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Floguet-enhanced spin swaps

Haifeng Qiao® ', Yadav P. Kandel® ', John S. Van Dyke® 2, Saeed Fallahi®4, Geoffrey C. Gardner®>,
Michael J. Manfra® 34>, Edwin Barnes? & John M. Nichol@® 1%

The transfer of information between guantum systems is essential for quantum commu-
nication and computation. In quantum computers, high connectivity between qubits can
improve the efficiency of algorithms, assist in error correction, and enable high-fidelity
readout. However, as with all quantum gates, operations to transfer information between
qubits can suffer from errors associated with spurious interactions and disorder between
qubits, among other things. Here, we harness interactions and disorder between qubits to
improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot
spins. We use a system of four electron spins, which we configure as two exchange-coupled
singlet-triplet qubits. Our approach, which relies on the physics underlying discrete time
crystals, enhances the quality factor of spin-eigenstate swaps by up to an order of magnitude.
Our results show how interactions and disorder in multi-qubit systems can stabilize non-
trivial quantum operations and suggest potential uses for non-equilibrium quantum phe-
nomena, like time crystals, in quantum information processing applications. Our results also
confirm the long-predicted emergence of effective Ising interactions between exchange-
coupled singlet-triplet qubits.
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ver the past decades, quantum information processors

have undergone remarkable progress, culminating in

recent demonstrations of their astonishing power!. As
quantum information processors continue to scale-up in size and
complexity, new challenges come to light. In particular, main-
taining the performance of individual qubits and high con-
nectivity are both essential for continued improvement in large
systems?.

At the same time, developments in nonequilibrium many-body
physics have yielded insights into many-qubit phenomena, which
feature, in some sense, improved performance of many-body
quantum systems when disorder and interactions are included.
Chief among these phenomena are many-body localization? and
time crystals*-8, Although these phenomena are interesting in
their own right, applications of these concepts are only beginning
to emerge.

In this work, we exploit discrete-time-crystal (DTC) physics to
demonstrate Floquet-enhanced spin-eigenstate swaps in a system
of four quantum dot electron spins. When we harness interac-
tions and disorder in our system, the quality factor of spin-
eigenstate swaps improves by nearly an order of magnitude. As
we discuss in detail further below, this system of four exchange-
coupled single spins undergoing repeated SWAP pulses maps
onto a system of two Ising-coupled singlet-triplet (ST) qubits
undergoing repeated 7 pulses. Periodically driven Ising-coupled
spin chains are the prototypical example of a system predicted to
exhibit DTC behavior*. Experimental signatures of DTC behavior
have been observed in many systems®-!2, but nearest-neighbor
Ising-coupled spin chains have yet to be experimentally investi-
gated in this regard.

Our system of two ST qubits is clearly not a DTC in the strict
sense, because it is not a many-body system!3. However, this
system does exhibit some of the key characteristics of DTC
behavior, including robustness against interactions, noise, and
pulse imperfections!3-14, We also find that the required experi-
mental conditions for observing the quality-factor enhancement
are identical to some of the theoretical conditions for the DTC
phase in infinite spin chains. In total, these observations suggest
the Floquet-enhanced spin-eigenstate swaps in our device are
closely related to discrete time-translation symmetry breaking.

Our results also illustrate how nonequilibrium many-body
phenomena could potentially be used for quantum information
processing. On the one hand, we observe Floquet-enhanced 7
rotations in two ST qubits. But on the other hand, these ST
rotations correspond to spin-eigenstate swaps, when we view the
system as four single spins. The enhanced spin-eigenstate swaps
are not coherent SWAP gates, but instead are “projection-SWAP”
gates!®. Because of the critical importance of such operations for
reading out linear qubit arrays, these results may point the way
toward the use of nonequilibrium quantum phenomena in
quantum information processing applications, especially for
initialization, readout, and information transfer. Moreover, recent
theoretical work shows how entangled states can be preserved,
and robust single-, and two-qubit gates can be implemented,
within this framework!®. Our results are also significant because
they provide experimental evidence of the predicted Ising cou-
pling that emerges between exchange-coupled ST qubits!”.

Results

Device and Hamiltonian. We fabricate a quadruple quantum dot
array in a GaAs/AlGaAs heterostructure with overlapping gates
(Fig. 1a)18-20, The confinement potentials of the dots are controlled
through “virtual gates”1-24, Two extra quantum dots are placed
nearby and serve as fast charge sensors2>26, We configure the four-
spin array into two pairs (“left” and “right”) for initialization and
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Fig. 1 Experimental setup. a Scanning electron micrograph of the quadruple
quantum dot device. The locations of the electron spins are overlaid.

b Schematic showing the two-qubit Ising system in a four-spin Heisenberg
chain. ¢ The pulse sequence used in the experiments.

readout. Each pair of spins can be prepared in a product state (’TU
or |¢T>) via adiabatic separation of a singlet in the hyperfine
gradient?’-2%. We can also initialize either pair as [T ) = |t1) by
exchanging electrons with the reservoirs?®30. Both pairs are mea-
sured through spin-to-charge conversion via Pauli spin blockade?7,
together with a shelving mechanism3! for high readout fidelity.
Further details about the device can be found in “Methods”.

