

PseudoBase: A genomic visualization and exploration resource for the *Drosophila pseudoobscura* subgroup

Katharine L. Korunes¹, Russell B. Myers², Ryan Hardy¹, Mohamed A. F. Noor^{1*}

1. Biology Department, Duke University, Durham, NC 27708
2. Alight Solutions, Lincolnshire, IL 60069

*Corresponding author: noor@duke.edu

Abstract

Drosophila pseudoobscura is a classic model system for the study of evolutionary genetics and genomics. Given this long-standing interest, many genome sequences have accumulated for *D. pseudoobscura* and closely related species *D. persimilis*, *D. miranda*, and *D. lowei*. To facilitate the exploration of genetic variation within species and comparative genomics across species, we present PseudoBase, a database that couples extensive publicly available genomic data with simple visualization and query tools via an intuitive graphical interface, amenable for use in both research and educational settings. All genetic variation (SNPs and indels) within the database is derived from the same workflow, so variants are easily comparable across data sets. Features include an embedded JBrowse interface, ability to pull out alignments of individual genes/regions, and batch access for gene lists. Here, we introduce PseudoBase, and we demonstrate how this resource facilitates use of extensive genomic data from flies of the *Drosophila pseudoobscura* subgroup.

1 **Introduction**

2 Flies of the *Drosophila pseudoobscura* subgroup have a long and rich history as model
3 systems in evolutionary genetics and genomics. The *pseudoobscura* subgroup is particularly
4 recognized for its roles in the study of the population genetics of chromosomal inversions and
5 the evolutionary genetics of species barriers. In the early 1900s, the development of cytogenetic
6 methods that visualized karyotypes of polytene chromosomes enabled analysis of variation in
7 *Drosophila* chromosome structure. These cytogenetic approaches enabled a wide range of
8 genetic analyses, including early genetics-based species phylogenies based on inversion
9 differences between closely related species of the *pseudoobscura* subgroup (Sturtevant &
10 Dobzhansky, 1936). Surveys of natural populations of the *pseudoobscura* subgroup quantified
11 extensive variation within and between populations as well as fixed structural differences
12 between species (Dobzhansky, 1943; Dobzhansky & Sturtevant, 1938; Lewontin & Hubby, 1966).
13 In early analyses, inversion differences were often thought to be neutrally evolving, based on
14 the logic that inversions can change gene order without disrupting gene content. With the rapid
15 expansion of DNA sequencing technology in the early 2000s, the *pseudoobscura* subgroup played
16 a key role in the resurgence of empirical and theoretical research on inversion polymorphisms
17 (Fuller, Koury, Phadnis, & Schaeffer, 2018). Today, inversions are recognized for the diverse
18 roles across various taxa in local adaptation, divergence, and speciation (Fishman, Stathos,
19 Beardsley, Williams, & Hill, 2013; Hoffmann & Rieseberg, 2008; Kirkpatrick & Barrett, 2015;
20 Kirkpatrick & Barton, 2006; M. A. Noor, Grams, Bertucci, & Reiland, 2001).

21 Flies of the *pseudoobscura* group remain prominent model systems for understanding the
22 evolutionary genetics of differences between species. Thus, many genome sequences have
23 accumulated both for *D. pseudoobscura* and for its close relative species. *D. pseudoobscura* and its
24 naturally-hybridizing sister species, *D. persimilis*, provide a model for understanding how
25 inversions shape speciation. Nearly all reproductive barriers between these species map to the
26 fixed or nearly fixed inversions that differ between them (M. A. F. Noor et al., 2001; M. A. Noor
27 et al., 2001). A subspecies of *D. pseudoobscura*, *D. pseudoobscura bogotana*, also provides important
28 insights in speciation research. There are two named subspecies of *D. pseudoobscura*—*D.*
29 *pseudoobscura pseudoobscura* and *D. pseudoobscura bogotana*. Throughout this article, we use *D.*

