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ABSTRACT

With recent advancement in energy-based sustainable design of building structures, the need
for inclusive yet practical models to integrate resilience and sustainability is increasingly recog-
nized. This paper integrates structural seismic resilience and sustainability assessment methods with
whole-building energy simulation techniques to present a new comprehensive decision model for
the design of buildings. Risk-based multi-attribute utility theory and analytic hierarchy process are
used to develop a multi-criteria decision-making (MCDM) framework considering various economic,
social and environmental criteria involved in design of buildings. The model is implemented on a
number of RC buildings, and the influence of building configuration on environment, seismic per-
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formance, and energy consumption is studied. It is found that shear wall ratio plays a significant
role in both seismic loss and energy consumption of RC buildings. Increasing the shear wall ratio
effectively reduces the direct monetary loss and downtime as well as energy consumption.

Introduction

Mounting evidence of human-induced climate change
and increasing loss due to various natural hazards have
reinforced experts’ efforts to develop new tools and tech-
niques for sustainable and resilient design and construc-
tion of civil infrastructure. To reduce carbon footprint
and other environmental impacts, several studies aimed
to include sustainability criteria in the design of various
structure and infrastructure systems (Kamali, Hewage,
and Milani 2018; Nadoushani et al. 2017; Padgett and Li
2016). Natural hazards, especially earthquakes, cause bil-
lions of dollars of economic loss and claim thousands
of lives every year. In recent decades, seismic risk has
increased due to significant population/industry growth
in earthquake-prone urban regions and increasing vul-
nerability of aging infrastructure (FEMA, Pacific Disas-
ter Center, and USGS 2017). To mitigate environmen-
tal impacts while addressing the increasing risk due to
seismic hazard, this paper aims to present a compre-
hensive decision-making framework, which integrates
resilience, sustainability, and energy criteria for building
design.

Resilience is the capability of a building to resist,
adapt to and recover from a disruptive event such as
an earthquake. The seismic resilience of buildings and

other structures has been extensively studied in recent
years (Bocchini et al. 2014; Roostaie, Nawari, and Kibert
2019; Asadi, Li, and YeongAe 2018; Bruneau et al. 2003).
In 2012, FEMA published the FEMA P-58 report providing
a uniform approach for estimating key seismic resilience
metrics, namely repair/replacement cost, downtime and
the number of casualties (Belleri and Marini 2016; FEMA
2012). In this paper, these metrics are used to evaluate the
resilience of a building.

The building sector is also one of the main consumers
of energy in the USA, accounting for over 40% of total
energy consumption and producing about 38% of green-
house gas (GHG) emissions in the US (Belleri and Marini
2016; Basbagill et al. 2013; CMU GDI 2018; Junnila, Hor-
vath, and Guggemos 2006). About 30% of all the energy
consumed in a building during its lifespan is in the form
of embodied energy (Ibn-Mohammed et al. 2013). In addi-
tion to embodied energy, buildings consume substantial
operational energy for indoor environment condition-
ing (heating, cooling, ventilation), powering equipment,
lighting, etc., over their life cycle. Increasingly, whole-
building energy simulation is being conducted to achieve
energy-efficient and sustainable designs. Yet, to achieve
a holistic design framework, sustainability needs to be
studied considering its interrelation and overlaps with
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resilience (Belleri and Marini 2016; Asadi, Salman, and Li
2019; Park, Hwang, and Oh 2018).

Sustainability is defined as a function of environmen-
tal, economic and social impacts of building’s construc-
tion and maintenance, and demolition. Economic metrics
such as construction and maintenance costs and envi-
ronmental metrics such as carbon footprint have been
used to measure sustainability (Roostaie, Nawari, and Kib-
ert 2019; Kamali, Hewage, and Milani 2018). Life cycle
analysis is commonly used to find the sustainability met-
rics of a building. To quantify the total life cycle cost, a
simple approach used in the literature is to convert all
losses, including environmental, life and time losses, into
a monetary loss (Han, Li, and van de Lindt 2016; Mitrani-
Reiser 2007). This approach, however, adds to uncer-
tainty because of regional and case-based assumptions
required for such conversion (Lloyd and Ries 2007; Chau,
Leung, and Ng 2015). Given the uncertainties, adding all
converted losses together may yield inaccurate conclu-
sions. Another approach is multi-criteria decision models
(MCDM) where the sustainability and resilience metrics,
criteria or attributes are kept in its original unit/space.
MCDM provides more flexibility for problems where the
objective is not solely minimizing monetary losses. Multi-
criteria decision analysis has been used in the archi-
tectural design and construction industry (Baglivo, Con-
gedo, and Fazio 2014; Hopfe, Augenbroe, and Hensen
2013; Invidiata, Lavagna, and Ghisi 2018; Kokaraki et al.
2019). Baglivo, Congedo, and Fazio (2014) used MCDM
to find the optimal wall configuration based on sustain-
ability factors such as thermal performance, operational
energy use, embodied energy, productivity and construc-
tion cost. Hopfe, Augenbroe, and Hensen (2013) also used
analytic hierarchy process (AHP) for building energy per-
formance assessment considering the energy use, acous-
tical and thermal-comfort performance, and indoor air
quality. However, they all focus on architectural crite-
ria leaving out structural performance, resilience against
natural hazards, and environmental consequence of con-
struction and maintenance. Few studies used MCDM for
building design based on both resilience and sustainabil-
ity criteria (Kokaraki et al. 2019).

This paper integrates resilience, sustainability and
energy analysis methodologies for buildings and presents
a new comprehensive trilateral decision-making frame-
work for their design. The proposed trilateral model uses
both AHP and risk-based multi-attribute utility theory
(MAUT) to include various resilience, sustainability and
energy criteria in decision analysis. A survey is conducted
to quantify the importance factor for each criterion
considering seven different scenarios/objectives. Criteria
quantified for seismic resilience include asset loss, time
loss, number of casualties and fatalities. For sustainability,
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life-cycle construction and maintenance costs and GHG
emission are studied. Using whole-building energy simu-
lation, annual energy consumption, cost, and associated
GHG emission are studied as well. The framework is imple-
mented for two groups of commercial reinforced con-
crete (RC) buildings located in Los Angeles (LA), CA and
Boston, MA.

Proposed multi-criteria decision-making
framework

The proposed decision-making framework consists of
three main modules: (1) System Concept and Criteria
(SCC) Module, (2) Resilience, Sustainability, and Energy
Analysis (RSEA) Module, (3) Multi-Criteria Decision Mak-
ing (MCDM) Module. Figure 1 depicts its main compo-
nents and their inter-connections. The model consists
of a feedback loop to update decisions based on new
data obtained from monitoring and inspection, or due to
change in hazard, vulnerability or loss parameters. Mon-
itoring and inspection through a feedback loop are not
studied here.

System concept and criteria (SCC) module

The project objectives, system properties, and analy-
sis and design specifications and assumptions will be
defined in the SCC module. Similarly, the scope of assess-
ment and the importance of each metric over others
(e.g. monetary loss importance over GHG emission) are
defined in this module according to decision-maker’s
preference and the objectives of the project. The out-
put of this module is the archetype models ready for
loss, life cycle and energy-consumption analyses. The
models include all structural and non-structural compo-
nents of the building for component-level resilience and
sustainability assessment and the thermal zone arrange-
ment, material properties for walls, roof, facade, etc,,
and HVAC, lighting and shading components for whole-
building energy simulation. More details on SCC module
are presented in Asadi, Salman, and Li (2019) and Asadi
(2020). Numerical models developed in SCC module go to
RSEA module where they are analysed for various criteria
depending on project requirements.

Resilience, sustainability and energy analysis (RSEA)
module

The integrated core module, RSEA, consists of three
submodules where resilience, sustainability and whole-
building energy criteria are quantified. Figure 2 shows
the stepwise illustrative procedure for the RSEA module.
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Figure 2. Seismic resilience, sustainability and energy-

consumption analysis (RSEA) module.