The four-spin array is governed by the following Hamiltonian:

h3 h&
H=*§]i(ai'°’i+1)+523f0?> (1)

where J; is the tunable exchange coupling strength (with units of
frequency), o; = [0F,0),07] is the Pauli vector describing the
components of spin i, h is Planck’s constant, and B} is the z
component of the magnetic field (also with units of frequency)
experienced by spin i. B includes both a large 0.5-T external
magnetic field and the smaller hyperfine field. The exchange
couplings J;, /,, and J; are controlled by pulsing virtual barrier
gate voltages’2. We model the dependence of the exchange
couplings on the virtual barrier gate voltages in the
Heitler-London framework3233, The model allows us to predict
the required barrier gate voltages for a set of desired exchange
couplings. In our device, we estimate the residual exchange
coupling at the idling tuning of the device to be a few MHz.

Heisenberg exchange coupling does not naturally enable the
creation of a DTC phase®. Additional control pulses can convert
the Heisenberg interaction into an Ising interaction®, which
permits the emergence of a DTC phase. A DTC can also be
created using a sufficiently strong magnetic field gradient instead
of applying extra pulses®4. Here, we introduce a new method for
generating DTC behavior that does not require complicated pulse
sequences or large field gradients, but instead relies only on
periodic exchange pulses.

To see how we can still obtain an effective Ising interaction in
this case, it helps to view each pair of spins as an individual ST
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qubit (Fig. 1b)?7. Specifically, consider the scenario where the
joint spin state of each pair is confined to the subspace spanned

by [S) = 2 (|11) — |11)) and | Ty) = 5 (|11) + [11)). According

to ref. 17, when J; = J; = 0 and J, > 0, the effective Hamiltonian of
the system is

h ., h . h_ .
Hy = E(AIZ + B)o7 + 5(A34 +B)o; — ijofog . (2)

Here, o7 is the Pauli z-operator for ST qubit k, A; = Bf — B is
the intraqubit gradient between spins i and j, and B is the effective
global magnetic field gradient, which depends on A; and J;
(ref. 17). In this system, all magnetic gradients result from the
hyperfine interaction between the electron and nuclear spins3>.
The gradients are quasistatic on typical qubit manipulation
timescales’®. The basis for the ST-qubit operator & is
{IT1),111)} provided that J, < |B, — Bs| (refs. 17:337). In our
experiments, the typical value of ], is a few MHz, while the typical
value of the magnetic field gradient in the device is tens of MHz.
Now let us define

i (h hd .,
Sint = €Xp _%T 1]2(0'2"73)+§l;Bi0i ) (3)

where 7 is an interaction time. Within the {|S),|T,)} subspace of
each pair, this operator is equivalent to S = exp [— +TH eff] , and
it describes the evolution of the two Ising-coupled qubits!?.
Systems of exchange-coupled ST qubits have been the focus of
significant theoretical research!7-38-40, Until now, such a system
has evaded implementation.

In the case when J,=0, but when J;,J5>0, the overall
Hamiltonian describes two uncoupled ST qubits. Thus, let us
define

i h h& z _z
Sl:eXP[*%tl(Zfl(“l‘Uz)JFEi;BiUi)] ) (4)
i (h h4
S, = exp [—%tz (1]3(03 - 0y) +5§Bfaf>] . (5)

In the {|S),|T,)} subspace of each pair, these operators are
equivalent to S =exp[—it,4(A,5] +/,5])] and S =
exp[—it,%(A3,05 +7503)]. In writing S and S5, we have
ignored overall energy shifts J;/4 and J3/4 of the single-qubit
Hamiltonians, because the system dynamics do not depend on
these shifts. Assuming J; > A, and J;>> A3y, when ], = 1); =
0.5, these two operators implement SWAP gates between spins
1-2 and 3-4. Equivalently, they induce nominal 7 pulses about
the x-axis of each ST qubit. The presence of the intraqubit
gradients A, and As, slightly tilts the rotation axis toward the z-
axis for each ST qubit, introducing uncontrolled errors to the 7
pulses. We can also manually introduce additional pulse errors by
changing J; and J;, while fixing #; and #,. We represent the error
as ¢, with J; = J7(1+¢) and J; = J5(1 + €). Here JT and J} are
the interaction strengths that yield 7 pulses.

Floquet-enhanced spin swaps. We define a Floquet operator
U= Sin -S>+ 81 (Fig. 1¢), and we repeatedly apply this operator to
our system of four spins. As discussed above, U implements spin
SWAP gates between spins 1-2 and 3-4 followed by a period of
exchange interaction between spins 2 and 3. Equivalently, U
implements 7 pulses on both ST qubits and then a period of Ising
coupling between them. One might naively imagine that the
highest fidelity SWAP operations between spins should occur
when J, =0 and 7 =0, given the presence of intraqubit hyperfine
gradients. In this case, as we have discussed in ref. 2, repeated

SWAP operations are especially susceptible to errors from the
hyperfine gradients A;;.

