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Abstract

Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes and play a
key role in cellular signaling, protein trafficking, immunology and oncology. However, it is
challenging to predict peptide-protein binding with conventional computational modeling
approaches, due to slow dynamics and high peptide flexibility. Here, we present a prototype of the
approach which combines global peptide docking using ClusPro PeptiDock and all-atom enhanced
simulations using Gaussian accelerated molecular dynamics (GaMD). For three distinct model
peptides, the lowest backbone root-mean-square deviations (RMSDs) of their bound
conformations relative to X-ray structures obtained from PeptiDock were 3.3 A — 4.8 A, being
medium quality predictions according to the Critical Assessment of PRediction of Interactions
(CAPRI) criteria. GaMD simulations refined the peptide-protein complex structures with
significantly reduced peptide backbone RMSDs of 0.6 A —2.7 A, yielding two high quality (sub-
angstrom) and one medium quality models. Furthermore, the GaMD simulations identified
important low-energy conformational states and revealed the mechanism of peptide binding to the
target proteins. Therefore, PeptiDock+GaMD is a promising approach for exploring peptide-

protein interactions.
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Introduction

Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes. Peptide
binding plays a key role in cellular signaling, protein trafficking, immune response and
oncology(Petsalaki and Russell, 2008;Das et al., 2013). In addition, peptides have served as
promising drug candidates with high specificity and relatively low toxicity (Ahrens et al.,
2012;Fosgerau and Hoffmann, 2015;Kahler et al., 2018;Lee et al., 2019). The number of peptide-
based drugs being marketed is increasing in recent years (Ahrens et al., 2012;Fosgerau and
Hoffmann, 2015;Kahler et al., 2018;Lee et al., 2019). Therefore, understanding the molecular
mechanism of peptide-protein interactions is important in both basic biology and applied medical
research.

Rational design of peptide-derived drugs usually requires structural characterization of the
peptide-protein complexes. X-ray crystallography and nuclear magnetic resonance (NMR) have
been utilized to determine high-resolution structures of peptide-protein complexes. These
structures are often deposited into the Protein Data Bank (PDB) and also collected in specific
databases focused on peptide-protein complex structures, including the PeptiDB(London et al.,
2010), PepX(Vanhee et al., 2010) and PepBind(Das et al., 2013). Particularly, PeptiDB is a set of
103 non-redundant protein-peptide structures extracted from the PDB. The peptides are mostly 5-
15 residues long (London et al., 2010). PepX contains 1431 non-redundant X-ray structures
clustered based on the binding interfaces and backbone variations. There are 505 unique peptide-
protein interfaces, including those for the major histocompatibility complex (MHC) (14%),
thrombins (12%), a-ligand binding domains (8%), protein kinase A (5%), proteases and SH3
domains(Vanhee et al., 2010). The PepBind contains a comprehensive dataset of 3100 available

peptide-protein structures from the PDB, irrespective of the structure determination methods and



bioRxiv preprint doi: https://doi.org/10.1101/743773; this version posted August 24, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

similarity in their protein backbone. More than 40% of the structures in PepBind are involved in
cell regulatory pathways, nearly 20% in the immune system and ~30% with protease or other
hydrolase activities (Das et al., 2013). These databases have greatly facilitated structure-based
modeling and drug design of peptide-protein interactions. However, the number of currently
resolved structures is only a small fraction of the peptide-protein complexes, as limited by the
difficulties and high cost of X-ray and NMR experiments.

Computational methods have been developed for predicting the peptide-protein complex
structures. In this regard, modeling of peptide binding to proteins has been shown to be distinct
from that of extensively studied protein-ligand binding and protein-protein interactions. Notably,
small-molecule ligands are able to bind deeply buried sites in proteins, but peptides normally bind
to the protein surface, especially in the largest pockets. On the other hand, protein partners usually
have well defined 3D structures before forming protein-protein complexes, despite possible
conformational changes during association. In contrast, most peptides do not have stable structures
before forming complexes with proteins (Petsalaki and Russell, 2008). The biggest and immediate
challenge for modeling of peptide-protein binding is that peptide structures are not known a priori.
Furthermore, peptide-mediated interactions are often transient. The affinity of peptide-protein
interactions is typically weaker than that of protein-protein interactions, because of the smaller
interface between peptides and their protein partners. Therefore, new and robust computational
approaches are developed to address the above challenges in the modeling of peptide-protein
binding.

