well prioritization 

can be achieved. However, recent work from our lab helps assuage 

these concerns. In Buetti et al. (2019), we demonstrated that when 

a target differs from lures across both color and shape, search is not 

“guided” first by color then by shape. Using stimuli very similar to 

the ones used here, Buetti et al. (2019) demonstrated that search 

for a target defined by a given color and shape is perfectly 

predicted by the degree of its color distinctiveness (evaluated when 

all shapes are identical, on a separate group of participants) and 

shape distinctiveness (evaluated with all colors are identical, also 

on a separate group of participants), simultaneously. This simul- 

taneous and independent computation of color and shape distinc- 

tiveness occurs even when one feature dimension (say color) 

carries a much more distinctive signal than the other (shape). 

Performance on 90 different conditions (mixing different types of 

colors, shapes and set sizes) was almost perfectly predicted by this 

simultaneous color + shape guidance account. Therefore, in spite 
of intuitions that might suggest that in tasks such as the one we 

used here one feature (color) is prioritized more or before the other 

(shape), what actually happens is that the visual system is com- 

puting both color and shape differences simultaneously (maybe 

over different brain regions) and using a combined distinctiveness 

signal to “guide” attention (rejecting lures, direct attention toward 

candidates). Thus, given that both color and shape distinctiveness 

signals are computed simultaneously and combined together to 

guide attention irrespective of which feature dimensions carries a 

larger distinctiveness signal, we feel confident that the results 

would have been similar had we used color to define candidates 

(rather than shape). 

In terms of generalizability, it would also be important to test 

our results with images that are more complex (e.g., photos of 

real-world stimuli) and also to explore presentation of these stimuli 

in more complex, realistic backgrounds (as opposed to black 

backgrounds). While we believe there is no clear reason why our 

results would not generalize well to those stimuli, the increased 

visual complexity of these images would move us closer to eco- 

logically valid vision. 

 

Conclusion 

In a series of experiments, we demonstrated that the idea that 

attentional scrutiny prioritizes items in terms of decreasing target- 

distractor similarity is incorrect. Attention does not prioritize items 

in a top-to-bottom manner. For items that are potential targets (i.e. 

candidates in our terminology), attentional scrutiny occurs at ran- 

dom (or at least in a manner that is not ordered by target-distractor 

similarity). Furthermore, counter to the standard top-to-bottom 

prioritization account, processing items that are quite dissimilar to 

the target (i.e. lures) and therefore ought to never impact perfor- 

mance are in fact processed by (distributed) attention, resulting in 

systematic time costs involved in rejecting those items. These 

results are in line with the target contrast signal theory: Items are 

instead rejected in a bottom-to-top manner, in reverse order of their 

similarity to the target. This orderly rejection process continues up 

to the point where the visual system is unable to reject target- 

similar items with sufficiently high confidence because of limita- 

tions in peripheral processing. That being said, there are certainly 

other sources of attentional guidance that may play a role in 

directing attention to likely target locations that are not similarity- 

based. For example, contextual cueing, rewards, and top-down 

strategies have been shown to reduce search times (Chun & Jiang, 

1998; Kristjánsson et al., 2010; Smilek et al., 2006). We propose 

that in the absence of such sources of information, attentional 

scrutiny is best characterized by a random process rather than one 

that involves a top-down similarity-based prioritization that starts 

with the most target-similar distractors and moves down the sim- 

ilarity scale. 
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Appendix 

Accuracy for Experiments 2 and 3 

 

Table A1 

Accuracy Broken Down by Condition for Experiment 2 
 

 
Candidate similarity 

 
Lures 

 
Candidates 

Mean 
accuracy (%) 

Mean 
RT (ms) 

Low 0 4 97.8 1132 
  8 98.0 1465 
 24 4 97.5 1357 
  8 97.0 1652 

High 0 4 94.6 1541 
  8 89.9 2214 
 24 4 94.3 1732 
  8 90.7 2422 

Mixed 0 4 95.3 1350 
  8 93.5 1859 
 24 4 94.7 1586 

  8 92.5 2028 

Note. Slower conditions also had lower accuracy, indicating that there were no speed–accuracy tradeoffs in the experiment. 

 

 

 

 

Table A2 

Accuracy Broken Down by Condition for Experiment 3 
 

 
Candidate similarity 

Trial type 
(target presence) 

 
Candidates 

 
Mean accuracy (%) 

 
Mean RT (ms) 

Low Absent 4 98.9 1192 
  8 99.4 1766 
 Present 4 96.1 1260 
  8 93.3 1450 

High Absent 4 95.6 2018 
  8 91.9 3400 
 Present 4 87.2 1638 
  8 83.6 2226 

Mixed Absent 4 95.7 1750 
  8 94.6 2954 
 Present 4 91.6 1452 

  8 89.8 1880 

Note. Slower conditions also had lower accuracy, indicating that there were no speed–accuracy tradeoffs in the experiment. 
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