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Abstract—Recent reports of bias in multimedia algorithms
(e.g., lesser accuracy of face detection for women and persons of
color) have underscored the urgent need to devise approaches
which work equally well for different demographic groups.
Hence, we posit that ensuring fairness in multimodal cyber-
bullying detectors (e.g., equal performance irrespective of the
gender of the victim) is an important research challenge. We
propose a fairness-aware fusion framework that ensures that
both fairness and accuracy remain important considerations
when combining data coming from multiple modalities. In
this Bayesian fusion framework, the inputs coming from
different modalities are combined in a way that is cognizant
of the different confidence levels associated with each feature
and the interdependencies between features. Specifically, this
framework assigns weights to different modalities not just
based on accuracy but also their fairness. Results of applying
the framework on a multimodal (visual + text) cyberbullying
detection problem demonstrate the value of the proposed
framework in ensuring both accuracy and fairness.

Keywords-Cyberbullying Detection, Fairness, Bias in Ma-
chine Learning, Multimedia Fusion, Bayesian Fusion

I. INTRODUCTION

Cyberbullying is an increasingly complicated problem
faced by many online social networks users. As stated in
[1]], cyberbullying occurs “when the Internet, cellphones or
other devices are used to send or post text or images intended
to hurt or embarrass another person”. The National Crime
Prevention Council reports more than 40% of teenagers
in the US have reported being cyberbullied [2]. When
dealing with large-scale social networks, it is impractical
to use a completely manual approach for cyberbullying de-
tection. Hence, multiple researchers have proposed machine
learning-based methods for automatic cyberbullying detec-
tion. While past research on cyberbullying detection has
been dominated by text mining and analysis [3]], [4]], multiple
authors have started using multimodal content analysis for
cyberbullying detection. Recent attempts have recognized
the value of looking at the heterogeneous modalities of
information including textual features, social features, audio
and visual features for improved cyberbullying detection [5],
lol, {71, isl.

Like many fields, the adoption of machine learning ap-
proaches has led to significant advancements (e.g. scalability,
accuracy) in cyberbullying detection. At the same time, the
issue of fairness in machine learning algorithms has gained
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prominence. Multiple authors have criticized multimedia
algorithms that perform differently for different groups [9]]
and some recent efforts have studied the issue of fairness in
cyberbullying detection [10], [L1].

While past research in multimedia has used the multiple
perspectives coming from different modalities to improve
on accuracy of the developed algorithm, we posit that
combining input from multiple modalities is also a natural
way to reduce bias. In this paper we consider the problem
of fairness in multimodal cyberbullying detection and make
the following contributions:

1) Undertake the first audit on fairness of multimodal

cyberbullying detection algorithms.

2) Propose a fairness-aware Bayesian fusion framework

for multimodal cyberbullying detection.

The underlying intuition behind the framework is as follows.
Each modality captures a part of the underlying phenomena
and has some inherent predictive power but also some
inherent bias. Further, there are varying levels of inter-
dependencies between modalities. Hence, the framework
needs to combine the inherent bias levels, accuracy levels,
and interdependencies in a manner that optimizes for a
combination of accuracy and fairness.

In this work, we focus on a human-labeled cyberbullying
data-set of Instagram “media sessions” (image and textual
captions and comments from other users), which has been
used in a past works [12], [13]]. The dataset includes infor-
mation on the gender of the person in the image as obtained
via a computer vision API. We operationalize bias as the
difference in the performance of the model for privileged
vs. unprivileged (here, male vs. non-male) groups. The
results obtained suggest that the proposed framework yields
improvements in fairness while maintaining a high degree
of accuracy.

The proposed work has limitations including the use of
binary gender labels based on visual presentation [14].
However, since reaching out to the original victims of cyber-
bullying to obtain self-reports on gender is neither practical
nor ethical, we have decided to use the abovementioned
dataset to test out the proposed multimodal fairness aware
framework. We note that the proposed framework is generic
and works for other interpretations of accuracy, bias, and
interdependencies too.



