
Vol.:(0123456789)

cambridge.org/JMR

 
 J

ou
rn

al
 o

f M
at

er
ia

ls
 R

es
ea

rc
h 

 2
02

1 
 w

w
w

.m
rs

.o
rg

/jm
r

 DOI:10.1557/s43578-020-00003-6

Extension of the classical theory for types I and II 
twinning
J. P. Hirth1, J. Wang2,a)
1 Green Valley, USA
2 Mechanical and Materials Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
a) Address all correspondence to this author. e-mail: jianwang@unl.edu

Received: 27 August 2020; accepted: 2 November 2020 

A plane-displacement diagram showing the four twinning elements, planes and directions, is 
fundamental to the classical theory of twinning. One aspect of the classical theory of type I and II 
twinning is shown to be inapplicable when the twin rotation is large. We employ the topological model 
with certain nonlinear characteristics to deduce a modified set of twinning elements. For twinning 
associated with a small rotation, both the classical theory and the topological model for type I and II 
twinning are shown, which give the same set of twinning elements. However, only the topological model 
is applicable for the large rotation case. As for the classical model, the twin plane in the type II twinning 
case is irrational unless it, and the type I twin is compound. Often, this irrational plane is close to a 
low-index orientation for a given orientation relationship. Then it can be favorable for the interface to 
break up into low-index, rational facets, separated by disconnections. This occurs without changing the 
orientation relationship. We apply the topological model to describe both the irrational type II twins and 
faceting in NiTi. The results agree with TEM observations.

Introduction
As reviewed by Hardouin Duparc [1], the basic elements for 
twinning originated with Mügge [2] and described macroscopic 
twins in minerals. Cahn [3] in a study of twinning in uranium, 
considered a unit transformation volume, and related the twin-
ning elements to the characteristics of what we now call twin-
ning disconnections (TDs) in the topological model (TM) [4–6]. 
As reviewed in [7], the Cahn model provided an interpretation 
of the twin structure and TDs in terms of dislocation Burgers 
vectors and, implicitly, step heights. Also, the motion of the 
TDs provided the mechanism for twin growth. The full classical 
model for the crystallography of twinning was developed later 
to complete the classical theory of twinning [8, 9]. The crystal-
lographic model provided matrix relations to predict possible 
twin planes and directions. The classical model has been most 
successful in describing many examples of K1 and η1 for type I 
twinning. Forms of twinning include type IC as the most com-
mon form and type IIC as the next most common. We designate 
these with C for classical, because we show that they are special 
cases of more general types that share the same mechanism. 
Instead of the historical representation of the twinning elements, 

K1 and K2 for planes, η1 and η2 for directions, as in [1–7], we 
use a modified Frank notation [10] for the twinning elements 
k1 = K1, k2 = K2,χ1 = η1, andχ2 = η2, for type I twins, and 
k1 = K2, k2 = K1,χ1 = η2, andχ2 = η1 for type II twins. These 
are useful since k1 is always the glide plane (the TM does not 
apply unless there is such a glide plane). For both type IC and 
type IIC, k1 and χ2 are rational, and k2 and χ1 are irrational. If all 
four elements are rational, the twin is called a compound twin.

The characteristics of a TD determine whether it is a feasible 
twinning defect, with respect to both self-energy and activation 
energy for motion. For type IC twinning, The TD was defined 
as a disconnection in order to emphasize the importance of the 
step height and as an analog of similar defects in phase trans-
formations [11]. TDs are line defects, characterized by the step 
height h and the Burgers vector bg describing the dislocation 
content. In the topological model (TM), the step height h and 
the corresponding Burgers vector bg are defined in a coherent 
dichromatic pattern (CDP), the superposition of the matrix and 
twin with coincidence on the twin plane, and a common ori-
gin. In the CDP, the vector bg is the difference between rational 
vectors tM and tT for the matrix and twin, respectively. More 
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recently, the mechanism of type II twinning was outlined [5], 
and developed in detail in [12, 13]. In this case, TDs move on 
k1 = K2 planes and accumulate in a tilt wall, accompanied by 
partitioning of the rotations to both the matrix and twin, cre-
ating symmetrical tilt across the twin boundary [12, 13]. The 
process can be viewed as the creation of a dislocation array with 
long-range stresses that relaxes by interface rotation.

