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A plane-displacement diagram showing the four twinning elements, planes and directions, is
fundamental to the classical theory of twinning. One aspect of the classical theory of type | and Il
twinning is shown to be inapplicable when the twin rotation is large. We employ the topological model

with certain nonlinear characteristics to deduce a modified set of twinning elements. For twinning
associated with a small rotation, both the classical theory and the topological model for type | and Il
twinning are shown, which give the same set of twinning elements. However, only the topological model
is applicable for the large rotation case. As for the classical model, the twin plane in the type Il twinning
case is irrational unless it, and the type | twin is compound. Often, this irrational plane is close to a
low-index orientation for a given orientation relationship. Then it can be favorable for the interface to
break up into low-index, rational facets, separated by disconnections. This occurs without changing the
orientation relationship. We apply the topological model to describe both the irrational type Il twins and
faceting in NiTi. The results agree with TEM observations.

As reviewed by Hardouin Duparc [1], the basic elements for
twinning originated with Miigge [2] and described macroscopic
twins in minerals. Cahn [3] in a study of twinning in uranium,
considered a unit transformation volume, and related the twin-
ning elements to the characteristics of what we now call twin-
ning disconnections (TDs) in the topological model (TM) [4-6].
As reviewed in [7], the Cahn model provided an interpretation
of the twin structure and TDs in terms of dislocation Burgers
vectors and, implicitly, step heights. Also, the motion of the
TDs provided the mechanism for twin growth. The full classical
model for the crystallography of twinning was developed later
to complete the classical theory of twinning [8, 9]. The crystal-
lographic model provided matrix relations to predict possible
twin planes and directions. The classical model has been most
successful in describing many examples of K; and 5, for type I
twinning. Forms of twinning include type IC as the most com-
mon form and type IIC as the next most common. We designate
these with C for classical, because we show that they are special
cases of more general types that share the same mechanism.
Instead of the historical representation of the twinning elements,
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Kj and K; for planes, n; and 7, for directions, as in [1-7], we
use a modified Frank notation [10] for the twinning elements
ki = Ki,ky = Kz, x1 = ny,andx, = 1,, for type I twins, and
ki = Kz, ky = Ky, x1 = ny,andx, = n, for type II twins. These
are useful since k; is always the glide plane (the TM does not
apply unless there is such a glide plane). For both type IC and
type IIC, k; and y , are rational, and k; and x ; are irrational. If all
four elements are rational, the twin is called a compound twin.

The characteristics of a TD determine whether it is a feasible
twinning defect, with respect to both self-energy and activation
energy for motion. For type IC twinning, The TD was defined
as a disconnection in order to emphasize the importance of the
step height and as an analog of similar defects in phase trans-
formations [11]. TDs are line defects, characterized by the step
height & and the Burgers vector by describing the dislocation
content. In the topological model (TM), the step height h and
the corresponding Burgers vector bg are defined in a coherent
dichromatic pattern (CDP), the superposition of the matrix and
twin with coincidence on the twin plane, and a common ori-
gin. In the CDP, the vector bg is the difference between rational

vectors ty and 7 for the matrix and twin, respectively. More
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recently, the mechanism of type II twinning was outlined [5],
and developed in detail in [12, 13]. In this case, TDs move on
k1 = K; planes and accumulate in a tilt wall, accompanied by
partitioning of the rotations to both the matrix and twin, cre-
ating symmetrical tilt across the twin boundary [12, 13]. The
process can be viewed as the creation of a dislocation array with
long-range stresses that relaxes by interface rotation.

On the basis of these mechanisms, we analyze the twinning
elements and structures of the twins. We distinguish between
the classical models and the TM, which includes certain nonlin-
ear characteristics. We treat type II twins in NiTi as an example.
Finally, we describe the mechanism and structure of the forma-

tion of low-index, rational facets on the type II twin boundaries.