The rest of this paper is organized as follows. In Section
we cover related work in more details. Section |II}
discusses some concepts of fairness in machine learning and
the metrics. Section [[V] explains the proposed framework
and describes the scenarios that we consider in our study.
Implementation details and dataset used in this work are
described in Section [V] Our evaluation results are presented
in Section Subsequently, Section [VII} concludes the
paper and provides future directions.

II. RELATED WORK
A. Cyberbullying Detection

Text-based analysis remains an important area of cyber-
bullying detection research. In an early attempt, Reynolds et
al. in [4]] used the amount, density, and value of swear words
as sensitive features to detect the cyberbullying messages.
Huang et al. in [6] developed an approach to utilize social
and textual features in a combined cyberbullying detections.
Dinakar et al. in [[15] proposed a model that showed that
label-particular classifiers are more efficient than multi-class
classifiers in detecting cyberbullying messages. Singh et al.
have defined a fusion framework for cyberbullying detection
using social and textual features [5]. Recently, multiple
authors have stated using multimodal signals i.e. audio, vi-
sual, textual, and social features for advanced cyberbullying
detection [2f], [L16], [[L7]. Some recent attempts have utilized
embeddings and deep learning methods to create advanced
text-based cyberbullying detectors [18], [19]. While deep
learning approaches often yield high accuracy, they also
require large-scale labeled data. However, the nuances of
cyberbullying often require human involvement in the label-
ing process and large-scale datasets for training such models
are available only in limited settings [20].

B. Fairness in Machine Learning

In recent years, there have been multiple attempts that
target improving the fairness of machine learning (ML)
algorithms. Fairness in ML algorithms is typically opera-
tionalized as equal performance of the algorithm for different
demographic groups [9]]. If on the other, the performance
of the algorithm varies depending on a ‘“sensitive” attribute
(e.g., race, gender) then the algorithm is considered biased
i.e. not fair [21].

Zafar et al. [22] described a framework for achieving
the middle ground between fairness and accuracy. Recent
studies have shown that employing Generative Adversarial
Networks, where one convolution neural network optimizes
for accuracy and other for bias can be useful for ensuring
fairness and accuracy in machine learning applications. For
instance, Alasadi et al. [23] implemented a convolution
neural network adversary that finds the best accuracy for
face matching while reducing discrepancy in TPR (true
positive rate) and FPR (false positive rate) across different
demographic descriptors. Bechavod et al. [24] proposed an

approach for reducing unfairness classification using logistic
regression on binary classification tasks over persons from
two groups of populations in applications like criminal
risk assessment and college admissions. Amini et al. [25]
reduced the bias by proposing a method to modify the sam-
pling probabilities of independent data points while training
an algorithm. Consequently, reducing hidden biases entirely
within the training dataset, the model showed increased
accuracy and fairness. While multiple similar efforts for
improving fairness have been emerging in recent literature,
the issue of fairness in multimodal fusion remains an open
challenge.

C. Multimodal Fusion Approaches

Information fusion is an important sub-area of multimedia
research [1]], [26], [27]. Atrey et al. [28] proposed a
system to detect the important events in multimedia surveil-
lance system that uses a hierarchical probabilistic method
to identify events and combined them in the assimilation
process that helps in achieving the overall accuracy of event
detection. Wang et al., [26] describe an approach fusing
information coming from multiple sensors across space and
time based on a unified “cmage” representation. Kong et
al. [27] describe an approach where the correlation among
multiple sensors is used to fuse the monitoring information
and improve the resolution and accuracy of the system. In
essence, while improving accuracy and coverage has often
been a goal of multimedia fusion approaches, the goal of
improving fairness based on multimodal fusion is yet to be
explored.

