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a b s t r a c t

A physics-guided multi-objective optimization procedure is developed for the mixture design of func-
tional cementitious materials containing microencapsulated phase change materials (MEPCM). The mix-
ture design procedure combines physics-based models with multi-objective optimization and decision-
making methods to meet user’s demands on material’s mechanical and thermal properties, as well as
the requirements for sustainability, functionalities, and cost. Physics-based models were utilized to draw
the linkage between design variables and objective functions, including a hydration model to capture the
hydration kinetics of slag-blended cement and a multiscale sub-stepping homogenization model to
obtain the properties of cementitious composite. The multi-objective feasible enhanced particle swarm
optimization (MOFEPSO) algorithm and the technique for preference by similarity to an ideal solution
(TOPSIS) algorithm are used for mixture optimization and decision-making. The material design method
is demonstrated through the design of functional cementitious composite materials containing two
MEPCMs – i.e., a polymer encapsulated paraffin wax (PolyPCM) and a recently developed fly-ash ceno-
sphere encapsulated PCM (CenoPCM). The design decision-making charts show the trade-offs among
mechanical, thermal, and economic performances of cementitious composites containing MEPCMs. The
mixture optimization and decision-making method can be used to assist the design of a variety types
of functional cementitious composite and concrete.
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Nomenclature

A1, A2, A3 Coefficients of the core–shell material elastic properties
[-]

aij Loosing effect coefficient [-]
B Global optimal set
B1, B2, Rate of the initial shell formation and decay [cm/h]
Bsg Reaction coefficient [-]
bij Wall effect coefficient [-]
C Elastic tensor
C1, C2 Social (global) and cognitive (personal) acceleration

coefficient [-]
CC+ The closeness coefficient [-]
Cost Cost [USD]
CO2 Carbon footprint [kg]
CWfree Amount of capillary water at the exterior of hydration

products [kg]
De Initial diffusion coefficient of water [-]
D Personal optimal set
d Particle size [-]
E Elastic modulus [GPa]
f Functional relationship
H Exponent coefficient to calculate the amount of capil-

lary free water [-]
h The hth constituents in functional cementitious compos-

ites
G Shear modulus [GPa]
K Bulk modulus [GPa]
L Latent heat of fusion [kJ/kg]
lc Characteristic length of cubical representative volume

element (RVE)
m Mass [kg]
MCDM Multi-criteria decision-making
MPD Maximum packing density
n classes of particle sizes
PSD particle size distribution
p Position vector in MOFEPSO
p Position of feasible or non-feasible particle
pK, pX Randomly selected global and personal best
qs,c, qs,sg weight fraction of SiO2 in cement and slag [-]
RCHCE Mass of CH produced from unit mass of cement hydra-

tion [kg]
r Radius
r0 Average radius of cement particle [um]
r1, r2 Inner and outer radius of a core–shell particle [um]
rITZ Thickness of interface transition zone [um]
rsg0 Radius of the slag particle [um]
rrsg Slag replacement ratio [-]
S Specific surface area of cement [m2]
SCm Eshelby’s tensor
Sw Effective contact area between the surrounding capil-

lary water and cement particles [m2]
S0 Total area when cement hydration products progress

unconstrained [m2]
T Temperature [K]
t Time [second]
v Velocity vector
v Velocity of feasible or non-feasible particle
VHF Volumetric heat of fusion [J/Km3]
w weight
w/c Water to cementitious binder ratio [-]
wg Physically bound water in hydration products [kg]
X Elastic and thermal properties
x Vector of mixture design variables
yi Ratio of ith class particle volume fraction to the overall

particle volume fraction [-]

z1, z2 Uniform distributed random numbers

Greek symbols
a Degree of hydration
b Residual packing density
c Virtual packing density
d Volumetric ratio of the core in a core–shell particle
e Weighted and normalized objective value
e+, e- Position, negative ideal point
f Compaction index
j Objective values
l1-4 Temperature sensitivity coefficients
m Poisson’s ratio [-]
N Sensitivity coefficient
n Inertia factor
q Density [kg/m3]
r+
, r - Distance from position, negative ideal point

C Concentration factor
C Normalized objective value [-]
tc Stoichiometric ratio of mass of water to mass of cement

[-]
tsg stoichiometric ratio of the mass of CH to slag
/ Volume fraction [-]
v Thermal conductivity [W/mK]
w Power exponent of interface transition zone property [-]
xd Effective diffusion coefficient of capillary water through

C-S-H gel
xrk Reaction coefficient of the boundary reaction process for

the kth clinker
xrsg Reaction coefficient of slag

Subscripts and superscripts
CH Calcium hydroxide
C-S-H Calcium silicate hydrate
c Cement
cap Capillary water
cbm Chemically bound water
core Core
eff Effective property
eq Equivalent property
I Inclusion
i ith class particle
ITZ Interface transition zone
j jth class particle
k kth clinker of cement
MT Mori-Tanaka model
m Matrix
min Minimum
o, O The oth point, and total point in the optimal set
other Other hydration products
pcm Phase change material
s Sand particle
shell Shell of core–shell particle
sg Slag
u, U The uth criteria, and total criteria of the MCDM problem
unhy Unhydrated cement-slag blends
w Water
K Global best
X Personal best
g Decision variable
s The sth feasible particle
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1. Introduction

The incorporation of phase change material (PCM) into cemen-
titious composites is an effective means to enhance the thermal
energy storage of concrete and thus is useful for thermally regu-
lated energy efficient building applications. Microencapsulate
phase change materials (MEPCMs) as functional fillers can be easily
incorporated into materials that are commonly used in building
construction while effectively avoiding PCM leaking and increasing
the interface areas between PCM and host matrix [1]. Previous
research on functional cementitious composites containing
MEPCMs mainly focuses on its energy saving potentials and very
few researches studied the approach for optimal mixture design
[2]. An optimal mixture design of cementitious composites con-
taining MEPCMs should not only meet the strength and workabil-
ity requirements, but also satisfy the requirements for economy,
sustainability, while possessing desired properties like high elastic
modulus, high thermal conductivity and sufficient heat storage
capacity. However, there often exists competing objectives which
conflict with one another – for example, high volumetric heat of
fusion is normally achieved through increasing the volumetric
loading of the functional additives (e.g., MEPCMs), which usually
leads to impaired mechanical performances and increased material
cost. Therefore, it is necessary to consider the tradeoffs between
the competing objectives to balance these desired functionalities
in the process of the mixture design.

Concrete mixture design, also known as mixture proportioning,
is the process of selecting the type and quantity of individual con-
stituents to yield properties to meet specifications for a particular
application. In general, two main approaches have been used for
design concrete mixtures: prescriptive and performance-based.
Prescriptive approaches are step-by-step design methodologies
that specify the type and quantity of each constituents of concrete;
whereas performance-based mixture design methodologies
impose no strict guidelines on the amounts and ratios of con-
stituents. Rather, this approach grants the designer substantial
degrees of freedom to meet design specifications through, e.g., lab-
oratory trial batches. Given the flexibility of performance-based
approaches and a desire to satisfy multiple design objectives rather
than focusing only on strength and cost, many research studies
have attempted experimental optimization of concrete mixtures.
For example, De Larrad and Sedran [3] proposed a solid suspension
model to optimize the packing density of cementitious material
which leads to very high compressive strength (236 MPa at 4-
day age). Xie et al. [4] used slump, compressive strength, and dura-
bility to select optimum mix parameters of self-compacting con-
crete with ultra-pulverized fly ash. Soudki et al. [5] applied full
factorial experiment design to maximize the compressive strength
of concrete mixture by varying the water to cement ratio, coarse
aggregate to total aggregate ratio, total aggregate to cement ratio,
and curing time. To reducing trial batches, experimental design
methods such as Taguchi method [6–8], simplex centroid design
method [9,10] and Box-Behnken design of response surface
methodology [11,12] are commonly used in experimental based
optimization.