Molecular docking has proven useful in predictions of peptide-protein complex conformations
(Ciemny et al., 2018). The commonly used approaches include template-based docking such as

GalaxyPepDock(Lee et al., 2015), local docking of peptides to pre-defined binding sites such as
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Rosetta FlexPepDock(Raveh et al., 2011), HADDOCK(Trellet et al., 2013) and MDockPep(Xu et
al., 2018), and global docking of free peptide binding to proteins such as CABS-dock (Kurcinski
et al., 2015), PIPER-FlexPepDock (Alam et al., 2017) and PeptiDock (Alam et al., 2017). The
template-based docking is highly efficient, but often limited to the availability of templates (Lee
et al., 2015). Local docking is able to generate good quality models that meet the Critical
Assessment of PRediction of Interactions (CAPRI) criteria (Janin et al., 2003). However, it
requires a priori knowledge of the peptide binding site on the protein surface. In comparison,
global peptide docking provides sampling of peptide binding over the entire protein surface
without the need for pre-defined binding sites, but it is challenging to account for the system
flexibility. In this regard, ClusPro PeptiDock has been developed for docking of motifs (short
sequences) of peptides, which are found to sample only a small ensemble of different
conformations (Alam et al., 2017). Structural ensemble of a peptide motif is built by retrieving
motif structures from PDB that are very similar to the peptide’s bound conformation. A Fast-
Fourier Transform (FFT) based docking is then used to quickly perform global rigid body docking
of these fragments to the protein. PeptiDock is thus able to alleviate the peptide flexibility problem
through ensemble docking of the peptide motifs. Nevertheless, it remains challenging to account
for the high flexibility of the peptides. Overall, peptide docking often generates poor predictions
that require further refinement to obtain CAPRI-quality models.

Molecular dynamics (MD) is a powerful technique that enables all-atom simulations of
biomolecules. MD simulations are able to fully account for the flexibility of peptides and proteins
during their binding (Knapp et al., 2015;Wan et al., 2015;Salmaso et al., 2017;Yadahalli et al.,
2017;Kabhler et al., 2018). MD has been used to refine binding poses of peptides in proteins in the

pepATTRACT(de Vries et al., 2017) and AnchorDock(Ben-Shimon and Niv, 2015) docking
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protocols. However, it is challenging to sufficiently sample peptide-protein interactions through
conventional MD (cMD) simulations, due to the slow dynamics and limited simulation timescales.
Computational approaches that combine many cMD simulations provide improved sampling of
peptide-protein interactions, including supervised MD (Salmaso et al.,, 2017) and weighted
ensemble (Zwier et al., 2016). Notably, weighted ensemble of a total amount of ~120 us MD
simulations has been obtained to investigate binding of an intrinsically disordered p53 peptide to
the MDM2 Protein (Zwier et al., 2016). The simulation predicted binding rate constant agrees very
well with the experiments. However, expensive computational resources would be needed for
applications of cMD simulations in large-scale predictions of peptide-protein complex structures.

On the other hand, enhanced sampling MD methods have been developed to improve
biomolecular simulations (Christen and van Gunsteren, 2008;Gao et al., 2008;Liwo et al.,
2008;Dellago and Bolhuis, 2009;Abrams and Bussi, 2014;Spiwok et al., 2015;Miao and
McCammon, 2016). Multi-ensemble Markov models (Paul et al., 2017), which combine cMD with
Hamiltonian replica exchange enhanced sampling simulations, have been used to characterize
peptide-protein binding and calculate kinetic rates of a nano-molar peptide inhibitor PMI to the
MDM?2 oncoprotein fragment (Paul et al., 2017). While cMD is able to simulate fast events such
as peptide binding, enhanced sampling simulations can capture rare events such as peptide
unbinding. The steered MD (Cuendet et al., 2011), temperature-accelerated MD (Lamothe and
Malliavin, 2018) and MELD (Modeling by Employing Limited Data) using temperature and
Hamiltonian replica exchange MD(Morrone et al., 2017) have also been applied to study peptide-
protein binding. In comparison, more enhanced sampling methods have been applied in studies of
protein-ligand binding and protein-protein interactions, including the umbrella sampling (Torrie

