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A fundamental theory is presented for the mechanical response of polymer networks undergoing
large deformation which seamlessly integrates statistical mechanical principles with macroscopic
thermodynamic constitutive theory. Our formulation permits the consideration of arbitrary
polymer chain behaviors when interactions among chains may be neglected. This careful treatment
highlights the naturally occurring correspondence between single-chain mechanical behavior and
the equilibrium distribution of chains in the network, as well as the correspondences between
different single-chain thermodynamic ensembles. We demonstrate these important distinctions with
the extensible freely jointed chain model. This statistical mechanical theory is then extended to the
continuum scale, where we utilize traditional macroscopic constitutive theory to ultimately retrieve
the Cauchy stress in terms of the deformation and polymer network statistics. Once again using
the extensible freely jointed chain model, we illustrate the importance of the naturally occurring
statistical correspondences through their effects on the stress-stretch response of the network. We
additionally show that these differences vanish when the number of links in the chain becomes
sufficiently large enough, and discuss why certain methods perform better than others before this
limit is reached.

DOI: 10.1103/PhysRevE.102.012501.

I. INTRODUCTION

Understanding the mechanics of polymer networks is
important for improving and predicting the mechanical
behaviors of a wide range of polymeric materials, from
physically-crosslinked rubbers to mechanochemically-
responsive networks. Constitutive models that are
grounded in statistical mechanics are especially useful
because they allow the direct incorporation of molecu-
lar phenomena and thus a fundamental understanding of
the material. In order to establish a model with such
predictive power, one needs to proceed from the statisti-
cal mechanics of single polymer chains all the way to the
macroscopic mechanical behavior of the entire material.
The meticulous detail we offer here is required to retain
generality throughout this process.

Polymer network constitutive models often utilize a
single polymer chain statistical mechanical model. The
most common of these single chain models is the freely
jointed chain (FJC) model [1], where rigid links are con-
nected in series and allowed to rotate about the con-
necting hinges without change in energy. The mechan-
ical response of the FJC under end-to-end extension is
determined by the reduction in configurational entropy,
which is then directly connected to the equilibrium prob-
ability distribution of end-to-end lengths by Boltzmann’s
entropy formula [2]. For a large number of links or in
the case of an applied force, the mechanical response
and probability distribution of end-to-end lengths may
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be written analytically using the inverse Langevin func-
tion [3]. In the case of an applied extension, more so-
phisticated methods are necessary to obtain the mechan-
ical response and distribution of end-to-end lengths, such
as those using series expansions [4] or those that trans-
form between thermodynamic ensembles [5]. When the
number of links approaches infinity, the probability dis-
tribution of end-to-end lengths obeys Gaussian statis-
tics [6, 7], and for end-to-end length much smaller than
the contour length, the mechanics of the chain become
that of the ideal, linear chain [8]. When the end-to-end
length approaches the contour length, the FJC becomes
infinitely stiff due to its inextensibility. The FJC model
can be expanded to that of the extensible freely jointed
chain (EFJC) by replacing the rigid links with stiff har-
monic springs [9]. Now when the end-to-end length ap-
proaches the contour length, the EFJC begins to stretch
the stiff harmonic links and subsequently achieves end-
to-end lengths greater than the original contour length,
hence it is extensible. Another popular set of models
are the freely rotating chain (FRC) models, where the
FJC model is adjusted by fixing all bond angles and only
permitting torsional angles to freely rotate [10]. This
model cannot be solved analytically and therefore re-
quires careful numerical techniques [11]. For small bond
angles, the FRC model becomes the Kratky-Porod (or
discrete worm-like chain) model [12], and when the link
length additionally becomes small compared to the con-
tour length, the FRC model becomes the continuous
worm-like chain (WLC) model. Both the discrete and
continuous forms of the WLC model have been expanded
to include stiff harmonic springs [13]. Recent single chain
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constitutive models include covalent bond rupture [14]
and mechanochemically-activated bonds [15]. It is ap-
parent from this vast literature that the correspondences
between end-to-end length probability distribution, the
mechanical behavior, and the applied boundary condi-
tions (thermodynamic ensemble) are of vital significance.

Upon establishing a statistical description by way of
single chain mechanics, the model derivation must then
proceed to connect the macroscopic deformation of the
polymer network to this single chain description. This
is typically accomplished by way of constructing the
Helmholtz free energy density, prescribing some aspect
of the network evolution in terms of the macroscopic de-
formation, connecting the network evolution back to in-
dividual chains, and using 2nd law of thermodynamics
analysis. Most often the 2nd law analysis results in a hy-
perelastic model, which means that the stress is directly
related to the derivative of the free energy density with
respect to the deformation gradient. After choosing a
single chain model, the construction of the free energy
density for the network involves the choice of the dis-
tribution of initial chain lengths and orientations in the
network. Several models have used discretely-oriented
chains to represent the distribution of chains in the net-
work, such as the 3-chain [4, 16], 4-chain [17, 18], 8-chain
[19, 20], and 21 chain [21, 22] models. Other models
utilize a continuous orientation distribution of chains to
represent the network, where some assume that all end-
to-end lengths are initially the same [23, 24] and others
consider an initial distribution of end-to-end lengths [25–
27]. Polydispersity, i.e. varying contour lengths, may
be included in either the discrete [28, 29] or continuous
[30, 31] distribution formulations. An affine or non-affine
deformation of the distribution can be prescribed, where
the non-affinity can be a fundamental aspect of the initial
distribution [19] or based upon some physical constraint
[21, 32, 33]. Unfortunately, the natural correspondence
between the choice of single chain model and the chain
length distribution within the network tends to be ig-
nored in these models.

Despite decades of work, there remains a need for a
methodical and general statistical mechanics derivation
of polymer network mechanics such that the assump-
tions and their implications are apparent. The approach
taken here begins from fundamental statistical mechan-
ics, makes clear all assumptions and places emphasis on
the correspondences between the network distribution,
single chain mechanics, and the different thermodynamic
ensembles. Most preceding constitutive models make no
reference to such nuances, and as a result risk making
considerable mistakes. Furthermore, there has been no
study on the effects that these correspondences have on
the macroscopic mechanical response of the network and
when they may be ignored. Such an approach will also
take great care in stitching this general statistical descrip-
tion into the macroscopic description, performing a de-
tailed 2nd law analysis to retrieve the stress and making
sure that all neglected terms are truly negligible. Many

preceding constitutive models use considerable assump-
tions to construct the stress, lose generality by choosing a
specific chain model during the 2nd law analysis, and/or
neglect terms that could contribute to the stress without
proof that they can be neglected.

In this manuscript, we present a constitutive model for
polymer networks undergoing finite deformation that is
constructed with great detail. We begin in Section II A
from fundamental statistical mechanics, ensuring that
the correspondences between the distribution of chains
in the network and the mechanics of single chains are
understood and accounted for. We also account for the
differences between thermodynamic ensembles, ensuring
we utilize the correct ensemble and understand the cor-
respondence relations that allow us to go from one to
the other. Prescribing an affine deformation to the net-
work distribution, we extend the statistical theory to the
macroscale and perform a detailed 2nd law analysis in or-
der to retrieve the stress in Section II B. In the process,
we perform many mathematical manipulations in order
to maintain the generality of the model. This includes
the proof that a term produced when integrating by parts
is indeed zero for relevant chain models, which has been
previously taken for granted. With this detailed frame-
work, in Section III we are able to study the macroscopic
effects of the aforementioned statistical correspondences
and show that they are considerable when chains are not
sufficiently long. Throughout the manuscript, the EFJC
model is used to demonstrate the statistical correspon-
dences within the network and their effects on the macro-
scopic mechanical response of the network. This frame-
work will prove useful in constructing future constitutive
models for more complicated polymer networks.

