
A Non-Perturbative Pairwise-Additive Analysis of

Charge Transfer Contributions to Intermolecular

Interaction Energies

Srimukh Prasad Veccham, Joonho Lee, Yuezhi Mao, Paul R. Horn, and Martin

Head-Gordon∗

Department of Chemistry, University of California, Berkeley, California 94720, USA

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

94720, USA

E-mail: mhg@cchem.berkeley.edu

Abstract

Energy decomposition analysis (EDA) based on absolutely localized molecular or-

bitals (ALMOs) decomposes the interaction energy between molecules into physically

interpretable components like geometry distortion, frozen interactions, polarization,

and charge transfer (CT, also sometimes called charge delocalization) interactions. In

this work, a numerically exact scheme to decompose the CT interaction energy into

pairwise additive terms is introduced for the ALMO-EDA using density functional

theory. Unlike perturbative pairwise charge-decomposition analysis, the new approach

does not break down for strongly interacting systems, or show significant exchange-

correlation functional dependence in the decomposed energy components. Both the

energy lowering and the charge flow associated with CT can be decomposed. Com-

plementary occupied-virtual orbital pairs (COVPs) that capture the dominant donor
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and acceptor CT orbitals are obtained for the new decomposition. It is applied to sys-

tems with different types of interactions including DNA base-pairs, borane-ammonia

adducts, and transition metal hexacarbonyls. While consistent with most existing un-

derstanding of the nature of CT in these systems, the results also reveal some new

insights into the origin of trends in donor-acceptor interactions.

Introduction

Electronic structure calculations, such as modern density functional theory (DFT),1 are ca-

pable of yielding accurate results for intermolecular interactions. However no physical or

chemical insight beyond the calculated observable is obtained. Many different energy de-

composition analyses (EDAs)2–9 have attempted to address this need. At their core, EDA

attempts to partition computed interaction energies into physically and chemically moti-

vated terms like electrostatics, dispersion, polarization, and charge transfer. EDA thereby

aims to provide insights into the fundamental nature of molecular interactions which can,

in principle, help guide the design of molecules with properties of interest. The develop-

ment of force-fields based on these partitions of interaction energies is another utility of

EDA schemes.10,11 The lack of well-defined quantum mechanical operators for each of the

decomposed quantities gives room for non-uniqueness in the definitions of different chemical

concepts. As a consequence, different EDA schemes do not always agree qualitatively and/or

quantitatively.12 Our view is that since all terms have known asymptotic behavior, and thus

all well-designed EDAs should agree in that limit, it is also reasonable to expect qualitative

agreement in the overlapping regime, and the origin of significant deviations can be ex-

plored and understood, as has been done for frozen13, polarization14, and charge transfer15

interactions.

Interaction of molecules by electron delocalization or charge transfer (CT) is one of the

most fundamental drivers of complex formation.15 CT from a filled donor orbital of one

molecule to an empty acceptor orbital of another lowers the total energy of the complex,
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and favors binding of the molecules. CT via forward and back donation in the Dewar-

Chatt-Duncanson model16,17 plays a very important role in transition metal-ligand complex

formation, and is instrumental in many transition metal catalytic transformations. Even

hydrogen bonding, which is a much weaker interaction that is ubiquitous for (bio)molecules

in aqueous solution, has a significant contribution from CT.15,18 Another interesting aspect

of charge transfer stabilization is its diversity in the strength of interaction: it can vary

in strength from a few kJ/mol in hydrogen-bonding complexes to hundreds of kJ/mol in

transition metal-ligand interactions.

The energy decomposition analysis scheme based on Absolutely Localized Molecular Or-

bitals (ALMOs) has been developed for mean-field theories (Hartree Fock and Density Func-

tional Theory)8,9,19–21 and Møller-Plesset perturbation theory.22–24 The mean-field ALMO-

EDA scheme partitions the interaction energy into geometric distortion, frozen, polarization,

and CT components using variationally optimized intermediate wavefunctions as illustrated

in Eq. (1):

∆EINT = ∆EGD + ∆EFRZ + ∆EPOL + ∆ECT (1)

The energy associated with distorting the relaxed isolated fragment geometries to their com-

plex geometry is represented by the geometric distortion term (∆EGD). The frozen term

(∆EFRZ) is the energy associated with bringing infinitely separated fragments to their com-

plex geometry while retaining their infinitely-separated wavefunctions. This term includes

permanent electrostatics, Pauli repulsion, and dispersion.13 The polarization term (∆EPOL)

represents the energy lowering associated with relaxing the wavefunctions of each of the

fragments in the presence of other fragments while not allowing CT between fragments.9,14

The energy lowering associated with CT between fragments is captured by ∆ECT. CT can

be further broken down into pairwise additive components for both energy lowering and

its associated charge flow based on perturbation theory.25 This decomposition scheme can
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also be used to extract chemically relevant Complementary Occupied-Virtual orbital Pairs

(COVPs) which are the most important orbitals associated with CT.25 However, this charge

decomposition scheme breaks down in cases of strongly interacting species as it is based on

perturbation theory.9,25 In this paper, we provide an alternative non-perturbative CT decom-

position scheme which works robustly for all regimes of interaction energy, while nevertheless

providing an effective pairwise description of CT.

There are many other proposed measures of CT, which we can only briefly summarize

here. The charge decomposition analysis method (CDA) by Dapprich and Frenking de-

fined forward and backward donation components in intermolecular complexes.26 While this

method is conceptually simple, some of the terms in CDA do not have a well-defined phys-

ical meaning.25 Other EDA variants define charge transfer energy as the amount of energy

associated with mixing occupied orbitals of the donor with virtual orbitals of the acceptor.