However, by allowing J,>0 and 7>0, we find specific
conditions in which we observe a significant enhancement of
the spin-eigenstate-swap quality factor (Fig. 2). To explore this
phenomenon, we prepare each ST qubit in |T]) or ||T). (The
specific state is governed by the sign of A;, and Aj4, which are
random quasistatic gradients resulting from the nuclear hyperfine
interaction.) We apply multiple instances of the Floquet operator
U to the system and measure the ground-state return probabilities
for both ST qubits.

First, we set the interaction time 7= 1.4 us and SWAP pulse
times t; =t, = 5ns, and apply four Floquet steps. We sweep ],
linearly from 0.05 to 5 MHz (Fig. 2a, b). (Setting ], < 0.05 MHz
would require large negative voltage pulses applied to the barrier
gate due to the residual exchange, which could disrupt the tuning
of the device.) We also sweep J; from 80 to 460 MHz, and J5 from
50 to 260 MHz. The ranges of J; and J; roughly center around JT
and J7, respectively. Away from the center, J; and J5 induce pulse
errors. The experimental values of ¢,JT and t,J§ are much larger
than 0.5, because the voltage pulses experienced by the qubits
have rise times of ~1ns (see “Methods” and Supplementary
Fig. 1). To compensate for the pulse rise times (which are slightly
different for each qubit), ¢,JT and ¢t,J; must be larger than 0.5 in
order to properly induce 7 pulses.

Clear, bright diamond patterns are visible in the data (Fig. 2a, b).
These bright regions correspond to improved spin-eigenstate-swap
quality factors. Note that the brightest regions correspond to
configurations when J,>0. Note also that the diamonds are
approximately periodic in /57, as expected for a Floquet operator.
We repeat the same experiments with 7= lus, and we observe
similar diamond patterns, although they have an increased period
in J, (Fig. 2e, f). The diamond patterns of ST qubit 2 appear
narrower due to the large hyperfine gradient As4, which causes
larger pulse errors and reduces the size of the quality-factor-
enhancement region. These data from an effective two-qubit
system resemble predicted DTC phase diagrams of a true nearest-
neighbor many-body system (see “Methods” and Supplementary
Figs. 2 and 3)78.

Our simulations agree well with the data (Fig. 2¢, d, g, h; see
“Methods”). In the simulations, the diamond pattern is periodic in
J,7 with the periodicity of exactly 1, and the strongest quality-
factor enhancement occurs at J,7=0.5. In the experimental data,
however, the periodicity is slightly larger than 1, and the strongest
quality-factor enhancement occurs at J,7> 0.5. This is due to the
imperfect calibration of the exchange coupling J, (ref. 32). In
particular, the presence of the hyperfine field gradient makes it
difficult to measure and control the exchange couplings with sub-
MHz resolution. If our modeling of the exchange coupling were
more precise, then we would expect the periodicity of the diamond
patterns to be closer to 1 and the quality-factor enhancement to
occur closer to J,7=0.5 in the experimental data.

We can interpret our data using a semiclassical model inspired by
Choi et al. in ref. 10 to explain DTC behavior (see “Methods”). In
brief, an initial state of ST qubit 1, |y,) = cos(6,/2)|g) + e
sin(6,/2)e) evolves to ‘V/f> = e 10/ 27I007/2mi$,0% /210072 |y )
after two Floquet steps. Here 6 =~ r indicates a nominal 7 pulse, and
¢, =2n(J,/2+ Ay, + B)1, and ¢, = 2n(—],/2 + A, + B)7. In
this semiclassical model, the effect of ST qubit 2 on ST qubit 1 is to
generate the 77/,7 term in the operator that switches sign after each
Floquet step, because ST qubit 2 undergoes a nominal 7 pulse. As
emphasized in ref. 19, the change in sign of this part between Floquet
steps is entirely a result of interactions in the system. The resulting
single-qubit rotations in this semiclassical model are reminiscent of
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Fig. 2 Floquet-enhanced = rotations. a, b Measured ground-state return probabilities of (a) ST qubit 1 and (b) ST qubit 2, after four Floquet steps, with
interaction time = 1.4 ps. The ranges of J; and J3 center around JI and J. The values of J; and J3 are swept simultaneously. In both figures, the red cross
marks the condition for the Floguet-enhanced  rotations. The black ovals are the semiclassical phase boundaries. ¢, d Simulated return probabilities of (c)
ST qubit 1and (d) ST qubit 2, corresponding to the data in (a) and (b), respectively. e, f Measured ground-state return probabilities of (e) ST qubit 1and (f)
ST qubit 2, after four Floquet steps, with interaction time z=1.0 ps. J; and J5 values are the same as in a and b. g, h Simulated return probabilities of (g) ST
qubit 1and (h) ST qubit 2, corresponding to the data in (e) and (f), respectively. The experimental data in (a, b, e, f) are averaged over 8192 realizations. In

all figures, P’; indicates the ground-state return probability for ST qubit k.

dynamical decoupling!®. We have numerically simulated the
semiclassical single-qubit evolution over two Floquet steps for our
system (see “Methods”). The black lines in Fig. 2a, b indicate the
regions where approximate ST-qubit eigenstates are also exactly
eigenstates of the evolution operator over two steps, ie., they are
exactly preseved by the two Floquet steps!?. The size of these regions
confirms that interactions are essential for the effects we observe.
Exactly the same enhancement regions are expected for end spins in
longer chains, because our system is a nearest-neighbor Ising spin
chain. Simulations for an eight-site Ising spin chain at late times show
DTC behavior in exactly these regions (see “Methods” and
Supplementary Fig. 2).