For type I twins, a source of mobile disconnections operates
on the (rational) k; plane, eventually generating a macroscopic
twin. The type IC mechanism, reviewed in [6, 12], is summa-
rized in Fig. la, showing the twinning elements and the twin
angle ac. The classical diagram is a plane-displacement engi-
neering shear diagram, displacing a circle to an ellipse by the
vector u at a distance h above the origin [8, 9, 12]. The classical
displacement is called the “shear” s, which is unfortunate in that
it implies that s is the shear strain. The engineering shear strain
ise = u/h = tan 2ac. For a type II twin, symmetry requires that
the displacements have a mirror symmetry plane normal to y
or have the x axis as a 2-fold rotation axis. For the classical case,
this is implied by setting the shear angle y,, equal to 2a¢ as in
Fig. 1a. This is precise only in the limit of infinitesimal strain.
In order to achieve actual displacement symmetry, there must
be a different state of shear strain as in Fig. 1b: a compression
along y and an equal measure extension along x, Fig. 1b. More
conveniently for the analysis of twin characteristics, as in [13],
these displacements can be viewed alternatively as two opposite
engineering strains, e/2 = 0.5u/h = tan «, as in Fig. 1c.

In order to connect to TDs, one imagines atom coincidence
at the origin and an atom a distance h from the origin shearing
by a displacement by to a position in kj. This produces a shear
e = bg /h. The twinning elements are represented in Fig. 2a and

the TM version in Fig. 2b. Hence, the twinning angle is
o =tan"! (e/2) = tan_l(O.Sbg/h). (1)
This differs from the linearized classical value as follows:
1, 1,
ac = 5 tan (e) = 5 tan (bg/h). )
The TM type I supersedes the classical type IC model when e is

large. Figure 3 is a plot of the difference Ao = (a — o) versus a.

Practically, the classical model is a good approximation when wis
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less than = 3°, but there is a significant difference for larger «.
The nonlinear model was mentioned in [13] but not quantified
because o was small.

In the most general classical case, the vector parallel to x, is
a 2’ rotation axis. In many high-symmetry cases, the twin plane

also has m’ mirror symmetry.

The mechanism for type II twinning entails TDs moving on
ki1 = K; planes and accumulating in a tilt wall, accompanied by
partitioning of the rotations to both the matrix and twin, creating
symmetrical tilt across the twin boundary [12-14]. This means
that the type II twin formation consists of two deformation
mechanisms: engineering shear and interface rotation. Here, we
extend the TM mechanism as for type I to show similar devia-
tions from the classical model. Figure 4a and b are diagrams for
type II twinning analogous to Fig. 2. Glide by bg on k; would pro-
duce the same engineering shear e. In this case, the engineering
shear partitions to e/2 in each crystal. For the most likely situa-
tion where unit TDs have step heights equal to the interplanar
distance normal to kj, the engineering shear e cannot actually
mechanistically partition because there would be profuse stack-
ing fault formation: with multiple step height disconnections,
actual partitioning of e is possible [5, 15]. The mechanism is that
perfect lattice dislocations shear and then dissociate into partial
dislocations in the k; plane. However, the effect of partitioning
is that the final configuration is the same as in a hypothetical
process where the engineering strains are partitioned. Hence the
final twin has partitioned engineering strains, displacements,
crystal structure, and rotations. The results are the same as for
type IIC provided that e is small, Eq. (2) applies and the twinning
angle is ac: type IIC. The ty and ¢t vectors rotate into conjunc-
tion and the ), vector is parallel to the rational, common # direc-
tion. If e is not small, Eq. (1) applies, and the twinning angle is
a: type II. The TM analysis in [12, 13] is accurate except for this
angle. Thus, only when e is small, does the classical model apply.
Otherwise, the TM model is applicable.

The essence of the differences discussed above is that the
partitioning of distortions into strains and rotations varies with
the rotation of coordinates. For type I, the classical model is
exact because there are no such rotations, present for type II,
provided that one uses the symmetric configuration of Fig. 1b.
There is a rare special large angle case, typified by (111) twins
in fec crystals that can also be understood from Fig. 4. For this
twin, the angle « is so large, 19.47°, significantly different from
ac = 17.63°, that a different {111} plane rotates to become the
rational k; = K plane and the classical model applies. Thus,
for fcc, without ancillary data such as strain measurements,
one cannot tell whether a twin is created by a type IC or type