On the basis of these mechanisms, we analyze the twinning 
elements and structures of the twins. We distinguish between 
the classical models and the TM, which includes certain nonlin-
ear characteristics. We treat type II twins in NiTi as an example. 
Finally, we describe the mechanism and structure of the forma-
tion of low-index, rational facets on the type II twin boundaries.

Type I and IC twins
For type I twins, a source of mobile disconnections operates 
on the (rational) k1 plane, eventually generating a macroscopic 
twin. The type IC mechanism, reviewed in [6, 12], is summa-
rized in Fig. 1a, showing the twinning elements and the twin 
angle αC . The classical diagram is a plane-displacement engi-
neering shear diagram, displacing a circle to an ellipse by the 
vector u at a distance h above the origin [8, 9, 12]. The classical 
displacement is called the “shear” s, which is unfortunate in that 
it implies that s is the shear strain. The engineering shear strain 
is e = u/h = tan 2αC . For a type II twin, symmetry requires that 
the displacements have a mirror symmetry plane normal to y 
or have the x axis as a 2-fold rotation axis. For the classical case, 
this is implied by setting the shear angle γxy equal to 2 αC as in 
Fig. 1a. This is precise only in the limit of infinitesimal strain. 
In order to achieve actual displacement symmetry, there must 
be a different state of shear strain as in Fig. 1b: a compression 
along y and an equal measure extension along x, Fig. 1b. More 
conveniently for the analysis of twin characteristics, as in [13], 
these displacements can be viewed alternatively as two opposite 
engineering strains, ±e/2 = 0.5u/h = tan α , as in Fig. 1c.

In order to connect to TDs, one imagines atom coincidence 
at the origin and an atom a distance h from the origin shearing 
by a displacement bg to a position in k′2 . This produces a shear 
e = bg/h. The twinning elements are represented in Fig. 2a and 
the TM version in Fig. 2b. Hence, the twinning angle is

This differs from the linearized classical value as follows:

The TM type I supersedes the classical type IC model when e is 
large. Figure 3 is a plot of the difference �α = (α − αC) versus α . 
Practically, the classical model is a good approximation when α is 

(1)α = tan−1 (e/2) = tan−1(0.5bg/h).

(2)αC =
1

2
tan−1 (e) =

1

2
tan−1

(

bg/h
)

.

less than ≈ 3◦, but there is a significant difference for larger α . 
The nonlinear model was mentioned in [13] but not quantified 
because α was small.

In the most general classical case, the vector parallel to χ2 is 
a 2’ rotation axis. In many high-symmetry cases, the twin plane 
also has m’ mirror symmetry.

Type II and IIC twins
The mechanism for type II twinning entails TDs moving on 
k1 = K2 planes and accumulating in a tilt wall, accompanied by 
partitioning of the rotations to both the matrix and twin, creating 
symmetrical tilt across the twin boundary [12–14]. This means 
that the type II twin formation consists of two deformation 
mechanisms: engineering shear and interface rotation. Here, we 
extend the TM mechanism as for type I to show similar devia-
tions from the classical model. Figure 4a and b are diagrams for 
type II twinning analogous to Fig. 2. Glide by bg on k1 would pro-
duce the same engineering shear e. In this case, the engineering 
shear partitions to e/2 in each crystal. For the most likely situa-
tion where unit TDs have step heights equal to the interplanar 
distance normal to k1 , the engineering shear e cannot actually 
mechanistically partition because there would be profuse stack-
ing fault formation: with multiple step height disconnections, 
actual partitioning of e is possible [5, 15]. The mechanism is that 
perfect lattice dislocations shear and then dissociate into partial 
dislocations in the k2 plane. However, the effect of partitioning 
is that the final configuration is the same as in a hypothetical 
process where the engineering strains are partitioned. Hence the 
final twin has partitioned engineering strains, displacements, 
crystal structure, and rotations. The results are the same as for 
type IIC provided that e is small, Eq. (2) applies and the twinning 
angle is αC : type IIC. The tM and tT vectors rotate into conjunc-
tion and the χ2 vector is parallel to the rational, common t direc-
tion. If e is not small, Eq. (1) applies, and the twinning angle is 
α : type II. The TM analysis in [12, 13] is accurate except for this 
angle. Thus, only when e is small, does the classical model apply. 
Otherwise, the TM model is applicable.