30 *pseudoobscura* to refer to both subspecies, and we specify *D. pseudoobscura pseudoobscura* or *D.*
31 *pseudoobscura bogotana* when we are specifically referring to only one of the two subspecies. *D.*
32 *pseudoobscura bogotana* is found near Bogota, Colombia, and does not exchange genes with
33 allopatric *D. pseudoobscura pseudoobscura* or *D. persimilis*. Thus, *D. pseudoobscura bogotana* is an
34 important point of genomic comparison for *D. pseudoobscura pseudoobscura* and *D. persimilis*, and
35 has served as a model for the early stages of speciation (Brown, Burk, Henagan, & Noor, 2004;
36 Chang & Noor, 2007; Kulathinal, Stevison, & Noor, 2009; Phadnis & Orr, 2009). Additional
37 important points of comparison for *D. pseudoobscura* evolutionary genetics include *D. lowei* and
38 *D. miranda*. *D. lowei* and *D. pseudoobscura* likely diverged 5-11 million years ago (Beckenbach,
39 Wei, & Liu, 1993), and *D. lowei* often serves as an outgroup species for comparative genetics and
40 genomics within the *pseudoobscura* subgroup (Korunes, Machado, & Noor, 2019; Manzano-
41 Winkler, McGaugh, & Noor, 2013; McGaugh et al., 2012). *D. miranda* is also often leveraged as a
42 point of comparison for *D. pseudoobscura* (McGaugh et al., 2012; Smukowski Heil, Ellison,
43 Dubin, & Noor, 2015) and has become particularly known as a model for sex chromosome
44 evolution (Bachtrog & Charlesworth, 2002; Mahajan, Wei, Nalley, Gibilisco, & Bachtrog, 2018).

45 As is often the case with classic study systems, multiple laboratories have sequenced a
46 variety of strains of *D. pseudoobscura* and closely related species. To facilitate the exploration of
47 genetic variation within and among these species, we present PseudoBase as a resource that
48 presents publicly available genomic data via an intuitive graphical interface, accessible to
49 students or researchers without any prior experience in working with genomic data. Our
50 intention is to provide a resource that maximizes the utility of sequence data by lowering
51 barriers to working with these data. PseudoBase originated in 2012 as a resource primarily for
52 the Noor laboratory at Duke University, for a handful of other laboratories, and for use as a
53 classroom tool. The ongoing accumulation of new genomic data for these species as well as a
54 desire for broader functionality recently prompted a redesign of the original interface. We
55 released 'PseudoBase 2.0', <http://pseudobase.biology.duke.edu/>, to include a broader sampling
56 of publicly available *pseudoobscura* subgroup genomes, update the underlying *D. pseudoobscura*
57 reference genome, and provide a significantly improved user interface. The new user interface
58 includes embedded JBrowse visualization tools, the ability to download FASTA formatted

59 alignments of individual genes/regions, and batch access for gene lists. Here, we provide an
60 overview of the underlying data within PseudoBase, we introduce its features and
61 functionalities, and we illustrate how this public resource supports the use of flies of the
62 *pseudoobscura* subgroup for biological discovery and education.

63 Materials and Methods

64 Sequencing Information and Variant Calling

65 PseudoBase aggregates whole genome paired-end Illumina experiments from multiple
66 laboratory groups and experiments (Fuller, Leonard, Young, Schaeffer, & Phadnis, 2018;
67 Korunes et al., 2019; McGaugh et al., 2012; McGaugh & Noor, 2012; Samuk, Manzano-Winkler,
68 Ritz, & Noor, 2020). Raw data and associated details are available on the NCBI Short Read
69 Archive under the sample accessions indicated on PseudoBase and listed in Table 1. When more
70 than one whole genome experiment was available for a given strain (e.g., *D. pseudoobscura*
71 Flagstaff 14), we included the one sequenced using the most recent technology (which
72 happened to also provide the highest coverage). We did not include genomes resulting from
73 crosses of multiple laboratory strains.