III. PRELIMINARIES: FAIRNESS IN MACHINE LEARNING

Let us consider a classical supervised classification prob-
lem trained with m examples (z;, s;,y;)",; where z; is a
feature vector with P predictors of the i*" example, s; is its
sensitive attribute and y; is a label. Here the prediction of the
algorithm for the i*" example is represented as ;. In order to
realize fairness, it is important to have a clear understanding
of its formal definition. In the following, we summarize the
most popular definitions used in recent Fairness in Machine
Learning research.

First, there is data sanitization which concerns the infor-
mation that is used for training the model (e.g., race should
not be used as a feature for recidivism prediction). Second,
there is individual fairness, which relates at the individual
level and proposes that fairness means similar individuals
must be treated similarly. Finally, there is group fairness,
which is a type of fairness that divides the world into groups
defined by one or multiple high-level sensitive attributes.
It needs a particular relevant statistic (e.g., accuracy, true
positive rate) about the classifier to be the same across those
combinations. We concentrate on this family of fairness mea-
sures and describe the popular definitions of these kinds used
in recent research [29]]. In one such definition, a classifier is



considered to make a fair decision if the prediction Y from
features X is independent of the protected attributes S (e.g.,
gender) [21] i.e.

PY=1|S=0)=P(Y =1|S=1) (1)

Such absolute notion of fairness is rarely achieved in
practical systems. We discuss some of the other common
metrics for fairness below.

A. Demographic Parity

The underlying idea is that each demographic group
should have the same opportunity for a positive result.
There are several ways to evaluate this objective. The P-
rule calculation ensures the ratio of positive rate for the
unprivileged set is no less than a specific threshold (e.g.,
7 =80%) and is given by:

P(Y =1|S=1) P(Y =1|§ =0)
P(Y =1|S=0) P(Y =1|§ =1)

min( )>7 (2

The classifier is considered as totally fair if this ratio
is 100%; a 0% score indicates a completely unfair model.
Another measurement which can be used for demographic
parity is the disparate impact (DI) valuation [30]. It takes
into consideration the absolute difference of result distri-
butions for sub-populations with various sensitive features
values. The value of DI can be calculated as:

DI=|P(Y=1S=1)—P(Y =1S=0)| 3
A smaller value of DI indicates a fairer model.

B. Equalized Odds

A model is considered fair when across both demographic
groups (S = 0 and S = 1), the predictor § has equal TPR
and equal FPR [31]]. This enforces that the accuracy is
equally high for particular sub-populations within the overall
population because of the rate of positive and negative
classification is the same across such groups.

PY=1Y =y4S8=0=PY =1Y =y,S=1) 4

where y € (0,1).

This objective can be measured by a metric that deter-
mines the disparate mistreatment [22]. It calculates the total
differences between TPRs and FPRs for both demographics,
given by Drpr and Dppp, respectively, which are com-
puted as follows:

Drpr:|P(Y =1y =1,§ =1)-P(Y =1|Y = 1,5 = 0)|
)

Dppr: |P(Y =1y =0,S =1)—P(Y =1|Y = 0,5 = 0)|
(6)

IV. PROPOSED APPROACH

This work proposes a method to improve the performance
of cyberbullying detection methods beyond that is obtainable
by using a single modality of data, or its ‘naive’ assimilation.
Naive assimilation here refers to the most common approach
of simply combining the features as-is, without identifying
the different confidence values for different features or the
inter-dependencies between them.