and Valleau, 1977;Kastner, 2011;Rose et al., 2014), metadynamics (Laio and Parrinello,
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2002;Alessandro and Francesco, 2008;Saleh et al., 2017a;Saleh et al., 2017b;Saleh et al., 2017c),
adaptive biasing force (Darve and Pohorille, 2001;Darve et al., 2008), steered MD (Cuendet and
Michielin, 2008;Gonzalez et al., 2011), replica exchange MD(Sugita and Okamoto,
1999;0kamoto, 2004), accelerated MD (aMD) (Hamelberg et al., 2004;Miao et al., 2015) and
Gaussian accelerated MD (GaMD) (Miao et al., 2015;Miao and McCammon, 2017;Pang et al.,
2017;Miao and McCammon, 2018). Overall, enhanced sampling simulations of peptide binding to
proteins have been under explored. Peptide-protein binding shows distinct characteristics as
described above and requires the development of improved enhanced sampling approaches.

Here, we present a prototype of a novel computational approach that combines global peptide
docking using PeptiDock and all-atom enhanced sampling simulations using GaMD to model
peptide-protein binding. Three model peptides have been selected from the PeptiDB database of
non-redundant peptide-protein complex structures(London et al., 2010). They include peptide
motifs “PAMPAR” (Peptide 1), “TIYAQV” (Peptide 2) and “RRRHPS” (Peptide 3), which bind
to the SH3 domain, X-linked lymphoproliferative syndrome (XLP) protein SAP and human PIM1
kinase, respectively. Starting with the lowest RMSD conformation selected from top 10 models of
PeptiDock, GaMD significantly refines the peptide-protein complex structures. Furthermore, the
simulations provided important insights into the mechanism of peptide binding to target proteins
at an atomistic level. Thus, PeptiDock+GaMD 1is a promising approach for exploring peptide-

protein interactions.

Methods

A Computational Approach Combining PeptiDock and GaMD
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A new computational approach was designed to predict peptide-protein complex structures by
combining peptide docking with PeptiDock and all-atom enhanced sampling simulation with
GaMD (Figure S1 in Supplementary Material). Initial peptide-protein complex structures were
obtained using the ClusPro PeptiDock server. The first step in the PeptiDock protocol is fragment
search: the PDB database is searched for fragments containing the target peptide motif. The
templates are clustered and an FFT-based rigid docking is applied to the cluster centroids. Top-
scoring poses are clustered again and the centroids of the largest clusters are chosen as the final
results (Porter et al., 2017). For the purpose of this study — to show the viability of the protocol —
only one pose within top 10 models of PeptiDock, known to be near native, was selected for further

refinement using GaMD simulations.

System Setup

Three model peptides were selected from the PeptiDB database of non-redundant peptide-protein
complex structures(London et al., 2010). They included peptide motifs “PAMPAR” (Peptide 1),
“TIYAQV” (Peptide 2) and “RRRHPS” (Peptide 3), which bind to the SH3 domain, XLP protein
and human PIM1 kinase, respectively. The free X-ray structures of target proteins is 100T, 1D1Z
and 2J2I, respectively. The corresponding bound structures are ISSH, 1D4T (Poy et al., 1999) and
2C3I (Pogacic et al., 2007), respectively. The free X-ray structures of the target proteins were used
in the peptide docking and GaMD simulation. Both capped/neutral and uncapped/zwitterion
terminus models were investigated in the GaMD simulations. In the neutral terminus model, the

N- and C-termini were capped with ACE and NHE, respectively.