Next, we also sweep J5 from 220 to 430 MHz. In this case, the
range of J5 roughly centers around ]%”. The interaction time is
7= 1.4 ps and the ranges of J; and ], remain the same. Again, we
apply four Floquet steps and measure the ground-state return
probabilities. This time the data do not show diamond patterns
(Fig. 3), and the return probability of ST qubit 1 is lower than the
Floquet-enhanced return probability shown in Fig. 2a. This
indicates that the Floquet enhancement is no longer present. In
fact, if either of the Floquet operators S; or S, fails to induce
approximately a 7 rotation, then the Floquet enhancement does
not appear.

On the one hand, this effect is striking, when one considers the
individual spins themselves. Recall that the ST-qubit splittings A,
and A;, are generated by the hyperfine interaction between the
Ga and As nuclei in the semiconductor heterostructure and
the electron spins in the quantum dots. Although A;, and A, are
quasistatic on millisecond timescales, they each independently
fluctuate randomly, and can change sign, over the duration of a
typical data-taking run, which is ~1 h. Each of the 8192 different
realizations for each pixel in the data of Fig. 2 likely contain
instances, where both ST qubits have the same or different
ground-state spin orientations. (The ground state of each ST

a [¢]
0.9
400
~N 0.8
T
= 300 o 07
= 200 06
100 05
1 2 3 4 5
J (MHz)

Fig. 3 Absence of Floquet enhancement due to the omission of a z pulse.
a, b Measured ground-state return probabilities of (a) ST qubit 1and (b) ST
qubit 2, after four Floquet steps, with interaction time z =1.4 ps. The ranges
of J; and J5 center around Ji and J%“, respectively. The values of J; and J3 are
swept simultaneously. The data are averaged over 8192 realizations.

qubit is either |T]) or ||T), depending on the sign of the
instantaneous hyperfine gradient.)

Thus, the data of Fig. 2 likely include realizations with all
possible combinations of the orientations of spins 2 and 3 before
the interaction period. Despite the random orientations of spins 2
and 3, the Floquet enhancement still appears. It might therefore
seem that whether or not spins 1-2 or 3-4 undergo a SWAP
before the interaction period should not affect the behavior of the
system. However, as shown in Fig. 3, implementing a 27 rotation,
as opposed to a 7 rotation, on one of the ST qubits eliminates the
Floquet enhancement.

On the other hand, when one considers the semiclassical
picture described above, the absence of a 7 pulse on one of the ST
qubits spoils the semiclassical decoupling evolution discussed
above and in ref. 10. In this case, ST-qubit eigenstates are no
longer eigenstates of two instances of the Floquet operator, and
the enhancement no longer occurs.
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Fig. 4 Floquet-enhanced spin swaps. a-d Quality-factor enhancement of spin-eigenstate swaps for different initial states. In each figure, the top panel
shows the measurements of ST qubit 1, and the bottom panel shows the measurements of ST qubit 2. The initial states are shown on the top, where |g) and
le) represent the ground state and the excited state of the ST qubit, respectively. The Floquet-enhanced z-pulse data are shown in blue, and the non-

enhanced regular z-pulse data are shown in red. The fitted exponential decay envelopes are overlaid as dashed lines for all data except for the bottom panel

in (d). The data are averaged over 4096 realizations.

We have now determined the optimal conditions for the
Floquet enhancement. For the remainder of the paper, we set
J;=270MHz and J;=150MHz with t;,=t,=5ns for the
SWAP operators S; and S,, respectively, and we set 7= 1.4 s
and J, =0.41 MHz for the Ising interaction. To quantify the
Floquet enhancement, we evolve the system for 50 Floquet steps
and measure the ground-state return probabilities for both qubits
after each step. The results are shown in Fig. 4a. Note that the
system exhibits a clear subharmonic response to the Floquet
operator. We extract a swap quality Q by fitting the data with a
decaying sinusoidal function P,(n) = aexp(—n/Q) cos(nm) + f,
where Py(n) denotes the return probability at the nth Floquet step,
and Q, , and p are fit parameters. We also investigate the quality
factor of the qubits under non-enhanced regular 7 pulses. Here,
we use the same interaction time 7= 1.4 us, but we turn off the
interaction strength J, by setting the barrier gate pulse to zero. To
further eliminate any effects associated with Floquet enhance-
ment, we only apply 7 pulses to one qubit, while the other qubit
remains idle after initialization. Again, we apply 50 7 pulses and
measure the ground-state return probability, and we fit the data
with the same decaying sinusoidal function. By comparing the fit
parameter Q, we can obtain the ratio between the quality factors
of the qubits under Floquet-enhanced and non-enhanced =
rotations.