A. Fusion Model

We model the multimodal cyberbullying detection prob-
lem as follows. A multimodal cyberbullying detector uses
n different data modalities {f;,1 < i < n} (visual or
textual features in our case) and outputs local decisions about
cyberbullying incident C. In this work, we use the terms
modalities and features interchangably. These decisions are
represented by n probability values, p1,po,...,p,, Where
p; = P(C|f;) denotes the probability that cyberbullying
event C' has occurred based on modality f;. A Bayesian
approach is iteratively used to fuse these probabilistic deci-
sions as follows. Let us consider that we have integrated
aset 1 of i —1 modalities, i.e. fi1, fo, ..., fi—1,
resulting into P(C|f~'), which denotes the probability of
occurrence of C' based on a group of ¢ — 1 modalities.
The individual decision based on i modality, i.e. P(C|f;),
is integrated into P(C|f"') and the fused decision i.e.
probability P(C|f*) of occurrence of C' based on modality
set f' is calculated as [50):

Pt x exp(ay, gi-1)

P(C|f') =
(CIF) Pt xexp(ay, gi-1) + P~ X exp(—ay, si-1)

(7

where, P+ and P~ are the weighted combined probabilities

of the occurrence and non-occurrence of cyberbullying,

respectively, using £~ and f;, and are given by:
P* = P(CIf'™)™ = x P(C|fi)" ®)
P~ = (1= P(CIf))™ x (1= P(CIf:))* )

In the above equations, the exp term denotes the expo-
nential function, and w;_; and w; are normalized confi-
dence scores of ! and f; respectively and their sum
is 1. The term ay, g1 € [—1,1] provides the degree
of agreement/disagreement (called Agreement Coefficient
[28]) between two modalities f~! and fi,» wherein —1 and
1 represent the full disagreement and the full agreement,
respectively, between the two modalities. The computation
of confidence scores and modeling of a4, -1 are described
in the following paragraphs.

The proposed fusion model is adapted from [28] and it
uses the logarithmic opinion pool (LOGP) consensus rule
satisfying the assumption of conditional (content-wise) in-
dependence among different modalities [32]. The proposed
model normalizes the outcome over the two aspects, the
occurrence and non-occurrence, of a cyberbullying incident



(see denominator term in Eq. (7)). Underlying principle
behind this fusion model is that the occurrence of a cyberbul-
lying incident is determined with a higher overall probability
when more concurring evidences are fused.

1) Accuracy of a modality: The confidence in a modality
is related to how accurate it has been in the past. The
higher the accuracy of a modality, higher the confidence we
would have in it. Using the training data, we compute the
accuracy (and therefore the confidence score) of a modality
by determining how many times a cyberbullying incident is
correctly detected based on it (using binary thresholding) out
of the total number of incidents. Accuracy Acc; for modality
fi is defined as follows:

Ace; = P(|p; — yi] < 0.5) (10)

2) Fairness of a modality: We define bias in a modality
as the difference in the prediction accuracy between the
privileged and the unprivileged groups i.e. S = 1 versus
S = 0. We also use the shorthand notation of subscript
s=1 to denote the observations that correspond the privileged
class and g—¢ for those in the unprivileged class.

Bias; = Acc; -1 — Acci s—o (11)

In the above equation, Bias; denotes the bias for the ith
modality. Fairness is defined as the lack of bias.

3) Confidence score of a modality: Confidence score w;
for a modality is modeled as a combination of accuracy and
bias.

w; = Ace; — \ X Bias; (12)

where A is a weighing parameter that captures the relative
importance assigned to fairness and accuracy by the ML
designer.

4) Combining confidence scores of multiple modalities:
The overall confidence in a group of modalities is computed
by combining the confidence scores of individual modalities.
Let w; and wy be the confidence scores of two modalities
fi and fy, respectively. A Bayesian method is used to
compute the overall confidence w;; in a group of these two
modalities, as follows:

w; X Wi
w; X w + (1 —w;) x (1 —wg)

wik = 13)

The above formulation is based on assumption that although
the modalities are correlated in their decisions; they are mu-
tually independent in terms of their confidence scores [28].

Eq. (13) can be extended for n modalities [5]], by replacing
the confidence scores of two modalities (i.e. w; and wy,) with
that of two groups of modalities, say w;_; representing the
overall confidence scores of a group of ¢ — 1 modalities and
w; denoting the confidence score of i*" modality.

