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Abstract—Under the needs of processing huge amounts of
data, providing high-quality service, and protecting user privacy
in Artificial Intelligence of Things (AIoT), federated learning
(FL) has been treated as a promising technique to facilitate
distributed learning with privacy protection. Although the im-
portance of developing privacy-preserving FL has attracted a
lot of attentions, the existing research only focuses on FL
with independent identically distributed (i.i.d.) data and lacks
study of non-i.i.d. scenario. Whats’ worse, the assumption of
i.i.d. data is impractical, reducing the performance of privacy
protection in real applications. In this paper, we carry out an
innovative exploration of privacy protection in FL with non-
i.i.d. data. First, a thorough analysis on privacy leakage in
FL is conducted with proving the performance upper bound
of privacy inference attack. Based on our analysis, a novel
algorithm, 2DP-FL, is designed to achieve differential privacy by
adding noise during training local models and when distributing
global model. Especially, our 2DP-FL algorithm has a flexibility
of noise addition to meet various needs and has a convergence
upper bound. Finally, the real-data experiments can validate the
results of our theoretical analysis and the advantages of 2DP-FL
in privacy protection, learning convergence, and model accuracy.

Index Terms—Privacy Protection, Federated Learning, Differ-
ential Privacy, Convergence Analysis, Artificial Intelligence of
Things (AIoT)

I. INTRODUCTION

The explosive progress and widespread deployment of
Internet of Things (IoT) are being leveraged to advanced
ubiquitous data sensing and collection across every corner
in our life. In addition, with the growing demand for high-
quality customized services by IoT users, IoT is desired
to be endowed with more powerful learning capacities by
Artificial Intelligence (AI) to process the enormous amount
of data in data-hungry applications, such as smart city, smart
transportation, and smart healthcare. During past decades,
machine learning methods have been typically trained in a
centralized manner via collecting all the generated data to a
central server, which performs well for accuracy but fail to
satisfy the needs of Artificial Intelligence of Things (AIoT)
due to its essential flaws: (i) data collection for such an
amount of data brings expensive cost to communications;
(ii) single point failure threats the centralized storage and
model easily once attackers are able to access the server;
and (iii) with users’ ever-increasing privacy awareness and
governments’ sophisticated privacy regulations, it becomes
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harder to encourage users to contribute their valuable private
data to central storage and processing. All of these above
issues raise unprecedented challenges for machine learning in
AIoT – how to effectively and efficiently learn information
from massive data without unexpected privacy leakage?

Fortunately, the advent of distributed learning technologies
provide us with promising solutions, among which federated
learning (FL) [1] is one of the most eye-catching paradigms.
In FL, geographically distributed participants collaboratively
learn a global model over their local datasets by sharing
their local outputs for aggregation, which significantly reduce
communication cost (e.g., bandwidth and transmission time)
and mitigate privacy leakage from participants’ raw data.
However, though FL separates data and models with privacy
consideration, it is far away from perfect privacy protection. As
pointed out by prior research, FL still suffers malicious attack
aiming at stealing private information, such as membership
privacy [2], model privacy [3], and attribute privacy [4]. On
the other hand, in order to resist the threats of privacy leakage,
secure multi-party computation (SMC) [5] and differential pri-
vacy (DP) [6], [7], [8], [9], [10] have been widely employed to
design various privacy-preserving FL schemes. Nevertheless,
the existing works on privacy threats and privacy protection
in FL are limited to the impractical assumption that clients’
datasets are independent identically distributed (i.i.d.). Until
now, only few works on FL consider the non-i.i.d. data, and
none of them is related to privacy issue. In fact, the generated
data in AIoT usually has highly skewed distribution and even
belongs to different data domains; that is, clients are likely to
own non-i.i.d. datasets.

For the purpose of better protecting private information,
this paper intends to fill the gap of investigating privacy-
preserving FL under non-i.i.d. scenario. Our research endeavor
starts with a comprehensive and deep analysis on the issue
of privacy leakage in the original FL system by taking into
account both passive and active privacy inference attack.
Through our theoretical proof, the performance upper bound
of privacy inference in FL is obtained, and the influence of FL
scenario (including clients’ data size and the difference of data
distribution, etc.) on such a performance upper bound is clearly
analyzed. Furthermore, a Dual Differentially Private FL (2DP-
FL) is elaborately designed to defend privacy inference attack
while guaranteeing a convergence upper bound. Particularly,
with the flexible noise addition, our 2DP-FL mechanism can
meet the different needs for privacy protection. In the real-
data experiments, the feasibility of our considered inference
attack, the effectiveness of our 2DP-FL mechanism, and the
superiority of our 2DP-FL mechanism over the state-of-the-
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art are well validated. The contributions of this paper are
summarized as follows:
• To our best knowledge, this is the first work to theoreti-

cally analyze privacy leakage in FL with non-i.i.d. setting,
in which the upper bound of inferring privacy is obtained.

• To defend privacy inference attack, we propose a DP-
based FL mechanism, 2DP-FL.

• Our 2DP-FL mechanism is proved to be effective with a
convergence upper bound.

• Intensive experiments are conducted to eveluate our the-
oretical analysis on privacy leakage as well as the advan-
tages of 2DP-FL mechanism in achieving convergence,
protecting privacy, and maintaining model accuracy.

This paper is organized as follows. Related works are
introduced in Section II. We first analyze privacy leakage in
FL in Section IV and then present our 2DP-FL mechanism in
Section V. Real-data experiments are conducted in Section VI.
After that, this paper is concluded in Section VII.

II. RELATED WORKS

As FL has attracted more and more attentions of research
and application, various vulnerabilities of FL models have
been explored to launch attacks, mainly including inference
attack [11], [12], [2] and poisoning attack [13], [14], [15].
To learn local users’ data privacy, Melis et al. [11] deveoped
membership inference attack by using non-zero gradients of
the embedding layer of a deep natural language processing
model. A Generative Adversarial Networks (GAN)-based ac-
tive inference attack was designed by Hitaj et al. [12] to
generate targeted private samples of the victim client. In [2],
authors reviewed the privacy leakage in FL and then developed
an inference attack model via using each layer’s gradient of
the target model. Data poisoning attack of [13] modified the
training data through flipping data label and changing features
or small regions. In [14], model poisoning attack embedded a
global backdoor trigger in FL models, which is achieved by
inserting hidden backdoors into a subset of local clients before
updating to the server. In [15], by modeling the interactions
between training loss and attack performance as an adversarial
min-max game, the authors designed model poisoning attack to
bypass the poisoning detection tool of FL systems. However,
most of the attack models are experiment-oriented and lack
theoretical analysis on the attack factors and performance.

