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Abstract—Computer vision and deep neural networks have
been significantly promoting the development of visual perception
in these years. Particularly, for autonomous vehicles, real-time
image/video data is captured by onboard cameras and analyzed
by computer vision techniques in many real applications. In the
captured camera data, some contents can be used as auxiliary
information to infer individuals’ locations and trajectories, which
leads to severe privacy leakage but has been rarely studied.
Thus, the goal of this paper is to protect individuals’ location
privacy by hiding side-channel information in the captured data
while preserving the the data utility for downstream applications.
To this end, the technology of Generative Adversarial Networks
(GAN) is utilized to design two novel models, named ADGAN-
I and ADGAN-II, both of which can take the original camera
data as inputs and generate privacy-preserving outputs according
to predefined sensitive object class. Thus, the processed camera
data can defend location inference attack from adversaries in
off-line applications. Moreover, in ADGAN-I and ADGAN-II,
the tradeoff between location privacy and data utility can be
effectively balanced. Finally, the results of extensive real-data
experiments validate the superiority of our proposed models over
the state-of-the-arts in utility preservation and privacy protection
for autonomous vehicles’ images and videos.

Index Terms—Computer Vision, Autonomous Vehicles, Gener-
ative Adversarial Networks, Location Privacy.

I. INTRODUCTION

THANKS to the technical innovation of visual perception
and deep neural networks, the techniques of autonomous

vehicles are becoming increasingly mature, greatly accel-
erating the development of automobile industry. More and
more autonomous vehicles come into being, including Tesla,
BMW, and Ford, etc. [1]. Nowadays, the autonomous vehicles
have successfully driven millions of miles without human
control, which is mainly benefited from their high-performance
perception and decision-making systems guided by a huge
amount of perceptual data. The perceptual data comes from
various onboard sensors; for instances, GPS sensors collect
real-time location data with exact coordinates, radar sensors
detect surrounding objects and their distance to vehicles,
behavior-relevant sensors monitor environment inside the car
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and record operation of passengers, and camera sensors work
as the eyes of vehicles to perceive visual view and instruct
driving behaviors. These sensory data not only can facilitate
autonomous vehicles but also can be utilized as precious
source for smart city, smart transportation and many other
applications.

Meanwhile, carrying such a valuable data source makes
the autonomous vehicles vulnerable to malicious inference
attacks, in which attackers can obtain private information
of the vehicles/drivers/passengers through data mining. For
instances, with behavior-relevant data, attackers can infer pas-
sengers sensitive information, such as sex, age, and hobby [2],
[3]; and with GPS data, attackers can figure out passengers’
locations, trajectories, home/work addresses, health conditions
and move patterns. In this paper, our privacy concern mainly
focuses on the use of camera data in off-line (or non real-
time) applications, such as 3D street view model construction.
The camera is deployed as a core component of perception
systems in the autonomous vehicles to monitor and record
real-time road conditions. Additionally, the camera can collect
lots of “over-captured” information more than it needs, e.g.,
street view background, pedestrians’ faces on the streets, plate
numbers and models of surrounding vehicles. This “over-
captured” information contains various private information
about vehicles and individuals, which can be used to infer the
locations and trajectories of drivers and passengers, leading
to severe risk of location privacy leakage [4]. An example
is demonstrated in Fig. 1. If an attacker gets a camera
image from a victim’s vehicle as shown in Fig. 1(a), she
is able to figure out that the location of victim’s vehicle is
nearby “Washington Monument”, in which location privacy is
totally leaked via image background without any GPS sensor
data. Again, if the attacker can get another camera image
from the same victim’s vehicle, she can identify the location
(i.e., “Washington National Cathedral” in Fig. 1(b)) and even
estimate the victim’s trajectory and speed by learning the
driving time between two locations as shown in Fig. 1(c).
Thus, for autonomous vehicles, the camera data is a type of
critical side-channel information for location inference. More
importantly, the power of location inference attack has been
greatly enhanced with recent progresses of visual perception,
deep neural networks, and other detection techniques. In [5],
[6], the authors have already proposed vocabulary tree-based
and feature-based matching methods to detect location in the
image data with a high recognition accuracy more than 74%.
This fact further confirms that the attackers have powerful
abilities to identify a victim’s location and trajectory through
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Image capture: Oct 2018 © 2020 Google

Street View

Washington, District of Columbia

 Google

15th St NW

(a) Camera data from victim near Washington Mon-
ument

Image capture: May 2014 © 2020 Google

Washington, District of Columbia

 Google

Street View

South Rd

(b) Camera data from victim near Washington Na-
tional Cathedral

(c) Leakage of location and trajectory

Fig. 1. An example to illustrate how victim’s location and trajectory privacy is inferred by location inference attack (pictures source from Google Map).

the perceived camera data. Therefore, the camera data from
autonomous vehicles is in desired need of effective solutions
to defend location inference attack.

To the best of our knowledge, [4] is the only existing work
studying location privacy through side-channel information in
images. However, the solution of [4] is limited to processing
low resolution static images and is not able to handle satisfied-
quality image and video data. Thus, in this paper, our objec-
tive is to protect location privacy while maintaining data
utility so that the processed camera data (e.g., images and
videos) are still suitable for off-line applications without
privacy leakage, which takes into account the following
critical issues. (i) Since this problem has not been studied well,
how to mathematically model the problem and design powerful
defense strategies is an open question. (ii) The camera data is
supposed to retain utility after being processed by protection
mechanisms so that it can used in off-line applications. Hence,
it is necessary to consider how to effectively balance the
tradeoff between location privacy and data utility. (iii) The
existing privacy-preserving method only treated background
buildings as side-channel information for privacy leakage [4].
In fact, except for background buildings, some unique or
obvious objects (e.g. trees and mountains), can also be the
identifiers of specific locations. Thus, customized approaches
are needed to protect user’s defineded private objects.