The essence of the differences discussed above is that the 
partitioning of distortions into strains and rotations varies with 
the rotation of coordinates. For type I, the classical model is 
exact because there are no such rotations, present for type II, 
provided that one uses the symmetric configuration of Fig. 1b. 
There is a rare special large angle case, typified by (111) twins 
in fcc crystals that can also be understood from Fig. 4. For this 
twin, the angle α is so large, 19.47°, significantly different from 
αC = 17.63°, that a different {111} plane rotates to become the 
rational k2 = K1 plane and the classical model applies. Thus, 
for fcc, without ancillary data such as strain measurements, 
one cannot tell whether a twin is created by a type IC or type 
IIC mechanism. Also, for (301) twins in cubic systems, if the 
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conjugate is (103), an engineering shear alone describes type II. 
This is a consequence of the interdependence of the tensor strain 
components ij and ji.

For a complete analysis of twinning, one often needs to con-
sider the shuffling of atoms that are not at lattice sites, [3, 9, 13, 
16]. For these, it is useful to describe the superposed lattices in a 
rotated dichromatic pattern (RDP) [4], or a shifted dichromatic 
pattern (SDP) [5, 17]. Shuffles are not needed here. We do not 
discuss them further.

The actual mechanism of type II twinning is shown in Fig. 5, a 
version of the diagrams in [5, 12, 13]. As indicated, unit TD pairs 

nucleate and glide on k1 . They accumulate, and the interface rotates 
into tilt orientation. The Burgers vectors of the tilt dislocations are 
b. The resolved shear stress in the direction of bg provides a first-
order Peach-Koehler force driving the reaction. The unit advance 
of the step is a rotation equivalent to the motion of a disclination 
quadrupole [18]. Hence, there are second-order driving forces 
entailing either the couple stresses doing work when rotation 
occurs, or a change in strain energy in the anisotropic elastic case 
when the elastic constant matrix is rotated. The activation energy 
for motion is influenced by the Peierls barrier for glide and the 
diffusion-like shuffling required to complete the transformation.

Figure 1:   (a) Classical diagram showing the shear of a circle into an ellipse. (b) Symmetric state of shear produced by compression along y and 
extension along x. (c) Alternate view of the displacements in (b). One can imagine a positive engineering shear above the twin plane and a negative 
engineering shear below the twin plane.

Figure 2:   (a) Classical view normal to the plane of distortion showing twinning elements for a type IC twin, those for the twin are denoted with a prime. 
Engineering shear e on the k1 plane produces the shear displacement and the characteristic rotation angle α . (b) TM view showing translation vectors 
tM and tT in the dichromatic pattern, the disconnection step height, h, and the partitioned Burgers vectors bM and bT . (c) Projection along − P for the 
general case showing that the vectors tM and tT lie in the plane of distortion.
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Type II twin in NiTi
As an example, the results for NiTi [19] are as follows. NiTi is 
monoclinic with lattice parameters a0 = 0.2885 nm, b0 = 0.4120 
nm, c0 = 0.4622 nm, and β0 = 96.9°. Type II twinning in NiTi 
has been analyzed with the TM modification of the classical 
theory of twinning [13], entailing the experimental results in 
[19]. The relevant results and characteristics for NiTi are pre-
sented in Table 1.

A three-dimensional CDP is shown in Fig. 6a. The CDP viewed 
along − P is shown in Fig. 6b, with tM =

[

01̄1
]

, tT =
[

011̄
]

T
. The 

twin is type II. Figure 6c is a projection along -n of a double height 
disconnection, selected in accord with the 2’ symmetry. It pro-
vides the data needed in Eq. (1). The results for the type II and IIC 
analyses are presented in Table 2. For most parameters, the type II 
and IIC analyses agree. The only differences are for �α and b. For 
NiTi, the differences are essentially insignificant. They do serve to 
indicate that types II and IIC do differ.

Faceting and motion of k2 twin boundary
When the k2 boundary is near a low-index, rational plane, facet-
ing can occur [16, 20, 21]. The relevance here is that the most 
likely faceting occurs for small twin angles where the classical 
description applies. For example, Knowles [22] suggested the 
possibility of faceting for the type II twin in NiTi, and such fac-
ets were indeed found in an HRTEM study of NiTi [23]. They 
are also likely for many minerals where the bg for the TDs tends 
to be small. An example is labradorite, where such facets were 
observed for a type II pericline twin [14]. There are different 
possibilities for motion of TDs causing growth or detwinning 
of a type II twin depending on step height. In what follows, we 
discuss the faceting mechanism of the k2 twin boundary and the 
reversed or continued motion of a faceted interface.

