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Abstract

The template-based approach has been essential for achieving high-quality models in the recent 

rounds of blind protein-protein docking competition CAPRI (Critical Assessment of Predicted 

Interactions). However, few such automated methods exist for protein-small molecule docking. In 

this paper, we present an algorithm for template-based docking of small molecules. It searches for 

known complexes with ligands that have partial coverage of the target ligand, performs 

conformational sampling and template-guided energy refinement to produce a variety of possible 

poses, and then scores the refined poses. The algorithm is available as the automated ClusPro 

LigTBM server. It allows the user to specify the target protein as a PDB file and the ligand as a 

SMILES string. The server then searches for templates and uses them for docking, presenting the 

user with top-scoring poses and their confidence scores. The method is tested on the Astex Diverse 

benchmark, as well as on the targets from the last round of the D3R (Drug Design Data Resource) 

Grand Challenge. The server is publicly available as part of the ClusPro docking server suite at 

https://ligtbm.cluspro.org/.
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Introduction

It is well known that the 3D structures of proteins are better conserved than their sequences, 

and hence modeling based on homology has been established as the method of choice to 

generate a reliable 3D model of a protein from its amino acid sequence [1]. The same 

template-based approach has become increasingly important for predicting the structures of 

protein complexes [2,3], as demonstrated by the results of the CASP (Critical Assessment of 

Structure Prediction) and CAPRI (Critical Assessment of Predicted Interactions) 

community-wide experiments [4]. It was shown that such methods can produce higher 

quality models than traditional direct docking if good templates are available [5]. Based on 

this observation, we have recently added the option of template-based modeling to our 

protein-protein docking server ClusPro.

In the present paper, we explore the use of the template-based approach for solving one of 

the most important problems in computational biophysics, the docking of small ligands to 

proteins, which has direct applications to drug discovery. Similar tools have been developed 

for the identification of ligand binding sites [6–8]. Some of these programs also perform 

ligand docking [9,10] and even high throughput screening [11]. While we cannot claim that 

the general approach we use is entirely novel, the specific algorithm we have developed 

performed extremely well in the last round of the D3R (Drug Design Data Resource) Grand 

Challenge (https://drugdesigndata.org/). Grand Challenge 4 (GC4) was a blinded prediction 

contest for the computational chemistry community, and it included predicting the poses of 

20 ligands binding to beta secretase 1 (BACE 1). Stages 1A and 1B of GC4 were, 

respectively, cross-docking and self-docking challenges. In both stages our team submitted 

results [12] that were comparable to the excellent results produced by the groups of G. Wei 

[13], M. Totrov [14], and X. Zou. The fact that our method consistently was among these top 

performers motivated us to implement the algorithm as a server and make it available to the 

research community as part of the ClusPro docking tools. Such automated servers have 

proven to be very valuable to users. For example, the protein-protein docking server ClusPro 

[15] has over 5,000 new jobs submitted each month. Here we describe the steps performed 

by the server and its validation on the D3R Grand Challenge 4 BACE data set and the 

frequently used docking benchmark known as the Astex non-native set [16].

Methods

Overall workflow

The input data provided by the user consists of the receptor structure (as a PDB file) and the 

ligand chemical structure (as a SMILES string). A similarity search is performed in the 

Protein Data Bank (PDB) database to find templates — highly-homologous protein chains 

with similar ligands. An ensemble of initial conformations is generated for the ligand. For 

each of the templates found, the next steps are carried out independently. The target protein 

structure is re-modeled (unless the user opts-out of this functionality) after the protein in the 

template, and the closest conformation of the ligand is added to the structure. The resulting 

protein-ligand structures are subjected to restrained all-atom energy minimization (RM) to 

remove possible clashes and “relax” the ligand. The poses are ranked based on their 

similarity to the template. Users can supply a list of PDB codes to exclude from the template 
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search. The pipeline is shown in Fig. 1, and a more detailed description of each stage 

follows.