While experimental-based optimization methods provides
powerful and useful pathways to design concrete mixtures that
achieve certain design objectives, these methods are questioned
since they typically require a lengthy and iterative experimental
process and may not lead to truly best-performance solutions
[13]. Therefore, computational-based optimization methods have
been increasingly investigated to circumvent the limitations of
experimental-based optimization approaches. Computational
design optimization of concrete mixtures is a mathematical, as
opposed to experimental, approach to mixture proportioning. In

computational design optimization, the problem formulation
involves defining the decision variables, objectives, and constraints
of the problem. Physics-based, statistical, or machine learning
models are developed to define mathematical relationships that
link each objective as a function of the decision variable. Machine
learning methods, such as neural network, random forest, and sup-
port vector machine, have been applied in the optimal mixture
design of normal strength concrete [14,15], high strength concrete
[16,17], and silica fume concrete [18]. While machine learning
models have shown great potential in concrete mixture design, like
statistical models, they generally depend on the availability of
large experimental datasets to train and test models. For functional
cementitious composites such as the ones containing microencap-
sulated phase change materials (MEPCMs), there still lacks data-
sets to establish meaningful machine learning models. As an
alternative, physics-based models can be applied to establish such
relationships between mixture design variables and desired prop-
erties, i.e., thermal and mechanical properties as well as economic
and environmental performance indices.

This paper presents a physics-guided multi-objective optimiza-
tion procedure to support the mixture design of functional cemen-
titious composites such as those containing PCM microcapsules for
thermal energy storage, see Fig. 1. The mixture design procedure
combines physics-based models with a multi-objective optimiza-
tion algorithm and multi-criteria decision making (MCDM) models
to aid the mixture design decision-making. First, the linkage
between decision variables (e.g., volume loading of different con-
stituents, w/c, and dosage of the functional additives) and the
design objectives (i.e., mechanical, thermal properties, as well as
cost and sustainability indices) together with some constraints
are modeled through physic-based models. The multi-objective
feasible enhanced particle swarm optimization (MOFEPSO) algo-
rithm [19] is applied to obtain the optimal set of mixture designs
that are not dominated by one another. Then, a multi-criteria
decision-making (MCDM) model – e.g., the technique for prefer-
ence by similarity to an ideal solution (TOPSIS) algorithm, is
applied to decide candidate mixture designs based on different
design scenarios (i.e., mechanical properties, thermal properties,
CO2 footprint, and cost). Lastly, trial batch tests are performed to
evaluate the candidate mixture design solutions and determine
the final mixture.

2. Multi-objective optimization of functional cementitious
composite materials

2.1. Formulation of the optimization problem

2.1.1. Decision variable and objective functions
The optimal mixture design of cementitious composites is often

dictated by functional requirements and user demand. For cemen-
titious composites containing microencapsulated PCM materials
aiming to have thermal energy storage functions, high volumetric
heat of fusion (i.e., heat storage capacity), high thermal conductiv-
ity, high mechanical properties (elastic modulus and compressive
strength), and low CO2 footprint and material cost are generally
desired [2].

The mixture design variables considered in this study include
water to cementitious binder ratio (w/c), slag replacement ratio
(rrsg) as a representation of using supplementary cementitious
materials (SCMs) to achieve sustainability goals, and the volume
fractions of the cement binder matrix (/m), aggregates (/s), and
MEPCM additives (/pcm).

The objectives can be express in their function forms as:

f 1 ¼ maximize VHFeff

� �
f VHF /pcm;qpcm; Lpcm

� �
ð1Þ
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f 2 ¼ maximize veff

� �
f v vm w=c; rrsg ; t; T

� �
;veq

pcm;vs;/m;/pcm;/s; PSD
� �

ð2Þ

f 3 ¼ maximize Eeff

� �
f E Gm w=c; rrsg ; t; T

� �
;Geq

pcm;Gs;
�

Km w=c; rrsg ; t; T
� �

;Keq
pcm;Ks;/m;/pcm;/s; PSD

�
ð3Þ

f 4 ¼ minimize CO2ð Þ f CO2
CO2�m w=c; rrsg

� �
; CO2�pcm; CO2�s;/m;/pcm;/s

� �
ð4Þ

f 5 ¼ minimize Costð Þ f Cost Costm w=c; rrsg
� �

; Costpcm;Costs;/m;/pcm;/s

� �
ð5Þ

where f1 is the objective function for volumetric heat capacity
(VHF), which is expressed as a function of the volume fraction
(/pcm), density (qpcm), and latent heat of PCM (Lpcm). For cementi-
tious composites designed for heat storage purpose, high volumet-
ric heat of fusion is desired. f2 and f3 represent the objective
functions of thermal conductivity (v) and elastic modulus (E),
respectively. Higher thermal conductivity and larger elastic modu-
lus are often desired since higher thermal conductivity helps to
effectively store/release heat from phase change materials while
higher elastic modulus ensures the material’s mechanical perfor-
mance. f2 and f3 are the functions of the volume fractions of each
constituents (/m, /pcm, /s), their size distributions, as well as the
properties of the constituents. In this research, ground granulated
blast furnace slag (abbreviated as slag) is considered as an example
of the supplementary cement material (SCM). The matrix properties
(vm, Gm and Km) can be expressed as the function of mixture design
variables w=c, rrsg , t(curing time), and T (curing temperature) using
physics-based models. It is noted that compressive strength was not
directly modeled in this study, alternatively, compressive strength
was estimated from its relationship with density and elastic modu-
lus given by ACI 318 [20]. Lastly, f4 and f5 are the objective functions
for the material’s carbon footprint (CO2) and cost. Lower carbon
footprint (sustainability) and low cost (economic) are desired in
material design.

2.1.2. Constraints
For cementitious composite materials containing functional

additives such as microencapsulated PCM, the volumetric concen-
tration of PCM materials is typically under 0.3 according to the
review work of Drissi et al. [2]. The slag replacement ratio (rrsg)
in this study is selected between 0 and 0.5 – i.e., the optimum slag

replacement ratio is typically less than 0.5 [21] since higher slag
ratio may retard the hydration. The water/cement ratio is assumed
to be between 0.3 and 0.5 to ensure a balanced strength and work-
ability, In addition, the inclusion phases in cement mortar/ con-
crete (aggregates, and the functional fillers) need to satisfy the
maximum packing density (MPD) requirement [22], which is
described using the compressible packing density model. There-
fore, the following constraints are applied to the optimization
problem:

0:3 6 w=c 6 0:5 ð6Þ

0 6 rrsg 6 0:5 ð7Þ

0 6 /m 6 1 ð8Þ

0 6 /pcm 6 0:3 ð9Þ

/m þ /pcm þ /s ¼ 1 ð10Þ

/pcm þ /s 6 f MPD PSD;/pcm;/s

� � ð11Þ
As shown in Eq. (11), the total volume fraction of the partic-

ulate inclusion phases, i.e., aggregates and functional fillers, can-
not exceed the limit of corresponding maximum packing
density, which is calculated using the compressible packing
model in this study [22]. For polydispersed particles (the inclu-
sion phases are assumed to be represented by spherical parti-
cles), we assume that the particles can be classified into n
classes with particle sizes d1 P � � � P di P � � � P dn, and /i is
the volume fraction of the ith class particle. When the ith class
particle is dominant, the virtual packing density ci, which is
defined as the maximum packing density achievable for a given
mixture with each particle keeping its original shape, can be
calculated as [22] :

ci ¼
bi

1�Pi�1

j¼1
1� bi þ bijbi 1� 1=bj

� �� �
yj �

Pn
j¼iþ1

1� aijbi=bj

� �
yj

ð12Þ

where bi is the residual packing density of the ith class particle,

yi ¼ /i=/ with / ¼ Pn
i¼1

/i; aij and bij are the loosing effect coefficient

and wall effect coefficient (see Fig. 2) and

aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� dj=di

� �1:02q
ð13-1Þ

Fig. 1. Conceptual diagram showing the physics guided multi-objective optimization procedure for mixture design of cementitious composites containing MEPCMs.
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bij ¼ 1� 1� di=dj
� �1:50 ð13-2Þ