To protect data privacy in FL, secure multi-party computa-
tion (SMC) [5] and differential privacy (DP) [6] are commonly
used solutions. Although SMC offers a strong security guar-
antee, the complicated computation protocols yield potentially
unaffordable overheads for small devices, such as mobile
devices. Existing works incorporate DP into FL from different
aspects [7], [8], [9], [10]. McMahan et al. [7] introduced the
first DP-based FL proposal for protecting the privacy of a
recurrent language model. In [8], an asynchronous FL was
designed for mobile edge computing in urban informatics
using local differential privacy to protect the privacy of self-
driving vehicles. Agarwal et al. [9] studied the optimal com-
munication cost with binomial mechanism for FL under certain
DP conditions. In [10], DP-based noise was added twice for

TABLE I
NOTATIONS USED IN THIS PAPER

Notation Definition
X Feature space of data
Y Label space of data
L Loss function of federated model
Lk Loss function of k-th local client model
∇L Gradient of Loss function L
∇Lk Gradient of Loss function Lk

p Global data distribution of X
pk Data distribution of k-th client
F Learning function of model
Fi i-th digit of the learning function F
K Number of local clients
Dk Training dataset on k-th local client
nk The number of data in Dk

wft Model parameter of federated model at time t
wkt Model parameter of local client k at time t
w̃ft DP federated model at t when server noise is 0
w̃kt DP model of client k at t when server noise is 0
ẇft DP federated model in our method
ẇkt DP model of client k in our method
Nf
t DP noise added by server at time t

Nk
t DP noise added by local client at time t

data privacy in FL – the first time is after training local client
models and before updating local model parameters, and the
second time is during the process of parameter aggregation.
But, all of these current works only focus on FL with i.i.d.
scenario.

III. SYSTEM MODEL & PROBLEM FORMULATION

FL is a distributed learning paradigm that allows geograph-
ically distributed participants to follow a common training
procedure with the same objective and loss functions to build
a federated model on a server using their local datasets.
The federated model parameter is learnt by aggregating local
participants’ model parameters through FedAvg algorithm [1]:
wft =

∑K
k=1

nk

|D|w
k
t , where wft and wkt are the federated model

parameter and client k’s model parameter, respectively, nk is
the size of client k’s dataset, and |D| =

∑K
k=1 n

k.
As shown in Fig. 1, in this paper, we consider that a feder-

ated learning model F is trained for C classes on the dataset
(X,Y ), where X is the feature space, and Y ={1, . . . C} is
the set of all class labels. The classifier in FL is reversible,
such as liner regression and logistic regression. The goal of
federated learning is to obtain an optimized model parameter
wft that minimizes the loss function in Eq. (1).

L(wft ) ,
K∑
k=1

nk

|D|

C∑
i=1

pk(y = i)Ex|y=i[logFi(x,wft )], (1)

where Fi denotes the probability of a datapoint belonging to
the i-th class of Y .

It is worth noticing that in this paper, all clients’ local
datasets are non-i.i.d, i.e., Dk is non-i.i.d. For the expected
training goal, each client k optimizes his local model param-
eter wkt to minimize the loss function Lk(wkt ) on the local
dataset that follows distribution pk, i.e.,

Lk(wkt ) =E(x,y)∼pk [
C∑
i=1

1y=i logFi(x,wkt )] (2)

=
C∑
i=1

pk(y = i)Ex|y=i[logFi(x,wkt )].
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Fig. 1. The framework of federated learning (FL).

To obtain the optimal parameter wkt , gradient descent-based
method is used to solve the optimization problem iteratively
with the following equation:

wkt = wkt−1 − η∇wLk(wkt−1) (3)

= wkt − η
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wkt−1)],

where η is the selected learning rate.
Theoretically, four common assumptions are considered to

facilitate performance analysis on FL [16], [10], [17].
1) Bounded and Unbiased Gradient. The gradient of

each local loss function ∇Lk(w) is bounded, and the
estimator of global loss function’s gradient ∇L(w) is
unbiased:

‖∇Lk(w)‖ ≤ G;∇L(w) = E{∇Lk(w)}. (4)

2) Lipschitz Continuity. The global loss function L(w) is
Lipschitz continuous:

‖L(w)− L(w̄)‖ ≤ λ‖w − w̄‖, (5)

where λ is Lipschitz constant.
3) Lipschitz Continuous Gradient. The gradient of each

local loss function Lk(w) is Lipschitz continuous:

‖∇Lk(w)−∇Lk(w̄)‖ ≤ µ‖w − w̄‖, (6)

where µ is Lipschitz constant.
4) Polyak-Lojasiewicz (PL) inequality. The global loss

function L(w) has strong convexity and satisfies Polyak-
Lojasiewicz (PL) inequality:

τ(L(w)− L(w∗)) ≤
1

2
‖∇L(w)‖2, (7)

where w∗ is the optimal model parameter.

IV. PRIVACY LEAKAGE OF FEDERATED LEARNING

A. Privacy Leakage Analysis

Although every client and the server in FL cannot directly
access others’ local data, private information can still be
inferred from the shared model parameters. Especially, at the
end of FL, every client holds wft that contains the information
about other clients and can be used to infer other clients’
privacy via passive attack and/or active attack.

Typically, a classifier C is represented as a parametric
function: C(x,w) = y. If there exists an inverse function,
we can compute x = C−1(y, w). As a result, given the model
parameter w and output label y of C, the corresponding input x
can be inferred. Under this situation, any client k in FL is able
to learn other clients’ private information when knowing C−1

and wft . For example, as a type of preimage privacy attack,
model inversion attack [18] can recover the input data in FL.

Theorem 1: Given a classifier C and an output label y, if
C is reversible and Lipschitz continuous, the distance between
the real input x and the inferred input x′ has an upper bound:
‖x − x′‖ ≤ λ‖w − w′‖, where λ is the Lipschitz constant,
w is the real model parameter, w′ is the parameter used for
inference attack.