Peptide Docking
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The standard ClusPro PeptiDock protocol was used for all three systems. In the first step, receptor
structures were specified: 100T chain A (Peptide 1), ID1Z chain A (Peptide 2) and residues 125-
305 of 2J21 chain B (Peptide 3). The next step was specifying motifs — the templates for searching
fragments in PDB database. The motif was specified as subsequence of the peptide with one or
more wildcard symbols. Wildcards could be of two forms: “X”, denoting any amino acid
substitution, and “[...]”, denoting substitution by any amino acid from the list. £.g., “[FT]” means
that either Phe or Tyr can take this place. It is recommended to adjust the motif to yield between
100 and 1,000 hits, while preserving the essential features for binding. For the studied systems,
the following motifs were used for fragment search: “PXMPXR” for Peptide 1 (107 hits, see Ref.
(Hou et al., 2012)), “TI[YF]XX[VI]” for Peptide 2 (686 hits, see Ref.(Poy et al., 1999)) and
“RXRHXS” for Peptide 3 (198 hits, see Ref. (Bullock et al., 2005)). Since PDB contains bound
structures of the studied systems, a number of PDB entries were explicitly excluded from template
search, as listed in Table S4. The next steps were performed automatically by the server (Porter et
al., 2017), being the same for all systems. The extracted fragments were changed to the target
peptide sequence using backbone-dependent rotamer library(Dunbrack and Karplus, 1993). The
extracted fragments (hits) were clustered using the greedy algorithm according to their pairwise
root-mean-square deviation (RMSD), with 0.5 A cluster radius. The centroids of top 25 clusters
were docked to the receptor using rigid-body FFT docking(Kozakov et al., 2006), exhaustively
sampling all possible mutual orientations of the receptor and ligand, and ranking them using a
special scoring function with a mixture of physics-based and knowledge-based terms (Kozakov et
al., 2006;Chuang et al., 2008).The top-scoring poses of each fragment were pooled together and
clustered based on their pairwise RMSDs, with 3.5 A cluster radius. The clusters were ranked

according to their sizes (Kozakov et al., 2005). The centroids of ten largest clusters were subjected
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to energy minimization with a CHARMMI19-based force field using the ABNR algorithm. To
demonstrate the protocol, only the lowest RMSD conformation obtained from top 10 PeptiDock
models of each peptide was selected for refinement using GaMD simulations. The ranks of docking
poses with the lowest peptide backbone RMSDs used were 9, 5 and 10 for Peptides 1, 2 and 3,
respectively. It is important to note that each of the top-10 docking models will be refined and

scored in a full version of the protocol in further studies.

GaMD Enhanced Sampling Simulations

GaMD was applied to refine the peptide-protein complex structures. Complexes were solvated in
explicit water using t/eap from the AMBER 18 package (Case et al., 2018). The Na" and Cl" ions
were added to neutralize the system charge. The AMBER ff14SB force field parameters (Maier et
al., 2015) and TIP3P model (Jorgensen et al., 1983) were used for the proteins/peptides and water
molecules, respectively. Each system was minimized using steepest descent for 50000 steps and
conjugate gradient for another 50000 steps. After minimization, the system was heated from 0 to
310 K in 1 ns simulation by applying 1 kcal/(mol*A?) harmonic position restraints to the protein
and peptide heavy atoms with a constant number, volume and temperature (NVT) ensemble. Each
system was further equilibrated using a constant number, pressure and temperature (NPT)
ensemble at 1 atm and 310 K for Ins with same restraints as in the NVT run. Another 2ns cMD
simulations were performed to collect potential energy statistics (including the maximum,
minimum, average and standard deviation). Then 18 ns GaMD equilibration after applying the
boost potential was performed. Finally, four independent 300 ns GaMD production runs with
randomized initial atomic velocities were performed on each peptide system. Simulation frames

were saved every 0.2 ps for analysis. Snapshots of all four GaMD productions (1,200 ns in total)
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were combined for clustering to identify peptide binding conformations using the hierarchical
agglomerative algorithm in CPPTRAJ (Roe and Cheatham, 2013). The cutoff was set to 3.5 A for
the peptide backbone RMSD to form a cluster. The PyReweighting toolkit (Miao et al., 2014) was
applied to reweight GaMD simulations and recover the original free energy or potential of mean
force (PMF) profiles of the peptide-protein systems. The RMSDs of the peptide and protein
backbone were used as reaction coordinates. Detailed descriptions of GaMD theory and energetic

reweighting were shown in supplementary material.