74 The pipeline used for genome alignment and variant calling is available on GitHub
75 (<https://github.com/kkorunes/PseudobaseScripts>). We first used BWA-0.7.17 (Li & Durbin, 2009)
76 to align all sequences to the *D. pseudoobscura* genome assembly (Dpse_3.04: GCA_000001765.2),
77 obtained from FlyBase (Thurmond et al., 2019). We next used Picard command line tools to
78 mark adapters and duplicates (<http://broadinstitute.github.io/picard/>). Variants were called and
79 filtered using GATK v4.1.1 (McKenna et al., 2010; Van der Auwera et al., 2013). We filtered
80 SNPs and indels separately, according to the hard filtering recommendations provided by GATK.
81 Specifically, we excluded SNPs with QualByDepth (QD) < 2.0, FisherStrand Bias (FS) > 60, and
82 StrandOddsRatio (SOR) > 3.0, MQ < 40, MQRankSum < -12.5, ReadPosRankSum < -8. Indels
83 were filtered to exclude variants with QualByDepth (QD) < 2.0, FisherStrand (FS) > 200, and
84 StrandOddsRatio (SOR) > 10.0, ReadPosRankSum < 20.

85 **Database Architecture**

86 PseudoBase server-side code is written in Python using the Django Framework.
87 Sequence alignments are stored on the server as a series of indexed files (one indexed file per
88 chromosome / strain), and indexes are created within each file for every reference sequence base
89 position. This allows for fast retrieval of both aligned and unaligned sequences for any
90 specifically requested chromosome region or gene searches. PseudoBase utilizes a mySQL
91 database to store a) strain metadata, b) pointers to indexed sequence alignment file locations on
92 the server for each chromosome/strain, and c) pointers to gene locations within sequences, to
93 assist with optimizing search queries. Importantly, new strains can be readily added to
94 PseudoBase as they become available. This is facilitated via an import mechanism which utilizes
95 standard Variant Call Format (VCF) files as input. Each imported VCF file contains called indels
96 and SNPs for each chromosome/chromosome group for a strain.

97 PseudoBase is served as a browser-based web app compatible with all major browsers.
98 An embedded JBrowse instance is fully integrated within the PseudoBase application, allowing
99 browsing to specific genes/regions (Buels et al., 2016). All strains imported into PseudoBase are
100 automatically made available for browsing within JBrowse utilizing “HTMLVariant” JBrowse
101 track types with store class of “VCFTabix”, while any other supplementary tracks/track types
102 useful for analysis can also be uploaded directly to the JBrowse interface using standard
103 JBrowse import mechanisms. The following JBrowse plugins are activated within PseudoBase:
104 HierarchicalCheckBoxPugin, NeatHTMLFeatures and HideTrackLabels.

105 **Results and Discussion**

106 **Interface and key features**

107 The PseudoBase site, <http://pseudobase.biology.duke.edu/>, is designed to be simple and
108 intuitive. The landing page is divided into six tabs: “Home”, “Browse”, “Info”, “Links”,
109 “Updates”, and “Contact Us”. The homepage (Figure 1A) allows the user to select the species of
110 interest and readily pull up genetic information by gene name or by genomic region.
111 PseudoBase is currently configured to accept the following types of gene identifiers: *D.*
112 *pseudaobscura* IDs prefixed with GA- (e.g., GA26895) and *D. persimilis* IDs prefixed with GL-
113 (e.g., GL15062), *D. melanogaster* IDs prefixed with CG- or FBgn- (e.g., CG10064 or FBgn0035724),

114 and gene name abbreviations when available (e.g., *atl* or *Adh*). *D. melanogaster* orthologs in other
115 sequenced *Drosophila* genomes are reported by FlyBase as determined by OrthoDB, and
116 PseudoBase uses this ortholog report to display the relevant orthologous *D. pseudoobscura* gene
117 when a *D. melanogaster* gene identifier is entered (Kriventseva et al., 2015; Thurmond et al., 2019;
118 FlyBase file "dmel_orthologs_in_drosophila_species_fb_2020_04.tsv.gz"). We also use this
119 ortholog report to look up gene identifiers of *D. persimilis*, by first determining the *D.*
120 *melanogaster* ortholog, then looking up the *D. pseudoobscura* ortholog. We note that these search
121 functions will be an important area for future PseudoBase updates, as more orthology
122 predictions become available and as the maintenance of *D. pseudoobscura* annotations shifts from
123 FlyBase to GenBank, as discussed further below.