Template search

The protocol starts with a search for known structures of closely related complexes. We use 

BLAST+ [17] to search for the sequence-similar (e-value = 10−20, sequence identity ≥ 30%) 

chain structures in the Protein Data Bank (PDB). For each ligand in the found structures we 

calculate two versions of Maximum Common Substructure (“weak” and “strict” MCS) and 

Tanimoto score based on Daylight molecular fingerprint [18] as implemented in RDKit [19]. 

“Weak” version of MCS requires a match of atoms, valences, and bond types (with the only 

exception that single bond can match aromatic bond); “strict” version has an additional 

requirement that only complete rings can be a part of the MCS. The ligands with Tanimoto 

score ≥ 0.4 and “weak” MCS coverage ≥ 50% located within 8 Å of the selected chain are 

retained, thus forming protein-ligand template structures. The templates are ranked based on 

the score (cw − 0.5)2 + (i − 0.3)2, where cw is the “weak” MCS coverage, i is the protein 

sequence identity, and 0.5 and 0.3 correspond to the chosen thresholds of 50% and 30%, 

respectively. Up to 20 templates with the highest score are retained and used for refinement.

Preparation of starting poses

Despite the advancements of refinement protocols, having a good starting pose is still a 

prerequisite for constructing a low-RMSD model. LigTBM uses the ETKDG method [20] 

from RDKit [19] to generate 1,000 conformers for the target ligand. For each template, we 

align all conformers to the template’s “weak” MCS and retain only one conformer with the 

lowest MCS RMSD. Ligand atom partial charges are assigned using the AM1-BCC method 

[21] implemented in the antechamber module of the Amber software package [22]. For 

protonation, a pH of 7.4 is assumed. The user-submitted receptor structure is re-modeled by 

MODELLER [23] using the protein chain from the template structure. This step allows for 

“fine-tuning” of the (likely unbound) receptor structure submitted by the user to the ligand-

bound template. The user has the option to skip re-modeling and use their uploaded structure 

without change. The resulting receptor and ligand structures are used as the starting poses 

for the refinement.

Refinement

We employ a basic restrained minimization protocol to refine the generated poses. The 

protocol is based on all-atom energy minimization using a CHARMM-based energy 

function with a GBSA-type solvation term (Analytical Continuum Electrostatics, ACE) [24]. 

During the minimization, all receptor atoms except hydrogens are fixed, while ligand atoms 

matching the template are restrained with a harmonic potential to the positions of the 

corresponding template atoms. Besides restraining the MCS, soft Gaussian potential wells 

are created, centered on each template atom. This gently pulls non-matching parts of the 

target ligand to the template if they are in the vicinity. Applying these restraints allows us to 

overcome the limitations of the general forcefield, and implicitly harness the details of 

interactions in the template X-ray structure. Minimization is performed with the L-BFGS 

algorithm [25], using an in-house libmol2 library (https://bitbucket.org/bu-structure/

libmol2/src/master/).
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Scoring and ranking

For each target, the results from all templates are ranked in three steps, first based on the 

ligand “weak” MCS coverage, second on the “strict” MCS coverage, and third on the 

receptor sequence identity. This reflects our experience in D3R challenges, where ligand 

having a close match to the template was essential for obtaining low-RMSD results. The 

ligand MCS coverage (“weak” and “strict”) indicate what fraction of the target ligand is 

covered by the template, and thus higher values indicate that larger part of the target ligand 

agrees with the known binder, and smaller part of the ligand has to be modelled “ab initio,” 

without a template. The receptor sequence identity, while serving as a tie-breaker for cases 

where the same or similar template ligands are bound to different receptors, is not generally 

indicative of the goodness of fit, since proteins as distant as having 30% sequence identity 

can have similar fold and function [26]. Additionally, for each model produced a confidence 

score is computed based on Tanimoto fingerprint similarity. As mentioned, MCS coverage 

measures the fraction of the target ligand “covered” by the template, and thus indicates the 

uncertainty in the placement of the ligand. In contrast, Tanimoto (intersection-over-union) 

fingerprint similarity also reflects if the template is larger than the target ligand. This 

symmetric similarity is not required for a good fit of the target ligand to the template, but is 

indicative of the closeness of the modelled interaction to the known one, and therefore it is 

chosen to reflect model confidence. The models with Tanimoto similarity of 90% and above 

are assigned “high” confidence; between 65% and 90% “medium” confidence; between 40% 

and 65% “low” confidence; and the templates with Tanimoto fingerprint similarity below 

40% are rejected at the template search stage.