Then, the actual packing density is deduced from the virtual
packing density by introducing a compaction index f, which can
be expressed as::

f ¼
Xn

i¼1

fi ¼
Xn
i¼1

yi=bi

1=/� 1=ci
ð14Þ

The compaction index is a characteristic of the packing process
and it is a strictly increasing function of /. The characteristic value
of the compaction index is selected to be 9.0 in this study, which
represents both vibration and compaction of the particle mixture
[23]. In this study, silica sand and microencapsulated PCMs – i.e.,
both a polymer encapsulated paraffin PCM (or PolyPCM) and fly-
ash cenosphere encapsulated fatty-acid (or CenoPCM), are
assumed to be a random mix and have the residual packing densi-
ties of 0.64, 0.60, and 0.60, respectively, as suggested by [22].

2.2. Physics-based modeling to link the design variables and objectives

2.2.1. Multistep sub-stepping homogenization
The thermal and mechanical properties of functional cementi-

tious composites and concretes is largely governed by their hierar-
chical microstructure [24]. At the cement paste level, both
unreacted materials (e.g., cement clinkers and slag) and hydration
products are present. The properties of hardened cement paste are
dictated by the relative amount and distribution of C-S-H and
inclusions of anhydrous, portlandite, ettringite, and capillary pores
[25]. For cementitious composites containing functional inclusions,
a single functional particle is typically comprised of a functional
core (i.e., PCM) and an outer shell. Since most shells are not reac-
tive to cement, an interfacial transition zone (ITZ) is developed
between the surface of functional inclusions and the cement
matrix [26]. At mesoscale (i.e., dimension from a few hundred
microns to millimeters range), entrapped air bubbles, fine and
coarse aggregates are incorporated as if the cementitious matrix
containing micro-size functional particles is a homogenized med-
ium [24].

Fig. 3 presents the hierarchical microstructure of cementitious
composite materials. Base on it, the multi-step sub-stepping
homogenization modelling scheme [27] was developed and it
was used in this study for predicting the properties of cementitious
composites containing MEPCM inclusions. First, the effective elas-
tic modulus of cement paste is calculated using the Mori-Tanaka
model [28], where both the hydration products in cement paste,
unhydrated clinkers and slag particles, and capillary pores, that

coexist in cement paste are considered. Then, the inclusion phases
including MEPCM particles and aggregates (i.e., sand and gravels)
are homogenized into the cement paste, where the effective prop-
erty of the MEPCM particles is obtained by the equivalence model
developed by the authors [27]. The interfacial transition zone (or
ITZ) between the inclusion phases and cement paste is modelled
using a differential homogenization method [27]. The multi-step
sub-stepping homogenization model assumes that the problem
contains two or more scales which are well separated – i.e., the
microscopic scale (microstructure of cement paste) is small enough
for the heterogeneities to be smeared out in the next scale level
computation.

2.2.2. Hydration and microstructure development of slag-blended
cement

Fig. 4 presents the schematic hydration process of slag-blended
cement, where three sub-processes take place, i.e., cement hydra-
tion, slag hydration, and the inter-reaction between cement and
slag. When water is added in the Portland cement and slag mix-
ture, Portland cement starts to hydrate immediately. Meanwhile,
a small amount of slag reacts due to the presence of gypsum. Then,
the hydration of slag is activated by alkalis and the Portlandite (CH)
produced in the process of cement hydration. In this research, the
slag-blended cement hydration model developed by Han-seung
and Wang is adopted [29]. The model was originally proposed by
Tomosawa [30] and advanced by Park et al. [31]. In this
microstructural model, the cement/slag particles are assumed to
be spherical, uniformly sized, and uniformly distributed through-
out the slag blended cement, where the hydration products grows
uniformly at the surface of the particle and therefore the overall
shape remains spherical over the hydration process, see Fig. 4.
The cement hydration is formulated in a cubical representative
volume element (RVE) with characteristic length
lc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p qcw=c þ 1ð Þ=3r03

p
, where r0 ¼ 3=Sqc is the average radius

of a cement particle where S is the specific surface area of cement
and qc is the density of cement. The RVE characteristic length of
slag (lsg) can be calculated similarly.

The hydration of cement and slag is comprised of the processes
of nucleation, diffusion, and formation of hydration shell of
cement. The cement hydration model is expressed as [29]:

dak

dt
¼ 3 Sw=S0ð ÞqwCWfree

tc þwg
� �

r0qc

� 1
1
xdc

� r0
Dec

� �
þ r0

Dec
1� akð Þ �1=3ð Þ þ 1

xrk
1� akð Þ �2=3ð Þ ð15Þ

Fig. 2. Wall effect and loosing effect for a polydispersed inclusion mix.
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ac ¼
X4
k¼1

akmk=
X4
k¼1

mk ð16Þ

where ak is the degree of hydration of the clinker phases of
cement, C3S, C2S, C3A, and C4AF, respectively; ac is the degree of
cement hydration which is calculated as the weighted average of
the clinker phases; xdc ¼ B1c=a1:5

c þ B2ca3
c is the effective diffusion

coefficient of capillary water through C-S-H gel with B1c represent-
ing the rate of the initial shell formation and B2c describes the rate
of the initial shell decay; Dec ¼ Dec0ln 1=acð Þ is the effective diffu-
sion coefficient of water;xrk is the reaction coefficient of the
boundary reaction process for the kth clinker; t ¼ 0:25 is the stoi-
chiometric ratio of mass of water to mass of cement; wg ¼ 0:15
is the physically bound water in hydration products; qw is the den-

sity of water; CWfree ¼ mw � 0:4amcð Þ=mwð ÞH is the amount of cap-
illary water at the exterior of hydration products with mw and mc

are the mass of water and cement respectively and H ¼ 1:0 when
water to cementitious binder ratio (w/c) is larger than 0.4; and
H ¼ 2:6� 4mw= mc þmsg

� �
with msg is the mass of the slag when

w/c is less than 0.4; Sw and S0 are the effective contact area
between the surrounding capillary water and cement particles
and the total area when cement hydration products progress
unconstrained.

l1c , l2c , l3c , and l4care temperature sensitivity coefficients of
B1c , B2c , xrk, and Dec0 respectively; and the influence of curing tem-
perature (T) on reaction coefficients follows Arrhenius’s lows as
[30]:

Fig. 3. The hierarchical microstructure of cementitious composite materials: (a) X-ray micro-tomography (XRM) and 3D reconstruction of the cementitious matrix and the
inclusion phases; and (b) models at different scales considered.

Fig. 4. Schematic hydration and microstructure development of slag-blended cement matrix [32].
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B1c ¼ B1c20exp �l1c 1=T � 1=293ð Þ� � ð17-1Þ

B2c ¼ B2c20exp �l2c 1=T � 1=293ð Þ� � ð17-2Þ

xrk ¼ xrk20exp �l3c 1=T � 1=293ð Þ� � ð17-3Þ

Dec0 ¼ Dec20exp �l4c 1=T � 1=293ð Þ� � ð17-4Þ
where B1c20, B2c20, xrk20, and Dec20 are the values of B1c , B2c , xrk, and
Dec0 at 20 �C respectively. The coefficients of Eqs. (15)–(17) are pro-
vided in Tables 1 and 2 respectively, and the parametersSw can be
calculated using Equation in reference [31].