Such ideas are used in the reduced variational space (RVS)27 and constrained space orbital

variation (CSOV)28 schemes. However, these methods only account for CT in one direction

at a time and cannot provide a pairwise additive decomposition of CT such that the contri-

butions sum up to the total CT energy. Methods such as EDA-NOCV (natural orbital for

chemical valence)3,29 and localized molecular orbital (LMO)-EDA5 report only the sum of

polarization and CT, which corresponds to the “orbital interaction” and “polarization” terms

in these methods, respectively. The same choice is commonly followed in symmetry-adapted

perturbation theory (SAPT) calculations of intermolecular interactions,7,30 where polariza-

tion and CT are combined in the “induction” term, although several approaches have been

proposed to quantify CT in SAPT.31,32 The popular Natural Bond Orbital (NBO) method

can also be used to define charge decomposition between pairs of fragments using orthogo-

nal molecular orbitals.6,33 However NBO and its associated Natural Energy Decomposition

Analysis34,35 (NEDA) is known to greatly exaggerate the magnitude of CT energies.36,37

Constrained DFT (CDFT)38–40 has also been used to estimate the magnitude of CT en-

ergy.41,42 As it constrains charge populations, rather than preventing charge-delocalization,
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CDFT was shown to substantially underestimate CT in most scenarios.15

In the ALMO-EDA, total CT is based on the energy difference between two variationally

optimized wavefunctions: the fully relaxed final (FULL) wavefunction, and the constrained

polarized (POL) wavefunction (which is evaluated by the self-consistent field for molecular

interactions (SCF-MI) method19,43–45):

∆ECT ≡ E(ΦFULL)− E(ΦPOL) (2)

This will be a faithful description of CT if ΦPOL describes a “CT-free” state of the complex:

in other words it is constrained to prohibit CT whilst allowing on-fragment polarization in

response to the rest of the complex. To achieve this target, the SCF-MI wavefunction opti-

mizes a wavefunction in which the MO coefficient matrix is block-diagonal in the molecules

making up the complex. Specifically, the ALMOs of each molecule are described by the

mixing of its optimal occupied orbitals in isolation (the frozen occupied orbitals) with its

own set of virtual orbitals. The simplest choice is to use all the virtual orbitals of the given

isolated molecule for this purpose. However, this choice becomes ill-defined as the span of

the AO basis of one molecule overlaps that of other molecules in the complex more and

more. In the limit of a linearly dependent AO basis, the use of all fragment virtuals in

a block-diagonal MO coefficient matrix can no longer guarantee a CT-free state.14,42,46 To

overcome this formal limitation (which can also be avoided in practice by using AO basis

sets without excessively diffuse functions), one can instead use “fragment electric response

functions” (FERFs)14 as a limited set of virtuals for each molecule in the complex that

describe exactly the response of the molecules to applied dipole (D) and quadrupole (Q)

fields. The FERF-DQ model provides a well-defined complete basis set (CBS) limit for the

resulting SCF-MI energy, and thus for ∆ECT.

Since the CT energy is associated with orbital mixing between occupied levels on one frag-

ment (molecule or ligand) of a complex and virtual orbitals of another, there are observable
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manifestations such as red-shifting of vibrational frequencies, as well as sometimes changes

in structure. To quantify such effects, the adiabatic EDA47 employs geometry optimization

on each constrained surface to define a sequence of energy lowerings. The adiabatic EDA

has proven useful to understand the role of charge transfer on observables15,47,48. It has also

been extended to variationally quantify the role of forward and back donation individually

on observable properties, via the recently introduced variational forward-backward (VFB)

analysis of the relaxations due to CT.49 This approach uses a generalized SCF-MI scheme

that permits only uni-directional CT coupled to polarization in the entire system.

At a given geometry of a complex, an existing perturbative CT analysis (CTA) within

the ALMO-EDA (reviewed in detail later) can decompose the CT energy into pairwise ad-

ditive components, plus a residual “higher-order” (HO) CT correction.9. This scheme is

general enough to also decompose the charge flow, ∆QCT associated with CT into pairwise

additive components.25 The perturbative CTA relies on the HO correction being small, but

unfortunately, it can vary substantially in both sign and magnitude based on the chemical

system investigated (and even the choice of density functional). Furthermore, this pertur-

bative decomposition can break down when CT becomes strong, as seen for example in the

interaction between a transition metal and ligand in a transition metal complex. The re-

cently proposed VFB approach50 alleviates the issues associated with the perturbative CTA

to some extent when it is employed to quantify forward and backward CT energies, but it

does not incorporate the HO term fully. In addition, the current VFB formulation lacks a

well-defined basis set limit.

To go beyond the perturbative CTA, in this work, we present an alternative which exactly

(at least up to machine precision) decomposes the CT energy into pairwise additive terms

irrespective of the strength of interaction. This scheme is applicable to a wide range of

intermolecular interactions: from weakly bound hydrogen bonded complexes to strongly

bound transition metal complexes. Improving upon its perturbative predecessor, the new

CTA also provides a complete pair-wise additive decomposition of the quantity of charge
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transferred.

This paper is organized as follows. After a brief summary of the ALMO-based EDA and

perturbative CTA, the non-perturbative CTA is introduced. We specify how the total CT can

be exactly decomposed into pairwise additive interactions. Next, we illustrate the limitations

of the perturbative CTA and demonstrate how the non-perturbative CTA overcomes these

limitations. We show that the non-perturbative CTA has a well-defined basis set limit.

Subsequently, we apply the new CTA to complexes ranging from hydrogen bonding in DNA

base-pairs to strongly interacting transition metal hexacarbonyls. We illustrate how this new

scheme debunks certain traditional ideas about borane adducts by revealing new mechanisms

of interaction. Finally, we discuss the computational expense of the non-perturbative CTA

relative to the perturbative CTA.