Collapse fragility analysis and time-history dynamic anal-
ysis results are used as inputs for seismic loss analysis,
while the outputs of seismic repair cost, construction and
maintenance costs are used to evaluate GHG emissions.
The simulation models are analysed, and the outputs are
transferred to the MCDM module where decision analysis
is performed.

Resilience assessment

Resilience (R) can be quantified as the integration of
functionality (Q) over a time interval (Tg) after the occur-
rence of an event at time to (Cimellaro, Reinhorn, and

~_____—

Bruneau 2010):

to+Tr
R= 1/TR/ Q(t)dt (1)
t

0

Q) = —L) xfr ()

where L; is the whole-building loss function and fz is
the recovery function. Loss is the key parameter in the
above formula embodying earthquake consequences.
For mutually exclusive seismic events, the total proba-
bility of seismic loss at a given earthquake intensity is
defined in the following (Belleri and Marini 2016; Ramirez
and Miranda 2012).

P(L> [|IM=2) = / / P(L > DS = DSy)
EDP JDS

P(DS|EDP = d)P(EDP|IM = 2)dDS dEDP (3)

where P(L > [;|IM = z) is the probability of having a loss
greater than /; given that hazard intensity is equal to z,
P(L > /;|DS = DSj)) is the probability of having a total loss
greater than /; given that damage state of DS; is achieved
for component j, P(DS|EDP = d) is the probability den-
sity function (PDF) of achieving a damage state given
that the engineering demand parameter (EDP) reaches
a certain value of d, and P(EDP|IM = z) is the PDF of
the EDP conditioned on a certain hazard intensity, z. For
component-level loss estimation, the conditional conse-
guence function, P(L > [;|DS = DSjj), requires a database
of repair cost/time and other consequence functions for
every component, which is provided with FEMA P-58 in
FEMA PACT (FEMA 2012). The fragility functions obtained
from nonlinear dynamic analysis are used to find the
probability of reaching a certain damage state for each
damageable component.

For time-based loss estimation, the annual probabil-
ity of loss, P(L > I;), given the annual probability of each



earthquake intensity, P(IM = z), will be
PL> )= / P(L > [|IM = 2)P(IM = z)dIM  (4)
M

The loss (L), in equations above, may be any kind of loss
due to any stochastic hazard including monetary, time,
life or environmental loss due to earthquake.

Sustainability assessment

Sustainability involves a broad range of metrics, but it is
commonly quantified using three main measures: envi-
ronmental, economic and social consequences of the
product or process. Some criteria are both aresilience and
sustainability measure and some are both a sustainability
and energy measure. Considering this inter-relationship,
these consequences can be incorporated through quanti-
tative parameters such as embodied energy, operational
energy use, construction and maintenance costs, and
economic loss, downtime, and casualties due to natural
or manmade hazards.

The initial cost of the buildings was analysed using
data-based life cycle cost estimator tools considering the
construction cost of all structural and non-structural com-
ponents of a building. Particularly, RSMeans Data Online
(2018) was used to estimate the construction cost includ-
ing substructure cost, shell cost, interiors cost, services
cost, and contractor and architectural fees. The tasks and
periodicities recommended by Whitestone cost reference
(Abate et al. 2009) are used for estimating building main-
tenance cost. The Whitestone database was used for esti-
mating ecological footprint due to the operation and
maintenance of residential buildings as well (Basbagill
et al. 2013; Martinez-Rocamora, Solis-Guzman, and Mar-
rero 2017).

Maintenance and energy costs and benefits need to be
discounted to a present value. The net present value of a
future cost C(t) at the year t can be calculated as (Zheng
and Lai 2018)

"\ By — M
() = ; AT (5)
where r, B, M; and n are the annual monetary discount
rate, the monetary benefit gained, maintenance cost and
the number of years considered.

All construction, operation, maintenance activities
have environmental impacts and need to be consid-
ered in an MCDM framework. Based on the theorem
of total probability, the sustainability function (Ms)
can be expressed as a function of conditional conse-
quence functions as follows (Belleri and Marini 2016;
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Ellingwood 2005):

/Vls=/ / / Ccons|ps (t)Pps|epp (1) Peppjim (1)
m Jeop Jps
Py (t)dDS dEDP dIM ©6)

where Cconsips(t), Ppsjepp(t), Peppim(t) and Pi(t) are
the conditional consequence given a damage state, the
conditional probability of a damage state given the
EDP, the conditional probability of an EDP given a haz-
ard intensity and the annual mean rate of occurrence
of hazard IM, all at time t, respectively. The conse-
quence functions, Ccons|ps, are evaluated using the eco-
nomic input-output life-cycle analysis (EIO-LCA) model
presented by Carnegie Mellon University (CMU GDI
2018). The EIO-LCA uses both environmental and his-
torical economic data aiming to answer shortcomings
of process-based LCA such as requiring heavy data,
being time-consuming and expensive, and selecting
proper system boundaries. EIO-LCA method provides
more flexibility since it can effortlessly be used along
with related studies in economics and insurance indus-
try. EIO-LCA calculates the environmental consequences
of the building construction, maintenance and seismic
repair using their corresponding cost. It considers both
the direct impacts of the product/project and the indi-
rectimpactsin the supply chain (Ochoa, Hendrickson, and
Scott Matthews 2002).

Energy consumption and cost analysis

The whole-building energy analysis is performed in
widely used EnergyPlus (ASHRAE 2016a; Invidiata,
Lavagna, and Ghisi 2018; Robati, Kokogiannakis, and
McCarthy 2017). Through concurrently solving the heat
balance equations of thermal zones and plant systems of
the building, EnergyPlus calculates energy consumption
for indoor heating and cooling, water heating, ventila-
tion, lighting, and plug and process loads (Crawley et al.
2001). EnergyPlus considers both source and site energy
consumption in various units including kWh. The source
energy is the energy used to generate the electricity, e.g.
natural gas or coal, which has a significant impact on
the GHG emissions due to energy consumption. The site
energy is the energy consumed in the building in the form
of electricity or natural gas. To estimate the current cost of
energy, the yearly average price data is collected from US
BLS (2018) and future cost is discounted using Equation
(5). National Institute of Standards and Technology (NIST)
also provides the projected energy price indices and
discount factors for life cycle cost (LCC) analysis which
is used to verify the cost estimation (Lavappa and
Kneifel 2018).
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Figure 3. Analytic hierarchy model considered for decision analysis and the trilateral sets of criteria/attributes.

Multi-criteria decision-making module

Trilateral criteria/attributes

Attributes are various dimensions or properties of the
applied system from which the alternatives can be viewed
and compared (Triantaphyllou et al. 1998). The effec-
tive metrics/criteria are categorized into three sets, i.e.
resilience, sustainability and energy, to match the RSEA
module outputs creating a trilateral decision analysis
framework. Figure 3 depicts the three-level AHP model
used and categorizes the trilateral sets of criteria consid-
ered. The AHP shows the relationship between the objec-
tives of the project, the criteria and the alternatives the
decision-maker has (Mateo and Cristébal 2012). The ele-
ments of each level need to be compared to each other
from bottom to top to achieve the AHP-based goal. At the
lowest level, the criteria are to be compared to each other
to create pairwise comparison matrices. These matrices
are used to find the importance/weight factors for each
criterion compared to others. These factors are then used
to evaluate the utility functions, as described in the next
section.

The set of resilience metrics incorporate three criteria
which are asset, time, and life losses due to the hazard,
here earthquake hazard. The seismic asset loss (AL) mea-
sured in US Dollars may include all direct and indirect
monetary losses such as repair/replacement cost, closure
cost and relocation cost due to earthquake. The time loss
(TL), commonly measured in number of days, is the time
it takes for the building to return to its original function-
ality after an extreme event. Depending on the system
being studied, it may also be referred to as restoration or

recovery time or downtime. The life loss (LL) represents
the social impacts of earthquake and is commonly mea-
sured in terms of number of casualties, injuries, fatalities,
and if data is available number of Post-Traumatic Stress
Disorder (PTSD) cases and displaced households.