We find a ~3-fold quality-factor improvement on qubit 1, and
~9-fold improvement on qubit 2. The significant discrepancy
between the quality-factor improvements of the two qubits is
likely due to the large hyperfine gradient Az, in qubit 2, which
causes an exceptionally low quality factor for non-enhanced 7
rotations. The quality-factor enhancement is striking in this case.
To extract an estimated uncertainty, we repeat the same
experiment 30 times, and calculate the mean and the standard
deviation of the quality-factor ratio, as shown in the first row of
Table 1.

So far, we have initialized both ST qubits in their ground states.
We can also initialize either ST qubit in its excited state by
applying an extra 7 pulse to the qubit immediately before the first

Table 1 Quality-factor enhancements of both qubits for
different initial states.

Initialization Quality-factor enhancement

Qubit 1 Qubit 2
lg) ® 19) 3.60+0.89 8.47 +£3.29
le) ® |g) 324094 9.33+£296
l9) ® le) 315+0.79 9.10 £2.87
l9) ®|T,) 1.92+0.27 N/A

Here, |g) and |e) represent the ground state and the excited state of the ST qubit, respectively.
Thirty sets of data are taken for each initialization, from which the means and the standard
deviations are calculated.

Floquet step. We run the same experiment with different initial
states and extract the quality factors by fitting the data (Fig. 4b, ¢).
Again, for each initial state, we repeat the experiment 30 times
and calculate the mean and the variance of the quality-factor
ratio, which are listed in Table 1. The quality-factor improve-
ments of both qubits are consistent across different initial states.

We also initialize the right pair as |T +> =|11) and measure
the quality-factor improvement on qubit 1 (Fig. 4d). We notice
that the quality-factor ratio is much lower when the right pair is
initialized in |T ). This is not surprising since the effective Ising
interaction between qubit 1 and qubit 2 (Eq. (2)) is only valid
when both qubits are restricted to the S, = 0 subspace. The reason
why we still see a ~2-fold quality-factor improvement instead of
no improvement at all is likely because of the imperfect |T )
preparation due to thermal population of excited states3?. Load
errors will cause the right pair to occupy the ST-qubit ground or
excited states a small fraction of the time. In these cases, the
Floquet enhancement of the left-pair ST qubit is expected to
occur. Thus, the overall quality factor should appear to improve
slightly, because of the imperfect initialization. Correspondingly,
it is likely that the imperfect initialization limits the quality-factor
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enhancement when both qubits are initialized in ST-qubit
eigenstates.

Finally, we emphasize that a Floquet drive, i.e., repeated SWAP
gates, is required to realize the enhancement shown in Fig. 4.
Based on the data of Fig. 4, the first SWAP gate is not
substantially enhanced by the protocol. It is only subsequent
SWAP gates that are enhanced. This is consistent with the
requirement for a periodic drive in a DTC. As we discuss below,
this periodic drive is also useful for constructing quantum gates.

Discussion

Strictly speaking, a DTC only occurs in the thermodynamic
limit!3. Nonetheless, we argue the quality-factor enhancement we
observe relies on the essential elements of DTC physics. The
disordered Ising-coupled system in our device demonstrates a
clear subharmonic response, as well as a robustness against pulse
errors, both expected as defining signatures of the DTC. Our
experiments also indicate the necessity of two essential ingre-
dients for realizing the Floquet-enhanced 7 pulses: (1) an effective
Ising interaction, and (2) global 7 pulses. If either of the com-
ponents is missing, we no longer observe the significant quality-
factor enhancement (Figs. 3 and 4d). These two components both
ensure that the semiclassical dynamical decoupling can occur. In
the thermodynamic limit, these components would ensure that
eigenstates of the Floquet operator are long-range correlated,
which is required for discrete time-translation symmetry
breaking®. We have also shown that the quality-factor enhance-
ment does not depend on the eigenstate into which either ST
qubit is initialized (provided that the effective Ising coupling is
maintained), which is another key feature of the DTC!3. In the
future, implementing these experiments in larger spin chains
could lead to a verification that these effects in fact originate from
the DTC phase.

We emphasize that we have observed Floquet enhancement
associated with ST-qubit eigenstates undergoing 7 pulses. In the
language of single spins, we observed Floquet enhancement
associated with swaps between spin eigenstates, when the total z
component of angular momentum for both spins vanishes. This
observation is qualitatively consistent with expectations for qubits
in a true many-body DTC, where the components of the qubits
oriented along the direction defined by the Ising coupling are
preserved®. While not a coherent SWAP gate, a spin-eigenstate
swap (projection-SWAP), has significant potential to aid in
readout for large qubit arrays*!.

The Floquet enhancement we observe can immediately be
leveraged to perform additional quantum information processing
tasks of significant importance. For example, recent theoretical
work shows that entangled states of single spins (or superposition
states of ST qubits) can be preserved, using Floquet operators
identical to what we have demonstrated!®. The same work also
shows that single-qubit gates can be incorporated into this fra-
mework, and even two-qubit CZ gates can be implemented!®. A
significant potential advantage of these operations, compared
with conventional single- and two-qubit gates, is that dynamical
decoupling is an essential component of these operations, as
discussed above.