In order to tackle the aforementioned challenges, we de-
velop two Generative Adversarial Networks (GAN)-based
models: ADGAN-I and ADGAN-II. The protection strategy
is to modify the appearance of original captured data slightly
according to model feedback such that the generated results
can avoid feature extraction and location inference attack while
keeping recognition utility for real-world applications (e.g.,
traffic analysis and 3D street view model construction). It is
worth mentioning that, besides a generator and a discrim-
inator in traditional GAN framework, an additional helpful
component called “target model” is proposed for performance
improvement. The tradeoff between privacy protection and
utility preservation is managed by well designed loss func-
tions. Furthermore, to maintain the context structure of the
original data, multiple discriminators are deployed to enhance
the ability of reconstructing the synthetic data. In conclusion,
our contributions are addressed below.

• We design two novel GAN-based approaches, including
ADGAN-I and ADGAN-II, for data generation, which
can prevent autonomous vehicles’ locations being in-
ferred through their vehicular camera data.

• To improve the flexibility of our methods for various
applications, in ADGAN-I and ADGAN-II, users are able
to customize their private objects in camera data.

• We make full use of unlabeled complex street view data
with the help of semi-supervised training idea, which
enables our model to adapt more diverse data distribution
and improve performance.

• We implement comprehensive experiments on real image
and video datasets to illustrate that our models can resist
location inference attack while preserving utility.

The rest of this paper is organized as follows. The related
works are introduced in Section II. Then the methodology
of proposed models is presented in Section III. Intensive
experiments are conducted in Section IV. Finally, in Section V,
this paper is concluded, and our future work is discussed.

II. RELATED WORKS

The most related works are summarized from three aspects:
privacy protection with GAN, data privacy in autonomous
vehicles, and visual privacy against machine learning.

A. Privacy Protection with GAN

To protect data privacy, the generator G and the discrimina-
tor D of GAN are respectively modeled as a defender and an
attacker such that the attacker cannot infer private information
after the training process of GAN is completed. In [7], [8],
the authors proposed generative methods of full body and face
de-identification to prevent human ID from being recognized
by attackers as well as to preserve the utility of generated
data. For images, GAN-based visual protection methods are
also introduced by [9], [10], in which GAN was utilized as
an obfuscation mechanism to decrease the detection accuracy
of specific pixels in images. Then Chen et al. [11] designed
a VGAN-based image representation learning scheme for
privacy-preserving facial expression recognition, which can
protect human ID privacy and maintain expression recognition
accuracy. In the field of Natural Language Processing (NLP),
Li et al. proposed a GAN-based method that can prevent
attackers from inferring the age and sex of text writers while
maintaining the utility of emotion analysis for NLP. In [12],
the loss function of GAN was used as a regularization term to
train a robust machine learning model to resist the membership
inference attack. Besides, GAN-based schemes are also used
for secure wireless communications [13], private data publish-
ing [14], and context-aware medical image synthesis [15], etc.
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However, when it comes to our problem considered in
this paper, most of the existing GAN-based methods can
not be used directly. Because the street view data has very
complex structure and many different object classes, the
existing methods that mainly focus on small objects (such
as individuals’ faces and vehicle plates) may not be able
to perform complicated object classification. Moreover, it is
easy to modify the small objects without losing structure
information of entire images; on the contrary, for the large
objects (e.g., background constructions), it becomes harder
to process imperceptible modification for privacy preservation
while retaining the recognition utility of data.

B. Data Privacy in Autonomous Vehicles

With numerous data collected by embedded sensors, au-
tonomous vehicles are easily targeted by malicious attackers
who intend to mine individuals’ private information for various
purposes. Particularly, location related data, e.g., accurate GPS
coordinates, is demanded by many location based services
(LBS). Moreover, such location data can be easily linked to
a variety of sensitive information that individuals usually are
not willing to publish, such as home and workplace addresses,
sexual preferences, and political views [16]–[18].

Protecting location privacy for the vehicles in traditional
vehicular networks has attracted lots of research interest, but
few of them are for autonomous vehicles. In [19], the authors
proposed a Social-based PRivacy-preserving packet forward-
ING (SPRING) method based on a cryptography framework
to guarantee secure and private data transmission. To protect
location privacy, Lu et al., designed a Social spot-based Packet
Forwarding (SPF) protocol to obfuscate real time location of
vehicles [20]. In [16], a differentially private approach was
developed to protect location and trajectory privacy by using
Hilbert spatial division. In [21], the authors presented a novel
protocol, named Social-Tier-Assisted Packet (STAP), for Ve-
hicular Ad Hoc Networks, which works well in disseminating
packets and preserving receivers’ locations. Nevertheless, the
location privacy in the above works is limited on LBS.

So far, [4] is the only existing work that considers location
privacy leakage through side-channel information in images.
But the image quality and flexibility of the mechanism in [4]
may not be adequate for autonomous vehicles, especially in
high resolution. In this paper, we focus on the resistance of
location inference attack for camera data in auto-driving vehi-
cles by developing two novel GAN-based defense strategies.