Sustainability involves social, economic and environ-
mental metrics. Given its overlap with resilience in this
study, the emphasis for the sustainability submodule
is on the environmental consequence and construction
and maintenance costs. A component-level approach is
recommended for Initial Construction Cost (ICC) eval-
uation where the replacement cost of all structural,
non-structural and utility components of the building
is included. ICC is also evaluated in US dollars. Cost of
repairing and maintaining interior finishes, exterior clo-
sure, plumbing, conveying, fire and electrical equipment,
etc. due to aging is also an economic criterion of sus-
tainability. Here, maintenance costs are evaluated in US
dollars for a 50-year lifespan, abbreviated MC.

Moreover, an environmental loss (EL) due to con-
struction, operation, maintenance and seismic repair/
replacement is considered. EL can be measured in
terms of ton CO, equivalent GHG emission, m? or kGal
water withdrawal, ton waste or pollution produced, etc.
depending on the project requirement and/or decision
maker’s preference.

The third set of criteria includes energy-consumption
metrics such as annual operational energy consump-
tion in kWh or annual operational energy cost (OEC) in
US dollars. These metrics depend on construction mate-
rials, glazing type, wall thickness, HVAC specification,



age of the building, number of occupants and mainte-
nance/repair plan. These metrics are evaluated through
whole-building simulation.

In practice, all or some of the mentioned metrics may
be included in the decision analysis. The stakeholder
or the decision-maker may specify which metric needs
to be considered depending on the available data and
project specifications and objectives. In the case stud-
ies presented in this paper, seismic repair/replacement
costs and time, the number of fatality and injuries due
to earthquakes, initial construction cost, maintenance
costs, annual operational energy cost, and environmen-
tal impacts (GHG emission) due to construction, oper-
ation, maintenance and seismic repair/replacement are
included in the decision-making process.

Muiltiple attribute decision making

In MAUT, utility functions measuring the preference over
a set of attribute need to be defined for each alterna-
tive and each attribute. Utility takes a value of 0 (for the
worst outcome) to 1 (for the best outcome). To achieve
a risk-informed decision, the utility can be defined with
three attitudes towards risk: risk aversion, risk-neutral (lin-
ear), and risk-seeking. For risk-neutral attitude, the utility
function (uj;) can be found as follows for a minimization
criterion:

Amax,i — Xijj

(7)

UU(X) N Amax,i - Amin,i

where x;; is the score (resilience, sustainability, or energy
metric) for criterion/attribute i (i =1, ..., n) and alter-
native j =1, ..., m). Amax; and Amin; are the maxi-
mum and minimum scores evaluated for each i attribute
among all m alternatives, respectively. For risk aversion
and seeking utility functions an exponential equation is
used (Wood and Khosravanian 2015; Ellingwood and Lee
2016; Lee, Burton, and Lallemant 2018):

1 —exp(—r x xjj)
1 —exp(—r)

Ujj(x) = (8)
where r is a non-zero risk aversion factor. Positive values
for r give convex functions (risk aversion) and negative r
values give concave functions (risk seeking), as depicted
in Figure 4.

As described, utility functions are developed for all
outputs of the RSEA module. As is common with conse-
quence functions, the additive model is used to formulate
the total utility function. Assuming utility independence,
the overall unilateral utility function can be formed as
(Ferreira, de Almeida, and Cavalcante 2009)

n
Ut,j:ZW;uij(x);i:1,...,n;j:1,...,m (9)

i=1
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Figure 4. Utility curves with different attitude towards risk using
exponential utility function adapted from (Wood and Khosrava-
nian 2015).

where Uy is the total utility of alternative j and w; is the
importance/weight factor (w;). Decision maker uses lot-
teries between pairs of criteria to find w;. w; values are
assigned based on historical data, engineering judgment
and problem objective. Commonly, a numerical value
between 1 (for equally important) and 9 (for absolutely
more important) or their reciprocal is assigned to each
pair of criteria to express the importance of one over the
other. Similarly, 3, 5 and 7 mean objective i is weakly more
important, strongly more important and very strongly
more important than objective j, respectively (Mateo and
Cristébal 2012; Wallenius et al. 2008; Ferreira, de Almeida,
and Cavalcante 2009). For instance, if the objective of the
project is to minimize the asset loss, the decision maker
compares the importance of the asset loss over the envi-
ronmental loss and may assign a value of 9 to their pair to
express absolute importance of the former over the later.

Objectives, scenarios and weight factors

A major advantage of multi-criteria decision models is
their flexibility to deal with various decision scenarios,
objectives and criteria. Here, seven scenarios with differ-
ent objectives are studied: (1) minimum asset loss (AL), (2)
minimum time loss (TL), (3) minimum life loss (LL), (4) min-
imum environmental loss (EL), (5) maximum resilience, (6)
minimum annual operational energy cost (OEC) and (7)
neutral scenarios. An example for Scenario 1, minimum
AL, is a case where significantly valuable properties exist
in the building, e.g. a warehouse with expensive stored
asset. Scenario 2, minimum TL, applies to cases where the
downtime is significantly costly and/or building should
remain functional after an extreme event, e.g. building
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is a hospital. Minimum LL, the objective of Scenario 3, is
the primary goal of current design codes and is important
particularly if a large number of people will reside or work
in the building, for example if the building is a school. Sce-
nario 4, minimum EL, is considered for a situation where
due to client’s requirements or official regulations the
building should be eco-friendly. For Scenario 5, overall
resilience of the building is the objective. Scenario 6 rep-
resents a case in a cold region with low seismicity where
cost of energy is extremely high. For Scenario 7, all criteria
have the same importance. The last scenario is assumed
for comparison only.

Given the number of criteria involved and the inter-
dependency between them, pairwise lotteries are used
to find the w; for each criterion over the others for
various scenarios. Following previous studies on multi-
criteria decision analysis (Ellingwood and Tekie 1999;
Zavadskas et al. 2007), a survey was conducted among
experts to find the w; values. Participants include civil

engineers, graduate students, and faculty members who
were selected due to their familiarity with the topic. Par-
ticipants were asked to select a weight factor to best rep-
resent the main goal of each scenario. The mean weight
factor obtained from the survey is used, ignoring the
upper and lower bounds of the data. Tables 1-6 list the
pairwise comparison matrices and the weight factors for
Scenarios 1-6, respectively. The w; values for Scenario 7
areall 1/7.

Case studies

Design and numerical modelling of archetype RC
buildings

Two groups of typical RC shear wall archetype build-
ings located in downtown Los Angeles, CA and Boston,
MA are considered. In each group, three different con-
figurations are considered to represent the typical shear

Table 1. Pairwise comparison matrix for Scenario 1 — minimum asset loss.

Criteria AL TL LL EL ICC OEC MC w; for S1
AL 1 5 3 5 5 5 5 0.365
TL 1/5 1 13 2 2 3 2 0.103
LL 13 3 1 7 7 7 7 0.300
EL 1/5 1/2 1/7 1 2 3 2 0.082
ICC 1/5 12 1/7 12 1 12 1 0.045
OEC 1/5 13 17 13 2 1 2 0.059
MC 1/5 12 1/7 12 1 12 1 0.045
Table 2. Pairwise comparison matrix for Scenario 2 — minimum time loss.

Criteria AL TL LL EL ICC OEC MC w; for S2
AL 1 12 12 3 3 3 3 0.155
TL 2 1 3 4 4 5 4 0312
LL 2 13 1 6 7 7 7 0.298
EL 1/3 1/4 1/6 1 2 2 2 0.078
ICC 13 1/4 1/7 12 1 12 1 0.047
OEC 13 1/5 17 12 2 1 2 0.062
MC 13 1/4 1/7 12 1 12 1 0.047
Table 3. Pairwise comparison matrix for Scenario 3 — minimum life loss.