On the other hand, the reaction of slag particles can be repre-
sented by [29]:

dasg

dt
¼ mCH tð Þ

msg

mcap

mw

3qw

tsgrsg0qsg

1
1

xdsg
� rsg0

Desg

� �
þ rsg0

Desg
1� asg
� � �1=3ð Þ þ 1

xrsg
1� asg
� � �2=3ð Þ ð18Þ

where asg is the degree of slag reaction,mCH tð Þ is the mass of the
calcium hydroxide (CH), mcap is the mass of capillary water,
tsg ¼ 0:25� 0:1msg= msg þmc

� �
is the stoichiometric ratio of the

mass of CH to slag, rsg0 is the radius of the slag particle, qsg is the

density of slag, xdsg ¼ B1sg=a1:5
sg þ B2sga3

sg is the reaction rate coeffi-
cient in the initial domain period with B1sg and B2sg are reaction
coefficients, Desg ¼ Desg0ln 1=asg

� �
is the initial diffusion coefficient,

and xrsg is the reaction rate coefficient of slag. l1sg , l2sg , l3sg , and
l4sg are temperature sensitivity coefficients of B1sg , B2sg , xrsg , and
Desg0 respectively, which take the same equation form as Eq. (17).
The coefficients used in the slag reaction model Eq. (18) are listed
in Table 3.

The inter-reaction between cement hydration and slag reaction
depends on the amount of calcium hydroxide (CH) and capillary
water left in the hydrating cement-slag system. The mass of CH
in the cement-slag binder is calculated as:

mCH tð Þ ¼ RCHCE �mcac � tsgasgmsg ð19Þ
where RCHCE is the mass of CH produced from unit mass of cement
hydration.

The mass of chemically bound water, mcbm, and capillary water,
mcap, can be estimated as:

mcbm ¼ tmcac þ 0:3asgmsg ð20Þ

mcap ¼ mw � 0:4acmc � 0:45asgmsg ð21Þ
The mass of calcium silicate hydrate (C-S-H) in hardened

cement can be estimated as:

mC�S�H tð Þ ¼ 3:71qs;cmcac þ 3:04qs;sgasgmsg ð22Þ
where 3.71 and 3.04 are the mass ratio between the molar mass of
C-S-H produced from the cement hydration and mass reaction and
the mass of the oxide SiO2 in the C-S-H respectively; qs;c and qs;sg are
the weight fraction of SiO2 in cement and slag respectively. The

chemical composition of OPC Type I/II and slag are listed in Table 4
from which qs;c and qs;sg can be estimated.

With the kinetic slag-blended cement hydration model, the vol-
ume fractions of various constituents in the hydrated cement-slag
matrix are calculated as:

/unhy;c ¼
mc

qc
1� acð Þ ð23-1Þ

/unhy;sg ¼
msg

qsg
1� asg
� � ð23-2Þ

/C�S�H ¼ mC�S�H tð Þ
qC�S�H

ð23-3Þ

/cap ¼ mcap þ 0:0625mcac þ 0:1asgmsg ð23-4Þ

/other ¼ 1� /unhy � /C�S�H � /cap ð23-5Þ
where /unhy, /C�S�H , /cap, and /other are the volume fraction of unhy-
drated slag-blended cement composite, C-S-H, capillary pores, and
other hydration products. The elastic and thermal properties of each
constituent phase are presented in Table 5. Compared with exterior
C-S-H, the interior C-S-H has a larger elastic modulus and thermal
conductivity because it is more dense [34].

2.2.3. Modeling of the functional inclusions
For inclusions with a hollow or core–shell configuration, such as

the MEPCMs considered in this study, it can be equivalented as a
solid particle having the same dimension with equivalent elastic
and thermal properties, see Fig. 5. The equivalent elastic properties
can be established through Eshelby’s strain energy equivalence
[36], and the equivalent bulk modulus of the inclusion, Keq

I , is
obtained as [37]:

Keq
I ¼ Kshell þ Kcore � Kshellð Þd

1þ 1� dð Þ Kcore � Kshellð Þ= Kshell þ 4=3Gshellð Þ½ � ð24Þ

where d ¼ r1=r2ð Þ3 is the volumetric ratio of the core in a core–shell
particle where r1 is the inner radius and r2 is the outer radius (see
Fig. 5); Kshell, Gshell, and Kcore, Gcore are the bulk and shear moduli of
the shell and core materials, respectively.

The equivalent shear modulus of a core–shell particle,Geq
I , is

obtained by solving:

A1
Geq

I

Gshell

	 
2

þ A2
Geq

I

Gshell

	 

þ A3 ¼ 0 ð25Þ

where coefficients A1, A2, and A3 are the functions of the core/shell
material elastic properties and the volumetric ratio of the core d.
The formulations of A1, A2, and A3 can be found in a previous paper
of the authors [27].

The equivalent thermal conductivity of core–shell particle is
[38]:

veq
I ¼ 2 1� dð Þvshell þ 1þ 2dð Þvcore

2þ dð Þvshell þ 1� dð Þvcore
vshell ð26Þ

where vcoreand vshellare the thermal conductivities of the core
and shell, respectively.

A spherical inclusion with its interface transition zone (ITZ) can
be treated as a composite system [39,40] and its equivalent prop-
erty may be obtained by applying the Mori-Tanaka method in a dif-
ferential scheme:

dXeq
I;ITZ rð Þ
dr

¼ �3
r

Xeq
I;ITZ rð Þ � XITZ rð Þ

� �
CX

dil

ð27Þ

Table 1
Coefficients of the cement hydration model [29]

B1c20 = 8.1 � 10-9 (cm/h) De20 = 8.6 � 10-10 (cm/h)

B2c20 = 0.02 (cm/h) l1c = 1000 (K)
xrC3S20 = 9.0 � 10-6 (cm/h) l2c = 1000 (K)
xrC2S20 = 2.7 � 10-7 (cm/h) l3c = 5400 (K)
xrC3A20 = 1.4 � 10-6 (cm/h) l4c = 7500 (K)
xrC4AF20 = 6.8 � 10-8 (cm/h)
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where CX
dil is the dilute concentration factor,Xeq

I;ITZis the equivalent
properties – i.e., the elastic properties (bulk modulus and shear
modulus) and thermal conductivity, of the core–shell particle
(CSP) inclusion including the interface layer.

XITZ rð Þ ¼ Xm þ XITZ;min � Xm
� �

r=r2ð Þ�w with r2 < r < r2 þ rITZ ð28Þ

where XITZ;min is the minimum value across the ITZ region located at
the particle boundary. The power exponent

w ¼ 1
ln 1þrITZ=rð Þ ln

0:02Xm
Xm�XITZ;min

� ���� ��� with rITZ is the thickness of the interface

layer.

2.2.4. Homogenization
The elastic properties and thermal conductivity of the cement-

composite materials are obtained through the homogenization of
cement paste, aggregates, and the functional inclusions using the
Mori-Tanaka model [41]. For cement paste, it is treated as a com-
posite where the matrix is the C-S-H gel, and the inclusions are
other hydration products, unhydrated clinkers/slag and pores. For
cementitious composites, the obtained homogenized cement paste
is used as the matrix and particles like MEPCM and sand are used

as inclusions. The elastic properties the effective elastic tensor, C
�
,

of a composite system containing n classes inclusions (the ith)
may be estimated as:

Fig. 5. Equivalence of a core–shell MEPCM particle and its around interface transition zone (ITZ) to a solid particle.