5) Agreement coefficient between modalities: The agree-
ment coefficient «; j, between the modalities f; and f is
modeled based on Pearson’s moment correlation, as follows:

> e (piyy — Pi)(Pr,j — Pr)
O =
V(P — i)\ (e — 1)’

where, p; and pj; are the individual probabilities of the
occurrence of cyberbullying based on modalities f; and fj,
respectively. These probabilities represent decisions about
the detection tasks. The full agreement (cy; ;, = 1) occurs
when there are exactly same probabilities. On the other hand,
the two modalities are considered to be in full contradiction
with each other (o; ), = —1) when there exists totally
dissimilar probabilities.

To determine the agreement coefficient between the two
sets f71 and f; of modalities, we adopt the concept of
average-link clustering [33]], which considers the distance
between one cluster and another cluster to be equal to the
average distance from any member of one cluster to any
member of the other cluster. In our case, we have two
clusters: a group =1 of i — 1 modalities and a new i*"
modality. The following equation is used for agreement
fusion:

(14)

1—1
1
Op i = g ;a (15)

Here, o, ; for 1 < s <i—1,1 < ¢ < n are the agreement
coefficients between the st* and " modalities.

V. IMPLEMENTATION DETAILS AND DATASET

We validate our method using an Instagram data set
(image, text captions, and text comments from others)
made available by Hosseinmardi et al. [12]] that has been
used in different studies of cyberbullying [13]], [20]. This
dataset contains about 2000 media sessions from Insta-
gram, including the posted image, caption, and comments
from other users. Hosseinmardi et al. [12]] used a snowball
sampling method to identify Instagram ids. Each image
and the accompanying comments were considered a “media
session”. Only media sessions which contained more than
15 comments were considered eligible for inclusion in
this dataset. Each media session in the resulting dataset
was hand-labelled by five crowd-sourced (CrowdFlower)
annotators for the presence of cyberbullying.

However, we found only 699 of these media sessions to
still have images accessible from the recorded Instagram
URLs. These 699 labeled media sessions were used in
[L3]. (Note that [[13] did not study the problem of fairness
nor employ a Bayesian fusion framework.) As is often the
case in cyberbullying datasets, this dataset was skewed and
has only 119 bullying instances as opposed to 580 non-
bullying instances. To maintain focus on the fairness aspect
in this work, we consider a balanced subset of data (N=238)



Table I: Difference in the performance for the privileged and under privileged groups in the baseline methods

Approach AAUC (%) | AUC T-test p-value | ATPR (%) | TPR T-test p-value | AFPR (%) | FPR T-test p-value
Naive Bayes 6.45 < 0.001 4.86 < 0.001 1.32 0.54 (n.s.)
Our Baseline (A =0) | 8.65 < 0.001 6.21 < 0.001 11.08 < 0.001

which contains equal number of bullying and non-bullying
instances.

The dataset includes the textual and visual features as
derived in [[13]]. This includes textual features indicative of
emotion, gender specific terminology, sexual connotations,
as well as the relative distribution of different parts of
speech. Specifically, the authors used Linguistic Inquiry and
Word Count (LIWC) to analyze the text for cyberbullying.
LIWC provides more than 90 descriptive variables which
include word counts and language use characteristics [34].
The list of features includes psychological process, tone,
word count, presence of informal language, use of third
person pronouns, use of sexual words, and use of words
indicating violence.

The authors also used Microsoft’s Project Oxford to ex-
tract visual features from the Instagram images [35]. Project
Oxford is a computer vision API which analyzes the images
for the dominant colors, number of people present, category,
adult content, etc. The features computed included age and
gender of people present in the image, image category (e.g.,
presence of tattoos, graffiti, drugs, generic image labels) and
image type (e.g., colored, black and white, clipart). The
original dataset consisted of 204 textual and visual features.
For “Our Method” and “Our Baseline” implementations in
this work, a feature selection criteria was applied based on
feature weight > 0.60 as computed using Eq. [I2] For “Our
Method” this resulted in a subset of 34 features.