Theory

Brief summary of the ALMO-EDA

The ALMO-EDA scheme9,14 decomposes the interaction energy into chemically relevant

quantities given in Eq. (1) by lifting imposed constraints one by one. The geometric dis-

tortion energy (∆EGD) associated with distorting relaxed (free) monomer geometries into

their corresponding supersystem geometries is the difference between the SCF energy of each

monomers, X, at the complex geometry (Φcomplex
X ) and at their optimal free geometry (Φfree

X ):

∆EGD ≡
∑
X

(
ESCF(Φcomplex

X )− ESCF(Φfree
X )
)

(3)

The frozen wavefunction of the complex, ΦFRZ, is a Slater determinant composed of the

occupied MOs from all isolated fragments (which are non-orthogonal). The corresponding

energy, E(ΦFRZ), accounts for Pauli repulsion by forming a valid density from the non-

orthogonal frozen MOs. The frozen interaction (∆EFRZ) is defined as the difference between

7



E(ΦFRZ) and the isolated energies of all monomers at their complex geometry (Eq. (4)).

∆EFRZ ≡ E(ΦFRZ)−
∑
X

ESCF(Φcomplex
X ) (4)

Physically, ∆EFRZ contains contributions from permanent electrostatic interactions, disper-

sion, and Pauli repulsions.13 The polarized wavefunction (ΦPOL) is computed by relaxing

the occupied MOs on each fragment in presence of the MOs of all other fragments while for-

bidding CT from one fragment to another by enforcing the ALMO constraint (that the MO

coefficient matrix remains fragment block diagonal). This optimization of non-orthogonal or-

bitals with the ALMO constraint is achieved by SCF-MI,19,43–45 and the polarization energy

is defined as the energy difference between the polarized and frozen wavefunctions.

∆EPOL ≡ E(ΦPOL)− E(ΦFRZ) (5)

The use of FERF virtual orbitals to give the polarization term a well-defined basis set limit14

has already been discussed above. So too has the definition of the energy lowering due to

CT, which was shown in Eq. (2). By construction, we can see that the EDA terms sum up

to the total interaction energy, defined in Eq. (1)

Perturbative Charge-Transfer Analysis

To set the stage for the new non-perturbative approach to pairwise decomposing the CT

energy, we first discuss the existing perturbative CTA.25 The usual second order perturbation

correction to an energy may be written as ∆E(2) = Tr[F(1)X(1)], where F(1) is the first order

perturbed Hamiltonian and X(1) is the first order perturbed wavefunction. The polarized

wavefunction, ΦPOL, only zeros the mixing between occupied (O) and virtual (V) orbitals

on fragments, but not between fragments. Therefore, given the polarized Fock matrix,

FPOL = F(PPOL), the perturbation is the residual occupied-virtual mixing, FPOL
OV , which is

exclusively between fragments. This perturbation, or Roothaan Step (RS), in turn yields a
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perturbative mixing, XRS
V O, of virtuals on a given fragment into occupieds of another.

The perturbative approximation to orbital mixing is obtained by a single diagonalization

(Roothaan step) of the polarized Fock matrix, which is equivalent51,52 to solving the following

quadratic equations for XRS
V O:

FPOL
VO + FPOL

VV XRS
VO −XRS

VOF
POL
OO −XRS

VOF
POL
OV XRS

VO = 0VO (6)

Equation (6) is written in the orthogonalized MO basis which is discussed in the Supple-

mentary Information. The resulting XRS is still a perturbative solution, because it gives the

energy lowering of a single diagonalization rather than iterating to self-consistency.

∆ERS
CT = 2 Tr[FVOX

RS
OV] (7)

Note that solving Eqs. (6) and (7) for ∆ERS
CT is equivalent to infinite-order single excitation

perturbation theory with a fixed Fock matrix,51,52 and thus is preferable to ∆E
(2)
CT. However

the form still couples occupied MOs on one fragment with virtuals on another through XRS
V O,

and therefore ∆ERS
CT is pairwise decomposable, just like ∆E

(2)
CT. The correction to ∆ERS

CT

for its lack of self-consistency is a non-pairwise decomposable, higher order (HO) term,

∆EHO
CT = ∆ECT −∆ERS

CT, which means the CT energy is represented as the sum of the RS

contribution, and the residual HO term:

∆ECT = ∆ERS
CT + ∆EHO

CT (8)

Equation (7) can be rewritten in terms of projectors onto the occupied space (PPOL) and

virtual space (QPOL) of the polarized wavefunction as follows.

∆ERS
CT = Tr

[
FPOLPPOLXRSQPOL

]
(9)
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PPOL and QPOL are sums of projectors onto the polarized occupied orbitals and virtual

orbitals on all fragments respectively.

PPOL =
∑
X,i

PPOL
Xi

QPOL =
∑
X,a

QPOL
Xa

(10)

Eqs. (10) can be inserted into Eq. (9) to obtain the corresponding energy lowering due to

transfer of charge from occupied orbital i on fragment X to virtual orbital a on fragment Y

as follows.

∆ERS
CT =

∑
X,Y

∑
i,a

∆EXi→Y a

∆EXi→Y a = Tr
{
FPOLPPOL

Xi XRSQPOL
Y a

}
(11)

Similarly, it has been shown that the total charge transferred can also be decomposed into

pairwise additive components:25

∆QRS
CT =

∑
X,Y

∑
i,a

∆QXi→Y a

∆QXi→Y a = Tr
{
PRSPPOL

Xi XRSQPOL
Y a

}
(12)

Here, PRS is the density matrix of the RS occupied orbitals. Using PRS to replace the Fock

operator in Eq. (11) yields the charge transfer decomposition of Eq. (12).