C. Visual Privacy against Machine Learning

Visual data, such images and videos, is vulnerable to
privacy leakage, because it usually contains abundant (even
human-imperceptible) graphical and semantic information that
can be easily learnt by machine learning-based classifica-
tion/detection models. To protect the privacy of visual data,
adversarial idea has been applied in many studies to de-
fend model prediction, which is normally accomplished by
adding imperceptible crafted-noise to obfuscate original visual
data [22]–[25]. In [26], a encryption-based method was used
to keep visual privacy during transferring by pseudorandomly

flipping private information so that only the authorized receiver
who has the secret key can decode and recover the private
data while unauthorized attackers get noisy results. The goal
of [27] was to preserve human face privacy in visual data,
where a private face was morphed by adding another face on
it pixel by pixel such that the private face is transferred to an
interpolated unknown face. However, the above methods work
only on small objects (e.g. human faces and license plates)
through private object detection and noisy blurring, and they
also require additional information for implementation, such
as secret key, secure channel, and additional faces images.
Advanced methods were developed to process other variable
objects with the help of deeper neural networks [28], [29].
In [28], [29], multi-classification CNN was utilized to clas-
sify all objects in social network images into 68 predefined
attributes, and the private information in published images
was noised or removed automatically based on user’s privacy
preference. This method is efficient but often reduce image
utility because of brute removal. Liu et al. [30] proposed
a mapping distortion-based method to construct a modified
dataset for protecting privacy of entire dataset as a whole.
The authors in [31] used a concept termed sensitivity map to
learn the sensitivity of each pixel in an image regarding to a
detection/classification model and then treated the sensitivity
map as prior knowledge to add context-aware noise to original
data. Although the methods of [30], [31] perform well on
image privacy protection, they also get stuck in image field
and can not resist location inference attack for visual data.

Notably, in this paper, the objective, the challenges, and the
proposed methods are significantly different from the state-of-
the-arts. Besides protecting visual privacy of objects in images,
we also use visual data as an intermediate-bridge to defend
location inference attack. It is worth mentioning that in visual
data, the objects that are side-channel information for location
inference are varied and not easy to be identified. Our proposed
models, including ADGAN-I and ADGAN-II, not only can
generate high-quality privacy-preserving results for complex
visual data smoothly and efficiently, but also can be utilized
on video data for real applications.

III. DESIGN OF AUTO-DRIVING GAN MODELS

To preserve location privacy in image and video data for
autonomous vehicles, we propose two Auto-Driving GAN
(ADGAN) models, including ADGAN-I and ADGAN-II.
Since a video can be split into a sequence of frames for
processing, this section focuses on the details of generating
synthetic images in ADGAN-I and ADGAN-II for presen-
tation simplicity. In Section IV, extensive experiments are
analyzed to show the applicability of ADGAN-I and ADGAN-
II to both images and videos.

A. Methodology Overview

The frameworks of ADGAN-I and ADGAN-II are presented
in Fig. 2 and Fig. 3, respectively, where there is a generator
module, a discriminator module, and a target module that is
used as attack feedback of the generator. To prevent privacy
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Generator: G
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Image: x

Noise: N Image: x

LossGAN(G,D)

Losspri(G)
Lossuti(G)

Fig. 2. System framework of ADGAN-I with a “U-Net” based generator G, a multi-discriminator structure D, and a target model F . The notation + between
Noise N and Image x represents pixel wise addition. LGAN (G,D), Lpri(G) and Luti(G) are explained in section III-B.
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Generator: G

Discriminator: D

Target Model: F
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Image: x

Image: x’
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LossGAN(G,D)

Encoder Decoder

LossVAE(E)

Losspri(G)

Fig. 3. System framework of ADGAN-II with a VAE-based generator G, a multi-discriminator structure D, and a target model F . The notation ⊕ between
z and label map Mo × Y represents concatenation operation. LGAN (G,D), LV AE(G) and Lpri(G) are illustrated in section III-C.

leakage from side-channel information (e.g., background con-
structions) of the original image set I , the generator G of
ADGAN-I and ADGAN-II is trained to generate a synthetic
image x′ from G(x), where x ∈ I is an original image and
x′ is a sample of the synthetic image set I ′. That is, every
image x captured by the onboard cameras is input into G to
produce a synthetic image x′. To achieve our expected image
synthesis, the generator G needs to accomplish three objectives
simultaneously: (i) the generated images should be as real as
possible; (ii) the recognition accuracy of non-sensitive objects
should be maintained; (iii) the accuracy of location inference
should be decreased. On the other hand, we hire multiple
discriminators in our discriminator module D, for which the
benefits are explained in Section III-B.

Corresponding to the aforementioned three objectives, we
integrate the generator G, multi-discriminator D, and tar-
get module F to establish a general loss function for both
ADGAN-I and ADGAN-II as follows:

LADGAN (G,D) = LGAN (G,D) + λ1Luti(G) + λ2Lpri(G), (1)

where LGAN is the loss function of GAN for objective (i),
Luti(G) is used to maintain similarity between the original
image x and the synthetic image x′ for objective (ii), Lpri(G)
quantifies the loss of private information to control the privacy
protection of targeted objects (e.g. background constructions)
for objective (iii), and λ1 and λ2 are hyperparameters.

After the training process is completed, the synthetic
privacy-preserving images can be generated from G∗ by

G∗ = argmin
G

max
D

[LGAN (G,D) + λ1Luti(G)

+ λ2Lpri(G)],
(2)

where “min-max” implies that G can generate privacy-
preserving images even D is optimized as the most powerful
discriminator. Given G∗, the privacy-preserving data can be
produced quickly by the generator modules for autonomous
vehicles without location privacy leakage.