II. GENERAL THEORY

A. Statistical mechanical description

Here we present a statistical mechanical description
of an ensemble of noninteracting polymer chains. The
statistical mechanical description naturally provides ex-
plicit relationships between the equilibrium distribution
of polymer chain end-to-end vectors and the Helmholtz
free energy of a polymer chain with a given end-to-end
vector; we refer to these as the distribution-behavior cor-
respondence relations. The original thermodynamic en-
semble (Helmholtz) for a single chain is parameterized by
an end-to-end vector, where a simple Laplace transforma-
tion allows parameterization by the end-to-end force in
another ensemble (Gibbs). Since we desire results from
the Helmholtz ensemble but are often only able to com-
pute the partition function in the Gibbs ensemble, en-
semble transformation relations between the two – both
exact and in the thermodynamic limit – are provided.
When obtaining the single chain free energy function
and the equilibrium distribution of end-to-end vectors,
we refer to the method that utilizes the exact transfor-
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FIG. 1. Diagram describing the exact (Helmholtz) and approximate (Gibbs-Legendre) methods of arriving at the single chain
Helmholtz free energy ψ∗(ξ) of a chain with end-to-end vector ξ and equilibrium probability distribution P eq(ξ) of chains with
that end-to-end vector. †The Gibbs-Legendre method is approximate since the necessary Legendre transformation is only valid
in the thermodynamic limit of long chains.

mation as the Helmholtz method, and that utilizing the
transformation in the thermodynamic limit as the Gibbs-
Legendre method; see Fig. 1 for a schematic. Next, we
illustrate these features of our statistical description us-
ing the EFJC model as an example chain model. We
complete the statistical theory by formulating the gen-
eral evolution law for the polymer network distribution
of end-to-end vectors.

1. Helmholtz ensemble

The polymer network is taken to be represented by an
ensemble of N indistinguishable noninteracting polymer
chains. The canonical partition function is then

Q =
qN

N !
, (1)

where the single chain partition function q is given by
a classical integration over the coordinates qj and mo-
menta pj of each of the M atoms in the chain [34],

q =
1

h3M

∫
· · ·
∫
e−βε

M∏
j=1

d3pj d
3qj . (2)

Here h is Planck’s constant and β = 1/kT is the inverse
temperature, with Boltzmann’s constant k and temper-
ature T . The Hamiltonian ε of the chain is

ε = u(q1, . . . ,qM ) +

M∑
j=1

p2j
2mj

, (3)

where u is the potential energy function describing inter-
action energies between atoms within the polymer chain,
and mj is the mass of jth atom in the chain. The mo-
mentum integrations are completed to write a portion of
the chain partition function:

qmom =

M∏
j=1

(
2πmjkT

h2

)3/2

. (4)

If we take the atomic coordinates relative to the first
atom along the chain backbone, rj = qj − q1, we can
complete the rigid body translation integration – where
the chain is translated over the whole volume – and pick
up a factor of V . We now have

q = qconqmomV, (5)

where the chain configuration integral qcon is then

qcon =

∫
· · ·
∫
e−βu

M∏
j=2

d3rj . (6)
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If the M th atom is the last atom along the chain back-
bone, we seek to calculate the probability density dis-
tribution P eq(ξ) that a chain has the end-to-end vector
rM = ξ at equilibrium. This means that the probability
that a chain has the end-to-end vector within d3ξ of ξ at
equilibrium would be P eq(ξ) d3ξ. We then write q∗, the
chain configuration integral corresponding to end-to-end
vector ξ, by integrating the Dirac delta function (δ)

q∗(ξ)=

∫
· · ·
∫
e−βu(r2,...,rM )δ3 (rM − ξ)

M∏
j=2

d3rj , (7)

=

∫
· · ·
∫
e−βu(r2,...,ξ)

M−1∏
j=2

d3rj . (8)

According to Boltzmann statistics, the probability of a
single chain configuration at thermodynamic equilibrium
is e−βu/qcon, so we integrate over all configurations that
have the end-to-end vector ξ in order to retrieve P eq(ξ),

P eq(ξ)=

∫
· · ·
∫
e−βu

qcon
δ3 (rM − ξ)

M∏
j=2

d3rj , (9)

=
q∗(ξ)∫∫∫
q∗(ξ̃) d3ξ̃

=
q∗(ξ)

qcon
, (10)

where ξ̃ is a dummy variable of integration; the tilde
will continue to denote dummy variables of integration.
If this equilibrium distribution is rotationally symmetric
(only varies with ξ =

√
ξ · ξ), we can use the equilibrium

radial distribution function

geq(ξ) = 4πξ2P eq(ξ). (11)

The chain Helmholtz free energy ψ∗ associated with q∗

is, from the principal thermodynamic connection formula
[34],

ψ∗(ξ) = −kT ln q∗(ξ), (12)

so we may finally write the equilibrium distribution as

P eq(ξ) =
e−βψ

∗(ξ)∫∫∫
e−βψ∗(ξ̃) d3ξ̃

, (13)

which, if ψ∗(ξref) = ψ∗ref is known for some ξref , we have

ψ∗(ξ) = ψ∗ref − kT ln

[
P eq(ξ)

P eq(ξref)

]
. (14)

We refer to Eqs. (13) and (14) as the distribution-
behavior correspondence relations, as they show a one-
to-one correspondence between the free energy of a chain
for a given end-to-end vector and the equilibrium distri-
bution of such end-to-end vectors.

2. Gibbs ensemble

The Gibbs ensemble releases the end-to-end vector
constraint of the Helmholtz ensemble and instead applies
an end-to-end force. The Helmholtz ensemble coincides
with the canonical ensemble (which has the Helmholtz
free energy as the principal thermodynamic potential),
but the Gibbs ensemble does not exactly coincide with
the isobaric-isothermal ensemble (which has the Gibbs
free energy as the principal thermodynamic potential),
despite an applied force seeming to be analogous to an
applied pressure. The naming of the Gibbs ensemble is
then perhaps a bit misleading, but we will continue to use
it since it seems to have become standard. The Gibbs en-
semble Hamiltonian is

ε = u(q1, . . . ,qM ) +
M∑
j=1

p2j
2mj

− f · (qM − q1), (15)

where f is the force that acts equally and oppositely on
atoms 1 and M at the ends of the polymer chain, and
qM −q1 = rM is the end-to-end vector of the chain. The
system partition function and the momentum partition
function take the same form as Eqs. (1) and (4), respec-
tively, and we receive the same factor of V from the rigid
body translation integration, but the chain configuration
integral corresponding to force f ,

z∗(f) =

∫
· · ·
∫
e−βueβf ·rM

M∏
j=2

d3rj , (16)