Table 2
Mineral components of OPC Type I [33]

Mineral compositions Blaine

C3S C2S C3A C4AF CS
�
2H

(mass%) (mass%) (mass%) (mass%) (mass%) (cm2/g)

OPC 60.0 11.0 10.0 8.0 2.5 3280

Table 5
Thermal and elastic properties of hydration products and unhydrated materials of cement-slag mixture [35]

C-S-H (interior) C-S-H (exterior) CH other air unhy,c unhy,sg

E (GPa) 30.3 24.2 37.2 24.2 1.0 � 10-4 90.3 60.0
v (-) 0.2 0.2 0.31 0.2 0.0 0.3 0.25
v(W/mK) 0.96 0.9 1.32 0.9 0.026 3.4 3.0
q(kg/m3) 2400 2300 2240 2300 12.25 3200 3200

Table 4
Chemical composition of cement.

Chemical composition (mass%) Blaine

SiO2 Al2O3 Fe2O3 CaO MgO SO3 (cm2/g)

Cement 19.2 5.16 2.47 62.6 3.48 3.57 3280
Slag 35.1 11.4 1.7 33.9 13.8 0.0 4000

Table 3
Coefficient of the slag reaction model [29]

B1sg20 B2sg20 xrsg20 Desg20 l1sg l2sg l3sg l4sg

(cm/h) (cm/h) (cm/h) (cm/h) (K) (K) (K) (K)

8.9 � 10-9 0.1 1.0 � 10-5 1.9 � 10-9 1000 1000 5000 7000
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C
�
¼ Cm þ

Xn
i¼1

/i CI;i � Cm
� �

CC
MTð Þ;i ð29Þ

where /i is the volume fraction of the ith inclusion; CI;i and Cmare
the elastic tensors of the ith class inclusion and the matrix, respec-
tively; and CC

MTð Þ;iis the Mori-Tanaka strain concentration tensor of
the ith inclusion:

CC
MTð Þ;i ¼ /iIþ /m CC

dil;i

� ��1
þ
XN
j¼1

/jC
C
dil;j CC

dil;i

� ��1
" #�1

; j–i ð30Þ

where I is a fourth order identity tensor, /m is the volume fraction of
the matrix, and CC

dil;iis the strain concentration tensor of the ith

inclusion under dilute scheme [41]:

CC
dil;i ¼ Iþ SCmCm

�1 CI;i � Cm
� �h i�1

ð31Þ

SCm is the Eshelby’s tensor, which can be found in [42].

Similarly, for the effective thermal conductivity tensor,v
�
:

v
� ¼ vm þ

XN
i¼1

/i vI;i � vm

� �
Cv

MTð Þ;i ð32Þ

where vI;i, vm are the thermal conductivity tensor of the ith class

inclusion and matrix respectively, and Cv
MTð Þ;i is the temperature gra-

dient concentration tensor [43].
The effective volumetric heat of fusion (VHF) can be simply

obtained by [44]:

VHF ¼ /pcmqpcmLpcm ð33Þ
where Lpcm is the latent heat of fusion of PCM.

2.2.5. Material cost and carbon footprint
For a unit volume (1 m3) of the composite cementitious mate-

rial, its material cost is simply calculated as the summation of
the constituent material cost:

Cost ¼
X

mh � Costh ð34Þ
where mh and Costh are the mass and unit cost of the con-

stituent materials with h = cement, slag, water, silica sand, and
phase change material (PCM). Given the volume fraction of
cement-slag binder (/b), volume fraction of sand (/s), volume frac-
tion of PCM (/pcm), water to cementitious binder ratio (w/c), and
slag replacement ratio (rrsg), then the mass of each constituent
can be calculated from Eqs. (35-1)–(35-5):

/b ¼
mw

qw
þmc

qc
þmsg

qsg
ð35-1Þ

/s ¼
ms

qs
ð35-2Þ

/pcm ¼ mpcm

qpcm
ð35-3Þ

wb ¼ mw

mc þmsg
ð35-4Þ

rrsg ¼ msg

mc þmsg
ð35-5Þ

Similarly, the CO2 footprint (CO2) can be calculated as:

CO2 ¼
X

mh � CO2 hð Þ
� � ð36Þ

where CO2 hð Þ is the embodied carbon of the hth material per unit
mass during material production phase. It is noted that the CO2

emission during other processes such as transportation is not con-
sidered in this study for simplicity.

3. Multi-objective optimization and decision making

3.1. Multi-objective feasibility enhanced particle swarm optimization
algorithm

The multi-objective optimization (MOO) problem for the mix-
ture design of cementitious material containing MEPCMs can be
formulated as the minimization of the objective functions:

minF xð Þ ¼ min �f 1 xð Þ;�f 2 xð Þ;�f 3 xð Þ; f 4 xð Þ; f 5 xð Þ½ �T ð37Þ

where x ¼ wb; rrsg ;/m;/s;/pcm

� �T is the vector of design variables.
The MOO problem is subject the constraints given in Eqs. (6)–(11).

The Pareto-optimal set can be obtained by the multi-objective
feasibility enhanced particle swarm optimization (MOFEPSO) algo-
rithm [19]. The MOFEPSO algorithm starts with the initialization of
particle swarm with random positions (p) and velocities (v). Then,
the MOFEPSO separates particles into feasible particles and infeasi-
ble particles, where infeasible particles violate at least one con-
straint. For feasible particles, the objective functions are
evaluated and the non-dominated results are stored in global opti-
mal set B and personal optimal set Ds. For both feasible particles
and non-feasible particles, their velocities at time t + 1 are updated
as:

vs;g t þ 1ð Þ ¼ nvs;g tð Þ þ C1z1;g pKg � ps;g tð Þ
� �

þ C2z2;g pXs;g � ps;g tð Þ
� �

ð38Þ

vs;g t þ 1ð Þ ¼ Na;g nvs;g tð Þ þ C1z1;g pKg � ps;g tð Þ
� �h i

ð39Þ

where, n is the inertia factor, C1 and C2 are the social (global) and
cognitive (personal) acceleration coefficient respectively,
z1;g 2 0;1½ � and z2;g 2 0;1½ � are uniformly distributed random num-
bers of the decision variable g, pK

g and pXs;g are the randomly selected
global and personal best from global and personal non-dominated
sets for feasible particle s. For infeasible particle, the global guide
is selected randomly from the set of current positions of particles
that does not violate the constraint satisfied previously. Moreover,
the velocities of feasible and infeasible particles are updated differ-
ently. For feasible particle, the velocity at time t + 1 depends on the
inertia factor, global best and personal best, see Eq. (38). For non-
feasible particle, it only relies on the inertia factor and global best,
see Eq. (39). A sensitivity coefficient Na;g [19] is used to guide infea-
sible particle moves to the most sensitive direction, where each
direction represents one decision variable. Thus, the new candidate
position of both feasible and infeasible particles is calculated as:

ps;g t þ 1ð Þ ¼ ps;g tð Þ þ vs;g t þ 1ð Þ ð40Þ
At step t + 1, new candidate position may violate some con-

straints, i.e., decision variable limits and constrain functions, which
were already satisfied at step t. To avoid particle moving to a worse
location, the new candidate particle is enforced with decision vari-
able limits and virtual boundary limits to ensure those constraints
which satisfied at step t are still maintained at step t + 1. For
detailed information of sensitivity coefficient and enforcing deci-
sion variable limits and virtual boundary limits, please refer to
the work of Hasanoglu and Dolen [19].