Results and discussion

Validation methodology

The LigTBM server was tested on the D3R Grand Challenge 4 BACE dataset [12] and on 

the Astex Non-Native Set [16,27]. For each docking case, the PDB database was searched 

for all ligands bound to proteins with 30% or greater sequence similarity, and all PDB IDs, 

where a ligand was equivalent to the docking target, were added to an exclusion list prior to 

submitting to LigTBM. Equivalency was determined by comparing the target ligand 

SMILES to the PDB ligand SMILES using RDKit [19] (Morgan Fingerprint Tanimoto 

Similarity) and Pybel [28] (FP2 Similarity). The list of all PDB IDs excluded for each run 

can be found in Table S2. RMSD of the produced models, relative to the known protein-

small molecule complex, was calculated using DockRMSD [29]. The D3R Grand Challenge 

4 BACE targets were run with the starting structure from PDB ID 5YGX [30], and LigTBM 

models were globally aligned using the PyMOL align function [31] to the native protein-

ligand complexes provided by the D3R competition organizers. In the Astex Non-Native Set, 

the non-native receptor structures were locally aligned to the corresponding native structure 

around the ligand-binding site [32]. The structure with the lowest local RMSD to the native 

complex was selected as a starting receptor structure for the LigTBM benchmark. The 

performance was evaluated in terms of ligand RMSD (heavy-atoms only) after the receptor 

was aligned to the reference X-Ray structure.
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Datasets

As mentioned, we used two different benchmark sets to evaluate the performance of the 

protocol:

• BACE denotes the set of 20 Beta Secretase 1 (BACE 1) inhibitors used as targets 

in the most recent round of the Drug Design Data Resource (D3R) blind 

prediction competition, Grand Challenge 4. The list of targets and their features 

are given in Table S1. The docking algorithm of the ClusPro LigTBM server is 

inspired by the semi-manual protocol our group successfully employed during 

this challenge [12]. The set consists of 20 compounds of the same class, of which 

19 contain macrocycles. At the time of this writing crystal structures of these 

complexes were not deposited to the PDB, therefore no complexes were 

excluded from template search. This dataset served to verify that the automated 

version of the protocol is comparable in quality to the original one and to 

estimate its performance on such a difficult type of compounds as macrocycles.

• ANNS denotes the Astex Non-Native Set, containing 65 cases [16,27]. The 

structures of the bound complexes were excluded from the template search (see 

Table S2 for the full list). This dataset is used to test the real-use scenario of 

docking to unbound receptor structures for a wide range of complexes.

Server performance

The performance of the server on the chosen benchmarks is reported in Table 1. The first 

row shows the total number of targets in a given benchmark. The “Template found” row 

shows the number of targets for which at least one suitable template was found. If no 

templates were found for a target, no result was produced. The “Top-1 < 2Å” row shows the 

number of targets for which the model selected as top 1 had RMSD below 2 Å. The “Top-5 

< 2Å” row shows the number of targets for which any of the top-5 models had RMSD below 

2 Å. Detailed per-target results, including RMSD for top-5 models, are given in Tables S1 

and S2.

The results show that for the BACE set, which served as the inspiration for this protocol, 19 

out of 20 cases have a top-1 structure under 2 Å, consistent with the performance of the 

original semi-manual approach used in D3R GC4 [12]. In the ANNS set, no suitable 

template was found for 6 out of 65 cases (9%). Among the rest, 44 cases had a top-1 model 

in the sub-2Å range. This performance (68% of the total number of cases) is on par with the 

performance of scoring functions in many popular docking programs [33]. However, 

LigTBM does not require the knowledge of binding pocket, and only requires starting 

structures of the receptor protein and SMILES of the ligand. These results demonstrate that 

despite the inherent limitations of the template-based approach, LigTBM is capable of 

producing and correctly ranking near-native structures for a wide variety of compounds. The 

predicted confidence score is a good indicator of model reliability, as can be seen in Fig. 2. 