While this approach is appealing and useful, its perturbative nature (i.e. its lack of

self-consistency) is a disadvantage, because ∆ERS
CT can never be exact. In particular, XRS

generates the energy lowering, ∆ERS
CT, of a single diagonalization rather than the proper

self-consistent energy lowering, ∆ECT, that results from lifting the SCF-MI constraint of no

charge delocalization between fragments. In complexes containing large charge transfer, this
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can lead to the higher order term becoming large, not because CT cannot be partitioned

in a pairwise additive fashion, but because the approximation of a single diagonalization

becomes inadequate. We therefore take up the challenge of lifting this approximation.

Exactly Pairwise-Additive Charge-Transfer Analysis

In this section, we will show that it is possible to generate an exactly pairwise-additive charge

transfer analysis (at least to as much precision as we wish). The working form of the result

for the charge-transfer energy is:

∆ECT = E(ΦFULL)− E(ΦPOL) = 2 Tr
[
FCT
V OX

CT
OV

]
(13)

This has the same form as the approximate expression, Eq. (7) discussed above, but with

new definitions of the Fock matrix and the occupied-virtual mixings.

To begin, since we know the polarized state (i.e. E(ΦPOL)) and the final, fully relaxed

state (i.e. E(ΦFULL)), we also, at least implicitly, know the occupied-virtual mixings, XCT
OV ,

necessary to connect them. We shall discuss how we explictly obtain them after establishing

the exactly pairwise addition decomposition. Let us define λ = 0 as the state ΦPOL, and

λ = 1 as the state ΦFULL which are connected along the straight-line path specified by λXCT.

Applying the fundamental theorem of line integrals along this path, it is true by definition

that:

∆ECT = E(1)− E(0) =
∑
i,a

∫ 1

0

∂E(λ)

∂λXCT
ia

·XCT
ia dλ (14)

Since:

Fai(X
CT) ≡ 1

2

∂E(XCT)

∂XCT
ia

(15)

We are led directly to the desired result, Eq. (13), where evidently the appropriate Fock
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matrix arises from integrating along the line:

FCT
V O =

∫ 1

0

FV O[λXCT]dλ (16)

Let us turn next to the charge reorganization that occurs as the electron density is

rearranged. To connect directly to the energy changes discussed above, we choose to write

it in an isomorphic form (other more obvious possibilities3 also exist, of course, and are

independently useful). The charge that is rearranged, ∆QCT, as the system evolves from the

POL state to the final FULL state from λ = 0 to λ = 1 along the straight-line path given

by λX can likewise be represented by a line integral:

∆QCT = Q(1)−Q(0) =

∫ λ=1

λ=0

∑
i,a

∂Q[λXCT]

∂λXCT
ia

XCT
ia dλ (17)

Here Q[λXCT] is the charge that is promoted from occupied levels in the polarized state to

orbitals that are virtual in the polarized state:

Q[λXCT] = Tr
{
Q0P[λXCT]Q0

}
= Tr

{
P[λXCT]Q0

}
(18)

The variation of Q[λXCT] with respect to elements, XCT
ia of XCT is:

∂ Tr
{
P[λXCT]QPOL

}
∂λXCT

ia

= −λ(PPOLXQPOL)ai − λ(QPOLXPPOL)ai

= −λ(XCT
V O)ai

= Pai(λX
CT) (19)
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Substituting Eq. (19) into Eq. (17), we get

∆QCT =

∫ λ=1

λ=0

∑
i,a

Pia(λX
CT)XCT

ai dλ−
∫ λ=1

λ=0

∑
i,a

Pai(λX
CT)XCT

ia dλ (20)

= 2 Tr
{
PCT
V OX

CT
OV

}
(21)

where

PCT
V O =

∫ λ=1

λ=0

PV O[λXCT]dλ (22)

Two issues must be addressed to employ this approach in practice: (i) we must find the

orbital mixings associated with CT, XCT
OV , and (ii) we must develop a suitable quadrature

to efficiently and accurately numerically evaluate Eq. (16) and Eq. (22). We address these

points in turn below.

Density matrices are independent of the redundant occupied-occupied and virtual-virtual

mixings that are needed to fully specify molecular orbitals. Working in an orthonormal basis,

we are seeking the unitary transformation, UCT connecting the polarized density matrix,

PPOL and the fully relaxed density matrix, PFULL:

PFULL =
(
UCT

)†
PPOLUCT (23)

UCT can be written just in terms of occupied-virtual mixings, XCT
OV , as the matrix exponen-

tial:

UCT =

UCT
OO UCT

OV

UCT
V O UCT

V V

 = exp


 0 XCT

OV

−(XCT
OV )† 0


 (24)

To solve for XCT
OV we define a cost function that vanishes when Eq. (23) is satisfied:

C = ||PFULL −UCTPPOL
(
UCT

)† ||2F (25)

13



As shown in the Supplementary Information, the analytical gradient of the cost function, C,

with respect to the iath element of XCT
OV is given by:

∂C

∂ (XCT
OV )ia

∣∣∣
XCT

OV =0
= 4

[(
UCT

curr

)†
PFULLUCT

curr

]
ia

(26)

Here UCT
curr is the current approximation to the unitary transformation. We choose a working

orthonormal basis that symmetrically orthogonalizes the ALMO occupieds, and the ALMO

virtuals (after projecting out their occupied components), and canonically orthogonalizes

the projected virtual void orbitals (which were excluded from the evaluation of PPOL). Min-

imizing C using the analytical gradient is performed via standard iterative techniques for

unconstrained non-linear equations like quasi-Newton methods and DIIS in order to obtain

XCT
OV . In principle, one can solve for XCT analytically by taking the logarithm of UCT. How-

ever, we do not use this method as this leads to non-zero OO and V V blocks of XCT and

hence cannot be used for pairwise decomposition directly.