=

∫∫∫
q∗(ξ)eβf ·ξ d3ξ, (17)

is now utilized. The chain configuration integral corre-
sponding to the Gibbs ensemble is directly a Laplace
transform of the Helmholtz ensemble chain configura-
tion integral. The probability density distribution that
a chain experiences the force f at equilibrium P eq

z (f) is
then given by the ratio of z∗(f) to the integral of z∗(f)
over all end-to-end force vectors f . The principal thermo-
dynamic connection formula yields the Gibbs free energy
ϕ∗ associated with the force,

ϕ∗(f) = −kT ln z∗(f), (18)

from which we obtain the Gibbs ensemble distribution-
behavior correspondence relations:

P eq
z (f)=

e−βϕ
∗(f)∫∫∫

e−βϕ∗(f̃) d3f̃
, (19)

ϕ∗(f)= ϕ∗ref − kT ln

[
P eq
z (f)

P eq
z (fref)

]
. (20)
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3. Ensemble transformations

It has been demonstrated that the mechanical response
of a given polymer chain model can differ appreciably
between the two ensembles if the thermodynamic limit
(i.e. chains consisting of sufficiently many links) is not
satisfied [5]. This is an issue because while traditional
macroscopic constitutive theories require the Helmholtz
free energy of the system, single polymer chain partition
functions are often only solvable, if at all, in the Gibbs
ensemble. It is for this reason we require general formulae
to transform one ensemble into the other: Eq. (17) allows
one to retrieve the Gibbs ensemble from the Helmholtz
ensemble; its inversion, from Manca, et. al. [5], allows
one to retrieve the Helmholtz ensemble from the Gibbs
ensemble:

q∗(ξ) =

(
β

2π

)3 ∫∫∫
z∗(if)e−iβf ·ξ d3f . (21)

Eqs. (17) and (21) are the ensemble transformation rela-
tions. In the thermodynamic limit and under appreciable
loads [35–37], fluctuations become negligible and the free
energies of the two ensembles are related by the Legendre
transformation

ϕ∗(f) = ψ∗(ξ)− f · ξ. (22)

Therefore, in the limit of long chains, the mechanical
response of the chain can be obtained equivalently from
either ensemble:

f =
∂ψ∗

∂ξ
, ξ = −∂ϕ

∗

∂f
, (23)

and the two equilibrium distributions are related by

P eq
z (f)

P eq
z (fref)

= e−β(ψref−ϕref−f ·ξ)
[
P eq(ξ)

P eq(ξref)

]
. (24)

Eqs. (22) and (24) are the ensemble transformation rela-
tions in the thermodynamic limit.

4. Example polymer chain model

In order to demonstrate the above sets of equations,
we consider the EFJC model, where the polymer chain
is represented by M = Nb + 1 atoms/hinges connected
in series by Nb flexible links of rest length `b and har-
monic potential stiffnesses kb. Due to the nonzero poten-
tials, the mechanical response of this model will be due to
coupled contributions from both entropic and enthalpic
effects. The EFJC model has a Gibbs ensemble partition
function that can be evaluated analytically: it is given
by Fiasconaro and Falo [9] as

z∗(η) =

{
B0

sinh(η)

η
eη

2/2κ
[
1 +

η

κ
coth(η)

]}Nb
, (25)

where η = βf`b is the non-dimensional force, κ =
βkb`

2
b is the non-dimensional link stiffness, and B0 =

25/2π3/2β`3bκ
−1/2. For κ → ∞, we recover the freely

joined chain (FJC) Gibbs ensemble partition function
[10]. To retrieve the Helmholtz ensemble partition func-
tion we use Eq. (21), which in this case (spherically sym-
metric) as shown by Manca, et. al. [5] reduces to

q∗(λ) =
1

2π2Nb`3b

1

λ

∫ ∞
0

z∗(iη) sin(Nbηλ)η dη, (26)

where λ = ξ/Nb`b is the chain end-to-end stretch relative
to the contour length Nb`b. After using Eq. (26) to cal-
culate q∗, we then use Eq. (12) in order to calculate ψ∗

from q∗, and subsequently Eq. (13) to calculate P eq from
ψ∗. Although we have started from the Gibbs ensemble,
we have calculated ψ∗ and P eq exactly, which we will
refer to as the Helmholtz method (Fig. 1, top pathway).

The Helmholtz method is often computationally chal-
lenging, so simpler approximate methods are typically
used. When the thermodynamic limit Nb → ∞ is sat-
isfied, the Legendre transformation in Eq. (22) may be
used to calculate the Helmholtz free energy ψ∗ from the
Gibbs free energy ϕ∗. We will refer to this method as the
Gibbs-Legendre method (Fig. 1, bottom pathway). This
method is expedient if ϕ∗ is known exactly, which is true
in the case of the EFJC model. The exact value of ϕ∗

for the EFJC is calculated by plugging z∗ from Eq. (25)
into Eq. (18). To obtain the mechanical response in order
to perform the Legendre transformation, we use Eq. (23)
to obtain the non-dimensional end-to-end length in the
Gibbs ensemble

λ(η) = L(η) +
η

κ

[
1 +

1− L(η) coth(η)

1 + (η/κ) coth(η)

]
. (27)

Now we assume that the thermodynamic limit Nb → ∞
is satisfied and use Eq. (22) to calculate the Helmholtz
free energy for the EFJC to be

ψ∗(λ) =NbkT

{
ηL(η) + ln

[
η

sinh(η)

]
− ln

[
1 +

η

κ
coth(η)

]
− lnB0

+
η2

κ

[
1

2
+

1− L(η) coth(η)

1 + (η/κ) coth(η)

]}
, (28)

where we solve for η = η(λ) using Eq. (27) in order to
get ψ∗ = ψ∗(λ). The equilibrium distribution in the
thermodynamic limit is then calculated using Eq. (13),
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FIG. 2. Non-dimensional free energy per link versus end-to-end stretch for Nb = 3, 5, 10, and 25, for (a) κ = 50 and (b) κ = 5.
The free energy is plotted using both the Helmholtz and Gibbs-Legendre methods, as well as using the ideal model valid for
λ� 1; the Gibbs-Legendre and ideal results are independent of Nb.

P eq(λ)=
1

`3bC

(
sinh(η) [1 + (η/κ) coth(η)]

η exp [ηL(η)]

× exp

{
η2

κ

[
1

2
+

1− L(η) coth(η)

1 + (η/κ) coth(η)

]})Nb
, (29)

where C = C(Nb, κ) is such that the distribution is nor-
malized. For κ → ∞ in Eqs. (27) and (29), we recover
the FJC mechanical response λ = L(η) and probability
distribution in the thermodynamic limit [3].

An alternative approximation method is to assume a
Gaussian distribution for the equilibrium distribution.
This assumption is valid in the limit Nb → ∞ due to
the central limit theorem. In order to determine this
Gaussian distribution for the EFJC model, we first ap-
proximate the mechanical response in Eq. (27) for small
forces (η � 1) by the linear relation

λ(η) =
η

cκ
, cκ =

κ(κ+ 1)

κ2 + 6κ+ 3
, (30)

and subsequently the free energy in Eq. (28) by a
quadratic relation for η � 1. Combining these results
yields the small stretch (λ� 1) free energy

ψ∗(λ) =
3

2
cκNbkTλ

2. (31)

We now make use of this small stretch approximation to
construct the equilibrium distribution for Nb →∞ using
Eq. (13), which is then

P eq(λ) =

(
3cκ

2πNb`2b

)3/2

exp

(
−3

2
cκNbλ

2

)
. (32)

We remark that this distribution is a valid approxima-
tion for any stretch as long as Nb →∞, so it is common
to utilize this equilibrium distribution with the Gibbs-
Legendre method free energy function in order to ap-
proximate the full Helmholtz method.