IIC mechanism. Also, for (301) twins in cubic systems, if the
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Figure 1: (a) Classical diagram showing the shear of a circle into an ellipse. (b) Symmetric state of shear produced by compression along y and
extension along x. (c) Alternate view of the displacements in (b). One can imagine a positive engineering shear above the twin plane and a negative

engineering shear below the twin plane.
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Figure 2: (a) Classical view normal to the plane of distortion showing twinning elements for a type IC twin, those for the twin are denoted with a prime.
Engineering shear e on the kjplane produces the shear displacement and the characteristic rotation angle «. (b) TM view showing translation vectors
tyv and t1 in the dichromatic pattern, the disconnection step height, h, and the partitioned Burgers vectors by and br. (c) Projection along — P for the
general case showing that the vectors ty and tr lie in the plane of distortion.

conjugate is (103), an engineering shear alone describes type II.
This is a consequence of the interdependence of the tensor strain
components ij and ji.

For a complete analysis of twinning, one often needs to con-
sider the shuftling of atoms that are not at lattice sites, [3, 9, 13,
16]. For these, it is useful to describe the superposed lattices in a
rotated dichromatic pattern (RDP) [4], or a shifted dichromatic
pattern (SDP) [5, 17]. Shuffles are not needed here. We do not
discuss them further.

The actual mechanism of type II twinning is shown in Fig. 5, a
version of the diagrams in [5, 12, 13]. As indicated, unit TD pairs

©The Author(s), under exclusive licence to The Materials Research Society 2021

nucleate and glide on k;. They accumulate, and the interface rotates
into tilt orientation. The Burgers vectors of the tilt dislocations are
b. The resolved shear stress in the direction of by provides a first-
order Peach-Koehler force driving the reaction. The unit advance
of the step is a rotation equivalent to the motion of a disclination
quadrupole [18]. Hence, there are second-order driving forces
entailing either the couple stresses doing work when rotation
occurs, or a change in strain energy in the anisotropic elastic case
when the elastic constant matrix is rotated. The activation energy
for motion is influenced by the Peierls barrier for glide and the
diffusion-like shuffling required to complete the transformation.
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Figure3: Plot of Ax versus a.

As an example, the results for NiTi [19] are as follows. NiTi is
monoclinic with lattice parameters ag = 0.2885 nm, by = 0.4120
nm, ¢p = 0.4622 nm, and By = 96.9°. Type II twinning in NiTi
has been analyzed with the TM modification of the classical
theory of twinning [13], entailing the experimental results in
[19]. The relevant results and characteristics for NiTi are pre-
sented in Table 1.

A three-dimensional CDP is shown in Fig. 6a. The CDP viewed
along — P is shown in Fig. 6b, with t\y = [011] St = [Olﬂ - The
twin is type II. Figure 6¢ is a projection along -r of a double height
disconnection, selected in accord with the 2’ symmetry. It pro-
vides the data needed in Eq. (1). The results for the type I and IIC
analyses are presented in Table 2. For most parameters, the type II
and IIC analyses agree. The only differences are for A and b. For
NiTi, the differences are essentially insignificant. They do serve to
indicate that types IT and IIC do differ.

(@) K

When the k, boundary is near a low-index, rational plane, facet-
ing can occur [16, 20, 21]. The relevance here is that the most
likely faceting occurs for small twin angles where the classical
description applies. For example, Knowles [22] suggested the
possibility of faceting for the type II twin in NiTi, and such fac-
ets were indeed found in an HRTEM study of NiTi [23]. They
are also likely for many minerals where the b for the TDs tends
to be small. An example is labradorite, where such facets were
observed for a type II pericline twin [14]. There are different
possibilities for motion of TDs causing growth or detwinning
of a type II twin depending on step height. In what follows, we
discuss the faceting mechanism of the k; twin boundary and the
reversed or continued motion of a faceted interface.