Criteria AL TL LL EL ICC OEC MC w; for S3
AL 1 3 1/4 3 3 3 3 0.171
TL 13 1 17 1 2 2 2 0.084
LL 4 7 1 8 8 8 8 0.499
EL 1/3 1 1/8 1 2 3 2 0.091
ICC 1/3 1/2 1/8 1/2 1 1/2 1 0.046
OEC 13 12 1/8 13 2 1 2 0.063
MC 13 12 1/8 12 1 12 1 0.046
Table 4. Pairwise comparison matrix for Scenario 4 — minimum environmental loss.

Criteria AL TL LL EL ICC OEC MC w; for S4
AL 1 3 1 1/4 3 2 3 0.158
TL 13 1 12 13 2 2 2 0.096
LL 1 2 1 13 6 6 6 0.225
EL 4 3 3 1 5 5 5 0.359
ICC 1/3 1/2 1/6 1/5 1 1/2 1 0.047
OEC 12 12 1/6 1/5 2 1 2 0.069
MC 13 12 1/6 1/5 1 12 1 0.047
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Table 5. Pairwise comparison matrix for Scenario 5 — maximum resilience.

Criteria AL TL LL EL ICC OEC MC w; for S5
AL 1 3 1 4 4 4 4 0.273
TL 1/3 1 1 2 3 3 3 0.160
LL 1 1 1 7 7 7 7 0.323
EL 1/4 1/2 1/7 1 2 3 2 0.088
IcC 1/4 1/3 1/7 1/2 1 1/2 1 0.046
OEC 1/4 1/3 1/7 1/3 2 1 2 0.063
MC 1/4 1/3 1/7 1/2 1 1/2 1 0.046
Table 6. Pairwise comparison matrix for Scenario 6 — minimum operational energy cost.
Criteria AL TL LL EL ICC OEC MC w; for S6
AL 1 2 1/5 2 1/2 1/7 1/2 0.064
TL 1/2 1 1/5 1/2 1/2 1/7 1/2 0.040
LL 5 5 1 3 7 1 7 0317
EL 1/2 2 1/3 1 1 1/8 1 0.065
ICC 2 2 1/7 1 1 1/6 1 0.070
OEC 7 7 1 8 6 1 6 0373
MC 2 2 1/7 1 1 1/6 1 0.070
(a) SF (b) SWs (c) SWm

L |

6

] )

30 i ?
i |
i 36
|
?F
B L e e S 3.6 Be 6.0

‘ 30 |

Figure 5. Floor plans of archetype RC building with different shear wall ratio: (a) SF archetype with no shear wall, (b) SWs archetype with
2 shear walls and (c) SWm archetype with one shear wall on each side (dimensions are in metres).

wall ratio of RC buildings. The LA site is selected for
its extreme seismic activity but warm weather with S,
spectral response acceleration at 0.2 s, and S;, spectral
response acceleration at 1 s, of 2.481 and 0.862 g, respec-
tively, and ground snow load of 0-5 psf (0.24 kN/m?).
The Boston site is selected for its low seismicity but
cold weather requiring considerable energy consump-
tion, where S and Sq are 0.217 and 0.069 g, respectively,
and snow load of 40 psf (1.92 kN/m?2). All the archetype
buildings for both Los Angeles and Boston share the
same typical floor plans adapted from AlHamaydeh, Aly,
and Galal (2017), see Figure 5. The building footprint
is 30m x 30m, with 6m long spans. The typical story
height is 4 m. Two types of window glazing configura-
tions, i.e. a double-pane glazing (BG) and a triple-pane
low-e glazing (HG), are considered. The double-pane glaz-
ing represents the base line and the triple-pane low-
e glazing represents a high-performance energy saving
glazing. Archetypes are labelled based on location, con-
figuration and glazing type. For example, LA-SF-BG is
the archetype located in LA with a Special RC Moment
Frame and base glazing. Similarly, B-SWm-HG is the

archetype located in Boston with a shear wall in the mid-
dle of outer frames (see Figure 5¢) and high-performance
glazing.

Structures are designed based on ACI 318-14 (2014)
and ASCE7-16 (2017). The designed RC frames are mod-
elled in OpenSees (Mazzoni et al. 2006) as planar frames
using fibre elements for beams and columns and SFI-
MVLEM elements for shear walls. The SFI-MVLEM element
recently developed by Kolozvari, Orakcal, and Wallace
(2014) captures nonlinear interaction between shear and
axial/flexural behaviour of RC walls and columns under
cyclicloading. Models are validated with Tran and Wallace
(2015) experiment on RC shear walls (Asadi 2020).

Specifications for life cycle cost analysis

The construction cost is calculated using Building Con-
struction category of RSMeans (2018) considering both
material and labour costs of different regions. The non-
structural construction costs include the cost of exterior
items such as windows and curtain walls as well as inte-
rior items such as partitions and ceiling. Installation costs



812 (&) E.ASADIETAL

Table 7. Estimated life-cycle cost of studied archetypes.

Cumulative

Initial construction  Total replacement ~ maintenance cost

Archetype cost (10009) cost (10009) in 50 years (1000%)
LA-SF-BG 7962 9954 3249
LA-SF-HG 8190 10,238 3363
LA-SWm-BG 8248 10,310 3249
LA-SWm-HG 8475 10,594 3363
LA-SWs-BG 8388 10,485 3249
LA-SWs-HG 8615 10,769 3363
B-SF-BG 7796 9746 3254
B-SF-HG 8026 10,033 3369
B-SWm-BG 8053 10,066 3254
B-SWm-HG 8283 10,353 3369
B-SWs-BG 8121 10,151 3254
B-SWs-HG 8351 10,439 3369

of windows are also estimated per RSMeans (2018), and
glazing material costs differences are considered using
Building Energy Optimization Tool (BEOpt) (Christensen
etal. 2006). For maintenance costs, a commercial building
template of Whitestone cost reference (Abate et al. 2009)
is adapted given the occupancy of the buildings. It con-
siders annual repair costs and periodic replacement costs
of various structural and non-structural components. For
instance, the replacement period of the glazing mate-
rial is presumed 30 years and windowed curtain walls are
assumed to have an annual cleaning/washing fee of 0.1
$/ft2 in LA, and 0.11 $/ft2 in Boston to account for slightly
higher labour cost in Boston.

The seismic monetary loss is estimated as a Cumu-
lative Distribution Function (CDF) of repair cost due to
earthquake. The replacement cost is based on the con-
struction cost estimated by RSMeans database (2018).
This value includes the structure, exterior closure and util-
ity infrastructure including HVAC cost and is called the
core and shell replacement cost. The initial cost of HVAC
is assumed the same for all cases and is not included in
energy cost analysis. To account for tenantimprovements
and asset, this value is increased by 25% following FEMA
P-58 assumptions for its example buildings (FEMA 2012).
For estimating the downtime, a Total Replacement Time
(TRT) of 720 days is considered. The maximum number
of workers for repair is assumed 0.002 per ft? equal to
1 worker per 500 ft? (1 worker per 46.45 m?) per FEMA
recommendations (FEMA 2012). The initial construction,
total replacement and 50-year cumulative maintenance
costs are presented in Table 7. Note that the demolition
costs are assumed to be the same for all the archetypes in
either region and they are not studied as a criterion in the
current study.

The main non-structural components considered in
seismic loss estimation include two hydraulic elevators,
one 350-Ton (BTU/h/12,000) chiller and air-handling unit
on the roof, and a seismically rated independent pendant
lighting for each 4-sg. m of the floor, perimeter stick-built

curtain wall, interior gypsum wall partitions with metal
studs, seismically rated raised access floor and suspended
ceiling, and fire sprinkler. FEMA P-58 typically uses practi-
cal EDPs such as maximum interstory drift ratio (IDR) and
maximum absolute floor acceleration (ACC) to catalogue
damage state of structural and non-structural compo-
nents. FEMA P-58 database is used to define the fragility
specification for each component.