Now, we will address how to develop a suitable numerical quadrature scheme to evaluate

FCT
V O and PCT

V O. We can numerically evaluate the integral in Eq. (16) and Eq. (22) using Gauss

quadrature rules in the interval [0,XCT]. Specifically, we use the 5-point Gauss-Lobatto

quadrature rules,53 as they include the end points of the interval which have already been

evaluated for the purpose of EDA. The expressions for FCT
V O and PCT

V O are shown in Eq. (27)

and Eq. (28).

FCT
V O =

1

20
FV O[0] +

49

180
FV O

[
1

2

(
1−

√
3

7

)
XCT

]

+
16

45
FV O

[1

2
XCT

]
+

49

180
FV O

[
1

2

(
1 +

√
3

7

)
XCT

]
+

1

20
FV O[XCT] (27)

PCT
V O =

1

20
PV O[0] +

49

180
PV O

[
1

2

(
1−

√
3

7

)
XCT

]

+
16

45
PV O

[1

2
XCT

]
+

49

180
PV O

[
1

2

(
1 +

√
3

7

)
XCT

]
+

1

20
PV O[XCT] (28)
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As FV O[0] and PV O[0] are the Fock and density matrices of the polarized wavefunction

(ΦPOL) and FV O[XCT] and PV O[XCT] are the Fock and density matrices of the fully relaxed

wavefunction (ΦFULL), we would have to evaluate only three new Fock and density matrices

at points specified by Eqs. (27) and (28). Empirically, for the systems studied in this work,

using the 5-point quadrature formula is sufficient to recover the variational charge transfer

energy with sub-Joule per mole accuracy (See Table S6).

To partition CT we need an appropriate set of projectors onto the occupied and unoccu-

pied subspaces of each of the interacting fragments. In the second-generation ALMO-EDA,13

the Hilbert space of each polarized fragment X is spanned by its occupied frozen orbitals

and the virtual Fragment Electric Response Functions (FERFs)14 that are basis-independent

and provide a well-defined basis set limit for ∆EPOL. After polarization, let us denote these

spaces as PX and VX . The unoccupied AO space on each fragment not spanned by FERF

virtuals (hereinafter virtuals) is termed the “void space” (denoted by RX) and the entire

Hilbert space on fragment X (denoted by HX) can be written as shown in Eq. (29)

HX = PX ⊕ VX ⊕ RX (29)

= PX ⊕QX (30)

where QX = VX⊕RX denotes the total unoccupied space formed by combining virtuals and

voids.

Following Ref. 25, the projector onto the ith occupied orbital on fragment X, denoted by

P̂Xi, can be formed as shown below:

P̂Xi = |φXi〉
〈
φXi
∣∣ (31)

=
∑
Y,j

|φXi〉 (σ−1OO)Xi,Y j 〈φY j| (32)

(PXi)
µ,ν =

∑
Y,j

(CPOL)Xµ••Xi (σ−1OO)Xi,Y j((CPOL)T )•Y νY j• (33)
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In the equations above, the biorthogonal covariant and contravariant notation was used for

dealing with non-orthogonal molecular orbitals.54 One further consideration regarding the

virtual space projector is the treatment of near and exact linear dependence in large AO

basis sets, which is part of ensuring a decomposition with well-defined basis set limits. Lin-

ear dependence between basis functions within the same fragment can be resolved by simply

discarding one of the linearly dependent molecular orbital, for example by canonical orthog-

onalization. However, this is not possible with linear dependence between fragments without

losing the association of the retained functions to fragments. Therefore inter-fragment linear

dependence in the virtual space is treated by using the Moore-Penrose generalized inverse of

the overlap matrix (σ+
V V ) by discarding the null space.54 For CT decomposition, we do not

make any distinction between FERF virtuals and the void space.

Q̂Xa = |φXa〉
〈
φXa

∣∣ (34)

=
∑
X,a

|φXa〉 (σ+
V V )Xa,Y b 〈φY b| (35)

(QXa)
µ,ν =

∑
Y,b

(CPOL)Xµ••Xa(σ+
V V )Xa,Y b((CPOL)T )•Y νY b• (36)

With the aid of these projectors, we can now exactly (up to arbitrary precision) decom-

pose the CT energy, Eq. (13) into contributions from each pair of orbitals, on each pair of

interacting fragments in the complex:

∆ECT =
∑
X,Y

∑
i,a

∆EXi→Y a

∆EXi→Y a = Tr
{
FCTPPOL

Xi XCTQPOL
Y a

}
(37)

Similarly, the total charge transferred can be exactly decomposed into pairwise additive
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orbital components:

∆QCT =
∑
X,Y

∑
i,a

∆QXi→Y a

∆QXi→Y a = Tr
{
PCTPPOL

Xi XCTQPOL
Y a

}
(38)

In practice, the results are compacted into the CT energy and flow between each pair of

fragments. For the occupied orbitals on one fragment, X, coupling to virtual orbitals on

another fragment, Y , it is convenient to singular value decompose their couplings,
(
XCT
OV

)XY
.

(
XCT
OV

)XY
= LXO s

(
RY
V

)†
(39)

Often there is only 1 significant singular value, in which case there is a single complementary

donor-acceptor orbital pair (COVP) controlling CT, where the donor orbital is represented

by the first column of LXO and the acceptor is given by the first column of RY
V .

Finally we note that XCT
OV describes CT couplings from all occupied orbitals to all unoc-

cupied orbitals irrespective of the fragment that the virtuals belong to. This applies not just

to the case where the fragments X and Y are different, but also to the case where they are

the same. As a consequence of these non-zero couplings on the same fragment, we will have

non-zero ∆EX→X terms, because the on-fragment blocks of FCT
V O are also non-zero. This

is in contrast to the perturbative mixing, XRS
OV , that has zero on-fragment blocks of FPOL

V O

(a result of the SCF-MI iterations) leading to zero EX→X terms. The interpretation of the

non-zero pairwise on-fragment terms for the exactly pairwise additive scheme is that this a

re-polarization of the fragments in response to charge transfer.