One of the features in the dataset was the apparent gender
of the person in the image as identified by the computer
vision API. As there is significant literature suggesting that
women tend to be marginalized in cyberbullying instances
[36], [37], we consider gender of the person in the image to
be a sensitive attribute and male to be the privileged class.
Non-male identifications are considered the unprivileged
group. In the considered dataset, there are 60 instances of
(only) male subjects and 188 instances of non-male subjects.
Note that the non-male subjects category includes instances
where gender was not clearly identified by the API or
more than one gender was present in the image (e.g., group
images).

VI. RESULTS

We implemented the approach proposed in Section IV
using Python programming language and tested it on the
dataset described in Section V. The continuous features were
discretized based on deciles before analysis. The training:test
split was done in the ratio of 75:25 and 100 iterations with
different train-test splits were undertaken and the results

averaged over those iterations.

We also implemented two baseline approaches to com-
pare with the performance of the proposed approach. This
includes: (a) Naive Bayes, which is also based on a Bayesian
approach and is a well-known machine learning method
[38]]; and (b) “Our Baseline” which includes the approach
described in Section IV but with the value of A\ (see Eq.
[I2) set to 0. Hence, while it makes uses of the association
between features and the confidence scores for better fusion,
it gives zero weight to fairness of the features.

A. Auditing Current Approaches (Baselines) for Bias

Consistent with the literature on fairness in machine
learning we use three primary metrics: AUC (area under the
receiver operating curve; a robust alternative to prediction
accuracy [39]]), TPR, and FPR in this work. While their
average value across the two groups (privileged and unpriv-
ileged) is used to quantify accuracy, the deltas (A) between
the two groups are used to quantify bias. An ideal approach
will yield a very high accuracy (e.g, overall AUC) and very
low bias (e.g., AAUC).

We found significant differences in the performance of
the baseline algorithms for the privileged and unprivileged
groups. For instance, the percentage difference for AAUC
was 6.45% for the Naive Bayes approach and 8.65% for
“Our Baseline”. We also conducted pairwise T-test to check
if these differences are statistically significant. The results,
i.e. the differences across the groups for AUC, TPR, and
FPR are summarized in Table [

As can be seen in Table[l] the performance was noticeably
different in terms of almost all the metrics for both the base-
line approaches. The only exception was not significant (n.s.)
t-test result for AFPR (1.32%) for Naive Bayes. However,
the observed FPR scores for both privileged and unprivileged
group were quite high (> 35%, see Table [I) in that case and
hence this result is likely unacceptable in practical settings.
While the FPR was lower for “Our Baseline” approach it
had a significant A of 11.08%. As such, both the baselines
seem to have significant bias and/or accuracy issues, thus
motivating the need for a newer approach that can improve
fairness and accuracy.

B. Impact of the Bias Reduction Approach

Next, we implemented the proposed approach with the
goal of reducing the deltas between privileged and unpriv-
ileged groups while keeping the accuracy levels high. The
value of A\ in the proposed approach was selected based
empirical testing. The value was varied in the range 0.01 to
10 in increments of 0.01, and the value yielding the highest



Table II: Performance of two baselines and the proposed approach
AUC AUC TPR TPR FPR FPR
Privileged | Unprivileged | Privileged | Unprivileged | Privileged | Unprivileged
Naive Bayes 84.86 78.41 85.61 80.75 36.31 37.63
Our Baseline (A = 0) 88.74 80.08 87.88 81.67 10.41 21.49
Our Method (A = 3.89) 83.80 83.32 83.60 83.95 16.01 17.32

Table III: Differences in the performance for privileged and unprivileged groups

Approach AAUC (%) | AUC T-test p-value | ATPR (%) | TPR T-test p-value | AFPR (%) | FPR T-test p-value
Our Baseline (A = 0) 8.65 < 0.001 6.21 < 0.001 11.08 < 0.001
Our Method (A = 3.89) | 0.48 0.18 (n.s.) 0.36 0.35 (n.s.) 1.31 0.11 (n.s.)

accuracy was selected. It was found to be 3.89 in the current
dataset.