While some models with “low” confidence can still have low RMSD, the “medium” 

confidence models reliably have an RMSD score below 4 Å. “High” confidence models 

typically have sub-2Å RMSD.
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Web Server functionality

LigTBM has a simple user interface, which enables easy job submission and navigation. 

When directed to the web-site for the first time, the user will see the “Sign in” page, with 

options to either create an account (available for academic users only) or to use the server 

without an account. In the latter case, all submitted jobs will be publicly accessible. It is 

recommended to create an account if the data are considered confidential. Once logged in, 

the user is directed to the job submission page. Only three fields are mandatory for running 

the docking: “Protein”, “Chain ID,” and “Ligand SMILES”. If the user fills the field “PDB 

exclusions,” the listed PDB entries will be excluded from homology search, which can be 

useful for testing. If “Do not remodel” field is unchecked, the provided protein structure will 

be remodeled, but in this case the “MODELLER key” needs to be filled. The MODELLER 

license key is available from the MODELLER website (https://salilab.org/modeller/) and is 

free of charge for academic use. Alternatively, the “Do not remodel” field can be checked if 

the user does not wish to remodel the protein. Once the “Submit job” button is clicked, the 

job will be submitted to the queue on the computing cluster. If the input contains errors, the 

user will be asked to correct them. Some input errors (e.g., incorrect PDB file) will be 

detected prior to the submission, while others such as invalid MODELLER key or invalid 

SMILES string will result in failure after the job was submitted to the queue.

The status of the submitted job can be tracked on the “Queue” and “Results” pages of the 

server. While the job is in progress, it is shown on the “Queue” page. The job details can be 

accessed by clicking the job ID. When the job is completed, it is shown on the “Results” 

page, where the program output can be downloaded. If the docking was successful, the 

models of the ligand bound to the protein will be available for download and can be 

inspected in the 3D viewer plugin on the same page. The scores for each model can be 

downloaded as a CSV file. If an error occurred during docking, the job will produce a log 

file explaining the nature of the error. If no template structure was found, the job will not 

produce any models, and the status will be changed to “No templates found.” In case of 

questions or suggestions the users are encouraged to connect us through the email address 

specified on the “Contact” page.

Conclusion

Protein-ligand docking is a challenging yet practically important problem of molecular 

biology. Recently, the template-based approach has been among the top-performing methods 

both in protein-protein and protein-ligand community-wide blind prediction challenges, such 

as CAPRI [2,3,34,35] and D3R Grand Challenges. In this paper, we present an automated 

online server for template-based docking of small molecules to proteins. The fully-

automated pipeline allows the users to run docking without the need for specialized 

hardware or software and is able to produce low-RMSD structures for a variety of 

compounds. Results demonstrate that the method is applicable to a wide range of protein-

ligand systems, with 72% of the ANNS benchmark having a sub-2Å model in top-5 results. 

It is clear that the template-based method is only applicable if there exists a known structure 

for a similar receptor-ligand pair. However, we note that docking is most frequently used in 

the process of drug discovery against targets that are extensively studied, generally resulting 

in many X-ray structures co-crystallized with a variety of ligands. In fact, docking without 
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any a priori information on the binding site is rare and tend to have a low success rate. The 

server features a user-friendly interface and is available for free non-commercial use at 

https://ligtbm.cluspro.org/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 

The general overview of the pipeline of LigTBM server. The steps between initial template 

search and the final scoring are performed independently for each template found, indicated 

by ellipses.
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Fig. 2. 

The boxplot of RMSD values for all produced models for the ANNS set.
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Table 1.

Summary of the server performance on selected benchmarks

BACE ANNS

Total # of targets 20 65

Templates found 20 (100%) 59 (91%)

Top-1 <2Å 17 (85%) 44 (68%)

Top-5 <2Å 19 (95%) 47 (72%)
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