Results

Prediction of Peptide Binding Conformations through Docking and GaMD Simulations
There were no significant conformational changes in the protein during binding of Peptides 1 and
3 (Figure 1A and 1C). In comparison, binding of Peptide 2 induced a large structural
rearrangement of the loop involving residues 67 to 74 in the protein (Figure 1B). In addition,
Peptide 3 is highly charged as its first three N-terminal residues in the sequence are all arginine.
These features of Peptides 2 and 3 raised the difficulty in accurate prediction of their peptide-
protein complex structures. Peptide docking with PeptiDock showed different levels of accuracy:
RMSDs of the peptide backbone compared with the bound X-ray structures were 3.3 A, 3.5 A and
4.8 A for the three peptides, respectively (Figures 1A-1C and Table 1). They were all medium
quality predictions according to the CAPRI criteria (Janin et al., 2003).

Next, GaMD simulations were performed to refine the docking models. Analysis of simulation
trajectories showed that the GaMD simulations were able to effectively refine the peptide binding
pose. For Peptides 1 and 2, RMSDs of the peptide backbone relative to the X-ray structures
decreased to < 1 A during the GaMD simulations (Figure 2A and 2B). Peptide 1 bound tightly to

the protein target site throughout the four GaMD simulations. Peptide 2 reached the native
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conformation within ~10 ns, ~90 ns, ~120 ns and ~170 ns in the four GaMD simulations and stayed
tightly bound during the remainder of the simulations. In comparison, Peptide 3 exhibited higher
fluctuations and sampled the near-native conformation transiently during the GaMD simulations
(Figure 2C). Nevertheless, the minimum RMSDs of peptide backbone compared with X-ray
structures were identified to be 0.20 A, 0.22 A and 0.73 A for the three peptides, respectively
(Figures 2A-2C).

Furthermore, GaMD simulation snapshots of the peptide conformations were clustered using
the backbone RMSDs relative to the X-ray structures. This procedure was similar to analysis of
the peptide docking poses. The 10 top-ranked clusters of peptide conformations with the lowest
free energies were obtained. The 1% top-ranked cluster exhibited peptide backbone RMSDs of 0.94
A and 0.61 A for Peptides 1 and 2, respectively (Figures 1D-1E and Table 1). For Peptide 3, the
3t top-ranked cluster showed the smallest peptide backbone RMSD of 2.72 A (Figure 1F and
Table 1). According to the CAPRI criteria (Janin et al., 2003), structural predictions for Peptides
1 and 2 were of sub-angstrom high quality and medium quality for Peptide 3. Therefore, GaMD
simulations significantly refined docking conformations of the three peptide-protein complex
structures. The simulation predicted bound conformations of the peptides were in excellent
agreement with experimental X-ray structures with 0.6 A — 2.7 A in the peptide backbone RMSDs.
In comparison, docking poses of the three peptides obtained from PeptiDock showed RMSDs of

3.3 A—-4.8 A (Table 1).

Peptide Binding Mechanism Revealed from GaMD
Free energy profiles were calculated from the GaMD simulations using the protein and peptide

backbone RMSDs relative to the bound X-ray structures as reaction coordinates. For Peptide 1,
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only one low-energy minimum was identified near the native bound state (Figure 2D). This was
consistent with the clustering result that the peptide backbone RMSD of the 1* top-ranked cluster
was only 0.9A.