Energy analysis settings

Each floor of the archetype buildings is divided into nine
thermal zones to study the influence of the shear wall dis-
tributions and building orientation on energy consump-
tion and thermal comfort. The three-dimensional (3D)
view of the special frame (SF) building and its thermal
zones include a core of 18 m x 18 m at the centre and
eight boundary zones on the perimeter of the building,
as shown in Figure 6. The envelope, floor, HVAC, fenes-
tration, etc. are designed per ASHRAE 90.1 requirements
for the climate zones 3B (LA) with a Mediterranean cli-
mate and 5A (Boston) characterized by its cold and humid
climate (ASHRAE 2016b; ASHRAE 2016a). The occupancy,
lighting, equipment, ventilation and HVAC settings and
schedules are adapted from ASHRAE reference building
for middle and large office (ASHRAE 2016a). Following
previous studies, the whole building architecture is mod-
elled in DesignBuilder (DesignBuilder 2016) to create the
input files for EnergyPlus (Crawley et al. 2001). The build-
ing has an occupancy of 18.51 m?/person and lighting
and office equipment intensities of 10.76 and 8.08 W/m?,
respectively. The HVAC system is a variable air volume
(VAV) with reheat system. The AC heating and cooling
setpoint temperature are 21.1°C (70°F) and 23.9°C (75°F)
with heating back temperature of 15.6°C (60°F) and 29.4°C
(85°F), respectively. The weather data of the Los Angeles
International Airport (WMO #722950) and Boston-Logan
International Airport (WMO #725090) are used as the
input, which provides the seasonal temperature varia-
tions and precipitation schedules needed for building
energy analysis.

The envelope, especially glazing materials play a crit-
ical role in the energy efficiency of window curtain
wall buildings (Carmody and Haglund 2012). Solar heat
gain coefficient (SHGC) and U-factor are the two most
important parameters that differentiate window assem-
blies. While SHGC controls the transmission of solar heat
through a window assembly, the U-value dictates the
heat loss/gain of it. Lower U-factor can efficiently reduce
the heat flow between indoor and outdoor space, and
therefore saving energy consumption. The solar thermal
properties and costs are listed in Table 8. The double-
glazing represents a base case (BG) and costs of 267
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Figure 6. (a) SF archetype 3-dimentional (3D) view built in DesignBuilder and (b) typical thermal zone designation for all archetypes

(dimensions in metres).

Table 8. Window glazing properties and costs.

Direct solar

Light U-value Cost

Glazing SHGC? transmission transmission (W/mZ2-K) ($/m?)
Double-pane glazing 0.25 0.21 0.31 2.58 267
triple-pane low-e glazing 0.14 0.07 0.30 1.07 394

3SHGC = Solar heat gain coefficient.

$/m?, while the triple low-E glazing represents a high-
performance case (HG) and costs of 394 $/m? (Chris-
tensen et al. 2006). For the SWs and SWm archetypes (see
Figure 5b and c), the shear walls were insulated by a layer
of EPS panel which was covered by a layer of stucco with
the overall effective U-values of 0.53 and 0.40 W/m?-K
for archetypes located in Los Angeles and Boston respec-
tively. To estimate CO; equivalent due to energy genera-
tion and the site energy (i.e. energy consumed by build-
ing) is converted into source energy using EnergyPlus
conversion factors, which are 3.167 and 1.084 for electric-
ity and natural gas, respectively. Kneifel (2010) indicated
that the adoption of energy efficiency technologies (e.g.
high-performance glazing) may lead to negative life cycle
cost because the improved energy efficiency allows the
installation of smaller and cheaper HVAC equipment. In
this study, it is assumed that different building archetypes
adopt the same HVAC system and share the same initial
installation costs.

Seismic fragility analysis

For dynamic analysis in OpenSees, a set of 22 far-
field (located at greater than or equal to 10km from
the fault rupture site) ground motions recommended
by FEMA P-695 (ATC 2009) for collapse analysis are
used. Records are on soft rock and stiff soil (Site Class
C and D) with magnitudes between M6.5 and M7.6
taken from 14 different events (Asadi and Adeli 2018).

The records are normalized with respect to PGV and
scaled such that the median spectrum of the record set
matches the design response spectrum (ASCE 2017; ATC
2009).

Incremental Dynamic Analysis (IDA), a widely accepted
method to study the record-to-record variability of earth-
quake hazard, is used to evaluate performance and col-
lapse capacity of the archetypes (Azarbakht and Dolsek
2010). The collapse capacity, §CT, obtained from IDA is
used to find the empirical CDF of collapse fragility func-
tions. Then, maximum likelihood method is used to fit a
lognormal distribution function over the empirical CDF.
The empirical CDF and the fitted lognormal collapse curve
are illustrated in Figure 7 for various archetypes where
horizontal axis shows the normalized pseudo-spectral
acceleration based on 5% damped design spectra for the
region at the fundamental period of the building struc-
ture, i.e. Sq(T1, 5%). Table 9 summarizes the expected
collapse capacity and IDR and their logarithmic disper-
sion (B). All archetypes marginally satisfy ASCE7-16 (ASCE
2017) requirement for the conditional probability of fail-
ure caused by the maximum considered earthquakes
(MCE), which is 10% for risk category of I. Note that the
glazing type of curtain walls is assumed to have little
impact on the collapse capacity. As expected, the LA
archetypes achieve a considerably larger collapse capac-
ity, Sq(T1,5%), compared to Boston archetypes given
LA archetypes are designed for a high seismic region.
In contrast, IDR at collapse is close for LA and Boston
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Figure 7. Empirical CDF of 54(T,5%) and fitted lognormal fragility functions for (a) LA and (b) Boston archetypes.

Table 9. Expected collapse capacity and collapse IDR and their
corresponding logarithmic dispersion.

Archetype Scr(T1,5%) (9) Bscr Collapse IDR (%) Bior
LA-SF 2.98 0.51 713 0.46
LA-SWm 3.17 0.71 0.82 0.87
LA-SWs 3.13 0.59 0.79 0.63
B-SF 0.97 0.84 6.55 0.66
B-SWm 1.34 0.81 0.71 1.08
B-SWs 132 0.61 0.85 0.46

archetype because IDR at collapse is an indicator of
structural system, which is a special moment frame or spe-
cial moment frame combined with shear walls, and not
the region.

Seismic loss estimation

FEMA PACT database of fragility parameters, repair
cost/time, casualty and fatality consequence function for
various structural and non-structural components are
used to perform Monte Carlo simulations for loss esti-
mation (FEMA 2012). The resilience metrics including
the component-level direct economic loss, downtime
and number of casualty (injuries and fatality) caused by
intensity-based and time-based earthquake hazard are
evaluated. The direct economic loss is calculated as the
summation of repair/replacement costs of all structural
and non-structural components. Similarly, the downtime
is the summation of repair time required for all com-
ponents on each floor. Two repair planning schemes:
slow-track (serial planning) and fast-track (parallel plan-
ning) are considered for downtime analysis. As noted, a
commercial population model is considered for the build-
ing to estimate the casualty. Considering the unoccupied
areas such as utility and mailing room, 1/3 of the first
floor and 1/6 of other floors are assumed unoccupied
(Han, Li, and van de Lindt 2016). The component-level

casualty consequence functions of FEMA PACT are used
for casualty estimation.

Time to repair the damages caused by earthquakes
and restore the functionality of the building is a main indi-
cator of the robustness and resilience of the system. Fig-
ures 8 and 9 depict the cumulative annual repair time and
the number of injuries for various archetypes consider-
ing a fast-track repair scheme, respectively. As expected,
earthquake causes an insignificant annual loss for Boston
archetypes compared to LA ones. For instance, the annual
probability of repair time exceeding 10 days for the B-SF-
BG archetype is about 0.00047, much smaller than that of
the corresponding LA case (LA-SF-BG) which is 0.078. As
shown in Figures 8 and 9, glazing type has little impact on
repair time and casualty. However, it has a minor impact
on the repair cost.