Proof: For a reversible discriminative model C, there are
C(x,w) = y and x = C−1(y, w). Accordingly, the inference
result is x′ = C−1(y, w′). From the Lipschitz continuity of C,
we have ‖x−x′‖ = ‖C−1(y, w)−C−1(y, w′)‖ ≤ λ‖w−w′‖.

Furthermore, Theorem 1 can be extended to a generic
attack scenario. Any honest-but-curious client k can infer other
clients’ data by analyzing wft and/or wkt . What’s worse, the
inference performance of any client k has an upper bound,
which is demonstrated in Theorem 2 and Theorem 3.

Theorem 2: Given K clients in federated learning, each
client k’s local dataset has a size nk and a distribution pk. If
∇wEx|y=i[logFi(x,w)] is αx|y=i-Lipschitz for ∀i ∈ Y , and
each local model parameter wkmT is updated to the server every
m local iterations, then the distance between the federated
model parameter wfmT and any target local model parameter
wjmT after T updates is upper bounded by Eq. (8):

‖wfmT − w
j
mT ‖ ≤

K∑
k=1

nk

|D|
[(bk)m‖wj

m(T−1)
− wkm(T−1)‖ (8)

+ η

C∑
i=1

‖pj(y = i)− pk(y = i)‖(
m−1∑
l=0

(bk)lgmax(wjmT−1−l))],

where gmax(·) is the maximal gradient of model parameter.
Proof: To prove this theorem, there are two cases for

consideration: m = 1 and m > 1.
When m = 1, Eq. (9) can be obtained.

‖wfmT − w
j
mT ‖ = ‖

K∑
k=1

nk

|D|
wkmT − w

j
mT ‖ (9)

=‖
K∑
k=1

nk

|D|
(wkmT−1 − η

C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wkmT−1)])

− wjmT−1 + η

C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,wjmT−1)]‖

≤‖
K∑
k=1

nk

|D|
wkmT−1 − w

j
mT−1‖

+ ‖η
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,wjmT−1)]

−
K∑
k=1

nk

|D|
η
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wkmT−1)]‖.

For the first term at the right side of the inequality
in Eq. (9), we have ‖

∑K
k=1

nk

|D|w
k
mT−1 − wjmT−1‖ =∑K

k=1
nk

|D|‖w
k
mT−1 − w

j
mT−1‖. The second term at the right

side of the inequality in Eq. (9) can be rewritten as:

‖η
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,wjmT−1)] (10)

−
K∑
k=1

nk

|D|
η
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wkmT−1)]‖
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=η

K∑
k=1

nk

|D|
‖
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,wjmT−1)]

−
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wkmT−1)]‖

=η

K∑
k=1

nk

|D|
‖
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,wjmT−1)]

−
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wjmT−1)]

+
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wjmT−1)]

−
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wkmT−1)]‖

≤η
K∑
k=1

nk

|D|
[
C∑
i=1

‖pj(y = i)− pk(y = i)‖∇wEx|y=i[logFi(x,wjmT−1)]

+

C∑
i=1

pk(y = i)(∇wEx|y=i[logFi(x,wjmT−1)]

−∇wEx|y=i[logFi(x,wkmT−1)])].

Since ∇wEx|y=i[logFi(x,w)] is αx|y=i-Lipschitz for ∀i ∈
Y , Eq. (10) can be written as:

η

K∑
k=1

nk

|D|
[

C∑
i=1

‖pj(y = i)− pk(y = i)‖∇wEx|y=i[logFi(x,wjmT−1)]

+

C∑
i=1

pk(y = i)αx|y=i‖w
j
mT−1 − w

k
mT−1‖] (11)

≤η
K∑
k=1

nk

|D|
[

C∑
i=1

‖pj(y = i)− pk(y = i)‖gmax(wjmT−1)

+
C∑
i=1

pk(y = i)αx|y=i‖w
j
mT−1 − w

k
mT−1‖],

where gmax(·) is the largest gradient of weight matrix wjmT−1.
By combining Eq. (10) and Eq. (11), Eq. (9) can be

equivalently simplified as Eq. (8), i.e.,

‖wfmT − w
j
mT ‖

≤
K∑
k=1

nk

|D|
[(1 + η

C∑
i=1

pk(y = i)αx|y=i)‖w
j
mT−1 − w

k
mT−1‖

+η

C∑
i=1

‖pj(y = i)− pk(y = i)‖gmax(wjmT−1)].

That is, this theorem holds when m=1.
When m > 1, additional analysis is addressed below.

‖wjmT−1 − w
k
mT−1‖

=‖wjmT−2 − η
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,wjmT−2)]

− wkmT−2 + η

C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wkmT−2)]‖

≤‖wjmT−2 − w
k
mT−2‖

+ η‖
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,wkmT−2)]

−
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,wjmT−2)]‖.

Following the same analysis in Eq. (11), we get Eq. (12).

‖wjmT−1 − w
k
mT−1‖

≤(1 + η
C∑
i=1

pk(y = i)αx|y=i)‖w
j
mT−2 − w

k
mT−2‖

+η
C∑
i=1

‖pj(y = i)− pk(y = i)‖gmax(wjmT−2). (12)

Let bk = (1 + η
∑C
i=1 p

k(y = i)αx|y=i). Since bk is a
constant greater than 1, Eq. (12) is rewritten as:

‖wjmT−1 − w
k
mT−1‖ (13)

≤bk‖wjmT−2 − w
k
mT−2‖+ η

C∑
i=1

‖pj(y = i)− pk(y = i)‖gmax(wjmT−2)

≤(bk)2‖wjmT−3 − w
k
mT−3‖+

η

C∑
i=1

‖pj(y = i)− pk(y = i)‖(gmax(wjmT−2) + bkgmax(wjmT−3))

...

≤(bk)m−1‖wj
m(T−1)

− wkm(T−1)‖+

η

C∑
i=1

‖pj(y = i)− pk(y = i)‖(
m−2∑
l=0

(bk)lgmax(wjmT−2−l))

By substituting Eq. (13) into Eq. (8), the theorem holds when
m > 1. Therefore, the theorem is proved.