124 Once the species of interest and the gene/region are indicated, the user has the option of
125 either generating an alignment or navigating to the relevant JBrowse view. The "FASTA
126 results" option generates a FASTA formatted output (aligned or unaligned), which can be
127 downloaded for downstream analyses. Alternatively, the "JBrowse to gene" option allows the
128 user to navigate to the region of interest within the JBrowse interface (Figure 1B-D). This
129 interface can also be accessed from the "Browse" tab. The user can select and deselect genomes
130 of interest (Figure 1B), enabling comparative genomics between genomes of *D. pseudoobscura*
131 *pseudoobscura*, *D. pseudoobscura bogotana*, *D. persimilis*, *D. miranda*, and *D. lowei*. Navigating to a
132 particular region in the JBrowse interface allows the user to view any FlyBase annotations
133 contained within the region (Figure 1C; (Thurmond et al., 2019)). This interface also allows the
134 user to visualize the genomic context of SNPs and indels in the genomes of interest (Figure 1D).

135 The other tabs on the homepage ("Info", "Links", "Updates", and "Contact Us") provide
136 documentation and help. The "Info" tab provides users with general information about
137 PseudoBase including an overview of PseudoBase, tool documentation, variant calling details,
138 and a list of available strains and their accessions. The "Links" tab consists of a dropdown menu
139 with related external resources. "Updates" serves as a location for Release Notes, and will
140 summarize future changes to the site. Contact information for comments or assistance is located
141 in the "Contact Us" tab as well as the footer on each page.

A. [Home](#) [Browse](#) [Info](#) [Links](#) [Updates](#) [Contact Us](#)

Search by gene or by region in the reference *D. pseudoobscura* genome sequence

by Gene [by Chromosome](#)

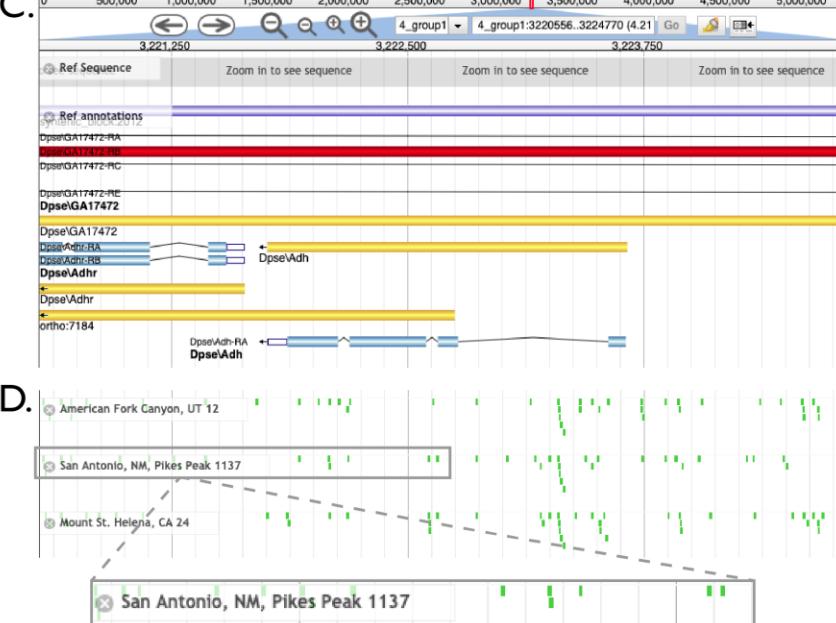
Search criteria [?](#)

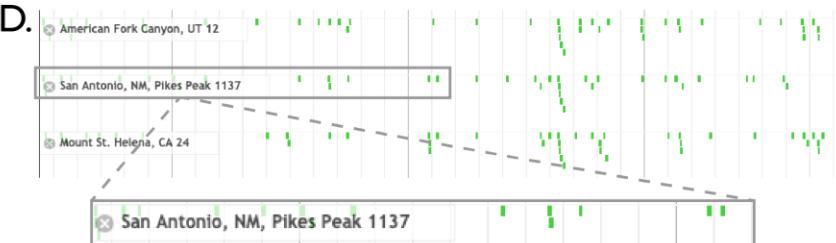
Gene Supported formats: Gene name (e.g. *att*), GA ID (e.g. GA26895) CG ID (e.g. CG10064), GL ID (e.g. GL15062), GLEANR ID (e.g. GLEANR_4729), FlyBase ID (e.g. FBgn0248267)