Computational Details

The first consideration in decomposing charge transfer is computing the densities of the

polarized (PPOL) and FULL (PFULL) wavefunctions. After computing these quantities, we
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can solve for the non-perturbative mixing matrix (XCT) by solving Eq. (23).

The perturbative and non-perturbative pairwise charge decomposition schemes were im-

plemented in a developmental version of Q-Chem 5.0.55 In particular, the new CTA method

was implemented within the libgscf and libloco libraries which are, respectively, new

SCF and SCFMI modules in Q-Chem.56 ωB97X-D57 with def2-TZVPD58,59 basis set was

used for geometry optimization and energy decomposition analyses unless stated otherwise.

ωB97X-D is a range-separated hybrid density functional and has shown to give superior

performance on a large number of systems for a wide range of chemical properties including

non-covalent interaction energies.1 All geometries were confirmed to be a minimum on the

potential energy surface by confirming that the Hessian has no negative eigenvalues. All

interaction energies computed adiabatically by including the relaxation energies of the in-

dividual fragments when they are infinitely separated from each other. All Complementary

Occupied-Virtual Pairs (COVPs) are plotted with an isosurface value of ±0.07 au. All plots

were created using Matplotlib60 and molecule figures were generated using VMD.61

Results and Discussion

Perturbative CTA vs non-perturbative CTA

The perturbative CTA has some well-known limitations, especially its inability to pairwise

decompose the entire CT energy. A manifestation of this problem is that the fraction of CT

energy decomposed into pairwise additive terms depends on the density functional used, as

illustrated in Fig. (1) for the case of the borane-carbonyl complex (BH3−CO). BH3−CO

is bound by −123.6 kJ/mol at the ωB97X-D/def2-TZVPD level of theory as a result of

strong CT character, with active forward (−171.0 kJ/mol) and backward donation (−113.8

kJ/mol). As shown in Fig. (1), the perturbative Roothaan step treatment overestimates CT

for semi-local functionals by amounts ranging from 8% for PBE to about 2% for M06-L.

Concurrently, the Roothaan step underestimates CT for hybrid and range-separated hybrid
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functionals by amounts ranging from 1% for TPSSh to rather severe values of 24% for M11

and ωB97X-V. Among the pairwise components, the perturbative BH3→CO back-donation

sees the most variation, fluctuating by more than 90 kJ/mol across the density functionals

tested. This functional-dependent performance of the Roothaan step in the perturbative

CTA is reminiscent of density functional minimal adaptive basis calculations based on the

same perturbative corrections.62

On the other hand, the non-perturbative pairwise CTA consistently decomposes 100% of

the charge transfer energy irrespective of the density functional employed. It is particularly

encouraging to see from Fig. (1) that the functional-dependence of pairwise contributions in

the non-perturbative approach is also significantly lower than their corresponding perturba-

tive counterparts.

Consistent performance of EDA and CTA across the potential energy surface (PES) is

necessary for training EDA-based force-fields which can benefit from these decompositions

for parametrizing force-field terms. The limitation of perturbative CTA manifests in another

form when considering different points on a PES. Consider a simple one-dimensional rigid

PES formed by stretching the BH3–CO complex along the B−C bond with the geometry of

BH3 and CO fixed to be the same as their equilibrium geometries. Fig. (2b) shows the total

percentage of CT decomposed into pairwise additive terms for both perturbative and non-

perturbative schemes. The total percentage of CT decomposed by the perturbative scheme

varies along the potential energy surface. When the B−C bond is compressed to 1 Å, 88% of

total CT is decomposed, while at equilibrium, this number falls to 77% and saturates at 74%

as the bond is stretched. By contrast, and by virtue of its design, the non-perturbative CTA

does not have this dependence at all. The charge transfer energy in Fig. (2b) varies over two

orders of magnitude from −736.8 kJ/mol at 1 Å separation to −1.5 kJ/mol at 3.4 Å. From

Fig. (2b), it is also interesting to note that the perturbative CTA yields components that

deviate from the exact non-perturbative values by significantly different fractions across the

PES: the perturbative CO→BH3 component deviates significantly from the exact fraction at
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Figure 1: Dependence of pairwise decomposition of charge transfer energy on different density
functionals in the perturbative (upper panel) and non-perturbative (lower panel) treatment
of charge transfer energy decomposition for the BH3−CO complex in the def2-TZVPD basis
set. The on-fragment CT terms (BH3→BH3 and CO→CO) are very small in most cases and
cannot be seen in this figure for multiple density functionals. The different components of
CT are shown as bars stacked on each other and appear in this order from bottom to top:
BH3→BH3, BH3→CO, CO→BH3, and CO→CO.
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Figure 2: (a) BH3–CO complex stretched along the dashed line (b) BH3→CO, CO→BH3,
and total charge decomposed is shown as a percentage of the total charge transfer energy
for the perturbative and non-perturbative CTAs for different B – C bond distances. The
equilibrium bond distance (re) is shown in purple.

long distances, while it agrees much better at the shortest distances. On the other hand, the

perturbative BH3→CO fraction agrees well with the exact value at long-range, and deviates

significantly at short-range. The advantage of the new non-perturbative CTA for pairwise

decomposition is quite clear.