Theorem 2 states that the distance between the federated
model parameter wfmT and the target client j’s model param-
eter wjmT is upper bounded by two factors: (i) the difference
of data distribution between client j and other clients; and (ii)
the maximum gradient value of client j during training. When
an honest-but-curious client intends to attack client j using
wft , the inference error ‖x − x′‖ should also be restricted
by the above two factors according to Theorem 1. Moreover,
this finding can be used to improve privacy protection against
attackers’ inference when the data distribution is known.

Theorem 3: Given K clients in federated learning, each
client k’s local dataset has a size nk and a distribution pk.
If ∇wEx|y=i[logFi(x,w)] is αx|y=i-Lipschitz for ∀i ∈ Y ,
and each local model parameter wkmT is updated every m
local iterations, then the distance between any two local model
parameters, wumT and wvmT , after T updates is upper bounded
by Eq. (14):

‖wumT − w
v
mT ‖ ≤ (bv)m‖wvm(T−1) − w

u
m(T−1)‖ (14)

+ η
C∑
i=1

‖pv(y = i)− pu(y = i)‖(
m−1∑
l=0

(bv)lgmax(wumT−1−l)).

Proof:

‖wumT − w
v
mT ‖ (15)

=‖wumT−1 − η
C∑
i=1

pu(y = i)∇wEx|y=i[logFi(x,wumT−1)]

− wvmT−1 + η

C∑
i=1

pv(y = i)∇wEx|y=i[logFi(x,wvmT−1)]‖

≤‖wumT−1 − w
v
mT−1‖

+ ‖η
C∑
i=1

pv(y = i)∇wEx|y=i[logFi(x,wvmT−1)]

− η
C∑
i=1

pu(y = i)∇wEx|y=i[logFi(x,wumT−1)]‖.
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For the second term at the right side of inequality in
Eq. (15), we have

‖η
C∑
i=1

pv(y = i)∇wEx|y=i[logFi(x,wvmT−1)] (16)

− η
C∑
i=1

pu(y = i)∇wEx|y=i[logFi(x,wumT−1)]‖

≤η‖
C∑
i=1

pv(y = i)αx|y=i‖wvmT−1 − w
u
mT−1‖

+ η
C∑
i=1

‖pv(y = i)− pu(y = i)‖gmax(wumT−1).

Combining Eq. (15) and Eq. (16), we get a new inequality:

‖wumT − w
v
mT ‖

≤(1 + η

C∑
i=1

pv(y = i)αx|y=i)‖wvmT−1 − w
u
mT−1‖

+ η

C∑
i=1

‖pv(y = i)− pu(y = i)‖gmax(wumT−1). (17)

For simplicity, we denote bv = (1+ η
∑C
i=1 p

v(y = i)αx|y=i)
and obtain the following result:

‖wumT − w
v
mT ‖

≤bv‖wvmT−1 − w
u
mT−1‖+ η

C∑
i=1

‖pv(y = i)− pu(y = i)‖gmax(wumT−1)

≤(bv)2‖wvmT−2 − w
u
mT−2‖+

η
C∑
i=1

‖pv(y = i)− pu(y = i)‖(gmax(wumT−1) + bkgmax(wumT−2))

...

≤(bv)m‖wvm(T−1) − w
u
m(T−1)‖+

η
C∑
i=1

‖pv(y = i)− pu(y = i)‖(
m−1∑
l=0

(bv)lgmax(wumT−1−l)).

Theorem 3 implies that the distance between two local
clients’ model parameters, wumT and wvmT , is upper bounded
by two factors: (i) the difference of data distribution between
clients u and v; (ii) the maximum gradient of the honest-but-
curious client u during training process. Accordingly, when
client u acts as an attacker using his local model to perform
inference attack towards client v, the inference error ‖x−x′‖
is determined by the above two factors.

To sum up, from Theorem 2 and Theorem 3, inference
attack can be implemented to learn privacy in FL under the
non-i.i.d. setting, and the attack performance is influenced by
the difference of data distribution. Moreover, passive attackers
(e.g. an honest-but-curious client k holding wft and wkt ) can
steal preimage privacy with easy implementation, while active
attackers (e.g., a malicious client k and an external malicious
attacker) can reveal both preimage privacy and membership
privacy but requires a more powerful capacity to collect
prior knowledge (e.g., a victim’s model for white-box attack).
More details about the attack scenarios are addressed in the
following two subsections.

B. Passive Attack

To collaboratively train a global model in FL, all clients
should achieve some consensus, such as the same model
structure, loss function and similar data domain, which can be
used as the prior knowledge for an honest-but-curious client
to perform passive inference attack. According to Theorem 2
and Theorem 3, the honest-but-curious client only needs to
analyze the received global model parameter and/or his local
model parameter without tampering training rules or bringing
negative impact on learning accuracy.

In the example of passive attack (PA) in Fig. 1, client 1
wants to infer the features of {y4, y5, y6} of client 2. Ideally,
the best way is using w2

t to get x = C−1(y, w2
t ). Unfortunately,

it is hard or impossible for an honest-but-curious client in FL
to obtain w2

t . Instead, client 1 uses w1
t and/or wft for inference.

That is, client 1 learns client 2’s private information via x′ =
C−1(y, w1

t ) and/or x′ = C−1(y, wft ). The attack performance
‖x−x′‖ is upper bounded by either ‖w1

t −w2
t ‖ or ‖wft −w2

t ‖
as analyzed in Theorem 1, Theorem 2 and Theorem 3.

C. Active Attack

Besides the honest-but-curious clients in passive attack,
there may be active attackers aiming at stealing privacy from
benign clients of FL. An active attacker could be either an
external adversary or a participant of FL. Unlike the passive
attackers who only hold their own model parameters, the active
attackers usually have stronger power to acquire more prior
knowledge and resources (e.g., hijacking transmitted parame-
ters, eavesdropping information exchange, and compromising
local clients), leading to severe privacy leakage in FL.