B. Details of ADGAN-I Model

In the following, we introduce how ADGAN-I model works.
1) Generator Module: The generator aims to produce

privacy-preserving data by obfuscating the original data. In
the original images, the private objects (e.g., background
constructions) should be modified to be different, while the
other non-private objects should be kept as similar as possible.
In other words, it is requested that the original images and
the synthetic images are different in private object pixels but
have similar whole image structure. To this end, we utilize
“U-Net” structure [32] to create specific noise for each image.
The encoder of “U-Net” compresses the original images into
latent representation, which can preserve the most essential
information of original images. Based on this image-dependent
information, the decoder of “U-Net” can produce appropriate
noise that achieves privacy protection and utility preservation.

The network structure of G is shown in TABLE I, where
the encoder and decoder are built according to the structure
of [33]. Specifically speaking, given any image x, the output
of the generator G is an image-dependent noise denoted by N ,
i.e., N = G(x) and the final output of the generator module
is the corresponding synthetic image x′ = x+N = x+G(x)
that is sent to the discriminator D and the target mode F as
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TABLE I
STRUCTURE OF U-NET IN ADGAN-I

L Encoder Decoder

1 (5, 5)× 64, Leaky ReLU (5, 5)× 512 deconv, BN, ReLU
2 (5, 5)× 128, BN, Leaky ReLU (5, 5)× 512 deconv, BN, ReLU
3 (5, 5)× 256, BN, Leaky ReLU (5, 5)× 512 deconv, BN, ReLU
4 (5, 5)× 512, BN, Leaky ReLU (5, 5)× 512 deconv, BN, ReLU
5 (5, 5)× 512, BN, Leaky ReLU (5, 5)× 256 deconv, BN, ReLU
6 (5, 5)× 512, BN, Leaky ReLU (5, 5)× 128 deconv, BN, ReLU
7 (5, 5)× 512, BN, Leaky ReLU (5, 5)× 64 deconv, BN, ReLU
8 (5, 5)× 512, BN, Leaky ReLU (5, 5)× 3 deconv, tanh

shown in Fig. 2. For the simplicity of presentation, we use
x′ = G(x) to represent the image generation process.

Next, to achieve the objective (i), the loss function of the
generator module can be formulated in Eq. (3).

LGAN = Ex∼I [logD(x)] + Ex∼I [log(1−D(G(x))]. (3)

Additionally, “utility loss” for the objective (ii) and “privacy
loss” for the objective (iii) are analyzed in Section III-B3 and
Section III-B4, respectively.

2) Discriminator Module: The discriminator module D
is deployed to distinguish whether its input is from the
real image set I or the synthetic image set I ′. Considering
the properties of street view images, we employ multiple
discriminators to configure the discriminator module D for
better generation performance, i.e., D = {D1, D2, . . . , Dk}
where k is a positive integer larger than 1. It has been
illustrated that a single discriminator does not have adequate
ability to distinguish the complex images because of high-
resolution and multiple classes [34]. What’s more, only one
discriminator with fixed receptive field can only perceive
certain pattern in the complex street view image data, thus
it is very easy to be fooled by a powerful generator. While,
multiple discriminators with different filters can augment the
discrimination capability, improving the performance of data
utility preservation and privacy protection even in the presence
of a powerful adversary.

In our setting, each discriminator, Di (1 ≤ i ≤ k), is a
convolutional neural networks (CNN) built for real/fake binary
classification. For the purpose of data generation, we first need
to ensure the distribution of the generated data is the same as
that of the original data from a global aspect, and then aim
to perfect the details of generated data as realistic as possible.
More concretely, Di with smaller i is designed as a CNN with
a smaller receptive field to improve the details of generated
images, and Di with larger i is designed as a CNN with a
quite large receptive field to scan the entire input image. The
output of D = {D1, D2, . . . , Dk} is a scalar that indicates
the probability of real data, which is the summation of all
Di on the original and generated data. Thus, in our multi-
discriminator setting, the loss function Eq. (3) can be formally
rewritten by Eq. (4).

LGAN =

k∑
i=1

[Ex∼I [logDi(x)] + Ex∼I [log(1−Di(G(x)))]]. (4)

3) Utility Preservation: As well known, GAN-based mod-
els are vulnerable to the mode collapse [35]. Therefore, we
propose two strategies to mitigate the impact of mode collapse
and improve the data utility. (i) Generating small magnitude

noisy masks. In Section III-B1, the generator G does not
produce image x directly. Instead, the final result is produced
by x′ = x + N , where even the mode collapse happens, the
degradation of N will not impact x′ too much because its
magnitude is less than that of real image x. (ii) Regularization
with additional loss function. The loss function of ADGAN-I
is not just a min-max game as the original GANs. We define
the utility loss Luti(G) and the private loss Lpri(G) and
introduce a target model F , such that the output of F can
have more features for training the entire model. This design
is inspired by mini-batch features, which is effective to defend
mode collapse as illustrated by previous researches [36], [37].

The target model F is a semantic segmentation model
named FCN8s [38] taking an image x as input and outputting
a label map Y where Y = {Y (i, j)} is a matrix with the
same size as x, and each element Y (i, j) is the label of
corresponding pixel in x. Let yt denote the label of private
objects in x. The goal of our image synthesis is to maintain
the non-private objects. Thus the classification result maps of
the non-private objects in both the original image x and the
generated image x′ should be as similar as possible. We divide
each image into a private part and a non-private part via masks
Mt and Mo, so that the optimization of privacy protection on
the private part and the optimization of utility preservation
on the non-private part will not have much impacts on each
other. Particularly, Mt = {Mt(i, j)} is a 0-1 binary matrix
where Mt(i, j) = 1 iff Y (i, j) = yt, and Mo = 1−Mt where
1 is an all 1 matrix with the same size as Mt.