Shear walls have a major impact on all losses. In
both cities, framed RC buildings require a longer repair/

replacement time compared to that of shear wall archetypes.

This is true for repair/replacement costs as well, but not
for injuries and fatalities due to earthquake. RC framed
buildings, SF archetypes, have much smaller lateral stiff-
ness compared to the shear wall RC buildings. This leads
to a noticeable increase in IDR and considerable damage
to non-structural components even in low seismic inten-
sities (0.05-0.2 g) as shown in Figure 10. Figure 10 shows
the annual rate of exceedance of repair cost and fatali-
ties for LA-SF-BG archetype. The horizontal axes show the
earthquake intensity in terms of S4(T1,5%) and the loss in
terms of repair cost (Figure 10a) or number of fatalities
(Figure 10b). As depicted, most of the monetary loss and
downtime of RC buildings at a high seismic region like LA
is due to low- to mid-intensity earthquakes with S4(T1,5%)
between 0.1 and 0.6 g. Note that while the ground motion
intensity is not significant in that range, the mean annual
frequency of exceedance (MAFE) of that intensity range is
significant, i.e.about 0.02 or a return period of 50 years. At



JOURNAL OF BUILDING PERFORMANCE SIMULATION 815

0.18
----LA-SF-BG = (b) ----B-SF-BG
LA-SF-HG g 016 % B-SF-HG
— —LA-SWm-BG ;0.14 ‘ ——-B-SWm-BG
© LA-SWm-HG  §012 - 3 = g';wvlsngéG
—— LA-SWs-BG é 0.1 Fy o B-SWsHG
LA-SWs-HG S 508 4}
2 \’é&
2006 4 A
< N
e PO 2004 4N oeTXae,
. — L S S i T
0 ' ‘fu»,:w%‘%} YTy - 0 ' A— —IA.&_*_-;IQ___A‘_Q : '
0 15 30 45 60 75 0 10 20 30 40 50
Repair time (days, Parallel repair planning) Repair time (days, Parallel repair planning)
Figure 8. Cumulative annual repair time for various (a) LA and (b) Boston archetypes.
5 -
~254 (a) -=--LA-SE-BG c1 (b) ----B-SF-BG
S \\ x LA-SF-HG s 42 % B-SF-HG
P ~—-LA-SWmBG % 40 b — —B-SWm-BG
< b \\ A LA-SWm-HG ; 35 4\ A B-SWm-HG
S 15 ) ——LASWs-BG 3 30 1)) ——B-SWs-BG
% \ \\ O LA-SWs-HG 2 25 1% O B-SWs-HG
L 1 \gg\ % 20 - \‘\\X
5 " 8 | %s
S e & ol . Ssi
5 0.5 1 b\:’%:}*‘_&\ -—-g 10 A 7 i — o
. O oo FT T ET L 3 0] T ot e
T T T T T A "4 K " T 1 0 T T T T T y
0 1 2 3 4 5 6 /4 8 9
.. 0 2 4 6 8 10 12
Number of Injuries Wamber ol
Figure 9. Cumulative annual number of injuries for various (a) LA and (b) Boston archetypes.
(b)
x107°
0.12 25
8 3
g 01 & o
© el
8 0.08 3
5 0.06 %5
) o 1
T 0.04 T
S 0.02 E
c c
C C
< gl < o
0 0 0 0

> 10
0 Repair cost
(100,000%)

Sa(T1,5%) »

3

30

Sa(T1,5%) 2

Number of

3 200 fatalities

Figure 10. Annual rate of exceedance of (a) repair cost and (b) fatalities for LA-SF-BG archetype.



816 (&) E.ASADIETAL.

a

(: 1000 (EH Equipments [ Lighting

k=) B HVAC Heating [/ZZ] HVAC Cooling
ejemat

g‘ 800

=

e

S 6004

o8

& 400+

o= L

]

c

W 200

©

= \ZZ 2

< G ¥C 20 G o6 O
< ,6?'% ox” \\\ O NS NS

[T Equipments [ Lighting
B HVAC Heating [ZZZ] HVAC Cooling

—
T
L\ S

000

800

600 +

400 +

200 1 7
7

Annual Energy Consumption
(MWh)
b

206 O 26 O 26 O
6,‘5? 6,5?%5@«\6’6\‘«0 6’5®6%5\N5

Figure 11. Annual energy consumptions for various archetype buildings in regions: (a) Los Angeles and (b) Boston.

low to mid intensities, non-structural components such
as wall partitions and suspended ceilings are the main
contributor to the loss and casualty.

Energy cost analysis and CO, eq emissions

The whole-building energy analysis is performed in Ener-
gyPlus (Crawley et al. 2001) and the annual energy con-
sumptions are obtained. Figure 11 compares the energy
consumption for HVAC cooling and heating, lighting and
equipment for various archetypes of LA and Boston. For
comparison, the annual energy consumption of the build-
ing with a similar setting (window wall ratio of 37.5%, base
window glazing and lightweight wall with effective U-
value 0.41 W/m?2-K) is 134 kWh/m? which lies in the range
of PNNL benchmark case of a medium to a large office
with annual energy consumption of 77-196 kWh/m? for
climate zone 3. As depicted, heating constitutes the major
part of annual energy use in Boston while cooling is a
significant end use for both sites. The RC framed build-
ings consume noticeably more energy for both cooling
and heating compared to shear wall cases (16% and 14%
less on average for LA and Boston buildings with BG,
respectively). The difference is less significant for HG,
high performance glazing, though (6% and 9% less HVAC
energy use on average for LA and Boston buildings with
HG, respectively). This is mainly caused by the combined
effects of the thermal mass and shading effects of shear
walls. It highlights the positive influence of shear walls
on energy consumption in addition to their advantages
in terms of structural performance and overall monetary
loss and downtime, as discussed earlier. Yet, the energy
use for lighting increases in shear wall buildings since
solid shear walls reduce the natural light entering the
building. Given that lighting is a minor part of annual
energy use compared to HVAC, shear walls archetypes

Table 10. Annual energy consumption, cost and CO; eq emission
due to energy consumption for various archetypes.

Cost (10009)
Consumption
Archetype (MWh) Electricity Natural Gas CO; eq (ton)
LA-SF-BG 721 109 5 177
LA-SF-HG 533 85 3 133
LA-SWm-BG 651 101 4 162
LA-SWm-HG 522 85 2 130
LA-SWs-BG 650 100 4 161
LA-SWs-HG 524 85 2 131
B-SF-BG 907 125 15 316
B-SF-HG 670 104 9 247
B-SWm-BG 826 118 13 293
B-SWm-HG 641 103 8 240
B-SWs-BG 823 17 13 291
B-SWs-HG 643 103 8 240

have a clear advantage in terms of energy consumption.
In general, SWs archetypes show smaller energy use for
HVAC than SWm archetypes. However, this difference is
also slightly diminished by the increase in energy use for
lighting. Table 10 summarizes the energy consumption
and cost and CO; eq emission due to energy consump-
tion for various archetypes.

Figure 12 depicts the annual energy costs due to vari-
ous uses for various archetypes. Due to difference in type
of energy (i.e. electricity or gas) used, the energy cost of
heating is noticeably smaller than energy cost of cool-
ing. Similar to energy consumption, the buildings with
shear wall show smaller overall energy cost compared to
framed buildings for both sites. The difference is more sig-
nificant for Boston, particularly for heating cost. Consider-
ing the source and type of energy in LA and Boston, the
annual CO; eq emission due to energy used is also pre-
sented in Table 10. Note that the labour costs are different
for considered location, structural frame, and to a lesser
extent glazing alternative. The labour cost impact is evi-
dentin Figure 12 and Table 10. Note that, location-based
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Figure 12. Annual energy costs for various archetype buildings in regions: (a) Los Angeles and (b) Boston.

cost indices are used for energy analysis to reflect the
impact of labour costs in different locations (Los Ange-
les compared with Boston). Moreover, the cost database
of RSMeans, FEMA P-58 and Whitestone, which are used
here, all consider the labour cost in their estimated cost
for various building components.