Basis set dependence

As modern density functionals show their best performance when approaching the basis set

limit, it is advisable to run all calculations with as large a basis set as computationally

feasible1. Hence, one of the essential properties an energy decomposition scheme should

have is a reasonably stable and physically meaningful basis set limit for all the contributing

energy terms. The Fragment Electric Response Functions (FERFs),14 which construct a

polarization subspace for each fragment based on its response to electric fields, are used in

the ALMO-EDA to give the polarization energy and CT energy well-defined basis set limits.
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In this section, we assess the basis set convergence properties of each of the pairwise charge

and energy transfer components by again considering the example of BH3–CO adduct at its

equilibrium distance. Fig. (3) shows the partition of the CT energy into its 4 pairwise con-

tributing terms as a function of increasing size of the AO basis. Similarly, Fig. (4) shows the

corresponding partition of the pairwise decomposed charge flow terms. The size of the basis

set can be increased in two complementary ways: (1) Increasing the highest angular momen-

tum (cardinal number, X) of the one-particle basis set (denoted by the DZ, TZ, QZ, and 5Z

sequence) (2) Increasing the level of augmentation of diffuse basis functions (denoted by the

augmented (aug-)and doubly-augmented (d-aug-) prefixes). The latter effect is important

for treating ions, excited states and strongly polarized systems with comparable accuracy to

relatively non-polar ground states, but leads to near linear-dependence of the basis, which

presents a challenge for methods such as CTA that use Hilbert space partitioning.

Figures (3) and (4) show that the CT partition into four components is well-behaved

with respect to increasing X and augmentation. Considering the two major components

of the CT energy, we can see that the BH3→CO component converges to 37% and the

CO→BH3 converges to 56%. Similarly, the BH3→CO charge flow component converges to

67% and the CO→BH3 component converges to 35%. The double-ζ basis sets, contaminated

with basis set superposition error (BSSE) as well as incompleteness error, are too small to

reliably capture either the CT energy or charge flow. If the DZ basis sets are excluded,

the two major components are almost converged at the triple-ζ basis set level, while the

repolarization (on-fragment) components contribute little to CT regardless of basis set.

An interesting aspect of CT analysis for BH3−CO is the fact that the pairwise energy

and charge components are not correlated. The CO→BH3 energy component is larger than

the BH3→CO CT energy component, while the opposite is true for the pairwise charge flow

components. This result is consistent with perturbative analysis presented earlier.25 The

underlying reason has its origin in the different quantities being decomposed: the CT energy

versus the charge flow associated with CT. Let us denote VDA as the matrix element coupling
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Figure 3: Convergence properties of the non-perturbative pairwise decomposition compo-
nents of the total CT energy with respect to increasing the highest angular momentum of
the basis set for the Dunning basis set sequence: cc-pVXZ, aug-cc-pVXZ, and d-aug-cc-pVXZ
(X=D, T, Q, and 5) for the BH3–CO system at its equilibrium geometry using ωB97X-D.
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Figure 4: Convergence properties of the non-perturbative pairwise decomposition compo-
nents of total charge transfer with respect to increasing the highest angular momentum of
the basis set for the Dunning basis set sequence: cc-pVXZ, aug-cc-pVXZ, and d-aug-cc-pVXZ
(X=D, T, Q, and 5) for the BH3–CO system at equilibrium geometry using ωB97X-D.
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donor (D) and acceptor (A) orbitals, with orbital energies εD and εA. From dimensionality

(or perturbation theory) arguments, the CT energy is ∼ V 2
DA/(εD− εA). On the other hand,

the charge flow behaves as ∼ VDA/(εD−εA). Figures showing the magnitude of these pairwise

decomposed components in kJ/mol and me- are included in the Supporting Information.

DNA base-pairs

Hydrogen bonding between DNA bases is one of the most important non-covalent interac-

tions as it modulates a myriad of biological phenomena, such as the melting temperature of

oligonucleotide sequences which is a critical parameter in molecular biology experiments.63

The Watson-Crick base pairs, adenine-thymine (A-T) and guanine-cytosine (G-C), shown in

Fig. (5), interact by characteristic hydrogen bonding. The A-T base pair is bound by two

hydrogen bonds: one from N3 of thymine to N1 of adenine, and the other from N6 of adenine

to O4 of thymine. The G-C binding energy is −120.8 kJ/mol which is much larger than the

A-T binding energy of −69.4 kJ/mol as G-C has three hydrogen bonds (two H-bond donors

on G and one donor on C) while A-T has only two.

AdenineThymine Guanine Cytosine

O6

N1

N2

N4

N3

O2

H
C
N
O
Mg

N3

O4

N1

N6

Figure 5: DNA base pairs adenine-thymine (A-T; left panel) and guanine-cytosine (G-C)
with Mg2+ (right panel)

The pairwise CTA for these base pairs is shown in Table (1). From a CTA perspective,

the G-C pair really has two N lone pair donors on cytosine, coupled to two charge accepting

H−N groups on guanine, rather than the opposite proton donor perspective. This is reflected

in the larger C→G term versus the smaller G→C contribution. The main Complementary
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Occupied-Virtual Pairs (COVPs) shown in Fig. (6) for the A-T pair are a very convenient

way to understand these hydrogen bonds. The most significant COVP of the A-T base pair

contributes a majority (about 67%) of the CT interactions. The COVP donor is located on

N1 of adenine and the COVP acceptor is located on N3−H of thymine. The second hydrogen

bond has much weaker CT, which accounts for the remaining CT stabilization.

Table 1: Energy decomposition analysis and non-perturbative charge decomposition analysis
(in kJ/mol) for the DNA base pairs thymine(T)-adenine(A), guanine(G)-cytosine(C), and
their corresponding metallated versions.