As an illustration of the above capabilities, we perform simu-
lations that show the preservation of the singlet state of an ST
qubit by periodic driving under the evolution U = Sy, - S;,, where
S1» represents the execution of S; and S, in parallel. Figure 5a
shows the return probability for the singlet state of an ST qubit
defined on sites 3 and 4 of an L = 6 site spin chain. The ST qubits
defined on the pairs of sites (1,2) and (5,6) are initialized to the
product state |T]). When the interaction ] between neighboring
ST qubits (the generalization of J, in Eq. (3)) is turned off, the
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Fig. 5 Preserving and generating entangled states. a Return probability for
the singlet state of an ST qubit defined on sites 3 and 4 of an L =6 spin
chain. The two remaining ST qubits are initialized in the state M‘w. b Two-
qubit probabilities before and after the execution of a two-qubit CZ gate,
using the modified DTC protocol (for a chain of length L =4). The initial
state of ST qubit 1 is the triplet {T0> and of qubit 2 is the singlet. The x
coordinate of each point is the total time of all the pulse sequences. The y
coordinate of each point is the joint two-qubit probability. The “expected
post-CZ state" is an entangled state of the two ST qubits. The results in
both panels are averaged over 4096 realizations.

maximum return probability decreases to ~0.75 at long times. In
contrast, when 7] = 0.25, with 7= 1.4 ps as before, the maxima of
the return probability remain higher than the noninteracting case
out to 20 periods of evolution. In this case, the return probability
shows a 4T periodicity, as the interactions produce a relative
phase between the basis states |1]) and || 1) such that the original
state is recovered only after four periods (after two periods this
phase vyields the |T,) state, and the |S) return probability
vanishes)!®, We note that the calculated return probability p =
Tr(p(5.4)|S) (S| accounts for the fact that interactions will entangle
the (3,4) pair with its neighbors through the use of the reduced
density matrix p(s4). The optimal value of J is reduced by half
compared to the previous simulations and experiments, due to
the presence of two neighbors in the interior of the spin chain34.
The possibility of stabilizing superposition states of ST qubits,
such as singlets, also highlights the possibility of interleaving
arbitrary single-qubit operations within this Floquet framework.

The condition 7/ = 0.25 also serves to implement a two-qubit
CZ gate, for which simulations are shown in Fig. 5b for the L =4
chain. Here, the ordinary DTC protocol with 7/ = 0.5 is applied
for eight periods, followed by two periods with the reduced value
7] = 0.25. Since the effective interaction between ST qubits is of
Ising form, this yields a CZ gate up to single-qubit z rotations:
CZ = "/ in/4)31 g=i(n/0)%3 ¢i(n/4)510: (ref. 42). Applying the
necessary rotations by appropriately timed SWAP pulses during
an additional evolution step with t,, =4 us executes a full CZ
gatel%, which we then preserve for another eight periods using the
DTC protocol. Unlike the case of the Floquet-enhanced SWAP,
here the gate itself is necessarily produced by the inter-ST-qubit
coupling, and so it is not enhanced but rather enabled by it. Since
the CZ gate and arbitrary single-qubit unitaries form a universal
gate set, this suggests that the DTC-inspired methods presented
here yield a promising direction for spin-based quantum
computing.

The experimental investigation of all of these ideas remains an
important subject of future work. We expect that these phenomena
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can readily be explored in Si spin qubits. Barrier-controlled
exchange coupling between Si spin qubits is now routine*>. The
operation of Si ST qubits in the regime where magnetic gradients
exceed exchange couplings has also been demonstrated!>#4.

Note that to observe the Floquet enhancement, or to perform
any of the protocols described in ref. 16, multiple S, =0 electron
pairs undergoing the same Floquet operators are typically
required. As we have shown above, one ST qubit alone cannot
experience the Floquet enhancement without the other. This
notion is consistent with expectations for many-body DTCs,
which are true many-body phenomena. One can view the “extra”
qubits undergoing repeated instances of the Floquet operator as
the resource required to implement an improved operation on a
specific qubit. It is also interesting to note that DTC-like behavior
can emerge in systems with as few as two qubits in this nearest-
neighbor-coupled system, as we have shown. Thus, only a rela-
tively small number of qubits is required in order to realize the
benefits of Floquet enhancement, highlighting its potential for
further use in quantum information processing applications.

In summary, we have demonstrated Floquet-enhanced spin-
eigenstate swaps in a four-spin two-qubit Ising chain in a
quadruple quantum dot array. The system shows a subharmonic
response to the driving frequency, and it also shows an
improvement in swap quality factor even in the presence of pulse
imperfections. We have also shown that the necessary conditions
for this quality-factor enhancement are identical to some key
components for realizing discrete time crystals. Our results also
confirm the prediction of an effective Ising coupling that emerges
between two exchange-coupled singlet-triplet qubits. This work
indicates the possibility of realizing discrete time crystals using
extended Heisenberg spin chains in semiconductor quantum
dots, and suggests potential uses for discrete time crystals in
quantum information processing applications.