With the help of F , we formulate the utility loss function
to measure the utility loss of generated images x′ as follows.

Luti(G) = log(H(Mo · F (G(x)),Mo · Y )), (5)

where H(·, ·) is the cross-entropy measurement. Minimizing
Luti(G) is to push generator produce precise noise N such that
the non-private objects will not be affected by disturbation.

4) Privacy Protection: The generated noise N is added
on image x to protect privacy. We define Lpri(G) as the
measurement of “privacy loss” that indicates the performance
of privacy protection. To reduce recognition accuracy of the
private objects, we intend to turn those private objects to their
least likely classes, so that they can not be used to perform
location inference attack.

Formally, let Yl = argmin(F (x)), in which Yl is a
matrix and each element of Yl is the least likely class of
the corresponding pixel in x. That is, Yl indicates the most
impossible classification result map of the original image x.
Then, Lpri(G) can be calculated by:

Lpri(G) = log(H(Mt · F (G(x)),Mt · Yl)). (6)

Finally, the loss function of ADGAN-I model can be formu-
lated as a combination of Eq. (4), Eq. (5), and Eq. (6), i.e.,

LADGAN−I =
k∑
i=1

[Ex∼I [logDi(x)] + Ex∼I [log(1−Di(G(x)))]]

+ λ1Ex∼I log(H(Mo · F (G(x)),Mo · Y ))

+ λ2Ex∼I log(H(Mt · F (G(x)),Mt · Yl)),
(7)

where λ1 and λ2 are hyper-parameters that are used to adjust
the scale of utility loss and privacy loss.
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C. Details of ADGAN-II Model

Different from ADGAN-I that uses a “U-Net”-based net-
work as the generator, in ADGAN-II we exploit the variational
auto-encoder (VAE) to design a new generator, which is
motivated by the following considerations. First of all, in
the data generation branch of deep learning, GAN and VAE
are the most powerful and useful basic generative structures.
Integrating the two structures as a whole one is promising to
further enhance the performance of data generation, which is
the goal of ADGAN-II. Besides, with the design of ADGAN-
I and ADGAN-II, the performance of U-Net based generator
and VAE based generator in street view obfuscation can be
clearly compared. Moreover, another advantage of ADGAN-II
is its flexibility and extensibility. In ADGAN-I, the privacy-
preserving result x′ = x + N is obtained via the original
data x and the generated noise N . That is, the original
data x is necessary to get the generated data in ADGAN-I,
which may restrict the extensibility of ADGAN-I in practice.
While, technically speaking, with the help of VAE’s decoder
in ADGAN-II, the results of generator can be produced by
a latent vector z without any original data x, which makes
ADGAN-II more flexible and extendable in real applications.
Although such a functionality has not been fully implemented
in the existing works, it is a very interesting topic in our future
research to investigate the generation of complex street view
data from specific low dimension vectors.

1) Generator Module: A generative VAE model [39], [40]
takes an input x and outputs its generated x′ by optimizing
maximum likelihood expressed as:

L(φ, θ, x) = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)‖p(z)), (8)

where φ and θ are respectively the encoder and the decoder of
VAE, z is a predefined low-dimensional vector, and KL(·||·)
is the Kullback-Leibler divergence between q(z|x) and p(z).

According to our objectives (ii) and (iii), we only need
to reconstruct the non-private objects for utility preservation
while remaining the private part un-recognizable for privacy
protection. However, the traditional VAE is not capable of
reconstructing such complex street view images. To provide
more information for the reconstruction process in the decoder,
we keep the encoder process unchanged but inject more knowl-
edge about Y as conditional information into the decoder.

By defining Y ′ = Mo × Y , the conditional information
Y ′ has the same size as Y but only contains the information
about non-private objects. Thus, during learning process, the
conditional VAE can recover most details for image utility
without privacy leakage. The loss function for our conditional
VAE-based generator module can be formulated as:

LcV AE = Eqφ(z|x)[log pθ(x|z, Y ′)]−KL(qφ(z|x)‖p(z)). (9)

From our general representation in Eq. (1), the loss function
of generator in ADGAN-II can be expressed as the utility loss
function Luti(G) = −LcV AE .

2) Discriminator Module: The model configuration and
loss function of the discriminator module in both ADGAN-
I and ADGAN-II are the same, which is illustrated in Sec-
tion III-B2.

3) Privacy Protection: Recall that in the conditional VAE
generator, the private information has been removed from
auxiliary information Y ′. To preserve more privacy, privacy
loss function, Lpri(G), is added to differ those private objects
from the original images, which is given by Eq. (10).

Lpri(G) = − log(H(Mt · F (G(x)),Mt · Y )). (10)

To sum up, the loss function of ADGAN-II can be expressed
by Eq. (4), Eq. (9), and Eq. (10) in the following equation:

LADGAN−II =
k∑
i=1

[Ex∼I [logDi(x)] + Ex∼I [log(1−Di(G(x)))]]

+ γ1Eqφ(z|x)[log pθ(x|z, Y ′)]−KL(qφ(z|x)‖p(z))
+ γ2Ex∼I log(H(Mt · F (G(x)),Mt · Y )),

(11)

where γ1 and γ2 are scale parameters to adjust loss function.
Remarks: Both ADGAN-I and ADGAN-II can generate

privacy-preserving images and videos. Compared with images,
additional pre-process and post-process are needed to deal with
videos, which is demonstrated in Section IV-D. Moreover, in
ADGAN-I and ADGAN-II, the private object class can be
customized according to different application requirements.
The masks Mt and Mo can be set flexibly to satisfy various
needs and then used to retrain the models for data generation.