As shown in Fig. 1, the active attacker (AA) has the ability
to access a victim client k’s model parameter wkt and/or the
aggregated model parameter wft . With wkt and wft in hand
as a white box, the active attacker can launch three kinds
of privacy inference attack. (i) Instance-level membership
attack on Dk with wkt and D with wft , in which the attacker
can easily use the target model as a white box to learn
whether a specific datapoint x is in the target model’s training
dataset [19]. (ii) Model inversion attack on client k with
wkt and the entire system with wft , which is a white box
attack and is similar to the passive attack in Section IV-B.
(iii) Client-level membership attack on a target client by
consistently analyzing wft to infer whether the target client
joins the training process of FL or not, which causes serious
consequences when the target client holds identity-related data
in FL. For example, in a FL system that is trained on mobile
phone trajectory datasets, the trajectory data is user-dependent
and can be used to infer other private information like sex,
address, and occupation, etc. [20], [21].

V. DUAL DIFFERENTIALLY PRIVATE FEDERATED
LEARNING (2DP-FL)

For passive attack, the root cause of successfully inferring
any victim client j’ parameter wjt from wkt and/or wft by any
honest-but-curious client k is that the learning model overfits
the training dataset. The stronger overfitting, the more accurate
inference results. Since DP can introduce randomized noise
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Fig. 2. The framework of our proposed 2DP-FL mechanism.

into training process, extend the generalization capability, and
reduce the overfitting [22], it is an effective solution to relieve
privacy inference attack. Besides, DP is applicable to defend
active inference attack. As active attack is essentially a white-
box attack on the victim client’s parameter wjt and/or the
federated model parameter wft , injecting randomized noise
into the training process can conceal private information.

In light of the above analysis, we propose a novel mecha-
nism, named “Dual Differentially Private Federated Learning
(2DP-FL)”, in which DP-based noise is added when training
ẇkt and before downloading ẇft as illustrated in Fig. 2. Adding
noise into ẇkt can perturb the model parameters to resist data-
level membership privacy attack and model inversion attack,
and adding noise into ẇft can defend client-level membership
privacy attack and model inversion attack [7], [23].

At the beginning, the initialized global model is distributed
to all local clients by setting wkt = ẇf0 . Within time slot t,
each client k independently trains his own local dataset Dk

by minimizing the loss function Lk, in which a random batch
data B is picked and the gradient g(x) is calculated based on
each data point x ∈ Dk. To bound the gradient contribution of
each x, we clip the gradient with a predefined upper bound G,
average all gradients in B, and add a scaled gaussian noise,
Nk
t ∼ N (0, (σkG)

2), to achieve DP at the client side. Then,
the local model ẇkt with DP protection is updated by gradient
descent method for each client k. After receiving the local
model parameter ẇkt+1 from the selected clients, the server
performs FedAvg algorithm to get ẇft+1. Then, the federated
model ẇft+1 is updated and distributed to all local clients, in
which a noise Nfk

t ∼ N (0, (σS)
2

U ) is added into ẇft for each
client k. With the perturbed model parameter ẇft+1, each client
k can update ẇkt+2 in time slot (t + 1). The pseudo-code of
the operations at the clients and the server is described in
Algorithm 1.

In the original FL system, ‖wjmT − wkmT ‖ is gradually
reduced with the increase of T because both wjmT and
wjmT are trained based on the commonly shared federated
model parameter wfmT , leading to an improved performance
of inferring client j’s privacy at the side of client k. However,
when the server distributed noise Nfk

t is equal for all clients,
which is similar as most existing works [6], [7], the privacy
still can not be protected. On the contrary, in our 2DP-FL
system, every client k receives a different perturbed model
(ẇft + Nfk

t ) from the server, which is helpful to relieve the
reduction of ‖wjmT −wkmT ‖ and thus enhance the difficulty of

Algorithm 1: Twice Noised Differentially Private Fed-
erated Learning (2DP-FL)

Input: Total iteration T for FL, number of clients K,
selected client U , initialized model ẇft=0,

Output: 2DP-FL model ẇfT
1 t=0;
2 for k ∈ {1, 2, . . .K} do
3 wkt = ẇf0 ;
4 end
5 while t < T do
6 for k ∈ {1, 2, . . .K} do
7 take a random batch B from Dk with probability

p = |B|
|Dk| ;

8 compute gradient for each x ∈ B,
g(x)← ∇wLk(wkt , x);

9 clip gradient, ḡ(x)← g(x)/max(1, ‖g(x)‖2
G

);
10 add noise, g̃ ← 1

|B| (
∑
x∈B ḡ(x) +N (0, (σkG)2);

11 update local model, ẇkt+1 ← wkt − ηg̃;
12 end
13 ẇft+1 ←

∑K
k=1

|Dk|
|D| ẇ

k
t+1;

14 for k ∈ {1, 2, . . .K} do
15 wkt+1 ← ẇft+1 +N (0, (σS)2

U
);

16 end
17 end

privacy inference. Moreover, the noise addition at the server
in 2DP-FL is flexible and can be pre-determined according
to the different application requirements. For examples, when
Nfj
t = Nfk

t 6= 0 for j, k ∈ [1,K], a same DP noise is
added into the federated model for distribution, which is a
common method used in the current works; when Nfk

t = 0 for
k ∈ [1,K], the DP noise is only added into the clients’ local
model parameters, and the corresponding federated model is
denoted by w̃ft for presentation in the following analysis.

For privacy-preserving FL, the model accuracy is another
important concern as adding too much noise into a model
would inevitably reduce learning performance. The elegant
design of 2DP-FL lies in the flexible setting of Nfk

t that can
meet various privacy protection needs with negligible impact
on model accuracy, which is analyzed in Theorem 4.

Theorem 4: In our 2DP-FL mechanism, the difference
between ẇft and w̃ft is negligible, i.e., ‖w̃ft − ẇ

f
t ‖ = 0.