Since the Gibbs-Legendre method is often used to ap-
proximate the true Helmholtz free energy, we plot the
EFJC non-dimensional free energy (βψ∗/Nb) as a func-
tion of end-to-end chain stretch (λ) for κ = 50 and vary-
ing Nb in Fig. 2(a), obtained using both the Helmholtz
and the Gibbs-Legendre methods, as well as the ideal
chain free energy. See that for small values of Nb the
difference in free energy between the Helmholtz and
Gibbs-Legendre methods is quite considerable, such as
for Nb = 3 where the relative difference is nearly constant
at 60% for λ ∈ (0.5, 1). As Nb increases, the difference
between the two methods shrinks, becoming quite small
when Nb = 25. We can also observe that the ideal chain
free energy, which matches the Gibbs-Legendre method
free energy at small stretch, does not match that of the
Helmholtz method until Nb becomes large. We repeat
this analysis for the smaller EFJC link stiffness (κ = 5)
in Fig. 2(b), where we observe the same trends but overall
smaller differences among the methods. This can be un-
derstood by reconsidering the Gibbs ensemble partition
function in Eq. (25) and the ensemble transformation re-
lation in Eq. (26). First consider the case of Nb → ∞,
where we will receive q∗(λ)→ z∗(η)e−Nbηλ from Eq. (26),
and where the Gibbs-Legendre method results will ex-
actly match that of the Helmholtz method. This is be-
cause z∗(iη) will decay rapidly as a function of η when
Nb becomes large and effectively contain a Dirac delta
function. Now for κ → 0, we see that z∗(iη) will also
decay rapidly as a function of η, which will also act as a
Dirac delta function via one definition,
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FIG. 3. Non-dimensional equilibrium radial distribution function versus end-to-end stretch for Nb = 3, 5, 10, and 25, for (a)
κ = 50 and (b) κ = 5. The distribution is plotted using the Helmholtz, Gibbs-Legendre, and Gaussian methods.

δ(η) = lim
κ→0+

1√
2πκ

e−η
2/2κ, (33)

which appears in z∗(iη) after recalling that B0 ∝ 1/
√
κ

in Eq. (25). This is why we observe smaller differences
between the Gibbs-Legendre and Helmholtz methods as
κ decreases. It can also be understood intuitively as a de-
creasing correlation between the links: the link degrees of
freedom in the Gibbs ensemble are completely indepen-
dent, while that in the Helmholtz ensemble are because of
the end-to-end length constraint. As κ decreases the link
degrees of freedom in the Helmholtz ensemble become
increasingly independent of each other, approaching the
κ = 0 limit where they are completely independent.

We plot the EFJC non-dimensional radial distribution
function (Nb`bg

eq) as a function of end-to-end stretch for
κ = 50 and varying Nb in Fig. 3(a). The radial distribu-
tion function is plotted using both the Helmholtz and the
Gibbs-Legendre methods, as well as the Nb →∞ limiting
Gaussian distribution. The Gibbs-Legendre distribution
tends to be quite different from the Helmholtz distribu-
tion for small values of Nb, while the Gaussian distribu-
tion tends to be a bit closer. By Nb = 25, the Gaus-
sian and Helmholtz distributions become nearly indistin-
guishable, and the Gibbs-Legendre distribution retains
only a small difference from the other two. We repeat
this analysis for a smaller EFJC link stiffness (κ = 5) in
Fig. 3(b), where we observe the same trends but overall
smaller differences among the methods. This difference
is again explained by the more rapidly decaying z∗(iη) in
Eq. (26) as κ decreases, as previously discussed. Though
the Gibbs-Legendre method free energy is immensely
closer to the Helmholtz method free energy than the ideal
chain free energy, we see here that the Gaussian distribu-
tion – obtained from the ideal chain free energy using the

distribution-behavior correspondence in Eq. (13) – tends
to be much closer to the Helmholtz method distribution
than the Gibbs-Legendre method distribution. Looking
back to Fig. 2, this is likely because the Gibbs-Legendre
method overestimates the single chain free energy in-
crease with stretch for smaller Nb, resulting in an un-
derestimate of the probability of chains at larger stretch
observed in Fig. 3 due to the distribution-behavior cor-
respondence relations.

5. Distribution evolution

We introduce P (ξ, t) as the probability density distri-
bution of chains with end-to-end vector ξ at time t, which
we presume to initially be in the equilibrium distribution,
P (ξ, 0) = P eq(ξ). Liouville’s equation [34] describes the
evolution of a probability density P in the single chain
phase space (atomic coordinates and momenta) as

∂P

∂t
= −

M∑
j=1

(
∂P

∂qj
· q̇j +

∂P

∂pj
· ṗj
)
. (34)

When we apply Liouville’s equation to P (ξ, t), the only
nonzero derivative we retrieve is that relating to the chain
end-to-end vector ξ = qM − q1, and thus the evolution
law for the distribution of end-to-end vectors is

∂P

∂t
= −∂P

∂ξ
· ξ̇, (35)

where ξ̇ = ξ̇(ξ, t) is left to be prescribed.
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B. Macroscopic constitutive theory

In order to extend our theory into the macroscale, we
prescribe an affine deformation to an incompressible net-
work and analytically solve for the distribution evolu-
tion. Equipped with this connection between the statis-
tical and continuum mechanics of the polymer network,
we use the Coleman-Noll procedure [38] to develop the
macroscopic constitutive theory. We choose the deforma-
tion gradient F and the temperature T as the indepen-
dent thermodynamic state variables. We presume these
thermodynamic state variables to be complete, allowing
us to consider time derivatives of constitutive functions
to be implicit, i.e. we may expand them in terms of
the time derivatives of the state variables. After some
derivation – including the full treatment of a boundary
integral term that, until now, has been either omitted or
otherwise assumed to be zero – we ultimately retrieve a
closed-form relation for the Cauchy stress in terms of the
applied deformation, the chain free energy function, and
the equilibrium distribution of end-to-end vectors.

1. Macroscopic connection

We assume that the evolution of end-to-end vectors is
affine with the deformation, ξ̇ = L ·ξ, where L = Ḟ ·F−1
is the velocity gradient. Eq. (35) then becomes

∂P

∂t
= −

(
∂P

∂ξ

)
· L · ξ. (36)

This first order linear partial differential equation can be
solved analytically using the method of characteristics
(See Appendix A). Under the initial conditions F(0) = 1
and P (ξ, 0) = P eq(ξ), the solution is

P (ξ, t) = P eq
[
F−1(t) · ξ

]
, (37)

which simply states that the probability density of a
chain having end-to-end vector ξ at time t is equal to
the probability density of that end-to-end vector mapped
backward to the corresponding end-to-end vector in the
equilibrium distribution.