For peptide 2, two low-energy minima were identified, corresponding to peptide backbone
RMSDs of 0.5 A and 4.2 A, respectively (Figure 2E). As described above, the binding of Peptide
2 induced a significant conformational change in the protein loop of residues 67 to 74 (Figure 1B).
Thus, the loop backbone RMSD and peptide backbone RMSD relative to the bound X-ray structure
were also used as reaction coordinates to compute another two-dimensional free energy profile
(Figure 3A). The protein loop was highly flexible, sampling a large conformational space. The
loop backbone RMSD ranged from ~0.2 A to ~8.0 A. This loop sampled two low-energy
conformations, including the “Open” (bound) (RMSD < 1 A) and “Closed” (free) states (RMSD
~3-6 A) (Figure 3). Compared to the “Open” state, the “Closed” loop moved closer to the core
domain of protein (Figure 3B). GaMD simulations successfully captured the conformational
change of this loop. The peptide and protein loop accommodated each other to form the final bound
conformation (Figure 3), suggesting an “induced fit” mechanism.

For Peptide 3, GaMD sampled a broad low-energy well, centered at the ~4.3 A and ~1.0 A
RMSDs for the peptide and protein backbone relative to the bound X-ray structure (Figure 2F).
Overall, this peptide-protein complex underwent high fluctuations, visiting a large conformational
space. Nevertheless, GaMD simulations sampled the native binding pose of Peptide 3, for which
the peptide backbone RMSD decreased to ~1 A at ~60ns and 160 ns during one of the GaMD
production runs (Siml) (Figure 2C). In contrast to binding of Peptide 2 that involved induced fit
of the protein receptor, binding of Peptides 1 and 3 did not induce significant conformational

change of the receptors.
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Effects of the Terminal Residue Charges on Peptide Binding

In addition to the neutral terminus model as described above, we simulated another model of the
three peptides with zwitterion terminal residues that were charged. Compared with the neutral
terminus models, larger fluctuations were observed in the zwitterion terminus models of the three
peptides (Figures S2-S4). For Peptides 2 and 3, their backbone RMSDs could reach large values
of ~40 A and ~20 A, respectively. These results suggested that the peptides could dissociate from
the initial near-native bound pose obtained from docking. Furthermore, 10 top-ranked clusters of
peptide conformations with the lowest free energies were also calculated through structural
clustering and energetic reweighting (see Methods for details). For Peptide 1, the 1% top-ranked
cluster exhibited the smallest backbone RMSD of 1.22 A relative to the X-ray structure (Figure
S5A and Table S1). The 2" top-ranked clusters exhibited the smallest backbone RMSDs of 0.62
A and 3.88 A for Peptides 2 and 3, respectively (Figures S5B-S5C and Tables S2-S3). In
summary, peptides with zwitterion terminal residues underwent higher fluctuations and the
simulation predicted bound conformations deviated more from the native X-ray structures

compared with the neutral terminal models.

Discussion

We have demonstrated that GaMD can successfully refined PeptiDock docking poses, and thus
established the possibility of PeptiDok+GaMD combination to predict peptide-protein complex
structure and explore the peptide binding mechanism. Three peptides with different difficulty
levels were selected as model systems. Peptide 1 was the easiest one as the peptide is rigid and

there was no conformational change in the protein during peptide binding. Both Peptides 2 and 3
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were challenging for predicting bound conformations accurately. The binding of Peptide 2
involved a significant structural rearrangement of the residue 67-74 loop in the protein. Peptide 3
with dense residue charges proved difficult for both docking and GaMD simulations. Nevertheless,
the GaMD refinement achieved high quality models for both Peptides 1 and 2, and medium quality
prediction for Peptide 3. This approach showed promise to be widely applicable for other peptide-
protein binding systems.

It is difficult for the current docking programs to account for large conformational changes of
proteins during peptide binding (Ciemny et al., 2018). Even in the flexible docking calculation,
only movements of protein side chains are often taken into account. This raised a challenge in the
modeling of Peptide 2. On the other hand, cMD simulations could account for flexibility of the
peptide and protein and had been applied to refine docking poses of peptides in proteins (Ben-
Shimon and Niv, 2015;de Vries et al., 2017). However, cMD could suffer from insufficient
sampling and limited simulation timescales. Thus, the GaMD enhanced sampling method has been
in this study. Remarkably, GaMD effectively captured the loop movement of Peptide 2 (Figure 3)
and greatly refined the peptide docking poses (Figure 1E).