Species ***D.pseudoobscura* *pseudoobscura* (pse)**
 ***D.pseudoobscura* *bogotana* (bog)**
 ***D.persimilis* (per)**
 ***D.miranda* (mir)**

or Gene batch file No file chosen
Example gene batch file: [gene_batch_example](#)

Output


Show aligned [?](#)


FASTA results **JBrowse to gene**

B. Available Tracks

Reference sequence (Flybase dpse_r3.04_FB2018_05) 2
 select all from category
 Ref Sequence
 Genes

VCF r304 52
 select all from category
D. pseudoobscura 30
 select all from category
 American Fork Canyon, UT 12
 Dpse SR
 Dpse ST
 Flagstaff, AZ 18
 Mather, CA TL
 Mather, CA 32
 Mount St. Helena, CA 9
 Mount St. Helena, CA 24
 San Antonio, NM, Pikes Peak 1134
 San Antonio, NM, Pikes Peak 1137
 S1-A56
 S3-M14

C.

D.

144 *Figure 1* | Overview of the PseudoBase interface. (A) The PseudoBase homepage allows the user to query by gene (or
145 genes if the user uploads a batch query) or by chromosomal region. In this example, the gene *Adh* (alcohol
146 dehydrogenase) is entered. By selecting one or more species of interest, the user can either access a FASTA-formatted
147 alignment or navigate to the JBrowse interface (snapshots in B-D) to explore the genomic region. (B) Track selection
148 in the JBrowse interface enables the user to toggle tracks on or off to add or remove strains from the view. (C) An
149 overview of the genomic region includes annotations from FlyBase. Clicking on any of these features brings up
150 detailed information, including coordinates, the feature length, any aliases, the full nucleotide sequence, and the
151 nucleotide sequence of each subfeature (e.g., introns). (D) JBrowse allows the user to visualize SNP and indels
152 specific to each selected track. The zoomed view of a portion of the “San Antonio, NM, Pikes Peak 1137” strain shows
153 SNPs highlighted in green. Clicking on any of these SNPs brings up further details, such as the specific allele and its
154 attributes (e.g., sequencing depth).

155 **Data content and data types**

156 PseudoBase 2.0 includes a total of 61 sequenced genomes from *D. pseudoobscura*, *D.*
 157 *persimilis*, *D. miranda*, and *D. lowei* (Table 1). All genome alignment and variant calling was
 158 performed through a standardized workflow and uses a common genomic coordinate system
 159 based on the *D. pseudoobscura* genome assembly (initial version published in Richards et al.,
 160 2005). This structure contributes to the simplicity of the site and enables comparative genomics
 161 across species and strains (see Methods). Further, to our knowledge, this reference genome has
 162 received the most independent (not including reference-based assemblies to other species)
 163 assembly effort out of the *pseudoobscura* subgroup. The database was constructed to
 164 accommodate future additions of additional sequencing data and variant calls. The gene model
 165 annotations available through PseudoBase are pulled from FlyBase (Thurmond et al., 2019).
 166 Importantly, the genome assembly and annotations obtained from FlyBase are static within
 167 PseudoBase, rather than being dynamically updated when FlyBase is updated. Recent releases
 168 of FlyBase are moving the focus of FlyBase away from non-melanogaster species (see Release
 169 Notes at flybase.org). As a result, FlyBase no longer maintains the *D. pseudoobscura* assembly
 170 and annotations. We plan to import future updates from GenBank, where the current assembly
 171 is maintained (GCA_000001765.2). However, we note that the static nature of assembly and
 172 annotations within PseudoBase gives us the flexibility to import future assemblies and
 173 annotations from other sources if they become available.