Methods

Device. The quadruple quantum dot device is fabricated on a GaAs/AlGaAs
heterostructure substrate with three layers of overlapping Al confinement gates and
a final Al top gate. The Al gates are patterned and deposited using E-beam
lithography and thermal evaporation, and each layer is isolated from the other
layers by a few nanometers of native oxide. The top gate covers the main device
area and is grounded during the experiments. It likely smooths anomalies in the
quantum dot potentials. The two-dimensional electron gas resides at the GaAs and
AlGaAs interface, 91 nm below the semiconductor surface. The device is cooled in
a dilution refrigerator with base temperature of ~10 mK. A 0.5-T external magnetic
field is applied parallel to the device surface and perpendicular to the axis con-
necting the quantum dots.

Pulse rise times. The experimental values of t,J and t,]5 are much larger than
0.5, because the voltage pulses experienced by the qubits have rise times of ~1 ns.
Supplementary Fig. 1 shows measured exchange oscillations for both ST qubits vs.
evolution time. The observable frequency chirp at early evolution times demon-
strates the effects of rise times in our system and shows that the 7-pulse times yield
t/>0.5.

Simulation. We simulate the Floquet-enhanced phenomena by evolving a four-
spin array according to the Floquet operator U = S;,; - S, - Sy, as defined in the main
text. We set t; =t, =2 ns, and J| = J§ = 250 MHz for the SWAP operators S; and
S, to give 7 pulses. While f; and t, are chosen to be 5ns in the experiments, we
expect the realistic SWAP times to be ~2-3 ns due to the pulse rise and fall times of
~1ns. We include the 7-pulse errors by adjusting the exchange couplings as J, =
Ji(1 +€) and J5; = J5(1 + ¢€), where € represents the fractional error in the rotation
angle of the 7 pulse applied to ST qubits 1 and 2.

For better comparison with the experimental data, the simulations take into
account all known error sources, including state preparation, readout, charge noise,
and hyperfine field noise. The initial state of each ST qubit is prepared as

‘1//[>:sl\g>+52\e>+53}T+>+s4\T7) ) (6)

where |g) and |e) are the ground state and the excited state in the {|T]), || 1)} basis.
The exact spin orientation for the ground state is determined by the hyperfine

gradient. The coefficient |s;|? = f, represents the ground-state preparation fidelity,
and we assume |s,|* = |s;|* = |5, = ae — f,) for simplicity. We estimate f, to be

0.9 for ST qubit 1 and 0.95 for ST qubit 2 in our device. The preparation fidelity
assumes errors from both the singlet loading and the charge separation. The
readout errors are included by calculating the final ground-state return probability
as

Po=(l-r—29)P, +r+gq, (7)

2
where P, = \< g|1//f>\ is the true ground-state return probability. Here r =

1 — exp(—t,,/T,) is the probability of the excited state relaxing to the ground state
during measurements, with f,,, being the measurement time and T; being the
relaxation time. Also g=1 — f;, is the probability of misidentifying the ground
state as the excited state due to random noise. We set t,, =4 ps, T} = 60 ys, and f,
=0.99 for ST qubit 1, and t,, =6 ps, T; =50 s, and fo, = 0.95 for ST qubit 2.

We use a Monte-Carlo method to incorporate charge noise and hyperfine field
fluctuations. The values of the exchange couplings J; and the local hyperfine fields
B? are randomly sampled from a normal distribution for each simulation run. We
set the standard deviation for J; to be J;/ (\/iﬂQ), where Q =21 is the exchange
oscillation quality factor. We set the standard deviation for B to be o =18 MHz,
and we assume the mean values to be [0, 20, 0, 50] MHz plus a uniform magnetic
field of 3.075 GHz (which accounts for the 0.5-T external magnetic field). The
simulated data in Fig. 2 in the main text are obtained by averaging over 128
realizations.

The simulations of Fig. 5 do not include exchange coupling noise or state
preparation and measurement errors. We neglected these errors to clearly illustrate
the mechanisms underlying the singlet-state preservation and CZ gate. Hyperfine
fluctuations with o =18 MHz were included, and the magnetic field values at the
locations of each dot were 3.075 GHz, to account for the external magnetic field. To
simulate the CZ gate of Fig. 5b in the main text, we simulate two periods of
the Floquet operator U= S, - Si,, where S;, represents the execution of S; and S,
in parallel, with 7] = 0.25. These two periods implement the CZ gate, up to single-
qubit rotations. In the simulation, we evolve the system for two additional periods
with the operator U,,; = U; ® U,, where

i [Ty—2T 8] - i [Ty2T 48] -
S ~exp(7‘[ = l} gAnUT) -5 ‘CXP(T [ = ‘] %Alzaf)
U, = S -exp (77’ [szzT;ﬂ %AM(T;) -5, -exp (% [szznﬂ;] %AM&Z)

where T, is the overall time of the operation (Ur, lasts for a duration Tg), and Ty is
duration of the SWAP gate. We define the rotation time

U =

r_ { n/(28y,), if A >0 (8)
b 3m/(2lApl), if Ap <0
and
r m/(285),  if Ay >0
b= . . )
31/(2As]), if Ay <0

In total, U, implements a 77/2 rotation about the z-axis of both ST qubits via a
spin-echo-like sequence, such that the overall operation over the four periods is an
exact CZ gatel®.