2. Second law analysis

Now that we are equipped with the probability distri-
bution of polymer chains within the network as a func-
tion of the deformation, we write the current Helmholtz
free energy density of the network (a) by integrating the
probability-weighted free energy function over all end-to-
end vectors,

a(t) = n

∫∫∫
P (ξ, t)ψ∗(ξ) d3ξ − p(J − 1), (38)

where n = N/V is the number density of chains and p
is the pressure enforcing the incompressibility constraint
that J = det(F) = 1. Note that we have only included
contributions related to the chain configuration integral
and left out those related to the chain momentum inte-
gral. This is because the latter terms will only introduce
spherical terms to the stress (ideal gas law) and therefore
can be lumped into the pressure without loss of general-
ity. Thermodynamically admissible processes satisfy the
Clausius-Duhem inequality [39],

ȧ+ sṪ − σ : L ≤ 0, (39)

where s is the entropy density and σ is the Cauchy stress
tensor. This reduced form of the Clausius-Duhem in-
equality involves several classical assumptions that are
standard in the Coleman-Noll procedure, such as the ne-
glect of non-mechanical work, the constitutive relations
for the entropy flux and entropy source, and in this case
Fourier’s law for the heat flux [40]. We expand the im-
plicit time derivative of the Helmholtz free energy density
using our complete set of state variables,

ȧ =

(
∂a

∂t

)
T

+

(
∂a

∂t

)
F

(40)

=

(
∂a

∂F

)
T

: Ḟ +

(
∂a

∂T

)
F

Ṫ , (41)

and substitute this result back into Eq. (39) for

[(
∂a

∂T

)
F

+ s

]
Ṫ +

[(
∂a

∂F

)
T

· FT − σ

]
: L ≤ 0. (42)

We now consider the set of processes where the deforma-
tion is held fixed, L = 0, and the temperature is varied
arbitrarily. Since Ṫ can be any real number, positive
or negative, and this inequality must hold, we see that
the term in the first set of brackets must always be zero
and we receive the expected constitutive relation for the
entropy density

s = −
(
∂a

∂T

)
F

, (43)

and after going back to our original derivative notation,
we are left with the remaining dissipation inequality

(
∂a

∂t

)
T

− σ : L ≤ 0. (44)

Several steps are then taken in order to proceed from
Eq. (44) and retrieve the stress. We first neglect dissipa-
tive stresses, thus taking the equality in Eq. (44) and re-
ceiving a hyperelastic stress. Next, we take Eq. (38) and
assume spherical symmetry in ψ∗, which causes the stress
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to be non-polar. We then require that ψ∗ grows suffi-
ciently fast as ξ →∞, in order to show that the bound-
ary integral term resulting from integration by parts is
zero. The full derivation is presented in Appendix B and
yields the stress to be

σ(t) =n

∫∫∫
P eq

[
F−1(t) · ξ

](∂ψ∗
∂ξ

)(
ξξ

ξ

)
d3ξ

− [peq + ∆p(t)]1, (45)

where 1 is the identity tensor, the differential pressure
∆p(t) enforces incompressibility, and the equilibrium
pressure peq (from σ(0) = 0) is

peq =
n

3

∫
geq(ξ)

(
∂ψ∗

∂ξ

)
ξ dξ. (46)

The derivative of the chain Helmholtz free energy can
be replaced with the force using Eq. (23), but one must
be careful to ensure that the force is computed in the
Helmholtz ensemble: the force from the Gibbs ensemble
may only be used in the thermodynamic limit (Nb →∞).
If we utilize the ideal chain free energy from Eq. (31), one
can easily show that the Neo-Hookean model results, as
expected (see Appendix C).

C. Implementation

To close this section, we would like to point out some
important aspects of the model implementation. It hap-
pens that Eq. (26) is difficult to evaluate with the EFJC
partition function in Eq. (25) for moderate to large Nb,
which is due to the integrand oscillating rapidly and de-
caying slowly. While certain integration schemes may
perform reasonably well for small or large Nb, it is most
desirable to use an integration scheme that remains ac-
curate for the full range of Nb being considered. To eval-
uate this integral with high precision, we used the double
exponential quadrature scheme presented by Ooura and
Mori [41] and their Fortran script intdeo.f that imple-
ments it, as well as the arbitrary precision Fortran pack-
age MPFUN2015 provided by Bailey [42]. These calcula-
tions were carried out using the Extreme Science and En-
gineering Discovery Environment (XSEDE) Stampede2
cluster [43]. When calculating the integrals in Eq. (45)
in order to retrieve the stress, it is unwieldy to repeat-
edly call a function to exactly evaluate ψ∗(λ) for the
EFJC as λ→∞. See from Eqs. (27)–(28) that λ ∼ η/κ
and βψ∗ ∼ Nbη

2/κ as η → ∞, which combined shows
that βψ∗ ∼ Nbκλ

2 as λ → ∞. The neglected terms
in this asymptotic relation for ψ∗(λ) are quite small, so
the relation is accurate even for λ only moderately above
unity. Therefore, in order to greatly speed up the com-
putation of the stress at negligible cost to accuracy, we
fit a quadratic function to ψ∗ for large λ and call this
function instead when λ is above a certain value.

III. MACROSCOPIC RESULTS

Now that we have fully formulated the theory, we are
able to explicitly examine the effects that changes in the
statistical description have on the macroscopic mechan-
ics. Traditionally in polymer network constitutive mod-
eling, the Helmholtz ensemble has been approximated us-
ing the Legendre transformation from the Gibbs ensem-
ble, so we will start by examining the difference in macro-
scopic mechanical response when using these Helmholtz
and Gibbs-Legendre methods. Another common choice
in these constitutive models is to assume that the equi-
librium distribution is Gaussian, so we will then examine
how the true Helmholtz ensemble mechanical response
differs from that assuming the Gaussian distribution and
the Gibbs-Legendre free energy function; we will refer to
this as the Gibbs-Legendre-Gaussian method. In both
of these studies, we will see that a long enough polymer
chain causes all approaches to result in the same me-
chanical response. This convergence occurs before the
Nb → ∞ limit represented by choosing the ideal chain
free energy function and the Gaussian distribution, which
is the Neo-Hookean model.

We apply the Helmholtz and Gibbs-Legendre meth-
ods to a polymer network modeled to consist of EFJCs.
z∗ for the EFJC is given by Eq. (25). The Helmholtz
method takes z∗ and uses Eq. (26) to compute q∗, then
computes ψ∗ using Eq. (12) and P eq using Eq. (22). The
Gibbs-Legendre method assumes Nb →∞ in order to use
ψ∗ in Eq. (28) and P eq in Eq. (29). In both methods,
we compute the stress under uniaxial tension in the 1-
direction using Eq. (45), where the deformation gradient
is diagonal with components due to symmetry and incom-
pressibility, F22 = F33 = 1/

√
F11. In Fig. 4(a) we plot

the non-dimensional uniaxial stress βσ11/n versus the ap-
plied stretch F11 using the non-dimensional EFJC stiff-
ness κ = 50 and an increasing numbers of links Nb = 5,
10, and 25. The Neo-Hookean stress-stretch response
– retrieved through using Eq. (31) for ψ∗ and Eq. (32)
for P eq – is included for reference. For small numbers
of links such as Nb = 5, the Gibbs-Legendre method
drastically underestimates the overall stiffness of the true
stress response from the Helmholtz method. This differ-
ence shrinks as Nb increases, becoming only a tiny (but
increasing with stretch) difference when Nb = 25, analo-
gous to the differences between the free energy functions
and the equilibrium distributions shrinking in Figs. 2 and
3. We see that the two methods seem to converge be-
fore the limit Nb → ∞ is truly reached, where the Neo-
Hookean mechanical response would be retrieved. We
have repeated the same analysis for the lower stiffness
(κ = 5) in Fig. 4(b), where we observe the same behav-
ior as Nb increases, but in general less difference between
the two methods compared to the κ = 50 case for any
Nb. These features are independent of loading mode, as
is evident by the above analyses implemented for equib-
iaxial tension and simple shear (Fig. 5). For equibiaxial
tension we apply F11 = F22, where incompressibility re-
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FIG. 4. Non-dimensional uniaxial stress-stretch results for the EFJC network with (a) κ = 50 and (b) κ = 5, for Nb = 5, 10, and
25. This mechanical response is plotted using the true method (Helmholtz) and two approximation methods (Gibbs-Legendre,
Gibbs-Legendre-Gaussian). Shading indicates equal Nb value. The Neo-Hookean response is included as reference.

quires F33 = 1/F 2
11, and for simple shear we apply F12,

where F11 = F22 = F33 = 1.