174

175 **Table 1 | Genomes represented in the PseudoBase 2.0 release**

Species	Genomes	NCBI Accessions (Strain details on PseudoBase)
<i>D. pseudoobscura pseudoobscura</i>	31	SRX091462, SRX091310, SRX091461, SRX091324, SRX091465, SRX091463, SRX091323, SRX091311, SRX7842600, SRX7842599, SRX7842598, SRX7842597, SRX7842596, SRX7842595, SRX7842594, SRX7842593, SRX7842591, SRX7842590, SRX7842589, SRX7842588, SRX7842587, SRX7842586, SRX7842585, SRX7842584, SRX7842583, SRX7842582, SRX7842581, SRX7842580, SRX7842579, SRX3430959, SRX3430958
<i>D. pseudoobscura bogotana</i>	5	SRX7260972, SRX7260973, SRX091468, SRX7260971, SRX7260970
<i>D. persimilis</i>	13	SRX104991 & SRX104992, SRX063440, SRX091471, SRX3430960, SRX3430961, plus 8 strains under SRA project PRJNA672098
<i>D. miranda</i>	11	SRX950183, SRX950187, SRX950188, SRX950189, SRX950190, SRX950211, SRX965452, SRX965455, SRX965460, SRX965461, SRX965462
<i>D. lowei</i>	1	SRX091467

176

177 **Applications**

178 One of the key features of PseudoBase that sets it apart from other interactive tools for
179 interfacing with *Drosophila* genomic data is its simplicity. We provide a simple user interface
180 and a relatively focused dataset representing only genomic variation within the *pseudoobscura*
181 subgroup. By lowering the barriers to working with genomic data, we provide a widely
182 accessible tool particularly useful for pilot analyses, data checks, and educational purposes.
183 Anyone can take advantage of this database without the burden of obtaining and downloading
184 raw data, assembling genomes, or calling variants. For example, the “FASTA results” option
185 available on the homepage can generate a FASTA formatted alignment specifically for any gene
186 of interest without requiring the user to handle full genomes. Such alignments can be readily
187 downloaded for downstream analyses. The JBrowse feature further allows selection of specific
188 strains as well as visualization of all polymorphisms or just SNPs or indels, thereby simplifying
189 the process for rapid marker development.

190 While this database is useful for *Drosophila* researchers, it also offers educational
191 opportunities. Simple bioinformatic exercises can be designed where students or trainees extract
192 variation for genes of interest. Indeed, PseudoBase has already been leveraged extensively for
193 many years by undergraduates in our research team as well as for an introductory-level college
194 course laboratory exercise (J. K. F. Noor & Noor, 2013). In sum, the accessibility of PseudoBase
195 makes it useful to both the community of *Drosophila* researchers and to those who lack extensive
196 computational or genomic analysis expertise but wish to do simple population genetic analyses
197 or develop genetic markers.

Acknowledgements

The authors wish to thank past and present members of the Noor Lab whose contributions have facilitated the creation and improved the functionality of PseudoBase. Helpful feedback from two anonymous peer reviewers improved both the manuscript and the functionality of the site. The original version of PseudoBase was funded by NIH award GM086445 to MAFN. The current update was funded through NSF grants DEB-1754022 and DEB-1754439 to MAFN. KLK

was supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE 1644868.

Declaration of Interest Statement

The authors have no conflicts of interest to declare.

References

198 Bachtrog, D., & Charlesworth, B. (2002). Reduced adaptation of a non-recombining neo-Y
199 chromosome. *Nature*, 416, 323–326.

200 Beckenbach, A. T., Wei, Y. W., & Liu, H. (1993). Relationships in the *Drosophila obscura* species
201 group, inferred from mitochondrial cytochrome oxidase II sequences. *Molecular Biology
and Evolution*, 10(3), 619–634. doi: 10.1093/oxfordjournals.molbev.a040034

202 Brown, K. M., Burk, L. M., Henagan, L. M., & Noor, M. A. F. (2004). A test of the chromosomal
203 rearrangement model of speciation in *Drosophila pseudoobscura*. *Evolution*, 58(8), 1856–
204 1860.

205 Buels, R., Yao, E., Diesh, C. M., Hayes, R. D., Munoz-Torres, M., Helt, G., ... Holmes, I. H.
206 (2016). JBrowse: A dynamic web platform for genome visualization and analysis. *Genome
Biology*, 17(66). doi: 10.1186/s13059-016-0924-1

207 Chang, A. S., & Noor, M. A. F. (2007). The genetics of hybrid male sterility between the
208 allopatric species pair *Drosophila persimilis* and *D. pseudoobscura bogotana*: Dominant
209 sterility alleles in collinear autosomal regions. *Genetics*, 176(1), 343–349. doi:
210 10.1534/genetics.106.067314

211 Dobzhansky, T. (1943). Genetics of natural populations IX. Temporal changes in the
212 composition of populations of *Drosophila pseudoobscura*. *Genetics*, 28(2), 162–186.