D. Differences between ADGAN-I and ADGAN-II

The main differences between ADGAN-I and ADGAN-II
lie in two aspects.

(i) Model Structure. ADGAN-I uses a “U-Net”-based
structure, while ADGAN-II uses a conditional VAE based-
generator. As a result, ADGAN-II needs more additional
condition to generate images, which causes the different utility
loss function. Concretely, ADGAN-I can directly use cross-
entropy loss and masks, Mt and Mo, to define its utility, and
ADGAN-II needs to use loss function of the conditional VAE
to define the loss function.

(ii) Data Generation. In ADGAN-I, the generator G only
generates a noise N = G(x). The final synthetic image x′

is actually produced by x′ = x + G(x). Adding such an
image-dependent noise into the original image, x, may not
change the quality of x′ too much, because the original image
x contains much more information. While in ADGAN-II, the
synthetic images are generated directly by a transformation
x′ = G(x). The original image, which is input to the cVAE
structure, passes through the encoding and decoding process,
which may lead to loss of original image information as well as
low image quality. Therefore, the image quality of ADGAN-I
would be better than that of ADGAN-II.

IV. EXPERIMENTS

In this section, extensive experiments are conducted to
validate the effectiveness of our two models.

A. Experiment Setup

1) Datasets: To demonstrate the performance of utility
preservation and privacy protection of our ADGAN-I and
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ADGAN-II models, two different vehicular camera datasets
are used in our experiments.

• Cityscapes Dataset [41], which has pairs of images and
extra video data for training and evaluating.

• Google Street View Dataset [42], which contains street
view images covering 10,343 related place-mark in USA.
Every 6 of the images belong to a place-mark so that they
can be used to perform location inference detection.

Due to the constraints of hardware, we downscale the res-
olution of above two datasets into 512×512. After the results
are generated, we recover them back to higher resolution
1024×512 for better visualization.

2) Location Inference Attack: In location inference at-
tack, the adversaries can obtain street view data as prior
knowledge from Google Map API or other resources and thus
can identify the real location of a given image or video. First,
the adversaries collect enough camera data and extract features
of the data. Next, at the attack stage, the adversaries acquire
camera data from victim vehicles’ storage and/or vehicles’
remote servers and perform feature extraction. Finally, learning
or matching methods can be used to detect the location where
the victim image/video was taken. More details about location
inference attack can be referred to [42]. Therefore, to defend
such attack, it is critical to obfuscate the feature extraction
process of private objects in the original data. In our two
models, our goal is to conceal the location-related private
objects and preserve other useful objects in the generated data.

3) Baseline Model: To our best knowledge, [4] is the only
existing work that studies location inference attack towards im-
ages in autonomous vehicles. Hence, its proposed mechanism
PPAD is adopted as baseline for performance comparison.

PPAD aims to protect location information for privacy
preservation. Briefly speaking, the significant differences be-
tween PPAD and our two models are: (i) In PPAD, Struc-
ture Similarity Index Measurement (SSIM) and L1 distance
are used as utility and privacy metrics, respectively, which
partially hinder their performance. (ii) Different from PPAD
that only has generator and discriminator, our two models also
have a target model. The target model F provides interactive
feedback to training process, which is the reason why our two
models outperform PPAD as shown in Fig. 5 and Fig. 6.

B. Analysis of Utility and Privacy

To quantitatively evaluate utility and privacy of our pro-
posed methods, the pixel accuracy (PA) and interaction over
union (IoU) are selected from FCN-scores [34] to measure
the object detection accuracy on images. In the experiments,
the segmentation model is run to calculate the values of PA
and IoU for all images generated by PPAD and our ADGAN-I
and ADGAN-II. Based on PA and IoU, three types of metric
are defined for performance comparison, including: (i) quality,
which is the average PA and the average IoU over the entire
images; (ii) privacy, which is the average PA and average IoU
over the private objects (i.e., background constructions in our
experiments); (iii) utility that is the average PA and IoU over
the non-private objects. For quality and utility, a higher value

TABLE II
FCN-SCORES COMPARISON OF 3 MODELS ON CITYSCAPES

Model PPAD ADGAN-I ADGAN-II

Quality PA 76.52% 80.93% 71.91%
Privacy PA 64.65% 11.67% 16.21%
Utility PA 81.96% 84.93% 78.97%
Quality IoU 22.36% 28.80% 22.01%
Privacy IoU 11.75% 7.45% 8.71%
Utility IoU 29.93% 35.56% 29.65%

TABLE III
FCN-SCORES COMPARISON OF 3 MODELS ON GOOGLE STREET VIEW

Model PPAD ADGAN-I ADGAN-II

Quality PA 72.31% 79.87% 70.70%
Privacy PA 62.82% 13.54% 11.65%
Utility PA 78.97% 83.05% 77.54%
Quality IoU 18.37% 24.37% 17.40%
Privacy IoU 13.40% 6.27% 4.72%
Utility IoU 21.89% 28.81% 21.05%

means a better performance; while for privacy, the lower value
the better performance.

The results of our two models and the baseline model are
presented in TABLE II and TABLE III. For Cityscapes dataset,
the results of TABLE II are analyzed below.