The properties of the glazing determine the solar heat
gain, direct solar transmission and light transmission of
heat and light from windows. Note that glazing signifi-
cantly affects the heating and cooling energy use, energy
costand CO, eq emission. Using high-performance triple-
pane low-e glazing (i.e. HG cases) reduces the energy use,
cost and CO; eq emission between 27% and 38% com-
pared to double-pane glazing (i.e. BG cases) for HVAC
heating and cooling. As such, while glazing has little
impact on resilience, it has a significant impact on sus-
tainability and energy consumption. These conflicting cri-
teria of BG and HG archetypes can be better studied in a
multi-criteria decision-making framework.

Risk-informed multi-criteria decision making

The proposed decision model is used to find the optimal
choice among all design alternatives. All criteria quanti-
fied in the RSEA module are the input parameters of the
decision-making module, listed in Tables 11 and 12 for LA
and Boston archetypes, respectively. For life loss (LL), the
weighted addition method is used to combine the annual
injury and fatality outputs (Mateo and Cristébal 2012). To
reflect the significance of fatality over injuries in total LL,
a weight factor of 15 is assumed for fatalities. This factor
is based on the difference between fatality comprehen-
sive cost and mean injury comprehensive cost suggested
by FHWA (1994) and Sutley, van de Lindt, and Peek (2016).
Environmental loss (EL) is the GHG emissions due to initial
construction, seismic repair/replacement, maintenance
activities and operational energy consumption.

Riskis also incorporated in the decision model through
decision maker’s attitudes towards risk, which can be risk
aversion, neutral or risk seeking. Based on the objective/s
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Figure 13. Total utility (U;) scores for various scenarios for (a) LA
and (b) Boston buildings with risk aversive (RA), neutral (N), and
risk seeking (RS) attitudes.

of the project, the decision-maker may take or avoid a cer-
tain level of risk in decision analysis. This improves the
adaptability of the model in dealing with subjective and
conflicting criteria and provides new avenues to stake-
holders in risk and resource management. The level of risk
can be adjusted with factor rin Equation (8). Figure 13 and
Tables 11 and 12 show the total utility (U;) scores for var-
jous cases studied. For demonstration, an r factor of 2 is
used in these tables and figure.

For most scenarios, the RC buildings with two shear
walls (SWs-BG and SWs-HG archetypes) are the best alter-
natives as they achieved the highest scores. This is mostly
due to their small seismic loss (monetary cost, down-
time and casualty) as well as their comparable energy
costs compared to other archetypes. The high score of
those archetypes is more evident for Scenarios 1-3 where



Table 11. Evaluation matrix obtained from RSEA module and total utility (U;) scores for various scenarios with risk aversive (RA), neutral (N), and risk seeking (RS) attitudes for LA archetypes.

LA-SF-BG LA-SF-HG LA-SWm-BG LA-SWm-HG LA-SWs-BG LA-SWs-HG
Criteria Annual seismic resilience criteria
AL(103%) 148.4 153.8 50.6 50.8 31.8 32.0
TL (days) 7.126 7.130 2.276 2.276 1.477 1.477
LL (# of Casualties) 0.050 0.050 0.078 0.078 0.036 0.036
Life-cycle Sustainability Criteria
EL (ton COze)
EL - Const. 4,690 4,820 4,860 4,990 4,940 5,070
EL-M&R? 6,660 6,900 3,610 3,680 3,020 3,100
EL - OEP 41,761 32,494 38,539 32,156 38,261 32,169
ICC (103$) 7,963 8,190 8,248 8,475 8,388 8,615
MC (103%) 3,249 3,363 3,249 3,363 3,249 3,363
Life-cycle Energy Criterion
OEC (103%) 4,627 3,555 4,251 3,513 4,221 3,513
Scenarios Total utility (U;) scores with risk aversive (RA), neutral (N), and risk seeking (RS) attitudes
RA N RS RA N RS RA N RS RA N RS RA N RS RA N RS
S1 0.380 0.303 0.223 0.421 0.340 0.239 0.615 0.527 0.416 0.600 0.544 0.464 0.938 0.895 0.856 0.909 0.909 0.909
S2 0.361 0.296 0.222 0.421 0.340 0.240 0.617 0.531 0.422 0.601 0.547 0.468 0.937 0.894 0.854 0.906 0.906 0.906
S3 0.529 0.425 0.305 0.601 0.480 0.331 0.424 0.353 0.272 0.413 0377 0.329 0.934 0.888 0.845 0.908 0.908 0.908
S4 0.299 0.248 0.191 0.609 0.494 0.347 0.618 0.484 0.340 0.682 0.639 0.578 0.868 0.761 0.654 0.906 0.906 0.906
S5 0.392 0316 0.233 0.450 0.363 0.255 0.591 0.505 0.397 0.578 0.526 0.450 0.934 0.889 0.847 0.907 0.907 0.906
S6 0.414 0.351 0.275 0.751 0.657 0.535 0.482 0.356 0.239 0.564 0.539 0.511 0.805 0.687 0.585 0.859 0.859 0.859
S7 0.420 0.386 0.348 0.506 0.423 0.319 0.707 0.583 0.448 0.612 0.554 0.486 0.849 0.750 0.661 0.714 0.714 0.714

aEnvironmental consequences due to maintenance activities and seismic damage repair.

bEnvironmental consequences due to operational energy use.
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Table 12. Evaluation

matrix obtained from RSEA module and total utility (U) scores for various scenarios with risk aversive (RA),

neutral (N), and risk seeking (RS) attitudes for Boston

archetypes.
B-SF-BG B-SF-HG B-SWm-BG B-SWm-HG B-SWs-BG B-SWs-HG
Criteria Annual seismic resilience criteria
AL (103%) 0.4864 0.5046 0.3173 0.3217 0.3409 0.3440
TL (Days) 0.0255 0.0255 0.0163 0.0163 0.0164 0.0164
LL (# of Casualties) 4.47E-4 4.48E-4 4.96E-4 4.98E-4 3.87E-4 391E-4
Life-cycle sustainability criteria
EL (ton CO5e)
EL - Const. 4590 4730 4740 4880 4780 4920
EL-M&R? 2050 2120 2040 2110 2040 2110
EL - OEP 48,740 40,299 45,970 39,593 45,670 39,601
ICC (103$) 7796 8026 8053 8283 8121 8351
MC (103%) 3254 3369 3254 3369 3254 3369
Life-cycle energy criterion
OEC (103$) 5734 4612 5359 4500 5326 4500
Total utility (U;) scores with risk aversive (RA), neutral (N), and risk seeking (RS) attitudes
Scenarios RA N RS RA N RS RA N RS RA N RS RA N RS RA N RS
S1 0.374 0.264 0.173 0.379 0.292 0.202 0.634 0.585 0.547 0.618 0.606 0.592 0.905 0.832 0.747 0.887 0.845 0.777
S2 0.333 0.246 0.169 0.379 0.291 0.202 0.636 0.587 0.549 0.619 0.610 0.602 0914 0.855 0.795 0.893 0.869 0.829
S3 0.473 0.337 0.215 0.529 0.393 0.259 0.437 0.381 0.338 0.420 0.411 0.403 0.908 0.847 0.786 0.893 0.865 0.816
S4 0.282 0.212 0.152 0.609 0.527 0.432 0.568 0.458 0.371 0.692 0.683 0.675 0.787 0.665 0.555 0.894 0.873 0.836
S5 0.373 0.267 0.178 0.405 0312 0.216 0.607 0.556 0.515 0.594 0.584 0.572 0.904 0.835 0.760 0.889 0.854 0.798
S6 0.374 0.292 0.217 0.698 0.583 0.454 0.472 0.351 0.255 0.560 0.550 0.542 0.780 0.657 0.553 0.852 0.838 0.813
S7 0414 0.365 0.324 0.490 0.411 0.321 0.693 0.594 0.510 0.606 0.586 0.570 0.817 0.705 0.602 0.705 0.686 0.656

@Environmental consequences due to maintenance activities and seismic damage repair.

bEnvironmental consequences due to operational energy use.
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the objective is to minimize seismic asset, time and life
losses. They have the least AL, TL and LL making them the
best alternative for LA site. However, from a sustainability
viewpoint, the initial construction cost of archetypes with
shear wall is slightly larger than framed buildings (up to
5%). In an MCDM framework, all these conflicting outputs
can be taken into account, systematically. As such, the
minor difference in initial cost does not affect the over-
all utility score. Note that the significant thermal mass
of shear walls helps with energy consumption as well
reducing the cost of operational energy and improves the
scores for SWs and SWm alternatives.