213 Dobzhansky, T., & Sturtevant, A. H. (1938). Inversions in the chromosomes of *Drosophila
214 pseudoobscura*. *Genetics*, 23(1), 28–64.

217 Fishman, L., Stathos, A., Beardsley, P. M., Williams, C. F., & Hill, J. P. (2013). Chromosomal
218 rearrangements and the genetics of reproductive barriers in *Mimulus* (monkey flowers).
219 *Evolution*, 67(9), 2547–2560. doi: 10.1111/evo.12154

220 Fuller, Z. L., Koury, S. A., Phadnis, N., & Schaeffer, S. W. (2018). How chromosomal
221 rearrangements shape adaptation and speciation: Case studies in *Drosophila*
222 *pseudoobscura* and its sibling species *Drosophila persimilis*. *Molecular Ecology*, 28(6),
223 1283–1301. doi: 10.1111/mec.14923

224 Fuller, Z. L., Leonard, C. J., Young, R. E., Schaeffer, S. W., & Phadnis, N. (2018). Ancestral
225 polymorphisms explain the role of chromosomal inversions in speciation. *PLoS Genetics*,
226 14(7), e1007526. doi: 10.1371/journal.pgen.1007526

227 Hoffmann, A. A., & Rieseberg, L. H. (2008). Revisiting the impact of inversions in evolution:
228 From population genetic markers to drivers of adaptive shifts and speciation? *Annual
229 Review of Ecology, Evolution, and Systematics*, 39, 21–42. doi:
230 10.1146/annurev.ecolsys.39.110707.173532

231 Kirkpatrick, M., & Barrett, B. (2015). Chromosome inversions, adaptive cassettes and the
232 evolution of species' ranges. *Molecular Ecology*, 24(9), 2046–2055. doi: 10.1111/mec.13074

233 Kirkpatrick, M., & Barton, N. (2006). Chromosome inversions, local adaptation and speciation.
234 *Genetics*, 173(1), 419–434. doi: 10.1534/genetics.105.047985

235 Korunes, K. L., Machado, C. A., & Noor, M. A. (2019). Inversions shape the divergence of
236 *Drosophila pseudoobscura* and *D. persimilis* on multiple timescales. *BioRxiv*, 842047.
237 doi: 10.1101/842047

238 Kriventseva, E.V., Tegenfeldt F., Petty T.J., Waterhouse R.M., Simão F.A., Pozdnyakov I.A.,

239 Ioannidis P., Zdobnov E.M. (2015). OrthoDB v8: update of the hierarchical catalog of

240 orthologs and the underlying free software. *Nucleic Acids Res.* 43(Database issue):D250-6.

241 doi: 10.1093/nar/gku1220. Epub 2014 Nov 26. PMID: 25428351; PMCID: PMC4383991.

242 Kulathinal, R. J., Stevenson, L. S., & Noor, M. A. F. (2009). The genomics of speciation in

243 Drosophila: Diversity, divergence, and introgression estimated using low-coverage

244 genome sequencing. *PLoS Genetics*, 5(7), e1000550. doi: 10.1371/journal.pgen.1000550

245 Lewontin, R., & Hubby, J. (1966). A molecular approach to the study of genic heterozygosity in

246 natural populations II. Amount of variation and degree of heterozygosity in natural

247 populations of Drosophila pseudoboscra. *Genetics*, 54(2), 565–609.

248 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler

249 Transform. *Bioinformatics*, 25(14), 1754–1760. doi: 10.1093/bioinformatics/btp324

250 Mahajan, S., Wei, K. H., Nalley, M., Gibilisco, L., & Bachtrog, D. (2018). De novo assembly of a

251 young Drosophila Y chromosome using single-molecule sequencing and chromatin

252 conformation capture. *PLoS Biology*, 16(7), e2006348.