This approach resulted in better accuracy AUC, TPR, and
FPR values for the proposed approach compared to both
the baselines (see Fig. [T). It also resulted in better fairness
scores (reduced A in the performance for the privileged
and unprivileged group) across different metrics of AAUC,
ATPR, AFPR as can be seen in Fig. [2] The detailed scores
for the privileged and unprivileged groups are available in
Table [l and the A values are summarized in Table [Tl

To consider one example, the A of the AUC score be-
tween the privileged and unprivileged groups in the proposed
approach is 0.48%, which is more than 18 times lower
than “Our Baseline” approach (8.65%) and more than 13
times lower than the Naive Bayes approach (6.45%). We
see similar trends in terms of TPR, where our method
yields a ATPR of 0.36% which is multiple times lower than
Naive Bayes and “Our Baseline”. For FPR, “Our Method”
yields a A of 1.31%, which is multiple times smaller than
“Our Baseline” but is only marginally smaller than the
Naive Bayes approach. However, as mentioned earlier, the
high false positive rate for Naive Bayes (> 35%) makes it
unsuitable for a practical application (see Fig. [I).

Hence, the trends indicate that the proposed approach was
able to make noticeable reductions in the As across privi-
leged and unprivileged groups while keeping the accuracy
levels (in terms of AUC, TPR, FPR) high. The fact that the
accuracy performance did not drop in terms of any of the
metrics indicates that the goals of fairness and accuracy need
not be orthogonal to each other, and the feature selection
process may have been able to weed out some of the less
useful features based on the stricter (accuracy + fairness
based) thresholds.

Lastly, we test if the proposed approach is able to reduce
the statistically significant differences across the two groups
as were observed in the baseline condition and discussed
in Section [VI-Al We undertook another round of difference
of means pairwise T-test on the outputs of the proposed
approach. The results are summarized in Table [[TI] (with
the results for “Our Baseline” presented to allow for com-
parison). The p-values for all the difference of means test
were not significant in “Our Method” even though they

were significant in the baseline condition. This indicates that
the proposed approach has been able to render the group
differences insignificant, which was a primary goal of the
proposed approach.
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Figure 1: Overall performance of different approaches
(Baselines + Proposed)
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Figure 2: A of performance for privileged and unprivileged
groups across different models

Based on the trends in the datasets, we report that the
proposed weighted probabilistic fusion-based approach is



beneficial at decreasing the disparity in the performance
of fusion algorithm across gender as computed through the
metrics of AAUC, ATPR, and AFPR. Further, we see the
average accuracy level increased with the proposed weighted
probability fusion approach.

This work also has a number of limitations. First, this
work uses a relatively small, balanced dataset from a single
social media platform. Further, the work uses a narrow
definition of privileged class — one that is based on inferred
gender of the person in the image. However, note that
proposed fairness aware fusion approach is generic and can
easily be applied to other datasets and other definitions of
sensitive attributes. Future work should include non-binary
identities as well as other notions of demography such as
race, age, nationality, etc. in a similar fairness analysis.

VII. CONCLUSION

This paper describes one of the first attempts at a Bayesian
fusion framework that not only optimizes for accuracy but
also considers fairness. The framework takes into account
the accuracy and the fairness score for each modality to
assign them weights. The weights of each modality and the
agreement between them is used to come up with optimal
decisions that balance accuracy and fairness. The results of
applying the framework to a multimodal (visual + textual)
cyberbullying detection problem demonstrate the efficacy of
the approach in yielding high levels of both accuracy and
bias. The results pave way for a more accurate and fair
approach for cyberbullying detection, which would provide
equitable opportunities to different groups in improving their
quality of life.
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