Proof: From the setting of Nk
t at each client k and Nfk

t
at the server, we have the following equation:

‖w̃ft − ẇ
f
t ‖ =

K∑
k=1

nk

|D|
(ẇft−1 − η[∇wLk(ẇft−1) +Nk

t ])

−
K∑
k=1

nk

|D|
(ẇft−1 +Nfk

t − η[∇wLk(ẇft−1 +Nfk
t ) +Nk

t ])

=E{‖(ẇft−1 − η[∇wLk(ẇft−1) +Nk
t ])

− (ẇft−1 +Nfk
t − η[∇wLk(ẇft−1 +Nfk

t ) +Nk
t ])‖}

=E{‖Nfk
t + η[∇wLk(ẇft−1 +Nfk

t )−∇wLk(ẇft−1)]}
1
≤0 + ηE{‖µ ·Nfk

t ‖}
=0

The inequality 1 holds because Nfk
t and Nk

t are both normal
distribution noise with mean value 0.
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Theorem 4 tells that with various noise Nfk
t , the performance

of model ẇft is still nearly the same as that of model w̃ft .
Before analyzing the convergence of 2DP-FL, an important

conclusion is introduced in Theorem 5.
Theorem 5: For the federated model w̃f , E{‖L(w̃ft+1) −

L(w̃ft )‖} is upper bounded by the following inequality:

E{‖L(w̃ft+1)− L(w̃ft )‖} ≤ γ1E{‖∇L(w̃ft )‖2} (18)

+ γ2E{‖Nt+1‖}‖∇L(w̃ft )‖+ γ3E{‖Nt+1‖2}.

Proof: First, the federated model w̃ft at t-th step can be
represented as w̃ft =

∑K
1 P k(wkt +Nk

t ), where P k = nk

|D| is
the weight of client k, wkt is client k’s local model parameter
without noise, and Nk

t is the injected noise in client k at time
t-th step. According to the property of Lipschitz continuous
gradient, we have

Lk(w̃ft+1) ≤ Lk(w̃ft ) +∇Lk(w̃ft )(w̃ft+1 − w̃
f
t ) +

µ

2
‖w̃ft+1 − w̃

f
t ‖

2.

By taking the expectation of both sides, Eq. (19) is obtained.

E{‖L(w̃ft+1)− L(w̃ft )‖} (19)

≤ E{∇L(w̃ft )(w̃ft+1 − w̃
f
t )}+

µ

2
E{‖w̃ft+1 − w̃

f
t ‖

2},

Particularly, w̃ft+1 − w̃
f
t can be expressed by:

w̃ft+1 − w̃
f
t =

K∑
1

Pk(wkt+1 +Nk
t+1)− w̃ft (20)

=

K∑
1

Pk(−η∇Lk(w̃ft )) +Nt+1,

where Nt+1 =
∑K
k=1 P

kNk
t+1. Similarly, for ‖w̃ft+1 − w̃

f
t ‖,

we have

‖w̃ft+1 − w̃
f
t ‖ =‖

K∑
k=1

Pk(wkt+1 +Nk
t+1)− w̃ft ‖ (21)

=‖
K∑
k=1

Pk(wkt+1 − w̃
f
t ) +Nt+1‖

≤E{‖wkt+1 − w̃
f
t ‖}+ ‖Nt+1‖

=‖η∇L(w̃ft )‖+ ‖Nt+1‖.

Then we substitute Eq. (20) and Eq. (21) into Eq. (19) to
get the following inequality:

E{‖L(w̃ft+1)− L(w̃ft )‖} (22)

≤E{∇L(w̃ft )(

K∑
1

Pk(−η∇Lk(w̃ft )) +Nt+1)}

+
µ

2
E{[‖η∇L(w̃ft )‖+ ‖Nt+1‖]2}

=(−η +
µη2

2
)E{‖∇L(w̃ft )‖2}+ (1 + µη)E{‖Nt+1‖}‖∇L(w̃ft )‖

+
µ

2
E{‖Nt+1‖2}.

For simplicity, let γ1 = −η + µη2

2 , γ2 = 1 + µη and γ3 = µ
2 .

Thus, Eq. (22) can be equivalently rewritten as Eq. (18):

E{‖L(w̃ft+1)− L(w̃ft )‖} ≤ γ1E{‖∇L(w̃ft )‖2}

+ γ2E{‖Nt+1‖}‖∇L(w̃ft )‖+ γ3E{‖Nt+1‖2}.

Theorem 6: The convergence upper bound of our proposed
2DP-FL method after T iterations is given by Eq. (23) when
η ∈ (0, 2

µ ], or Eq. (24) when η ∈ ( 2µ ,+∞).

E{‖L(ẇfT )− L(wf
∗
)‖} ≤ (1 + 2τγ1)TC0 +

γ3ω2T log 1
δ

2τγ1ε2
, (23)

E{‖L(ẇfT )− L(wf
∗
)‖} ≤ (

1

2τ
+ γ1)G2 +

γ3ω2T log 1
δ

ε2
, (24)

where C0 = ‖L(w̃f0 ) − L(wf
∗
)‖ represents the initialization

quality of federated model.
Proof: From Theorem 4, there is

E{‖L(ẇfT )− L(wf
∗
)‖} (25)

=E{‖L(ẇfT )− L(w̃fT ) + L(w̃fT )− L(wf
∗
)‖}

≤E{‖L(w̃fT )− L(wf
∗
)‖}.

With Eq. (25) and Theorem 5, we can get the following
inequality:

E{‖L(w̃ft+1)− L(wf
∗
)‖} ≤ E{‖L(w̃ft )− L(wf

∗
)‖} (26)

+ γ1E{‖∇L(w̃ft )‖2}+ γ2E{‖Nt+1‖}‖∇L(w̃ft )‖+ γ3E{‖Nt+1‖2}.

When η ∈ (0, 2
µ ], γ1 ≤ 0. According to Polyak-Lojasiewicz

inequality, we have

γ1E{‖∇L(w)‖2} ≤ 2τγ1E{‖L(w)− L(w∗)‖}. (27)

The result of substituting Eq. (27) into Eq. (26) is

E{‖L(w̃ft+1)− L(wf
∗
)‖} (28)

≤E{‖L(w̃ft )− L(wf
∗
)‖}+ 2τγ1E{‖L(w̃ft )− L(wf

∗
)‖}

+ γ2E{‖Nt+1‖}‖∇L(w̃ft )‖+ γ3E{‖Nt+1‖2}

=(1 + 2τγ1)E{‖L(w̃ft )− L(wf
∗
)‖}

+ γ2E{‖Nt+1‖}‖∇L(w̃ft )‖+ γ3E{‖Nt+1‖2}

≤(1 + 2τγ1)2E{‖L(w̃ft )− L(wf
∗
)‖}

+ (1 + 2τγ1)[γ2E{‖Nt‖}‖∇L(w̃ft−1)‖+ γ3E{‖Nt‖2}]