3.2. Multi-criteria decision making

While the Pareto-optimal set provides critical information
about potential design options, it still needs a multi-criteria
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decision-making model to assist the final decision making. In this
paper, the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) [45] is used for selecting the optimal mixture
candidate from the Pareto-optimal set. TOPSIS selects an alterna-
tive that is closest to the positive ideal point and furthest from
the negative idea point. In the Pareto-optimal set, the positive ideal
point, eþg , is defined as, e.g., the mixture design has the maximum
value for preferable function value (or minimum value for non-
preferable function value) and the negative ideal point, e�g , is
defined as the one has the minimum value for preferable function
value (or maximum value for non-preferable function value). For
the design of a concrete mixture, the positive ideal points of VHFeff,
veff , and Eeff are their maximum values in the mixture design opti-
mal set; whilst the positive ideal points of Cost, and CO2 are their
corresponding minimum values; and vice versa for the negative
ideal points. Then, the distance from the positive ideal point (rþ

o )
and the distance from the negative ideal point (r�

o ) for the oth point
in the Pareto-optimal set can be calculated as:

rþ
o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXU
u¼1

eou � eþu
� �2

vuut ð41Þ

r�
o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXU
u¼1

eou � e�u
� �2

vuut ð42Þ

where eou ¼ !ouwu o ¼ 1; � � � ;O; u ¼ 1; � � � ;Uð Þ and !ou ¼ jouffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
ouþ���þj2

Ou

p
is the normalized value for the uth criteria (totally U) of the oth point
(totally O) with jou the corresponding objective value, and wu is the
weight of the uth criteria which can be either assigned subjectively
by experts or calculated objectively through mathematical equa-
tions such as the entropy method [46]. For functional cementitious
composites, different mixture design scenarios can be specified and
the weights of the criteria can be assigned accordingly [47], which
will be further illustrated in the following sections.Then, the final
mixture design is ranked and selected by the closeness coefficient,
CCþ

o , of each alternative:

CCþ
o ¼ r�

o

r�
o þ rþ

o

� � o ¼ 1;2; � � � ;O ð43Þ

The optimization steps are summarized in the flowchart shown
in Fig. 6.

Fig. 6. Flow chart showing the optimization process.
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4. Experimental study

The physics-based models for predicting the thermal conductiv-
ity and elastic modulus of functional cementitious composites are
validated through two sets of experimental data with two types of
MEPCMs, i.e., polymer encapsulated paraffin phase change mate-
rial (PolyPCM) and the fly ash cenosphere encapsulated PCM (Cen-
oPCM) recently developed by the authors [1]. The main purpose of
the experimental mixture design is to validate and calibrate the
physics-based models with different volume fractions of
MEPCMs.The functional cementitious material was made using
ASTM C150 compliant Type I/II ordinary Portland cement (OPC),
Ottawa silica sand, grounded quartz/silica flour, and MEPCMs.
The commercially available PolyPCM – Micronal� was used in
the experimental study. The cost information of PolyPCM was esti-
mated based on a US Department of Energy report [48].

The experimental mixtures have a water to cement ratio (w/c)
of 0.32. For cementitious composites containing PolyPCM (Micro-
nal�) and CenoPCM, equivalent volume of sand and quartz powder
(fine aggregate) was substituted by the MEPCMs. Details of the
mixture design is provided in Table 6, and the experimental setup
and testing results were described in a previous work by the
authors [49].

Inclusion and interfacial transition zone (ITZ) properties and the
modeling parameters are listed in Tables 7 and 8. The shell thick-
ness of PolyPCM (Micronal�) and CenoPCM are 1 lm and 8 lm,
respectively. The ITZ thickness is selected to be a function of D50

(cumulative 50% point of particle diameter) where larger particle
has a relatively thicker ITZ. The minimum ITZ properties are cali-
brated as a function of cement matrix where CenoPCM has rela-
tively higher values compared with PolyPCM mainly due to the
pozzolanic reaction of silica and CH in the ITZ interface [49].

Fig. 7 (a) and (b) compare the predicted effective thermal con-
ductivity and elastic modulus with experimental values. The
results show that the physics-based models established in this
study can represent the experiment values very well. In Fig. 7 (a),
the experiments were conducted both below and above the phase
change temperature (Tpc) of the MPCMs at age 28 days and temper-
ature shows negligible effect on the measured thermal conductiv-
ities as expected. The elastic modulus was measured at age 7 days
and 28 days to examine the effect of curing time and relatively
small differences were observed, see Fig. 7 (b).

5. Case studies

As shown in Section 2, the physics-based models for predicting
the thermal conductivity (v), elastic modulus (E), CO2 footprint

(CO2), volumetric heat of fusion (VHF), and cost (Cost) are functions
of water to cementitious binder ratio (w/c), slag replacement ratio
(rrsg), and the volume fractions of binder, sand, and functional
additives (e.g., MEPCMs).

5.1. Optimal mixture design of MEPCMs-cementitious composites

In the mixture design of cementitious composites containing
MEPCMs, five objectives (mixture design decision variables), i.e.,
thermal conductivity (v), elastic modulus (E), carbon footprint
(CO2), volumetric heat of fusion (VHF), and cost, are used to find
the optimal mixture design as functions of five design variables,
i.e., water to cementitious binder ratio (w/c), slag replacement ratio
(rrsg), volume fraction of cement paste, and the volume fractions of
sand and MPCMs. The models calibrated with experimental data
are used for obtaining the optimal mixture design of cementitious
composites containing MEPCMs (i.e., PolyPCM and CenoPCM). The
Pareto-optimal set is for the mixture design obtained by the
MOFEPSO.

After obtaining the Pareto-optimal set for the mixture design,
decision making charts are created through paired comparisons
of the mixture design decision variables according to the scores
obtained by TOPSIS ranking method, where a weights vector needs
to be defined. The TOPSIS score is calculated for each option in the
optimal mixture design set. Eight different weight vectors are
designed to represent the decision scenarios of ‘strength’, ‘green’,
‘thermal - heat storage (T-HS)’, ‘thermal – conductivity (T-C)’,
‘cost’, ‘balanced’, ‘structural-energy (S-ENG)’, and ‘structural-
environment (S-ENV)’ [47]. For each scenario, its weights vector
includes the weights coming from four main categories, i.e.,
mechanical properties, thermal properties, CO2, and cost, with
the summation of the main categories weights equals to one. In
each main category, it may be further divided into several sub-
categories – e.g., the thermal properties can be divided into ‘volu-
metric heat of fusion’ and ‘thermal conductivity’. The weights of
the sub-categories in each main category represents their related
importance. The ‘strength’ scenario is used for design cases where
compressive strength is the main consideration in the functional
cementitious composites design. A similar scenario design
approach is applied to designing ‘green’, ‘T-HS’, ‘T-C’, and ‘cost’.
Moreover, a ‘balanced’ scenario and two strength constrained sce-
narios (with minimum strength of 17.2 MPa ‘S-ENG’ and ‘S-ENV’)
were also considered. The ‘balanced’ scenario was designed to con-
sider a balanced performance among mechanical, thermal proper-
ties, cost, and environment impact (CO2); while the ‘S-ENG’ and ‘S-
ENV’ scenarios were designed to consider cases where the mini-
mum strength was required for structural use [20] with consider-
ing energy performance and environmental performance

Table 6
Test matrix and mix proportions (by weight, kg of materials /m3 of concrete).

Mix ID MEPCM Vol (%) MEPCM Water Cement Silica Sand Quartz Powder Air Content

Control 0.0 0 244 762 1270 62 0.010
Micronal-036 3.6 36 243 759 1170 56 0.016
Micronal-072 7.2 71 242 756 1069 52 0.021
Micronal-108 10.8 106 241 753 969 47 0.027
Micronal-144 14.4 141 240 751 872 42 0.031
Micronal-179 17.9 176 239 748 773 38 0.045
Micronal-214 21.4 210 238 743 674 33 0.066
CenoPCM-029 2.9 48 243 760 1170 59 0.023
CenoPCM-058 5.8 97 245 766 1083 54 0.025
CenoPCM-086 8.6 145 245 767 987 49 0.033
CenoPCM-116 11.6 194 246 770 894 45 0.038
CenoPCM-145 14.5 244 247 772 798 40 0.046
CenoPCM-174 17.4 293 248 774 701 35 0.054
CenoPCM-203 20.3 341 246 769 578 29 0.077
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Table 7
Inclusion and ITZ properties.