(i) Our ADGAN-I model achieves the highest quality PA
and quality IoU which indicate that the quality of entire images
generated by ADGAN-I is the best, and ADGAN-II and PPAD
models have comparable quality PA and quality IoU. The
imperceptible modification plays an important role in privacy
protection and visualization, for which the results in Fig. 5
also demonstrates the superior image quality of ADGAN-I.

(ii) PPAD, ADGAN-I, and ADGAN-II receive lower privacy
PA than their corresponding quality PA to protect the private
objects in the images. PPAD’s PA is decreased from 76.52% to
64.65%, which means there is still more than 60% chance for
attackers to identify the private objects. While, the values of
PA in ADGAN-I and ADGAN-II are reduced to 11.67% and
16.21%, respectively. Compared with PPAD, privacy PA of
ADGAN-I and ADGAN-II is much more lower, which reflects
that our two models outperform PPAD in terms of privacy
protection. Through observing quality IoU and privacy IoU of
the three models, the same conclusions can be drawn.

(iii) For utility preservation, the performance of ADGAN-I
is also the best, and the performance of ADGAN-II and PPAD
is comparable. In ADGAN-I, utility PA is 84.93%, and utility
IoU is 35.56%, which are higher than those of ADGAN-II and
PPAD. The higher utility PA (and utility IoU) means more
information can be preserved in the generated images.

From the above results, we have more insights into the
fundamental difference between our two models and PPAD.
In our ADGAN-I and ADGAN-II models, the target model
F can give real-time feedbacks on which direction we should
move on for performance enhancement; while in PPAD, no
component can do that. The highest image quality of ADGAN-
I benefits from the specific image-dependent noise that is
produced and added without changing the image structure. Dif-
ferently, ADGAN-II and PPAD compress the original images
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(a) Localization accuracy w.r.t k (b) Pixel accuracy w.r.t. λ1/λ2

Fig. 4. Performance comparison of ADGAN-I and ADGAN-II.

into low-dimension vectors and then recover them to full-size
images, leading to the information loss during transformation.

The results for Google Street View dataset is shown in
TABLE III, where there is not segmentation label in the
dataset. We utilize the semi-supervised idea with pre-trained
FCN8s to process data augmentation: we first fetch a few
manually labeled images to train a FCN segmentation model
and then use the FCN to produce a number of labeled data
as additional dataset. From TABLE III, we can obtain the
conclusions similar to those from TABLE II.

Next, we conduct Multi-KNN [42] on the original im-
ages and the synthetic images generated by PPAD and our
ADGAN-I and ADGAN-II to examine the performance of
privacy protection for real locations. Note that Multi-KNN
quantifies how many percentages of images can be localized
within 50m range of their real locations. The location detection
performance is shown in Fig. 4(a), where k is the number
of nearest neighbors used in Multi-KNN. For the original
images, the percentage of images that can be localized within
50m of their real locations increases with the growth of k at
the beginning, and this percentage maintains at around 60%
percent when k ≥ 4, which means the leakage of private
location becomes more serious when there are more neighbors
and keeps stable when the number of neighbors is sufficient
for location detection. For PPAD and ADGAN-I, only around
21% percent of images are localized within 50m no matter the
change of k. Since the image quality of ADGAN-I is better
than that of PPAD, such 21% accuracy is quite acceptable.
Our ADGAN-II achieves the lowest percentage about 4%-5%
implying a more effective performance in generating privacy-
preserving images to resist location inference attack, for which
the reason is that the image perturbation yielded by ADGAN-
II is the most significant.

Moreover, to balance the tradeoff between utility preserva-
tion and privacy protection, we implement our models with
different hyper parameter ratio λ1/λ2, where λ1 and λ2 are
the scaling parameters in Eq. (1) to control “utility loss” Luti
and “privacy loss” Lpri, respectively. In Fig. 4(b), we fix
λ1=100 and increase λ1/λ2 by reducing λ2 gradually. For
ADGAN-I, as λ1/λ2 becomes larger, the utility increases first
and then keeps almost stable after λ1/λ2 = 6. This is because
λ1 enlarges the proportion of Luti to preserve more image
utility. When λ1/λ2 > 6, the improvement of image utility
reaches an upper bound because of the existence of Lpri. On
the contrary, with the increase of λ1/λ2, the privacy level

TABLE IV
SSIM MEASUREMENT ON CITYSCAPES AND GOOGLE STREET VIEW

Model Cityscapes Google Street View

PPAD 0.6925 0.6610
ADGAN-I 0.8704 0.9013
ADGAN-II 0.6211 0.6305

first goes down and then gradually stable after λ1/λ2=6. The
reduction of privacy level before the turning point means that
“privacy loss” Lpri is still in charge of whole loss function.
When λ2 is smaller enough, λ1 can finally influence private
pixels, which causes the stability of privacy protection. For
ADGAN-II, the change trends of utility PA and privacy PA
are similar to those of ADGAN-I. Utility PA increases first
and then reaches a stable upper bound because enlarging the
weight of Luti can improve image utility. Meanwhile, privacy
PA keeps dropping before λ1/λ2 = 5 due to the control
of Lpri. After the turning point, when Luti is getting more
weight, privacy PA slightly climbs to a stable value. According
to the above observations, setting λ1/λ2 = 6 for ADGAN-I
and λ1/λ2 = 5 of ADGAN-II can achieve the most effective
tradeoff between utility and privacy.