+ γ2E{‖Nt+1‖}‖∇L(w̃ft )‖+ γ3E{‖Nt+1‖2},

where Nt+1 =
∑K
k=1 P

kNk
t+1. Since the noise Nt follows

normal distribution, E{‖Nt‖} = 0 and E{‖Nt‖2} = σ2.
Therefore, we can rewrite Eq. (28) at time T to be

E{‖L(w̃fT )− L(wf
∗
)‖} (29)

≤(1 + 2τγ1)TE{‖L(w̃f0 )− L(wf
∗
)‖}+ γ3σ

2
T−1∑
0

(1 + 2τγ1)T

≤(1 + 2τγ1)TC0 +
γ3σ2

2τγ1
.

where σ = ω
√
T log 1

δ /ε is the noise scale used in moments
accountant [24]. Thus, by combining Eq. (25) and Eq. (29)
the convergence upper bound in Eq. (23) is proved.

When η ∈ ( 2µ ,+∞), we obtain γ1 > 0 and Eq. (30).

γ1E{‖L(w)− L(w∗)‖} ≤
γ1

2τ
E{‖∇L(w)‖2}. (30)

Substituting Eq. (30) and Eq. (26) into Eq. (25), we can prove
the upper bound in Eq. (24).

Notice that in real data experiments, the learning rate η is
always set to be a small scalar around 10−4 [24], which yields
a negative γ1 and leads to the convergence bound in Eq. (23).
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Fig. 3. Visual results of attack on MNIST dataset under different scenarios.

VI. EXPERIMENTS

In this section, intensive real-data experiments are carried
out to validate our analysis on privacy leakage in FL and our
2DP-FL mechanism.

MNIST contains 10 classes (i.e., 0 − 9) for classification
problem and is adopted in our experiments. Considering the
FL system under non-i.i.d. setting, we distribute the dataset to
different clients according to their class labels, ensuring the
assigned local datasets follow different types of distribution.
The whole dataset is divided into 15 non-overlapping data
buckets and 5 overlapping data buckets, each of which contains
data associated with a pre-determined label group. Specifically,
for the non-overlapping buckets, there are 15 label groups
including {0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {0}, {1}, . . .,
{9}; and for the overlapping buckets, there are 5 label groups
including {0, 1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6, 7}, {6, 7, 8, 9}, and
{8, 9, 0, 1}. Each client can get one or multiple data buckets
for local distribution configuration.

The experiments consist of two parts, including privacy
leakage analysis and defense performance evaluation. In the
analysis of privacy leakage, we show the feasibility of privacy
inference attack towards the original FL system by visualizing
the data recovery results. To investigate the defense perfor-
mance of our 2DP-FL mechanism, the convergence, attack
accuracy, and classification accuracy are evaluated. Moreover,
to the best of our knowledge, the state-of-the-art scheme
termed “NbAFL” [10] realizes privacy-preserving FL with the
idea similar to our 2DP-FL and is taken as a baseline for
performance comparison. All experiments are performed on
a Linux server with Intel(R) Xeon CPU E5-1607, 16 GB
memory, and the NVIDIA GeForce RTX 2080 GPU with 11
GB memory, and the common used machine learning library
Pytorch, Pysyft and OpenCV are adopted.

A. Analysis of Privacy Leakage in FL

From the analysis in Section IV, we know that an honest-
but-curious client in FL can work as a passive attacker to infer
the privacy of a victim client’s data class by using his local
model and/or federated model. Taking model inversion attack
as a case of attack scenario, such a passive attacker aims to
recover an unseen class’s common features of the victim client
whose dataset has a different distribution. In our experiments,
to infer the features of unseen classes in the victim’s dataset
that holds class labels {5, 6, 7, 8, 9}, the passive attacker trains
his own dataset with class labels {0, 1, 2, 3, 4} and implements
model inversion attack using his local model parameter wkt
and/or the federated model parameter wft .

(a) Passive attack of local model (b) Passive attack on global model

Fig. 4. Attack performance vs. data distribution difference.

The results of privacy inference attack are visualized in
Fig. 3. Fig. 3(a) shows the original images with labels 6 and 8
from MNIST dataset. Fig. 3(b) and Fig. 3(c) display the results
of passive inference attack with the attacker’s local model
parameter and the federated model parameter in the original
FL, respectively, from which we can see that both attack
results expose some feature information of the target classes.
Compared with Fig. 3(b), the recovered images in Fig. 3(c)
is closer to the original one. This is because the difference
between global data distribution and victim data distribution is
more similar, which is in line with our analysis in Section IV
– a smaller difference of data distribution leads to a higher
upper-bound of attack performance. When the victim’s model
is used in active inference attack (i.e., the victim’s model is
captured and used as a white box), as shown in Fig. 3(d),
the reconstructed image is more clear, demonstrating the
feasibility of active attack. Fig. 3(e), Fig. 3(f) and Fig. 3(g)
present the recovered images of passive attack with local
model, passive attack with federated model, and active attack
under our 2DP-FL mechanism, in which it is hard to perceive
that the digit labels of recovered images are 6 and 8. With
the protection of our 2DP-FL mechanism, the visual quality
of images recovered by model inversion attack is significantly
reduced. Moreover, we can see that the results of Fig. 3(e) and
Fig. 3(f) are worse than the result of Fig. 3(g), because active
attack uses white-box to perform inference that tends to have
smaller model error.

To evaluate the attack performance varying with data dis-
tribution, we plot the attack results in Fig. 4 by changing
the difference of data distribution between the attacker and
the victim, where x-axis represents the number of different
classes between the attacker’s dataset and the victim’s dataset,
and the y-axis denotes the similarity between the original and
the recovered images. More specifically, more different classes
between the attacker’s dataset and the victim’s dataset results
in a larger difference between data distribution. The image
similarity is measured by Structure Similarity Index Metric
(SSIM) with a range of [0, 1], where 0 means totally different
and 1 means exactly the same.