Inclusion type D50 ts tITZ vITZ;min EITZ,min

(um) (um) (um) (W/mK) (GPa)

Sand 640 – 0.05D50 0:1vm 0.1Em
PolyPCM (Micronal�) 20 1 0.5D50 0:1vm 0.01Em
CenoPCM 90 8 0.15D50 0:6vm 0.6Em

Table 8
Physical, thermal, mechanical, economic, and environmental properties of constituents in the studied cementitious materials containing MEPCMs.

Material Cement Slag Sand CenoPCM* PolyPCM** Water

Core Shell Core Shell

E (GPa) 90.3 60.0 72.0 0.0557 96.0 0.0557 2.1 –
v (-) 0.3 0.25 0.17 0.499 0.21 0.499 0.37 –
v(W/mK) 3.4 3.0 4.0 0.25 1.60 0.25 0.20 0.604
q(kg/m3) 3200 2800 2650 1250 982.4 1000
L (kJ/kg) – – – 75.69 90.31 –
Cost ($/kg) 0.1235 0.09 0.09 1.7 5.7 0.005
CO2

*** (kg/kg) 1.017 0.091 0.003 0.033 0.208 0

* Cost of CenoPCM is estimated by reaching a storage capacity cost of 50 $/kWh which can be achieved through combining innovative microencapsulation technology of
cenosphere and relative low cost fatty acid PCM.
** Cost of polymer encapsulated paraffin wax phase change material (PolyPCM) is estimated by using the data presented in[48].
*** CO2 footprints of cement and slag are estimated by the online GreenConcrete LCA tool [50] and obtained from reference [51]. Meanwhile, the CO2 footprints of MEPCM
materials are adopted from [52].

Fig. 7. Model validations for functional cementitious materials containing Micronal� and CenoPCM: (a) thermal conductivity; (b) elastic modulus at the age of 7 days and
28 days.

Table 9
Weights of designed scenarios for optimal mixture design decision making.

Categories F* Scenario

Strength Green T-HS T-C Cost Balanced S-ENG** S-ENV

Mechanical properties S 65% 20% 20% 20% 10% 40% – –
Compressive strength S1 80% 80% 40% 40% 80% 60% – –
Modulus of elasticity S2 20% 20% 60% 60% 20% 40% – –
Thermal properties T 5% 10% 50% 50% 30% 10% 60% 25%
Volumetric heat of fusion T1 40% 80% 80% 50% 80% 40% 80% 80%
Thermal conductivity T2 60% 20% 20% 50% 20% 60% 20% 20%
CO2 L 10% 50% 10% 10% 10% 20% 20% 50%
Cost C 20% 20% 20% 20% 50% 30% 20% 25%

* F: Factor of category.
** Minimum strength of 17.2 MPa was used as constraints for ‘S-ENG’ and ‘S-ENV’.
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Fig. 8. Mixture design decision making charts of cementitious composites containing MEPCMs for the Cost scenario: (a), (b) elastic modulus (E); (c), (d) volumetric heat of
fusion (VHF); (e), (f) thermal conductivity (v); and (g), (h) CO2 footprint for PolyPCM and CenoPCM respectively.
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optimization. The weights in each main category and sub-category
depend on the selected scenario. For example, the ‘T-HS’ and ‘T-C’
scenarios are designed to emphasize the importance of heat stor-
age and thermal conductivity of functional cementitious compos-
ites respectively, see Table 9. ‘S-ENG’ and ‘S-ENV’ scenarios did
not assign weights to mechanical properties since strength and
elastic modulus were implemented as constraints in the multi-
criteria decision making (MCDM) process. The compressive
strength, fc, is estimated by ACI 318 [20] based on the elastic mod-
ulus and density of concrete.

Fig. 8 presents the mixture design decision making charts of
cementitious composites containing MEPCMs for the cost scenario,
where the color bar indicates the TOPSIS scores for the obtained
Pareto-optimal mixture design set. The points of maximum ther-
mal conductivity (v_max), maximum E (E_max), maximum VHF
(VHF_max), minimum CO2 (CO2_min), and minimum cost (Cost_-
min) refer to single-objective optimization cases when each of
the performance criteria is the sole objective of the optimal mix-
ture design problem. Using the TOPSIS decision making method,
mixture designs of different scenarios can be obtained. The ideal
points that have the highest TOPSIS scores for the eight scenarios
are also plotted in the mixture design decision making charts. It
is clear that the optimal mixture design determined by the TOPSIS
method is a compromise between different design objectives. For
example, the TOPSIS decision-making method for the ‘‘T-HS” sce-
nario leads to optimal mixture designs with elastic modulus (E)
of 9.18 and 23.11 GPa for cementitious composites containing
PolyPCM and CenoPCM, respectively. The design mixtures of the
single-objective and TOPSIS decision making method are presented
in Tables 10 and 11 and plotted in Fig. 9. The parallel plot of Fig. 9
indicates the existence of conflicts between the objectives of v and
E and the objectives of VHF and cost as they are dominated by the
amounts of MEPCMs. Generally, the increase of MEPCMs leads to
higher VHF and cost and lower v and E. v and E are also influenced
by the amount of sand and binder (cement and slag), and the water
to binder ratio. However, the CO2 footprint is dictated by the
amount of cement since it has the largest CO2 footprint. The lower
amount of cement and the higher amount slag replacement ratio
can effectively reduce the CO2 footprint. The structural perfor-
mance requirement generally leads to the reduction of the amount
of PolyPCM in cementitious composites while has little influence
on the amount of CenoPCM due to its high strength, see Fig. 10 (a).

The mixture design decision-making charts (see Fig. 8) show
that the cementitious composites containing the CenoPCM, which
uses a rigid inorganic shell (fly ash cenosphere) as capsules, is more
suitable for applications that have strength requirement (e.g.,
building envelope panels and floor slabs) due to its better mechan-

ical performance, higher thermal conductivity, and lower cost
compared with cementitious composites containing polymer
encapsulated PCMs (PolyPCM). This is also reflected from the plot-
ted distributions of the obtained optimal mixture design set, see
Fig. 10. The compressive strength of cementitious composites con-
taining CenoPCM is distributed in the range 30 – 50 MPa; whereas
cementitious composites containing PolyPCM is distributed in the
range 5–20 MPa. Meanwhile, the cost of cementitious composites
containing CenoPCM ranges from 300 to 750 $/m3 based on its esti-
mated costs, which is promising for building applications.

The decision-making charts developed herein can assist users/-
material designers to select and determine mixture designs of
functional cementitious composite materials in the early stage
design. For example, if a user is interested in designing a cementi-
tious composite containing MEPCM with a cost lower than 1000 $/
m3. Their achievable VHF, elastic modulus, and thermal conductiv-
ity can be found from design charts similar to that presented in
Fig. 8. The mixture design decision making charts for the scenarios
of ‘‘strength”, ‘‘green”, ‘‘T-HS”, ‘‘T-C”, ‘‘Balanced”, ‘‘S-ENG” and ‘‘S-
ENV” are not all plotted to be concise. It is noted that the mixture
design of MEPCMs cementitious composites also relies on the
application space. For example, for building envelope applications
the cost-benefit can be further quantified by building energy sim-
ulations with consideration of energy saving and the benefit from
peak load shedding. In this research, only material related proper-
ties are considered in the decision making.