We first consider the faceting mechanism. For the most
general twin boundary, the displacements always have pure
tilt symmetry. However, the k; boundary is irrational and,
relative to the low-index facet, can contain four sets of dis-
locations, two edge arrays associated with orthogonal tilts
and two associated with a twist. This is analogous to the
reduced von Mises criterion at a grain boundary [24]. If the
screw arrays are orthogonal screws, they are not independ-
ent, since, operating together they produce a pure rotation
without strain. However, both sets, which could actually be
edge or mixed in character [25], must be present to prevent
coherency stresses from appearing. There are three independ-
ent systems that satisfy the compatibility condition that the
xx, yy, and xy strains in forming the boundary are the same
in the two crystals when the axes x and y lie in the boundary,

Thus, to remove any one of these sets in producing the facet,

(c)

by by
b b
b, by
L
L j— f—

Figure 4: (a) View normal to the plane of distortion for a type Il twin with tpand ¢t in the plane of distortion. Partitioned engineering strains produce a
type Il twin with a rotation angle cand tilt Burgers vector b. (b) TM, view showing the partitioned Burgers vectors that sum to the tilt vector b on the

twin plane. (c) Details of the tilt dislocation spacing.
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Figure 5: TDs nucleate at A, glide, and accumulate. The Burgers vector
rotates into the tilt configuration B, eventually creating the type Il twin
boundary k.

the mechanism is as follows. The atomically spaced disloca-
tions b entail atom-atom overlap and should spontaneously
relax into discrete disconnection bp bounding the low-index
terraces: the facets. The net Burgers vector B of the original
defects now resides in the disconnection and the removal of
the defects leaves coherency dislocations on the facets with a
net B, equal and opposite to B, Fig. 7, explicitly demonstrated
and simulated in [4].

For a lenticular, type II deformation twin, there are three
possible facet surfaces. Mechanistically, the most likely is a facet
close to the k; plane as in Fig. 7, and we discuss that case first.
However, the tip of the twin and large steps on the k; plane
can form facets close to the ki plane: Conversely, large steps on
the k; plane can form facets close to the k; plane: Also, facets
could form close to the plane of distortion on portions of that
twin where the TDs are in edge orientation. For blocky twins,
all three types could bond a relaxed parallelepiped shape [19].
For facets appearing as steps, if the step height is a large multi-
ple mhy of the unit step height ho, with m an integer, then only
the process described in [16, 20, 26] is feasible. The riser of the
step is equivalent to a disclination dipole, and the advance of
the step requires the nucleation and propagation of TDs on the
step riser [27].

For NiTi, Fig. 7a shows the dislocation description of the
k> plane with one tilt dislocation for each intersecting k; plane.
The interface relaxes to form a low-index terrace (facet) with an

orientation close to the k; plane, accompanied by partitioning

TABLE1: Common characteristics for type | twin.

by h (nm) L (nm) [20]
[0.1693,0.1075, 0.1075] 0.3066 0.800
e Plane of shear N

0.280 (=1,0.7875,-0.7875) [-1,0.3598, — 0.3598]

©The Author(s), under exclusive licence to The Materials Research Society 2021

by the mechanism described in [4]. The structure is that of
Fig. 7b, a coherent terrace (facet) of size L described by an array
of infinitesimal coherency dislocations and disconnections with
equal and opposite B. As in [4], many interfaces relax in this
manner. Since all of the TDs arrive from one side, the structure
of Fig. 7¢ is also possible if there is a constraint to partitioning.
In this case the tilt angle would change by the tiny increment
b cos a/h, usually negligible. In either case, the long-range dis-
tortion rotation field is unchanged, but there are local compen-
sating strains. Faceting in NiTi definitely occurs as observed in
[23]. It is precisely of the type in Fig. 7c. Because the normal
to the (111} plane is slightly tilted and twisted relative to x1,
the equilibrium boundary would also have very widely spaced
edge disconnections with lines parallel to x; and Burgers vectors
normal to (011). Also, there would be orthogonal screw disloca-
tions with wide spacing L and an in-facet-plane Burgers vector.

The reversed or continued motion of faceted interface could
occur by either of two mechanisms. Once faceting occurs, the
boundary is pinned by the intersecting defects. Also, direct
motion of the disconnections in Fig. 7 is less likely than that
for unit TDs because the large Burgers vector results in a much
larger Peierls stress. Hence, the mechanism for either continued
growth after unloading and relaxation or for reverse deforma-
tion as in shape memory applications is likely the reverse of that
in Fig. 5. For NiTj, this is consistent with structural observations
and consistent with the similarity of the stress for twinning and
detwinning [19].