Fig. 4(a) depicts the attack performance when the attacker’s
local model parameter wkt is used. According to the Fig. 4(a),
the value of SSIM decreases as the number of different classes
is increasing, which is consistent with our theoretical analysis
in Section IV. Meanwhile, Fig. 4(a) shows the impact of
total number of client, K, on privacy leakage in FL. As K
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(a) Loss of federated model vs. ε (b) Accu. of federated model vs. ε (c) Loss of federated model vs. δ (d) Accu. of federated model vs. δ

Fig. 5. Evaluation on convergence of 2DP-FL mechanism.

(a) Attack performance vs. σ (b) Baseline comparison

Fig. 6. Evaluation on privacy and utility of 2DP-FL mechanism.

becomes larger, the amount of each client’s private information
included in the federated model is reduced as the contribution
of each client’ local model to the federated model is reduced,
mitigating privacy leakage in FL. When the global model
parameter wft by the attacker for privacy inference, similar
observations can be obtained from Fig. 4(b).

B. 2DP-FL Evaluation

According to the analysis in Section V, our proposed 2DP-
FL mechanism can defend inference attack while benefiting
a good data utility. We design different experiments in this
subsection to deeply investigate the performance of 2DP-FL
mechanism from the aspects of learning convergence, privacy
protection, and data utility.

First, to evaluate the convergence of our 2DP-FL mecha-
nism, we make the following settings for Fig. 5: the number
of clients is K=50, the number of selected clients is U=10,
and the number of training epochs is T=50. Additionally, ε
and δ are the privacy parameters of (ε, δ)-DP, where larger ε
and δ mean less privacy protection.

As shown in Fig. 5(a), with the increase of T (i.e., the
number of training epoch), the decrease of loss value becomes
smaller and smaller, gradually reaching a stable loss value,
which reflects the convergence trend of 2DP-FL scheme from
experimental perspective. Thus we can conclude that our 2DP-
FL mechanism converges when T is large enough, which is
consistent with the convergence analysis in Theorem 6. On
the other hand, a larger ε (i.e., a higher privacy budget) leads
to a faster convergence, because higher privacy budget implies
weaker privacy protection with less injected noise during train-
ing process. Fig. 5(b) also confirms the convergence from the

viewpoint of model accuracy, in which the accuracy increases
with epoch T and stays stable after a certain threshold. In
addition, the impact of δ on convergence is evaluated in
Fig. 5(c) and Fig. 5(d). Similar to ε, larger δ results in faster
convergence, less privacy protection, and higher accuracy. For
example, the loss value of δ = 10−3 shows the fastest decrease
and is the first to convergence in Fig. 5(c) as well as reaches
the highest accuracy in Fig. 5(d), because it sacrifices more
privacy for maintaining utility. From the results of Fig. 5,
it also demonstrates that the maintenance of data utility is
achieved at the price of privacy protection.

Then, we investigate attack performance in terms of SSIM
through changing the noise scale σ of DP. The adopted FL
setting is: K=50, U=10, T=50, and δ=0.001. In Fig. 6(a),
AA represents active attack, and PA represents passive attack.
When our 2DP-FL is implemented for privacy protection, the
attack performance is drastically reduced. The noise scale σ
along x-axis denotes the privacy protection level. With the
increase of σ, the attack performance is gradually reducing,
which shows that our privacy protection works as expected.

Furthermore, we compare the classification accuracy of the
original FL without DP, the baseline NbAFL mechanism, and
our 2DP-FL mechanism and show the experimental results in
Fig. 6(b). Especially, we fix ε = 20 for NbAFL and 2DP-FL
when DP is taken into account. Obviously, the accuracy of the
original FL without DP is the best as no noise is added for
privacy protection. The accuracy of our 2DP-FL is better than
that of NbAFL. In particular, our 2DP-FL becomes convergent
within the given ε range and achieves an accuracy of 85%.
However, for NbAFL, when T = 31, the exhausted value of ε
exceeds the given budget 20 and only gets an accuracy of 74%.
From the comparison, we obtain two critical findings: (i) when
the number of epochs is the same, 2DP-FL costs a smaller ε for
better privacy protection; and (ii) when privacy budget is fixed,
2DP-FL can run more epochs for better accuracy. Thus, we can
conclude that our 2DP-FL mechanism outperforms NbAFL in
terms of classification accuracy and privacy protection.

C. Impact of K and U

In a FL system, besides privacy related parameters, hyper-
parameters such as the number of client K and the number
of selected client U also play important roles in fine-tuning
the systems. Under our 2DP-FL mechanism, we evaluate the
influence of K and U for further investigating hyper-parameter
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(a) Impact of K and U on accuracy(b) Impact of K and U on privacy

Fig. 7. Impact of K and U .

strategies in the FL system. In Fig. 7(a), when the number of
client is fixed at K=50, the federated model with a larger value
of U reaches a faster convergence and a higher accuracy as
a higher participant radio (represented by U/K) is helpful to
enhance the training performance of FL systems; while for the
same U (i.e., U=10), a larger of K implies more clients’ local
datasets are available to the FL system, improving training
performance.

The overall privacy loss of the FL system, indicated by
ε, is exhibited in Fig. 7(b). When K is equal, a smaller
value of U can help reduce privacy loss, because with a
smaller value of U , a larger noise is added to the clients’
datasets (see line 15 of Algorithm 1). If U remains the
same, a larger value of K causes an increased privacy loss.
As more clients’ local datasets are available for federated
learning, it is more possible to reveal privacy of the FL system
via data correlation, increasing the risk of privacy loss. In
a summary, the learning accuracy and privacy loss of our
privacy-preserving FL mechanism 2DP-FL are dependent on
the values of K and U , which can be exploited to balance the
trade-off between learning accuracy and privacy loss in real
applications.

VII. CONCLUSION

For the first time in literature, this paper rigorously analyzes
the issue of privacy leakage and proves the performance upper
bound of privacy inference attack in FL with non-i.i.d. data.
This analysis motivates us to develop a novel mechanism,
2DP-FL, for preserving private information with ensuring
differential privacy. Besides, the noise addition in 2DP-FL can
be flexibly set according to different application requirements,
and the upper-bounded convergence of 2DP-FL can guarantee
its learning performance. Through extensive experiments, the
results of our theoretical analysis and the effectiveness of our
2DP-FL mechanism can be confirmed.
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