5.2. CO2 and cost savings of cementitious composites containing
CenoPCM

Fig. 11 presents specific CO2 and cost as functions of volumetric
heat of fusion (VHF). The specific CO2 and cost are calculated by
normalize the CO2 footprint and cost obtained by the optimization
with their corresponding compressive strength. As indicated by the
fitted relationships, the specific CO2 and cost of cementitious com-
posites containing CenoPCM shows a linear relationship whilst its
PolyPCM counterpart has an exponential relationship. While they
have similar CO2 footprint (see Fig. 10 (c)), the cementitious com-
posites containing CeonPCM has much lower specific CO2 because
its higher strength. Interestingly, the specific CO2 of cementitious
composites containing CenoPCM tends to be a constant which indi-
cates that reduction of CO2 footprint due to increasing the amount
of CenoPCM is almost equal to the reduction of the compressive
strength. On the other hand, the specific CO2 of cementitious com-
posites containing PolyPCM increases almost exponentially with
the increase of VHF which is mainly caused by its low compressive
strength (see Fig. 11 (a)). The specific cost increases with the add-

Table 10
Characteristic mixture designs of cementitious composites containing PolyPCM.

Mixture cement slag /pcm sand w/c E VHF v CO2 Cost

(kg/m3) (kg/m3) (-) (kg/m3) (-) (GPa) (MJ/m3) (W/mK) (kg/m3) ($/m3)

E_max 776.6 46.9 0.009 1114.4 0.37 32.34 0.78 2.19 799.6 253.2
VHF_max 441.6 208.5 0.300 454.3 0.43 6.40 26.59 0.77 537.8 1805.2
TC_max 442.1 67.5 0.017 1486.9 0.50 30.05 1.54 2.28 464.4 295.8
CO2_min 188.7 131.0 0.195 1372.5 0.49 13.79 17.28 1.39 252.4 1257.3
Cost_min 605.7 135.2 0.009 1062.6 0.47 27.22 0.84 2.02 633.8 242.8
Strength 776.6 46.9 0.009 1114.4 0.37 32.34 0.78 2.19 799.6 253.2
Green 235.9 223.4 0.079 1573.3 0.36 27.53 7.04 2.09 283.2 645.8
T-HS 248.6 154.9 0.298 984.8 0.40 9.18 26.44 0.99 337.7 1812.1
T-C 235.9 223.4 0.079 1573.3 0.36 27.53 7.04 2.09 283.2 645.8
Cost 442.1 67.5 0.017 1486.9 0.50 30.05 1.54 2.28 464.4 295.8
Balanced 442.1 67.5 0.017 1486.9 0.50 30.05 1.54 2.28 464.4 295.8
S-ENG 537.1 102.6 0.128 1077.6 0.38 18.04 11.39 1.52 588.2 898.3
S-ENV 543.1 161.2 0.100 1082.1 0.35 21.14 8.85 1.67 593.2 746.3
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Table 11
Characteristic mixture designs of cementitious composites containing CenoPCM.

Mixture cement slag /pcm sand w/c E VHF v CO2 Cost

(kg/m3) (kg/m3) (-) (kg/m3) (-) (GPa) (MJ/m3) (W/mK) (kg/m3) ($/m3)

E_max 716.3 53.7 0.037 1230.4 0.30 36.57 3.46 2.23 739.2 285.1
VHF_max 459.9 148.8 0.300 512.1 0.37 20.18 28.38 1.09 498.6 760.8
TC_max 716.3 53.7 0.037 1230.4 0.30 36.57 3.46 2.23 739.2 285.1
CO2_min 188.7 131.0 0.168 1372.5 0.49 25.50 15.87 1.72 216.9 521.0
Cost_min 567.6 227.6 0.002 1115.0 0.39 31.25 0.16 2.12 601.7 205.3
Strength 452.5 248.2 0.061 1237.5 0.31 34.07 5.78 2.13 490.0 330.8
Green 230.1 217.9 0.115 1430.1 0.36 31.05 10.84 2.02 264.4 430.0
T-HS 439.4 52.5 0.298 789.3 0.33 23.11 28.22 1.21 469.7 766.9
T-C 256.4 145.8 0.225 1191.9 0.32 27.32 21.27 1.57 289.5 636.5
Cost 412.5 264.1 0.052 972.7 0.49 23.62 4.92 1.76 449.5 284.9
Balanced 280.2 205.1 0.036 1479.4 0.47 30.50 3.38 2.20 310.2 271.5
S-ENG 288.8 236.1 0.285 607.8 0.44 18.57 27.01 1.10 332.1 728.8
S-ENV 188.7 131.0 0.168 1,372.5 0.49 25.50 15.87 1.72 216.9 521.0

Fig. 9. Parallel plots for characteristic mixture designs of: (a) cementitious composites containing PolyPCM; and (b) cementitious composites containing CenoPCM.
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ing of both PolyPCM and CenoPCM, see Fig. 11 (b), due to the
higher price of MEPCMs compared with other constituents of
MEPCMs cementitious composites. Similarly, the specific cost of
cementitious composites containing CenoPCM is much lower than
its PolyPCM counterpart.

The CO2 saving of utilizing CenoPCM cementitious composites
is obvious for strength specified design applications. Assume a
nonstructural component such as building envelope have a mini-
mum VHF of 15 MJ/m3, then the specific CO2 saving is about
29.0 kg/m3. In other word, it saves about 71% of specific CO2 when

Fig. 11. CO2 footprint and cost of cementitious composites containing PolyPCM and CenoPCM normalized by compressive strength: (a) specific CO2; and (b) specific cost.

Fig. 10. Distributions of obtained optimal mixture design set for cement composites containing PolyPCM and CenoPCM: (a) strength; (b) volumetric heat of fusion (VHF); (c)
CO2 footprint; and (d) cost.
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adopting CenoPCM instead of PolyPCM. It is worthwhile to men-
tion that the decision on PCM type also depends on its market
availability, cost and properties of the PCM such as melting tem-
perature. A detailed discussion of the selection of PCM type is out-
side the range of this study, more information and discussion can
be found in references [2,53].

6. Conclusion remarks

This paper presents a physics-guided, multi-objective opti-
mization procedure for optimal mixture design of cementitious
composites containing functional fillers (i.e., microencapsulated
phase change materials, or MEPCMs). The mixture design proce-
dure developed herein combines physics-based models with
multi-objective optimization and multi-criteria decision making
(MCDM) methods to aid the mixture design decision-making
given a specific user defined preference (i.e., mechanical perfor-
mance, cost, sustainability, or functionality). The multi-
objective feasible enhanced particle swarm optimization
(MOFEPSO) algorithm and the technique for preference by simi-
larity to an ideal solution (TOPSIS) algorithm are used to find the
optimal mixture design sets and aid the decision-making. Func-
tional cementitious composites with two types of MEPCMs –
i.e., a polymer microencapsulated PCM (PolyPCM) and the rigid
shell cenosphere microencapsulated PCM (CenoPCM), are com-
pared in the case study. The results show that:

� Generally, the addition of MEPCMs leads to the reduction of
both thermal conductivity and elastic modulus, while cement
composites with the newly developed CenoPCM has greatly
improved mechanical performance and a much lower cost com-
pared with those with polymer microencapsulated PCM.

� The mixture design decision making charts allow mechanical,
thermal, environmental, and economic properties to be evalu-
ated concurrently, which enable users to quickly find potential
optimal mixture designs. Moreover, the different scenarios in
the TOPSIS decision making method allows the mixture design
process to be tailored for specific applications.

� The specific CO2 footprint and cost results show obvious savings
by using CenoPCM in comparison with PolyPCM in concrete
applications.

Future research efforts can be directed to the following two
aspects:

� Establishing the relationship between compressive strength
and mixture design variables through data-driven metamodels
(with sufficient data).

� Introducing more comprehensive energy performance (cost-
saving) indicators by coupling, e.g., building energy simulations,
in the analysis.
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