As previously mentioned, the equilibrium distribution
P eq tends towards Gaussian as Nb → ∞. It is com-
mon for polymer network constitutive models to choose
a non-ideal free energy function ψ∗ but assume Nb is
large enough to warrant the use of the Gaussian P eq,
rather than the P eq from the distribution-behavior cor-
respondence relation given by Eq. (14). For the case of
the EFJC, the limit Nb → ∞ results in the Gaussian
P eq given by Eq. (32). In attempting to approximate
the true Helmholtz method in the limit as Nb →∞, one
would then assume a Gaussian equilibrium distribution
and either use the Helmholtz method or Gibbs-Legendre
method for ψ∗. We will neglect the case of the Helmholtz
method ψ∗ combined with the Gaussian P eq, since by
distribution-behavior correspondence, one could simply
find the true P eq after knowing ψ∗. In either case, the
macroscopic mechanical response will converge to that of
the true Helmholtz method when Nb becomes sufficiently
large.

We apply the Gibbs-Legendre-Gaussian method to a
polymer network modeled to consist of EFJCs. The
Gibbs-Legendre-Gaussian method uses ψ∗ from Eq. (28)
and the Gaussian P eq from Eq. (32). Taking the non-
dimensional EFJC stiffness κ = 50, in Fig. 4(a) we plot
the non-dimensional stress βσ11/n versus the applied
stretch F11 for increasing numbers of links Nb = 5, 10,
and 25. The Gibbs-Legendre-Gaussian method does well
matching the tangent stiffness and keeping the relative
error small at larger stretches, but tends to do poorly
at small to intermediate stretches (F11 ≤ 2). We also
see that this method seems to converge to the Helmholtz
method stress-stretch response before the limit Nb →∞

is truly reached, where the Neo-Hookean mechanical re-
sponse would be retrieved. We have repeated the same
analysis for the lower stiffness κ = 5 in Fig. 4(b), where
we observe the same trends but smaller relative errors,
since as previously discussed and shown in Fig. 3, the
distributions from different methods become more alike
for smaller κ.

When comparing the three methods in Figs. 4 and 5,
we see that the Gibbs-Legendre method tends to un-
derestimate the true mechanical response given by the
Helmholtz method, and the Gibbs-Legendre-Gaussian
method tends to overestimate it, especially at small
stretches. To understand this further, we can consider
the initial moduli in each case by applying an infinitesi-
mal deformation F = 1+E, where E is the infinitesimal
strain tensor. Straightforward analysis shows (see Ap-
pendix D) that the stress from Eq. (45) then becomes

σ(t) = µE(t)−∆p(t)1, (47)

where method-specific shear modulus µ is given by

µ =
8π

15
nkT

∫∫∫ (
−∂P

eq

∂ξ

)(
∂βψ∗

∂ξ

)
ξ4 dξ. (48)

We find ∆p by enforcing incompressibility via tr(E) = 0,
from which we find the initial moduli to be 3µ/2, 3µ, and
µ for uniaxial tension, equibiaxial tension, and simple
shear, respectively. For the Neo-Hookean model we re-
ceive µ = 2nkT , as expected, whereas for the other meth-
ods we cannot analytically compute the integral but in
general receive µ ≥ 2nkT . We can, however, compute the
shear modulus in specific cases: for Nb = 5 and κ = 50,
µ = 2.2322 for the Helmholtz method, µ = 2.1914
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FIG. 5. Non-dimensional (a) equibiaxial and (b) simple shear stress-stretch results for the EFJC network with κ = 50 for
Nb = 5, 10, and 25. This mechanical response is plotted using the true method (Helmholtz) and two approximation methods
(Gibbs-Legendre, Gibbs-Legendre-Gaussian). Shading indicates equal Nb value. The Neo-Hookean response is included as
reference.

for the Gibbs-Legendre method, and µ = 3.0215 for
the Gibbs-Legendre-Gaussian method. See that while
the Gibbs-Legendre method underestimates the mod-
ulus, the Gibbs-Legendre-Gaussian method drastically
overestimates it, which is why we observe a poor perfor-
mance of the Gibbs-Legendre-Gaussian method at small
stretches in Figs. 4 and 5. We see this difference even
persists when Nb = 25 and κ = 50 – where µ = 2.0309,
2.0306, and 2.1113 – and when Nb = 5 and κ = 5 – where
µ = 2.1020, 2.0804, and 2.3381 – for the Helmholtz,
Gibbs-Legendre, and Gibbs-Legendre-Gaussian meth-
ods, respectively. These differences in modulus oc-
cur because the Gibbs-Legendre-Gaussian method ig-
nores distribution-behavior correspondence. The Gibbs-
Legendre method tends to overestimate the free energy
(Fig. 2), which causes the Gibbs-Legendre method distri-
bution (Fig. 3) to underestimate the equilibrium amount
of chains at larger stretch. These two inaccuracies then
naturally cancel to some extent when integrating for the
modulus, but when a non-corresponding distribution is
instead used – such as in the Gibbs-Legendre-Gaussian
method – this cancellation does not occur. The Gaus-
sian distribution (Fig. 3) predicts an increased equilib-
rium number of chains at larger stretch, which combined
with the Gibbs-Legendre method overestimated free en-
ergy will produce a significantly overestimated modulus.
This also explains the poor convergence of the Gibbs-
Legendre-Gaussian method as Nb increases, which is es-
pecially evident from Fig. 5(b) where the Gibbs-Legendre
method is nearly exact for Nb = 25 while the Gibbs-
Legendre-Gaussian method is not. Therefore, it seems
that it is better to obey distribution-behavior correspon-
dence in using the Gibbs-Legendre method for small to
intermediate stretches and/or larger number of links. For

a large stretch and small number of links, it is seemingly
better to instead use the method with the more accu-
rate equilibrium distribution, which here is the Gibbs-
Legendre-Gaussian method. For a truly large number of
links, we can also be certain that either method will pro-
duce accurate approximations of the Helmholtz method
mechanical response.