We first consider the faceting mechanism. For the most 
general twin boundary, the displacements always have pure 
tilt symmetry. However, the k2 boundary is irrational and, 
relative to the low-index facet, can contain four sets of dis-
locations, two edge arrays associated with orthogonal tilts 
and two associated with a twist. This is analogous to the 
reduced von Mises criterion at a grain boundary [24]. If the 
screw arrays are orthogonal screws, they are not independ-
ent, since, operating together they produce a pure rotation 
without strain. However, both sets, which could actually be 
edge or mixed in character [25], must be present to prevent 
coherency stresses from appearing. There are three independ-
ent systems that satisfy the compatibility condition that the 
xx, yy, and xy strains in forming the boundary are the same 
in the two crystals when the axes x and y lie in the boundary, 
Thus, to remove any one of these sets in producing the facet, 

Figure 3:   Plot of �α versus α.

Figure 4:   (a) View normal to the plane of distortion for a type II twin with tMand tT in the plane of distortion. Partitioned engineering strains produce a 
type II twin with a rotation angle αand tilt Burgers vector b. (b) TM, view showing the partitioned Burgers vectors that sum to the tilt vector b on the 
twin plane. (c) Details of the tilt dislocation spacing.
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the mechanism is as follows. The atomically spaced disloca-
tions b entail atom-atom overlap and should spontaneously 
relax into discrete disconnection bD bounding the low-index 
terraces: the facets. The net Burgers vector B of the original 
defects now resides in the disconnection and the removal of 
the defects leaves coherency dislocations on the facets with a 
net Bc equal and opposite to B, Fig. 7, explicitly demonstrated 
and simulated in [4].

For a lenticular, type II deformation twin, there are three 
possible facet surfaces. Mechanistically, the most likely is a facet 
close to the k2 plane as in Fig. 7, and we discuss that case first. 
However, the tip of the twin and large steps on the k2 plane 
can form facets close to the k1 plane: Conversely, large steps on 
the k1 plane can form facets close to the k2 plane: Also, facets 
could form close to the plane of distortion on portions of that 
twin where the TDs are in edge orientation. For blocky twins, 
all three types could bond a relaxed parallelepiped shape [19]. 
For facets appearing as steps, if the step height is a large multi-
ple mh0 of the unit step height h0 , with m an integer, then only 
the process described in [16, 20, 26] is feasible. The riser of the 
step is equivalent to a disclination dipole, and the advance of 
the step requires the nucleation and propagation of TDs on the 
step riser [27].

For NiTi, Fig. 7a shows the dislocation description of the 
k2 plane with one tilt dislocation for each intersecting k1 plane. 
The interface relaxes to form a low-index terrace (facet) with an 
orientation close to the k2 plane, accompanied by partitioning 

by the mechanism described in [4]. The structure is that of 
Fig. 7b, a coherent terrace (facet) of size L described by an array 
of infinitesimal coherency dislocations and disconnections with 
equal and opposite B. As in [4], many interfaces relax in this 
manner. Since all of the TDs arrive from one side, the structure 
of Fig. 7c is also possible if there is a constraint to partitioning. 
In this case the tilt angle would change by the tiny increment 
b cosα/h, usually negligible. In either case, the long-range dis-
tortion rotation field is unchanged, but there are local compen-
sating strains. Faceting in NiTi definitely occurs as observed in 
[23]. It is precisely of the type in Fig. 7c. Because the normal 
to the (111̄} plane is slightly tilted and twisted relative to χ1 , 
the equilibrium boundary would also have very widely spaced 
edge disconnections with lines parallel to χ1 and Burgers vectors 
normal to (011). Also, there would be orthogonal screw disloca-
tions with wide spacing L and an in-facet-plane Burgers vector.

The reversed or continued motion of faceted interface could 
occur by either of two mechanisms. Once faceting occurs, the 
boundary is pinned by the intersecting defects. Also, direct 
motion of the disconnections in Fig. 7 is less likely than that 
for unit TDs because the large Burgers vector results in a much 
larger Peierls stress. Hence, the mechanism for either continued 
growth after unloading and relaxation or for reverse deforma-
tion as in shape memory applications is likely the reverse of that 
in Fig. 5. For NiTi, this is consistent with structural observations 
and consistent with the similarity of the stress for twinning and 
detwinning [19].

