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Channel estimation is critical to achieve high data rate acoustic communications in the ocean. Channel 
estimates are often utilized to address the distortions induced by multipath propagation in various com-
munication receivers. Therefore, accurate channel estimation is often the prerequisite for reliable coherent 
acoustic communications. Many efforts have been devoted to either characterizing the acoustic channel or 
developing high-performance channel estimation algorithms. However, limited work has been directed to 
investigate effect of channel fluctuations on estimation performance. Here we seek to quantify the impact of 
channel fluctuations on least squares channel estimators. A new metric, channel variation ratio, is used to de-
scribe the rate of fluctuations in the acoustic impulse responses. We investigate the relationship between the 
mean squared error (MSE) of the channel estimates and the channel variation ratio. We show the new metric 
can be used to predict channel estimation MSE for least squares channel estimators. Numeric results also 
show that there exists an optimal channel length with the minimum estimation error for fluctuating acoustic 
channels. Both computer simulations and experimental data have been used to validate the findings.
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1. INTRODUCTION

Channel estimation is critical to achieve high data rate acoustic communications in the ocean. Channel
estimates are often utilized to address the distortions induced by multipath propagation in various com-
munication receivers. Therefore, accurate channel estimation is often the prerequisite for reliable coherent
acoustic communications.

Many efforts have been devoted to either characterizing the acoustic channel or developing high-performance
channel estimation algorithms. Ref. [1] models the channel by the combination of a pseudo-coherent com-
ponent and pseudo-deterministic component. This model infers that the channel is trend stationary during
the observation windows of a few minutes. Ref. [2] confirms that the random component in the channel can
be well approximated by the zero-mean Gaussians distribution. Ref. [3] characterizes channel fluctuations
using the coherent-to-incoherent intensity ratio. This metric can provide a metric measuring the stability of
each channel tap. Ref. [4] formulates the received signal using time varying channel. The authors propose
an adaptive subspace-tracking with a reduced-rank estimation algorithm for time-varying channels. Ref. [5]
models the received signal based on the delay-Doppler spread function. Delay-Doppler functions, instead
of channel impulse responses, are estimated in fast time-varying sparse channel conditions.

Limited work has been directed to investigate effect of channel fluctuations on estimation performance.
Ref. [6] observes that the communications performance varies when different lengths of estimated impulse
responses are used in the time-reversal receiver based on experimental data. Ref. [7] uses channel estimation
errors to predict passive phase conjugation receiver performance, based on the piecewise-fixed channel
assumption. Ref. [8] finds that channel estimation errors need to be incorporated to predict communication
performance when replaying experimental data. The effects of fast channel variations on channel estimation
have not studied.

Here we seek to quantify the impact of channel fluctuations on least squares channel estimators. A new
metric, channel variation ratio, is used to describe the rate of fluctuations in the acoustic impulse responses.
We investigate the relationship between the mean squared error (MSE) of the channel estimates and the
channel variation ratio. We show the new metric can be used to predict channel estimation MSE for least
squares channel estimators. Numeric results also show that there exists an optimal channel length with the
minimum estimation error for fluctuating acoustic channels. Both computer simulations and experimental
data have been used to validate the findings.

2. CHANNEL VARIATION RATIO

We define the channel vector h[n] as the channel impulse responses at instant n, i.e.,

h[n] = (h[n; 0], h[n; 1], · · · , h[n;L− 1])T . (1)

where L is the channel length.
We split the channel vector into two parts, time-invariant and time-variant components. That is,

h[n] = hi[n] + hv[n], (2)

where hi[n] is the time-invariant component, hv[n] is time-variant component independent of hi[n] .
Based on the channel model above, we define the channel variation ratio (CVR) as the the intensity ratio

between the time-variant component and the entire channel,

γ =
E[||hv[n]||22]
E[||h[n]||22]

=
E[||hv[n]||22]

||hi||22 + E[||hv[n]||22]
. (3)

where E[·] denotes the expectation operation and || · ||22 denotes l2-norm.
The CVR is defined over a context period of T . The period, T , should be tens of milliseconds or seconds

at most.
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3. LINKING THE CVR WITH CHANNEL ESTIMATION PERFORMANCE METRICS

The received signal is

r = Hs+w

= Shi +Hvs+w,
(4)

where H is the channel convolution matrix, s is the transmitted symbols, w is the additive white Gaussian
noise with a variance of σ2w. The reception is the convolution of the channel and transmitted symbols, with
the additive white Gaussian noise. This can also be expressed in a matrix form as in the second line of Eq. 4,
where Hs is split into two parts. S is the symbol convolution matrix constructed by s, Hv is represented
by

Hv =


hv[0;L− 1] hv[0;L− 2] · · · hv[0; 0] 0 · · · 0

0 hv[1;L− 1] hv[1;L− 2] · · · hv[1; 0] · · · 0
...

. . . . . . . . . · · · . . .
...