Alternatively, once the Type II plane is formed, it could con-
ceivably advance by nucleation and motion of glide TDs with
Burgers vectors bg gliding on k; suggested in [28]. In other
words, disconnections similar to those in Fig. 7 could translate
the k; interface. In this regard, as shown in Fig. 8, there is a dual-
ity of description of such a disconnection. As shown in Fig. 8a,
an atomic distance a of the TD is equivalent to the addition
of a disclination quadrupole [23]. This can also be regarded as
either unit motion laterally of a disconnection with Burgers vec-
tor bg and step height 77, the Miillner mechanism [28], or by
upward motion of a disconnection with Burgers vector bg and
step height h, the TM mechanism. With the observed spacing
L = 0.800 nm, the Burgers vector of these glide disconnections
would be bg = Ltana = 0.112 nm. This is twice bg so the Peierls
stress would be too high for the glide mechanism to operate for
NiTi. The Miillner mechanism [28] would apply, for example,
to the fcc case mentioned previously.

A recent simulation [19] of the same type II twin in NiTi
revealed a twinning mechanism of the second type mentioned
above: facets on a blocky twin lying close to the plane of distor-
tion, (011). The TDs on this surface have screw orientation. As
demonstrated in [20], these interfaces can recover by the same
mechanism as the edge portions. The simulation showed that
the breakup of the irrational plane of distortion into {011} facets
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Figure 6: (a) Three-dimensional coherent dichromatic pattern for NiTi. (b) Same pattern viewed along the glide plane normal P. The small red and blue
circles represent lattice sites in the first layer and the big red and blue circles are in the 2nd layer. Plane (c) Double height disconnection characteristics

in view of DP along —n.

TABLE2: Characteristics and twinning elements for all twin types.

Type ki X X2

IIC 011) [1,0.635, - 0.635] [011]
11110] (011) [1,0.635,—0.635] [011]
Type b k2 Twin angle
1IC 0.082 nm (0.722,1,-1.007) oc = 7.832°
11[10] 0.086 nm (0.720, 1, — 1.000) an = 7.981°

separated by disconnections with mainly screw components was
favorable. In addition, there should be a few disconnections with
edge components arising because of the monoclinicity, and a few
orthogonal screw dislocations arising from the relaxation [20],

but these were not included in the simulation. They observed

©The Author(s), under exclusive licence to The Materials Research Society 2021

the Miillner mechanism [28]: the screw disconnections were
mobile and could in principle propagate the twin normal to the
plane of distortion. However, the presence of orthogonal screw
dislocations could pin the structure, so further work might be

needed to resolve this issue.

For large twinning angles, we have provided an extension of the
classical theory for twinning. The source of the difference is a
nonlinear plastic effect associated with the difference between
engineering and tensor distortion matrices. In systems with
smaller twinning angles, the classical theory can be an excel-
lent approximation. However, for small twinning angles, the

resultant structure can recover to a faceted configuration with
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Figure 7: lllustration of the faceting process. (a) Irrational twin plane with atomically spaced dislocations. (b) Relaxation into coherent terraces with the
origin of the coherency strains represented by coherency dislocations, separated by partitioned disconnections. (c) Equivalent of (b) but with facets

separated by disconnections with a single step direction.
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Figure 8: Two equivalent interpretations of the advance of a TD on the k;
plane.

little cost in surface energy. Analysis shows that such faceting
is favored for type II deformation twins in NiTi. The facets are
on planes with orientations close to the k; plane. The facet con-
figuration agrees with HRTEM observations of recovered type
II deformation twins in NiTi. We show that facets can also form
in recovered type II planes on large step risers that are close in
orientation to a k; plane and to large step risers that are close
to the plane of distortion. All three types of facets can form on

blocky, nominally equiaxed twins.

©The Author(s), under exclusive licence to The Materials Research Society 2021

We have compared the twinning elements as deduced from the
classical model and the topological model for both type I and II
twinning. For twinning with a large rotation angle, the topologi-
cal model is more accurate because nonlinear characteristics of
the engineering shear strain are included. For the irrational k;
twin boundary associated with type II twinning, we propose a
possible relaxation mechanism to form low-index, rational ter-
races (facets) separated by disconnections as observed for type
IT twins in NiTi. Correspondingly, two possible mechanisms are

also proposed for the migration of the faceted twin boundary.

This work was financially supported by the U.S. National
Science Foundation (NSF) (CMMI-1661686). We thank R.C.
Pond for helpful comments.
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