Alternatively, once the Type II plane is formed, it could con-
ceivably advance by nucleation and motion of glide TDs with 
Burgers vectors bIIg  gliding on k2 suggested in [28]. In other 
words, disconnections similar to those in Fig. 7 could translate 
the k2 interface. In this regard, as shown in Fig. 8, there is a dual-
ity of description of such a disconnection. As shown in Fig. 8a, 
an atomic distance a of the TD is equivalent to the addition 
of a disclination quadrupole [23]. This can also be regarded as 
either unit motion laterally of a disconnection with Burgers vec-
tor bIIg  and step height hII , the Müllner mechanism [28], or by 
upward motion of a disconnection with Burgers vector bg and 
step height h, the TM mechanism. With the observed spacing 
L = 0.800 nm, the Burgers vector of these glide disconnections 
would be bIIg = L tan α = 0.112 nm. This is twice bg so the Peierls 
stress would be too high for the glide mechanism to operate for 
NiTi. The Müllner mechanism [28] would apply, for example, 
to the fcc case mentioned previously.

A recent simulation [19] of the same type II twin in NiTi 
revealed a twinning mechanism of the second type mentioned 
above: facets on a blocky twin lying close to the plane of distor-
tion, (011). The TDs on this surface have screw orientation. As 
demonstrated in [20], these interfaces can recover by the same 
mechanism as the edge portions. The simulation showed that 
the breakup of the irrational plane of distortion into {011} facets 

Figure 5:   TDs nucleate at A, glide, and accumulate. The Burgers vector 
rotates into the tilt configuration B, eventually creating the type II twin 
boundary k2.

TABLE 1:   Common characteristics for type I twin.

bg h (nm) L (nm) [20]

[0.1693, 0.1075, 0.1075] 0.3066 0.800

e Plane of shear N

0.280 (− 1, 0.7875, − 0.7875) [− 1, 0.3598, − 0.3598]
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separated by disconnections with mainly screw components was 
favorable. In addition, there should be a few disconnections with 
edge components arising because of the monoclinicity, and a few 
orthogonal screw dislocations arising from the relaxation [20], 
but these were not included in the simulation. They observed 

the Müllner mechanism [28]: the screw disconnections were 
mobile and could in principle propagate the twin normal to the 
plane of distortion. However, the presence of orthogonal screw 
dislocations could pin the structure, so further work might be 
needed to resolve this issue.

Discussion
For large twinning angles, we have provided an extension of the 
classical theory for twinning. The source of the difference is a 
nonlinear plastic effect associated with the difference between 
engineering and tensor distortion matrices. In systems with 
smaller twinning angles, the classical theory can be an excel-
lent approximation. However, for small twinning angles, the 
resultant structure can recover to a faceted configuration with 

Figure 6:   (a) Three-dimensional coherent dichromatic pattern for NiTi. (b) Same pattern viewed along the glide plane normal P. The small red and blue 
circles represent lattice sites in the first layer and the big red and blue circles are in the 2nd layer. Plane (c) Double height disconnection characteristics 
in view of DP along −n.

TABLE 2:   Characteristics and twinning elements for all twin types.

Type k1 χ1 χ2

IIC (011) [1, 0.635, − 0.635] [011]

II [10] (011) [1, 0.635, − 0.635] [011]

Type b k2 Twin angle

IIC 0.082 nm (0.722, 1, − 1.007) αC = 7.832
◦

II [10] 0.086 nm (0.720, 1, − 1.000) αN = 7.981
◦
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little cost in surface energy. Analysis shows that such faceting 
is favored for type II deformation twins in NiTi. The facets are 
on planes with orientations close to the k2 plane. The facet con-
figuration agrees with HRTEM observations of recovered type 
II deformation twins in NiTi. We show that facets can also form 
in recovered type II planes on large step risers that are close in 
orientation to a k1 plane and to large step risers that are close 
to the plane of distortion. All three types of facets can form on 
blocky, nominally equiaxed twins.

Summary
We have compared the twinning elements as deduced from the 
classical model and the topological model for both type I and II 
twinning. For twinning with a large rotation angle, the topologi-
cal model is more accurate because nonlinear characteristics of 
the engineering shear strain are included. For the irrational k2 
twin boundary associated with type II twinning, we propose a 
possible relaxation mechanism to form low-index, rational ter-
races (facets) separated by disconnections as observed for type 
II twins in NiTi. Correspondingly, two possible mechanisms are 
also proposed for the migration of the faceted twin boundary.
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