0 · · · 0 hv[M ;L− 1] hv[M ;L− 2] · · · hv[M ; 0]

 ,
(5)

where M is the length of the observation window.
To quantify the performance of channel estimation, we use two metrics: mean squared error (MSE) and

signal prediction error (SPE). The MSE is defined as

δ = E[
1

q

q−1∑
n=0

||ĥ− h||22], (6)

where ĥ is the channel estimate, q is the number of varying channels during the context window T .
The SPE is defined as

ζ = E[||r̂ − r||22], (7)

where r̂ is the estimation of r.
We only consider least square channel estimator here. Thus ĥ = S†r where S† is the pseudo-inverse of

S. We get the MSE expression as a function of the CVR,

δ =
γ

1− γ
||hi||22 − 2E[

1

q

q−1∑
n=0

(hHv S
†Hvs)] + E[||(S†Hvs)||22] + E[trace((S†)HS†)]σ2w. (8)

We observe from Eq. 8 that the MSE changes with γ
1−γ ||hi||

2
2 and the noise power σ2w. The MSE

approaches zero only when the CVR and noise power are both zeros.
We can also obtain the the expression of the SPE as

ζ = E[||(Hvs)||22]− 2E[(Hvs)
HSS†Hvs] + E[||(SS†Hvs)||22]

+ (1− 2E[trace(SS†)] + E[trace((SS†)HSS†)])σ2w.
(9)

Considering the truncation effect [7], we rewrite Eq. 4 as

r = Strhtr + Sreshres +Hvs+w, (10)

where S = Str + Sres, Str is the symbol convolution matrix after truncation, and Sres is the residue.
hi = htr + hres, htr is the impulse response after truncation and hres is the residue.
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Taking effects from both channel fluctuations and truncation, we rewrite Eq. 8 as

δ =
γ

1− γ
||hi||22 + E[||(S†trSreshres)||22] + E[trace((S†tr)

HS†tr)]σ
2
w

+ E[||(S†trHvs)||22]− 2E[
1

q

q−1∑
n=0

(hHv S
†
trHvs)] + ||hres||22 − 2E[hHresS

†
trSreshres],

(11)

where S†tr is the pseudo-inverse of Str.
Similarly, we reformulate Eq. 9 as

ζ = E[||Sreshres||22]− 2E[(Sreshres)
HStrS

†
trSreshres] + E[||StrS†trSreshres||22]

+ E[||Hvs||22]− 2E[(Hvs)
HStrS

†
trHvs] + E[||StrS†trHvs||22]

+ (1− 2E[trace(StrS
†
tr)] + E[trace((StrS

†
tr)

HStrS
†
tr)])σ

2
w.

(12)

With the introduction of channel truncation effect, we can see both MSE and SPE change with the
truncated channel power also.

4. SIMULATIONS

Simulations were conducted to verify the correctness of the MSE and SPE expressions. For the case of
static channel, the used channel impulse response is shown in Fig. 1. The channel was extracted from an
experiment, which will be described in Sec. 5.

CVR

• Static case: Arrival structure similar to the
experimental data
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Figure 1: Static channel impulse response.

We computed the MSEs under different signal to noise ratios (SNR). The SNRs ranged from -5 dB to
60 dB. Fig. 1 clearly indicate that the error floor decreased when the SNR increased.

We simulated a time-varying channel as shown in Fig. 2. Corresponding error floor using MSE has been
computed with different SNRs. Results are presented in Fig. 3. We can see from Fig. 3 that the MSE with
channel fluctuation is higher than that in Fig. 1.

We then combined channel variation and truncation, and computed the MSE and SPE. Corresponding
results are shown in Fig. 4. Both MSE and SPE decreased when the channel length increased. After reaching
the minimum point, both of them increased with the channel length. We can tell from Fig. 4 that there is an
optimal channel length with minimum MSE and SPE. The optimal channel length here is 20 ms.
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CVR

• Time-varying impulse responses with CVR=0.1
[T=1 s]
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Time-varying cases
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Figure 2: Time-varying channel impulse responses.

CVR

Error floor from channel variability

• CVR=0.1 [T=1 s]
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Figure 3: MSE floor for the time-varying case.

5. EXPERIMENT

We used experimental data to validate our theoretical analysis. The experiment was described in Ref. [9].
The water depth was 20 m. The transducer was mounted at the depths of 10 m. The receiver was deployed
at the depth of about 16 m. The measured channel impulse response is shown in Fig. 5. The SPE were
calculated using different channel lengths, from 15 to 40 ms.

We extracted the multipath structure from the measured channel. A time varying channel component
was added based on the channel model in Eq. 2. The comparison of the experimental channel and simulated
channel is shown in Fig. 6. Based on the simulated channel, we computed the MSE and SPE. Results
are shown in Fig. 7. The trend of SPE shown in Fig. 7 is similar to that in Fig. 4. Both simulation and
experimental results have an optimal channel length of around 20 ms. The results, again, validate our
analysis that there exists an optimal channel length with minimum channel estimation error.
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CVR

MSE & SPE vs channel length

• SNR: 54 dB, CVR=0.4 [T=1 s]
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Figure 4: MSE floor with both channel variation and truncation effect.

CVR

Impulse responses @range=250 m
Tx @ 12 m; Rx @ 12.5 m; BPSK transmissions @ 85 khz; 
Received signal strength: 134.6 dB; Received SNR: 54 dB
Symbol rate: 8 kHz
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Figure 5: Channel and SPE from experiment.

6. CONCLUSION

We proposed the CVR to quantify the rate of channel fluctuations. Based on the two metrics, we for-
mulated the impacts of channel variability on channel estimation performance. We linked the CVR with
channel estimation performance with two metric, the MSE and SPE. We also analyzed impacts of channel
truncation on channel estimation performance. We conclude that the CVR can be used to predict the channel
estimation performance. Based on the experimental data analysis, we found there exist an optimal channel
length with the minimum estimation error for fluctuating acoustic channels.
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CVR

Impulse responses @range=250 m

Match with the arrival structure and tap auto-
correlation
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CVR

SPE vs channel length

• CVR=0.4 [T=1] in simulations
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