As shown in Figure 13, the U; scores for scenarios 1, 2
and 5 (minimum asset loss and time loss and maximum
resilience) for both sites follow a very similar variation.
This indicates the close interdependency between the
AL, TL and resilience in general. Scenario 3, minimum
casualty, changes differently for various archetypes. For
Scenario 3, the U; scores of LA-SF are noticeably larger
than that of LA-SWm. The difference is more evident in
the risk aversion case. This is mainly due to smaller LL in
the case of RC framed buildings compared to buildings
with one centreline shear wall on each side. Itis also partly
due to the importance/weight factor assigned to life loss.
In the survey conducted to quantify the weight factors,
most participants gave a larger pairwise importance fac-
tor to life loss compared to other losses such as AL or
TL. In general, the factors adjust the significance of a cri-
terion compared to others based on decision-maker’s or
stakeholder’s preferences.

For all cases, averting risk results in a higher score,
as expected. But, this change to scores differs from one
archetype to another. For SF archetypes, the U; score
drops noticeably if the decision-maker wants to seek risk
whereas for SWm and SWs cases, the U; score decreases
slightly. The drop in U; scores is generally less significant
for archetypes with high-performance glazing (HG cases).
HG archetypes achieve a better score than archetypes
with base glazing (BG) for most scenarios considering the
conflicting factors of initial cost and energy consumed.
For Scenario 6, in particular, where minimum operational
energy is the objective, they achieve a considerably larger
score (between 7% larger in the case of LA-SWs with risk
aversion attitude to 214% larger in the case of LA-SWm
with risk-seeking attitude). The change in utility score
from RA to N attitude is not the same as the change in util-
ity score from N to RS attitude. Also, the rate of this change
varies from one archetype to another and is noticeably
less significant for the LA-SWs-HG archetype. Compar-
ing the outputs for various alternatives, it was found that
if the outputs for two criteria are conflicting (one out-
put is ideal and another is non-ideal) this rate increases
whereas having consistent outputs for all criteria (all ideal

or non-ideal values) decreases this rate. This shows the
ability of the framework to integrate various conflicting
criteria into risk-based decision making.

Conclusion

This paper presents a novel multi-criteria framework for
the design of buildings considering various resilience,
sustainability and energy criteria. Building upon recent
advances in loss analysis and energy simulation, it pro-
vides a new quantitative risk-based decision model
for integrated structural and architectural performance
assessment and design. Given the trade-off between vari-
ous criteria involved in the design of a built environment,
a multi-criteria decision model is proposed to quantita-
tively integrate their impacts. Though well-established,
multi-criteria decision models (MCDM) have rarely been
used in seismic resilience assessment particularly when
sustainability and energy are included. To achieve a com-
prehensive framework, key factors from each aspect of
building performance are integrated into the model. Fac-
tors such as seismic repair cost, repair time, injuries,
fatalities, construction and maintenance costs, embod-
ied energy, and operational energy are studied. Sev-
eral uncertainties are also considered, including uncer-
tainty in record-to-record variability, consequence func-
tion and modelling. In addition to uncertainties consid-
ered, we have proposed a risk aversion factor to the utility
model which provides the ability to adjust risk in decision
analysis.

Pairwise lotteries should be used to find the weight
factors in decision analysis. A survey is conducted to
quantify recommended weight factors for seven different
scenarios/objectives. These factors may be adjusted to
integrate stakeholders’ preferences. Moreover, decision-
makers can manage the level of risk they may accept or
avoid in the analysis by adjusting the risk aversion factor
(r). Architects and structural designers may use the pro-
posed framework to study, compare, and contrast avail-
able alternatives in detail and rank them based on stake-
holders’ preference and level of risk they may accept or
avoid. Furthermore, policymakers may use the framework
to promote the use of specific structural or non-structural
components in specific regions or buildings consider-
ing a comprehensive list of resilience, sustainability, and
energy criteria.

Though the proposed framework can be used for
essentially any building archetype, it is most suitable for
comparing various design alternatives of low- to mid-
rise multi-story residential or commercial buildings. Lack
of publicly accessible data on tall buildings or special
buildings such as hospitals and schools can limit the
usability of the current framework for such cases. In this



study, the framework is implemented on RC buildings in
two geographic locations with different seismic intensi-
ties and climate conditions and the impact of shear wall
ratios on the asset, time, life and environmental losses as
well as energy consumption is studied.

Compared to RC buildings with shear walls, RC framed
buildings consumed noticeably more energy for cool-
ing and heating (on average 12%). This is partly due to
the shading effect provided by the wall and, to a lesser
extent, due to the significant thermal mass of shear walls.
Archetype buildings with shear wall experience less mon-
etary seismic loss and downtime as well resulting in high
total utility scores in the decision analysis. As such, for
most cases, buildings with symmetric side shear walls
ranked first in decision analysis even though they require
a higherinitial construction cost. Nonetheless, shear walls
block the natural light resulting in slightly more energy
use for lighting. Further, glazing has little impact on
resilience but a significant influence on heating and cool-
ing energy use and cost. As such, using triple-pane low-e
glazing reduced the energy use, cost and corresponding
CO; eq. emission as much as 48% compared to regular
double-pane glazing. Averting risk results in a higher util-
ity score, particularly in the case of regular double glazing.
As discussed, these trade-off between various criteria, i.e.
different cost, loss and energy criteria, can be studied in
a multi-criteria framework even if they yield conflicting
outputs.

As an extension to this study, multi-variable formal
optimization techniques can be used to find the opti-
mal member size, location and cost given various eco-
nomic, social and environmental criteria such as esti-
mated direct/indirect loss or cradle to grave cost. Nature-
based algorithms for global optimization such as swarm
intelligence, multi-agent models based on the behaviour
of social swarm, evolutionary computation, and multi-
dimensional models based on biological evolution theory
can be used for such studies (Ekici et al. 2019; Jafari and
Valentin 2018; Sutley, van de Lindt, and Peek 2016; Wang
et al. 2019). Furthermore, the trilateral decision model
proposed here can be applied to other structure or infras-
tructure systems as well and be the basis for a computer
program which automatically makes decisions on struc-
tural and architectural design/retrofit projects.

Uncertainty in seismic analysis stems largely from
variability in ground motion properties and uncer-
tainty in performance specification of structural and
non-structural components, which are included in this
paper. However, as a limitation of this study, other fac-
tors contributing to risk such as uncertainty in mate-
rial and geometric properties, uncertainty in modelling
methodologies and assumptions, and upper and lower
bounds of each factor are not explicitly studied. These
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factors may affect the utility scores and the optimal deci-
sion. Balancing a practical level of uncertainty and an
acceptable computational effort can be a topic of future
studies as well (Jamie Ellen Padgett and DesRoches 2007).
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