In summary, PeptiDock+GaMD has been demonstrated on predicting the peptide-protein
complex structures and revealing important insights into the mechanism of peptide binding to
proteins, using three distinct peptides as model systems. In the future, all top-10 models of the
ClusPro PeptiDock will be refined with GaMD and a larger number of protein-peptide systems
will be evaluated systematically. Furthermore, the effects of different force fields (e.g.
CHARMM36) and solvent models (e.g., TIP4P and implicit solvent, etc.) (Kuzmanic et al.,
2019) are to be further investigated. Development of novel protocols to increase the accuracy

of peptide-protein structural prediction will facilitate peptide drug design. Advances in the
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computational methods and computing power are expected to help us to address these

challenges.
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Table 1. Comparison of 10 top-ranked clusters of three model peptides using the
PeptiDock+GaMD approach

Cluster ID
System Quantity
1 2 3 4 5 6 7 8 9 10
Peptide backbonel g4 |5 79| 310 | 278 | 3.62 | 404 | 627 | 468 | 748 | -
beotide 1° RMSD (A)
eptide 1
PMF(kcal/mol) | 0.00 |3.45| 3.36 | 3.69 | 3.81 | 451 | 3.54 | 537 | 5.63| -
Peptide backbonel ¢ | 355 | 458 | 585 | 415 | 586 | 575 | 629 | 6.48 | 5.16
. RMSD (A)
Peptide 2
PMF(kcal/mol) | 0.00 | 1.38| 1.47 | 0.91 | 1.67 | 2.03 | 3.00 | 3.07 | 323 | 2.85
Peptide backbonel , 51 |5 11| 270 | 929 | 748 | 11.94 | 9.84 | 423 | 821 | 8.02
. RMSD (A)
Peptide 3

PMF(kcal/mol) | 0.00 | 027 0.65 | 0.74 | 1.91 | 2.21 | 0.99 | 2.14 | 1.46 | 1.60

2Only nine clusters were obtained for Peptide 1 from the GaMD trajectories and thus there were
no RMSD or PMF values (-) for cluster 10.
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Peptide 1

X-ray (PDB: 1SSH) X-ray (PDB: 1D4T) X-ray (PDB: 2C3I)
PeptiDock (RMSD: 3.34) PeptiDock (RMSD: 3.5A) PeptiDock (RMSD: 4.84)

Peptide 2 F Peptide 3

~

X-ray (PDB: 1SSH) X-ray (PDB: 1D4T) X-ray (PDB: 2C3I)
PeptiDock+GaMD (RMSD: 0.94) PeptiDock+GaMD (RMSD: 0.6A) PeptiDock+GaMD (RMSD: 2.7A)

Figure 1 Docking poses (red) of three peptide motifs obtained using PeptiDock are compared with
X-ray structures (green): (A) Peptide 1 “PAMPAR?”, (B) Peptide 2 “TIYAQV” and (C) Peptide 3
“RRRHPS”; Binding poses (red) of three model peptides obtained using the “PeptiDock+GaMD”

are compared with X-ray structures (green): (D) Peptide 1, (E) Peptide 2 and (F) Peptide 3.
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Figure 2 Time courses of peptide backbone RMSD obtained from four 300ns GaMD simulations
on (A) Peptide 1, (B) Peptide 2 and (C) Peptide 3. 2D potential of mean force (PMF) regarding the
peptide backbone RMSD and protein backbone RMSD for (D) Peptide 1, (E) Peptide 2 and (F)

Peptide 3. The black stars indicate the initial binding poses obtained using PeptiDock.
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Figure 3. (A) 2D PMF calculated for binding of Peptide 2 regarding RMSDs of the peptide
backbone and protein loop (residues 67 to 74) relative to the X-ray structure (PDB: 1D4T). (B)
Representative conformation of “Closed” state (blue) in compared with initial conformation from

“PeptiDock” (red) and X-ray structure (green).