IV. CONCLUSION

We have performed a fundamental statistical mechani-
cal derivation in order to account for the naturally occur-
ring correspondences between the mechanical behavior of
a single polymer chain and the equilibrium distribution
of a network of such chains. Correspondences between
different single-chain thermodynamic ensembles – both
exact and in the thermodynamic limit – as well as the
Gaussian limit of the equilibrium distribution in either
ensemble, were also accounted for and discussed in de-
tail using the extensible freely jointed chain model as an
example. This elaborate framework was then kept in-
tact as we considered the macroscopic constitutive the-
ory of the polymer network and derived the Cauchy stress
in terms of the affine deformation of a general network
of polymer chains. We used this constitutive relation
for the stress to illustrate that important distinctions in
the statistical description persist to play an important
role in the observed macroscopic mechanical response,
at least until the number of links in the polymer chains
becomes large. Obeying the distribution-behavior corre-
spondence relations allowed a more accurate approxima-
tion of the macroscopic stress at small to intermediate
deformations and/or longer chain lengths, even though
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this corresponding equilibrium distribution was a worse
match to the true distribution than the Gaussian ap-
proximation. However when chains are short and the
deformation is large, we saw that it was better to uti-
lize the Gaussian distribution, which can be attributed
to the extensive evolution the initial distribution under-
goes during large deformations. This meticulous treat-
ment is vital for future constitutive model construction
and is readily applicable to more complex polymer sys-
tems. This macroscopic framework is readily compatible
with any chain models that allow the equilibrium prob-
ability distribution to be normalized and are infinitely
extensible. Critically, this includes common biopolymer
models such as the wormlike chain model as long as the
extensible forms are used. This framework does not ac-
commodate potentials that simulate bond breaking such
as the Morse potential, but bond breaking could be cap-
tured by instead including a reaction pathway to broken
chains.
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Appendix A: Solution for the network distribution

We seek to analytically solve Eq. (36) in order to eval-
uate the probability distribution P (ξ, t) at any time un-
der the deformation F(t). A new set of variables is taken:
α = (ξ, t)T with gradient ∇α = (∂/∂ξ, ∂/∂t)T and vec-
tor b = ([L(t) · ξ] , 1)T . We may then rewrite Eq. (36) as
the concise linear partial differential equation

b(α) · ∇αP (α) = 0. (A1)

This type of partial differential equation can be solved
using the method of characteristics. The characteristic
solutions are parameterized by s in the system of first
order linear ordinary differential equations given by

dα

ds
=b[α(s)], (A2a)

dP

ds
=0. (A2b)

Eq. (A2a) is a vector equation with four components
(three for ξ, one for t). Consider the t component,

dt

ds
= 1, (A3)

which simply shows that t and s differ by a constant,
which we will now choose to be zero, thereby taking
t(s) = s. The ξ components of Eq. (A2a),

dξ

ds
= L(s) · ξ, (A4)

are solved after taking ξ(0) = ξ0 and F(0) = 1 by

ξ(s) = F(s) · ξ0. (A5)

Eq. (A2b) shows that P is constant when varying only s,

P [ξ(s), t(s)] = constant, (A6)

where using Eq. (A5) and t = s, and assuming we know
P at some previous time τ < t, we then have the solution

P [F(t) · ξ0, t] = P [F(τ) · ξ0, τ ] . (A7)

We are free to choose ξ0 = F−1 · ξ and retrieve

P (ξ, t) = P
[
(τ)F

−1(t) · ξ, τ
]
, (A8)

where we have used the deformation at t relative to the
deformation at a previous time previous time τ < t, de-
noted as (τ)F(t), given by Paolucci [40] as

(τ)F(t) = F(t) · F−1(τ). (A9)

Now, if we presume that the network is at equilibrium at
time τ = 0, we have P (ξ, 0) = P eq(ξ) and (0)F(t) = F(t),
and our solution then becomes

P (ξ, t) = P eq
[
F−1(t) · ξ

]
, (A10)

which is Eq. (37) from the manuscript.

Appendix B: Retrieving the stress

Starting with Eqs. (38) and (44), we seek to retrieve a
closed-form relation for the stress that does not include
gradients of the network distribution of end-to-end vec-
tors. We first relate the stress to the Helmholtz free en-
ergy using the hyperelastic formula (by way of neglecting
dissipative stresses) and the solution for the distribution
evolution in Eq. (36), where a spherical pressure term is
included due to incompressibility. We then perform in-
tegration by parts, and after proving that the resulting
boundary integral term is zero for relevant chain models,
we retrieve the stress as an integral function of the net-
work equilibrium distribution, the applied deformation,
and the single chain mechanical response.
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1. Simplifications and integration by parts

We begin by taking the time derivative of a given by
Eq. (38) under constant temperature, so that it can later
be used with Eq. (44),

(
∂a

∂t

)
T

=n

∫∫∫ (
∂P

∂t

)
T

ψ∗ d3ξ − p
(
∂J

∂t

)
T

, (B1)

where we know the evolution of P from Eq. (36), we
have chosen n to be constant due to the incompressibility
constraint (we are free to consider the n derivatives to
be nonzero and carry them through this derivation, but
at the end they will be lumped into the pressure since
they only produce spherical terms, thus leaving the same
results). For the last term, we use

(
∂J

∂t

)
T

= J1 : L. (B2)

Substituting (with J = 1) the above into Eq. (44) and
neglecting dissipative stresses (taking the inequality to
be an equality) then shows that the stress must be

σ = −n
∫∫∫ (

∂P

∂ξ

)
ψ∗ξ d3ξ − p1. (B3)

We now seek to rewrite the stress in a way that does not
include gradients of P . We perform the integration by
parts

∫∫∫ (
∂P

∂ξ

)
ψ∗ξ d3ξ =

∫∫
Pψ∗

(
ξξ

ξ

)
d2ξ

−
∫∫∫

P

[(
∂ψ∗

∂ξ

)
ξ + ψ∗1

]
d3ξ,

(B4)

where the double integral is along the boundary ξ → ∞
with unit normal vector ξ̂ = ξ/ξ, and d2ξ is the surface
element. We are free to lump the spherical term into p1
without loss of generality. Note that we have not taken
into account that the molecular partition functions may
depend on the volume – this dependence would produce
more spherical terms that would also now be lumped into
p. The stress is now written as

σ =n

∫∫∫
P

(
∂ψ∗

∂ξ

)
ξ d3ξ − n

∫∫
Pψ∗

(
ξξ

ξ

)
d2ξ − p1.

(B5)

If we then assume that ψ∗ is rotationally symmetric, we
receive the non-polar stress

σ =n

∫∫∫
P

(
∂ψ∗

∂ξ

)(
ξξ

ξ

)
d3ξ

−n
∫∫

Pψ∗
(
ξξ

ξ

)
d2ξ − p1. (B6)

Taking the term from the integration along the boundary
to be zero, taking p = peq + ∆p, and using the solution
for P in Eq. (37), we receive

σ(t) =n

∫∫∫
P eq

[
F−1(t) · ξ

](∂ψ∗
∂ξ

)(
ξξ

ξ

)
d3ξ

− [peq + ∆p(t)]1, (B7)

which is Eq. (45) from the manuscript. In the following
section we discuss the boundary integral stress term in
depth.