Summary of Analysis. The experiment results show that
preserving image utility and protecting location privacy are
hard to be achieved simultaneously. On one hand, a higher
recognition utility benefits the images for real applications,
such as object detection and data mining, but exposes the
images to severe privacy threats, e.g., location inference attack.
On the other hand, a better privacy protection is realized at the
cost of recognition utility, pushing the synthesized images to
be unclear and even useless. Nevertheless, our ADGAN-I and
ADGAN-II models can provide an effective tradeoff between
utility preservation and privacy protection. Furthermore, the
experiment results of ADGAN-I and ADGAN-II are consistent
with the analysis in Section III-D.

C. Perception Comparison

To visualize the perceptual effectiveness (i.e., image recog-
nition utility) of our two models, we provide SSIM measure-
ment, image quality visualization, and semantic segmentation
comparison as well.

1) SSIM Measurement: Structure Similarity Index Mea-
surement (SSIM) measures perceptual accuracy, which is
very close to human visibility. It can be computed by
SSIM(x, x′) = l(x, x′)α · c(x, x′)β · s(x, x′)γ where l(x, x′)
is luminance similarity, c(x, x′) is contrast similarity, and
s(x, x′) is structural similarity [43]. The output of SSIM is
a number in [0, 1] and represents the similarity between x
and x′, where 0 means totally different and 1 means exactly
same. The SSIM results are listed in TABLE IV, we can
see that our ADGAN-I model achieves 0.8704 and 0.9013
on Cityscapes and Google Street View, respectively, which is
the best performance among the three models with privacy
consideration. Besides, the SSIM values of PPAD and our
ADGAN-II model are comparable.

2) Image Quality Visualization: In Fig. 5 and Fig. 6,
we display some random samples generated from PPAD,
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(a) Original image (b) PPAD image (c) ADGAN-I image (d) ADGAN-II image

(e) Ground truth label (f) PPAD result (g) ADGAN-I result (h) ADGAN-II result

Fig. 5. Visual quality and semantic segmentation comparison on Cityscapes dataset. The first row is original image and generated images of PPAD, ADGAN-I,
and ADGAN-II. The second row is ground truth label and segmentation results of PPAD, ADGAN-I and ADGAN-II.

(a) Original image (b) PPAD image (c) ADGAN-I image (d) ADGAN-II image

(e) Ground truth label (f) PPAD result (g) ADGAN-I result (h) ADGAN-II result

Fig. 6. Visual quality and semantic segmentation comparison on Google Street View dataset. The first row is original image and generated images of PPAD,
ADGAN-I, and ADGAN-II. The second row is ground truth label and segmentation results of PPAD, ADGAN-I, and ADGAN-II.

ADGAN-I and ADGAN-II together with the corresponding
original images. We have the following critical findings: (i)
compared with PPAD and ADGAN-II, the synthetic images
of ADGAN-I are more similar to the original images with
better image quality; (ii) compared with ADGAN-I, it is harder
to tell backgrounds from the synthetic images of ADGAN-II,
which is the reason why ADGAN-II can better protect location
privacy; (iii) the synthetic images of PPAD and ADGAN-II
look similar, meaning their comparable performance in image
generation; These observations confirm that the superiority of
our ADGAN-I and ADGAN-II models over PPAD for utility
preservation and privacy protection, which is consistent with
the analysis in Section IV-B.

3) Semantic Segmentation Comparison: For computer
vision of autonomous vehicles, semantic segmentation is the
most important application. To investigate whether effective
semantic segmentation can be achieved under the requirement
of privacy protection, we run semantic segmentation on the
synthetic images generated from the three models. The seg-
mentation results are compared in Fig. 5 and Fig. 6, from
which we can see that our ADGAN-I and ADGAN-II models
outperform PPAD in terms of data utility. Meanwhile, the
background constructions are hard to be segmented correctly

by computer (see the results of ADGAN-I) or human (see the
results of ADGAN-II), which corresponds to our conclusions
from TABLE II and TABLE III.

More examples of images are presented at:
https://www.dropbox.com/sh/zsyaoch6exzvu42/
AABQOyu2uPb8uwYTt1mG4u5Na?dl=0.

D. Video Evaluation

Furthermore, in order to show the advantages of our
proposed models in protecting location privacy in videos,
we implement our models on video data from Cityscapes
dataset and present the results at https://www.dropbox.com/sh/
zsyaoch6exzvu42/AABQOyu2uPb8uwYTt1mG4u5Na?dl=0.
The process of applying our ADGAN-I and ADGAN-II on
video data is similar to that on static image data except some
differences in pre-processing and post-processing stages.
First, we split the video data into sequential frames on
the most fine-grained level to get as much training data
as possible. Those sequential frames are feed into network
structures with batch size 4 as their order in original video.
In this way, the continuous features of sequential data are
grouped into same batch, which can adapt video data. At the
evaluation stage, the generated batch results are combined
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together to get an averaged single frame. Finally, all generated
frames are concatenated to compose a complete video form
with fps=24, which is easy for human observation. The
results of videos are similar to the images that we show in
Section IV-C, which clearly validate the effectiveness of our
methods in processing image and video data.

V. CONCLUSION AND FUTURE WORK

To prevent location privacy leakage from camera data of
autonomous vehicles in off-line applications, in this paper
we develop two novel methods, ADGAN-I and ADGAN-II,
which employ GAN to generate privacy-preserving images and
videos while retaining recognition utility. Two real datasets
are utilized to evaluate the performance of ADGAN-I and
ADGAN-II, and comprehensive comparisons with the state-of-
the-arts are conducted to confirm the advantages of our mod-
els. In our future work, research activities will be carried out
along two major directions: (i) investigate privacy protection
for higher resolution data; (ii) deeply study efficient solutions
for real-time applications.
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