To confirm that the behavior we report in the two ST qubits corresponds to that
of an effective Ising spin chain, we also simulate an Ising spin chain. Define

hN=1 hN
Hy=- Y Joioi,, +5 X Bjo, (10)
4 i=1 2i=1
and denote a Floquet operator
i
U(r) = CXP<7%HIT>
(1)

N i h R -
x Hexp 7 (1+5)5]n‘7);+53i‘7i T ),
1

where ¢ is a pulse error, and TR = 1/(24/J% + (Bf)z), with J, =250 MHz.
Supplementary Fig. 2 shows the results of simulations for an N =2 Ising chain,
after four Floquet steps, with 7= 1.4 us, B? = [20,50] MHz, and 0j: = v/2x 18
MHz. These simulation conditions correspond to the data of Fig. 2 in the main text,
and they agree with the data of that figure. This agreement provides additional
strong evidence of the effective Ising coupling between ST qubits in our system.
Supplementary Fig. 3a shows the results of an N = 8 Ising spin chain after four
Floquet steps, with Bf = 20 MHz. These results agree with the two-site data of
Supplementary Fig. 2a and Fig. 2 in the main text, providing evidence that the
behavior we observe in a two-qubit system corresponds to the expected behavior
for larger systems. Supplementary Fig. 3b shows the simulated behavior after 1024
Floquet steps. The predicted semiclassical phase diagram discussed further below
and in the main text is overlaid. The close agreement between the semiclassical
phase diagram and the regions of state preservation provide additional
confirmation of the link between the semiclassical phase diagram and the
DTC phase.
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Semiclassical phase diagram calculation. In ref. 1%, Choi et al., explain the DTC-
like behavior of their system with a semiclassical model. Inspired by their work, we
present a related semiclassical model for our system. Let us consider an initial state
of ST qubit 1: }u/0> = cos(00/2){g> + €' sin(6,/2)|e). Now, in the ideal case,

we can imagine that after two Floquet steps, this initial state evolves to ‘V/f> =

/27100 [2=i920%/2160"/2 |y Here 6~ indicates a nominal 7 pulse, ¢, =
211(J,/2 + A, + B)r,and ¢, = 27(—J, /2 + A, + B)7. The key assumption in this
model is that the net effect of ST qubit 2 on ST qubit 1, is to generate the 77,7 term
in the propagator that switches sign after each Floquet step, because ST qubit 2
undergoes a nominal 77 pulse. The change in sign of this part between Floquet steps
is entirely a result of interactions in the system. Figure 3d of ref. 19 shows a single-
qubit trajectory for this type of evolution. One can immediately see the relationship
between this semiclassical approach and dynamical decoupling.

In order to see a period doubling in the system, even in the presence of errors,

we require that ‘V/f> = |w0>. In general, we can pick a 6, and a ¢, to ensure that
this is the case for a given 6. To see a robust period doubling for 6 # 7, we should
see that approximately the same |y/0> is also unchanged under this evolution, even
as we allow 6= .

To write down the actual evolution operator for our system, set

i h
S, :exp{f%tlg(Ana" +]Ia“)], (12)

and let us define

Sint =exp[—%rg <A12+B—%>oz} (13)

ih AN
S;l:expPzTE(AquBJrEZ)a} (14)

In these definitions, we have suppressed the tildes, although the Pauli operators
refer to the ST qubits. As before, S; describes a nominal 7 pulse about the x-axis,
and S, and S, describe the effect of interactions, depending on the state of ST
qubit 2. The total Floquet operator over two steps is U = S S,S..,S,. To see a
robust period doubling, we require that |y, ) = U]y, ) for initial states with 6, = 0.

We numerically calculate the eigenvectors of U for the different interaction
strengths and pulse errors € we discuss in the manuscript. We will say that when
the Floquet eigenstate |u/0> has a ground-state probability
P, = \<g|1//0>\2 = cos?(0,/2) >0.9, the system can enter the DTC-like phase. For
each pulse error and ], configuration, we compute the eigenvectors for 256
different hyperfine and charge realizations. For each realization, we compute the
value of cos?(6,/2), and then we average the values of cos?(,/2) for all noise
realizations for the same values of ], and pulse error. The phase diagrams obtained
in this way are shown in Fig. 2 in the main text. To relate the phase diagram to our
data in Fig. 2 in the main text, we rescale the values of the interqubit coupling J, we
used in the simulation by 0.54/0.5, as discussed in the main text. The need for this
correction occurs because of the error in our calibration of the interqubit coupling.

This construction clearly illustrates that without interactions or global 7-pulses,
the robust period doubling will not be observed, as discussed in ref. !°. In this case,
the eigenstates of U are the same as the eigenstates of a single Floquet step, and
there is no symmetry breaking. Without a global 7-pulse, initial states with 6, =0
can only be approximately preserved after two Floquet steps (they are not exactly
preserved), unlike the case with interactions, where these states are exactly
preserved.

This semiclassical calculation is also valid for an end-spin of a longer spin chain,
because we are considering a nearest-neighbor Ising chain. The argument we have
provided applies to the first spin in the chain, and the interaction part depends on
the state of the second spin. In our model, spin 2 is assumed to undergo perfect
pulses. In a long spin chain, this assumption becomes more accurate, because one
can view the effect of the third and first spins in the chain as stabilizing the 7-
rotations on spin 2, and so on.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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