2. The boundary integral stress term

We now consider the stress from the integration along
the boundary in Eq. (B6) in order to show that it is
zero for arbitrary deformations as long as ψ∗ satisfies
certain growth criteria. Using Eq. (37) and taking dS =
(ξ/ξ) d2ξ, the boundary integral stress term is

σ̂ = n

∫∫
P eq

(
F−1 · ξ

)
ψ∗(ξ)ξ dS. (B8)

We recall that ψ∗ had been assumed to be rotationally
symmetric, and the boundary is along ξ →∞, so we may
take ψ∗ out of the integrand and write

σ̂ = n lim
ξ→∞

[ψ∗(ξ)]
∫∫

P eq
(
F−1 · ξ

)
ξ dS. (B9)

We take the change of variables ξ 7→ F · ξ, where as
pointed out by Paolucci [40], the surface element trans-
forms as dS 7→ JF−T · dS. We also use J = 1 and then
receive

σ̂ = n lim
ξ→∞

[ψ∗(ξ)]
∫∫

P eq (ξ) (F · ξ)F−T · dS. (B10)

Since ψ∗ is rotationally symmetric, by the distribution-
behavior correspondence in Eq. (13) P eq is rotationally
symmetric as well. We may then remove P eq from the
integrand along with the deformation terms for

σ̂ = n lim
ξ→∞

[
ψ∗(ξ)P eq(ξ)

]{
FF−T :

∫∫
ξ dS

}
, (B11)

and now we use dS = ξξ dΩ, where dΩ is the differential
solid angle, and remove factors of ξ from the integrand
to finally write σ̂ as
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σ̂ =

(
4πn

3
1

)
lim
ξ→∞

[
ξ3ψ∗(ξ)P eq(ξ)

]
, (B12)

where the term in the parentheses was retrieved from

FF−T :

∫∫
ξ̂ξ̂ dΩ = F ·

(
4π

3
1

)
· F−1 =

4π

3
1. (B13)

So far we have shown that the stress contributed by σ̂ is
spherical, and could therefore be lumped into the pres-
sure term −p1, as long as it is finite. We are then tasked
with proving that the limit in Eq. (B12) is finite, but we
will instead prove it is zero. We will accomplish this by
requiring that ψ∗ grows sufficiently fast as ξ → ∞, and
using l’Hôpital’s rule and the squeeze theorem. To start,
we require that the growth of ψ∗ as ξ → ∞ is greater
than that of a logarithm function, i.e.

lim
ξ→∞

[
ψ∗(ξ)
c ln(ξ)

]
=∞, ∀c > 0. (B14)

This is required to guarantee that the denominator of
Eq. (13) is finite, but we will use it here as well. Take
Eq. (13) with the denominator now understood to be a
finite constant, thus eliminating it, as we use the limit in
Eq. (B12) to define the functional of ψ∗(ξ),

W (ψ∗) = lim
ξ→∞

[
ξ3ψ∗(ξ)

eβψ∗(ξ)

]
, (B15)

where we can assume that β > 0. See from Eq. (B14) that
we have already required that ψ∗ is positive as ξ → ∞,
so we have in turn required that W (ψ∗) ≥ 0. Also see
from Eq. (B15) that W (ψ∗) ≤ W (c ln ξ) for all ψ∗ that
satisfy the requirement from Eq. (B14), so together we
have

W (c ln ξ) ≥W (ψ∗) ≥ 0, ∀c > 0. (B16)

Next, let us consider the special (albeit prohibited for
admissible ψ∗) case of ψ∗ = c ln ξ, where we repeatedly
use l’Hôpital’s rule to show

W (c ln ξ) = lim
ξ→∞

[
cξ3 ln ξ

ξcβ

]
, (B17)

= lim
ξ→∞

[
6ξ3−cβ

β(cβ − 1)(cβ − 2)(cβ − 3)

]
, (B18)

in order to see that W (c ln ξ) = 0 for all cβ > 3. Since
Eq. (B16) holds for all cβ > 3, by the squeeze theorem we
retrieve W (ψ∗) = 0 for any ψ∗ that satisfies Eq. (B14).
Thus, the stress from the integration along the boundary
must be zero, σ̂ = 0, for any rotationally symmetric ψ∗

that grows faster than logarithmically as ξ →∞. This is
true for the EFJC model considered here.

Appendix C: Reduction to Neo-Hookean model

The Neo-Hookean model is retrieved when the ideal
chain free energy in Eq. (31) and the corresponding equi-
librium distribution in Eq. (32) are utilized. Substitution
of these into the stress from Eq. (45) yields

σ =
nkT

(2π)3/2

∫∫∫
exp

(
−1

2

∥∥F−1 · v∥∥2
2

)
vv d3v

− [peq + ∆p]1, (C1)

where we have made convenient use of the new non-
dimensional variable

v = λ
√

3cκNb = ξ

√
3cκ
Nb`2b

, (C2)

and where ‖a‖22 = a · a. We may take the change of
variables v 7→ F · v, where d3v is unaltered due to in-
compressibility, to instead write the stress as

σ =
nkT

(2π)3/2

(
FFT :

∫∫∫
e−v

2/2 vv d3v

)
− [peq + ∆p]1. (C3)

This integral can be directly computed,

∫∫∫
e−v

2/2 vv d3v = (2π)3/2 1, (C4)

and we compute the same type of integral in order to
retrieve peq = nkT . Our end result is now seen to be

σ(t) = nkT [B(t)− 1]−∆p(t)1, (C5)

which is exactly the incompressible Neo-Hookean model
with shear modulus nkT .

Appendix D: Infinitesimal deformation

Here we seek to find the reduced form of the stress from
Eq. (45) when an infinitesimal deformation F = 1+E is
applied, where E2 ≈ 0. Incompressibility is now enforced
via tr(E) = 0, and the inverse is F−1 = 1− E. We take
P eq(F−1 · ξ) appearing in Eq. (45), which we can write
in term of ψ∗(F−1 ·ξ) using Eq. (13), and is expanded as

ψ∗(F−1 · ξ) = ψ∗(ξ)−E :

(
∂ψ∗

∂ξ
ξ

)
+O(E2). (D1)

We substitute this into Eq. (13) to obtain

P eq(F−1 · ξ) = P eq(ξ)e
E:

(
∂βψ∗
∂ξ ξ

)
+O(E2)

. (D2)
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The equilibrium pressure peq is the form of the stress
when F = 1, so we will receive a term in the integrand
of the following form, which is simplified for small E as

P eq(ξ)

[
e
E:

(
∂βψ∗
∂ξ ξ

)
+O(E2) − 1

]
= P eq(ξ)

[
E :

(
∂βψ∗

∂ξ
ξ

)
+O(E2)

]
, (D3)

= E :

(
−∂P

eq

∂ξ
ξ

)
+O(E2). (D4)

We now recall that both P eq and ψ∗ are spherically sym-
metric, and substitute into Eq. (45) for

σ =n

∫ ∞
0

(
−∂P

eq

∂ξ

)(
∂ψ∗

∂ξ

)
ξ4 dξ

×E :

∫∫
ξ̂ξ̂ξ̂ξ̂ dΩ−∆p1 +O(E2). (D5)

Now, after completing the integral

E :

∫∫
ξ̂ξ̂ξ̂ξ̂ dΩ =

4π

15
[2E + tr(E)1] , (D6)

where tr(E) = 0 here, and then defining the shear mod-
ulus as

µ =
8π

15
nkT

∫∫∫ (
−∂P

eq

∂ξ

)(
∂βψ∗

∂ξ

)
ξ4 dξ, (D7)

we can finally write the stress as

σ(t) = µE(t)−∆p(t)1 +O(E2), (D8)

which are Eqs. (47) and (48) from the manuscript.
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