253 Manzano-Winkler, B., McGaugh, S. E., & Noor, M. A. F. (2013). How hot are Drosophila

254 hotspots? Examining recombination rate variation and associations with nucleotide

255 diversity, divergence, and maternal age in *Drosophila pseudoobscura*. *PLoS ONE*, 8(8),

256 e71582. doi: 10.1371/journal.pone.0071582

257 McGaugh, S. E., Heil, C. S. S., Manzano-Winkler, B., Loewe, L., Goldstein, S., Himmel, T. L., &

258 Noor, M. A. F. (2012). Recombination modulates how selection affects linked sites in

259 Drosophila. *PLoS Biology*, 10(11), e1001422. doi: 10.1371/journal.pbio.1001422

260 McGaugh, S. E., & Noor, M. A. F. (2012). Genomic impacts of chromosomal inversions in
261 parapatric *Drosophila* species. *Philosophical Transactions of the Royal Society B: Biological
262 Sciences*, 367(1587), 422–429. doi: 10.1098/rstb.2011.0250

263 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., ... DePristo,
264 M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing
265 next-generation DNA sequencing data. *Genome Research*, 20(9), 1297–1303. doi:
266 10.1101/gr.107524.110

267 Noor, J. K. F., & Noor, M. A. F. (2013). Finding Selection in All the Right Places: A College
268 Genetics Laboratory Inquiry-Based Learning Exercise. *Genetics Society of America Peer-
269 Reviewed Education Portal (GSA PREP)*, 2013.001. doi: 10.1534/gasprep.2013.001

270 Noor, M. A. F., Grams, K. L., Bertucci, L. A., Almendarez, Y., Reiland, J., & Smith, K. R. (2001).
271 The genetics of reproductive isolation and the potential for gene exchange between
272 *Drosophila pseudoobscura* and *D. persimilis* via backcross hybrid males. *Evolution*, 55: 512-
273 521. doi: 10.1111/j.0014-3820.2001.tb00785.x

274 Noor, M. A., Grams, K. L., Bertucci, L. A., & Reiland, J. (2001). Chromosomal inversions and the
275 reproductive isolation of species. *Proceedings of the National Academy of Sciences*, 98(21),
276 12084–12088. doi: 10.1073/pnas.221274498

277 Phadnis, N., & Orr, H. (2009). A single gene causes both male sterility and segregation
278 distortion in *Drosophila* hybrids. *Science*, 323(5912), 376–379.

279 Richards, S., Liu, Y., Bettencourt, B. R., Hradecky, P., Letovsky, S., Nielsen, R., ... Gibbs, R. A.
280 (2005). Comparative genome sequencing of *Drosophila pseudoobscura*: Chromosomal,
281 gene, and cis-element evolution. *Genome Research*, 15(1), 1–18. doi: 10.1101/gr.3059305

282 Samuk, K., Manzano-Winkler, B., Ritz, K. R., & Noor, M. A. F. (2020). Natural selection shapes
283 variation in genome-wide recombination rate in *Drosophila pseudoobscura*. *Current
284 Biology*, 30(8), 1517-1528.E6. doi: 10.1016/j.cub.2020.03.053

285 Smukowski Heil, C. S., Ellison, C., Dubin, M., & Noor, M. A. F. (2015). Recombining without
286 hotspots: A comprehensive evolutionary portrait of recombination in two closely related
287 species of *Drosophila*. *Genome Biology and Evolution*, 7(10), 2829–2842. doi:
288 10.1093/gbe/evv182

289 Sturtevant, A. H., & Dobzhansky, T. (1936). Inversions in the third chromosome of wild races of
290 *Drosophila pseudoobscura*, and their use in the study of the history of the species.
291 *Proceedings of the National Academy of Sciences*, 22, 448–450.

292 Thurmond, J., Goodman, J. L., Strelets, V. B., Attrill, H., Gramates, L. S., Marygold, S. J., ...
293 Baker, P. (2019). FlyBase 2.0: The next generation. *Nucleic Acids Research*, 47(D1), D759–
294 D765. doi: 10.1093/nar/gky1003

295 Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine,
296 A., ... DePristo, M. A. (2013). From FastQ data to high-confidence variant calls: The
297 Genome Analysis Toolkit best practices pipeline. *Current Protocols in Bioinformatics*, 43(1),
298 11.10.1-11.10.33. doi: 10.1002/0471250953.bi1110s43

299