Energy decomposition analysis Non-perturbative decomposition of CT energy
∆EINT ∆EGD ∆EFRZ ∆EPOL ∆ECT 1→1 1→2 2→1 2→2

T(1):A(2) -63.8 5.6 -7.4 -26.2 -35.8 0.0 -10.7 -25.4 0.3
G(1):C(2) -120.8 13.5 -35.6 -52.2 -46.5 0.0 -19.0 -27.6 0.2

Na+ G(1):C(2) -138.2 11.0 -45.4 -55.8 -48.1 -0.2 -10.2 -38.0 0.4
Mg2+ G(1):C(2) -195.7 18.5 -56.3 -90.9 -67.1 -0.3 -5.3 -62.2 0.7
Ca2+ G(1):C(2) -178.9 16.3 -54.6 -80.9 -59.7 -0.3 -5.4 -54.6 0.6

(a) ∆ECOVP1
CT = −23.9 kJ/mol (b) ∆ECOVP2

CT = −8.7 kJ/mol

Figure 6: (a) The most significant Complementary Occupied-Virtual Pair (COVP) for the
A-T DNA base pair (b) Second most significant COVP for the A-T DNA base pair. Atom
color codes are shown in Fig. (5).

By contrast, as shown in Fig. (7), the G-C base pair with its three hydrogen bonds

contains two equally significant COVPs, each of which contributes −16.6 kJ/mol to the CT

energy. Unlike the A-T COVPs, these G-C COVPs do not completely localize on any one

particular hydrogen bond although the first pair (shown in Fig. (7a)) is mainly on the O6-N4

hydrogen bond, while the second pair (shown in Fig. (7b)) dominates the N3−N1 interaction.

For two almost degenerate COVPs such as this, it is possible to localize the two occupied

and two virtual orbitals if a more localized picture is desired.
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(a) ∆ECOVP1
CT = −16.7 kJ/mol (b) ∆ECOVP2

CT = −16.6 kJ/mol

(c) ∆ECOVP3
CT = −9.3 kJ/mol

Figure 7: (a) The most significant Complementary Occupied-Virtual Pair (COVP) for the
G-C DNA base pair (b) Second most significant COVP for the G-C DNA base pair (c) Third
most significant COVP for the G-C DNA base pair. Atom color codes are shown in Fig. (5).
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The presence of metal cations has a significant effect on biophysical processes such as sta-

bilization of DNA triple and quadruple helices. At low concentrations, metal cations produce

a stabilizing effect by neutralizing the negatively charged phosphate backbone. However, at

high concentrations they affect the structural integrity of DNA by disrupting the hydrogen

bonding interactions.64,65 Metal cations interact with the N7 position of guanine as shown in

the right panel of Fig. (5).66–68 An understanding of the effect of metal cation coordination

on the binding energy of DNA base pairs will help illuminate whether this 3-body interac-

tion affects the stability of the DNA duplex. The effect of metal cation coordination of the

strength of hydrogen bonds in DNA base pairs has been studied using Natural Bond Orbital

Analysis.69

As a primitive model for this effect, we consider guanine of a G-C dimer binding in a

bidentate fashion via its N7 and O6 sites to three metal cations (Na+, Mg2+, and Ca2+),

as shown for Mg2+ in the right panel of Fig. (5). The EDA and non-perturbative CTA of

the three metallated G-C complexes are shown in Table (1). All 3 metallations of guanine

increase the binding energy of the complex. This increment is small (17.4 kJ/mol) when the

metal cation is Na+, but quite large when the metal cation is Mg2+ or Ca2+. The EDA reveals

that this increment comes from increases in all major mechanisms of interaction: frozen

interactions, polarization, and charge transfer. The adiabatic EDA47 (see Table S1) confirms

that the increase in frozen and polarization interactions is larger than the increase in CT. The

predominance of permanent and induced electrostatics agrees with chemical understanding

of this toy model of metallated DNA base pairs, which is controlled by interactions with the

unscreened charge.

Considering the case of Mg2+-G-C versus G-C, frozen interactions, polarization, and CT

contribute an additional 20.6 kJ/mol, 38.7 kJ/mol, and 20.6 kJ/mol respectively to the

interaction energy. Applying the non-perturbative CTA to the charge transfer contribution

reveals an interesting pattern. Metallation of guanine increases the C→G CT energy while

it decreases the G→C CT. This serves to decrease the strength of the O6(G)· · ·H-N4(C)
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hydrogen bond and increase the strength of the N3(C)· · ·H-N1(G) and O2(C)· · ·H-N2(G)

hydrogen bonds. The increase in the strength of the latter CT interactions is larger than

the decrease of the former, thereby leading to an overall increase in CT upon metallation.

COVPs for the metallated G-C base pairs are included in the Supporting Information (See

Figures S3, S4, and S5). The significant COVPs are localized on the N3-N1 and O2-N2

hydrogen bonds, while the COVP localized on the O6-N4 hydrogen bond contributes little

to the total CT energy.

These aspects of hydrogen bonding in nucleobases have been previously studied using

delocalization indices from Atom-In-Molecule (AIM) theory.70 While it is difficult to compare

our method with AIM theory, both analysis methods agree on the selective strengthening

and weakening of hydrogen bonds upon metallation in the G-C base pair. While AIM theory

measures this change in terms of change in delocalization index, our analysis can directly

compute an energy value associated with these interactions, thus enabling a richer and more

direct comparison to the interaction energy.

Borane-amine adducts

Borane-amine adducts are textbook examples of Lewis acid-base pairs. The ammonia-borane

complex has been studied particularly in detail as it has been considered a promising hy-

drogen storage material that contains 19.6 wt% of hydrogen.71,72 This adduct consists of

an electron-deficient group 13 center and an electron-rich group 15 center. Traditionally,

bonding in this adduct has been understood as a dative bond as a result of donation of

an electron pair from the nitrogen to the boron center. This is supported by the fact that

borane, which is a planar molecule, pyramidalizes upon complexation with ammonia.

Understanding the nature and strength of the dative bond in these adducts is key to

tuning the strength of such dative interactions, and can potentially be used to design ligands

on a catalyst or engineer protein-drug interactions. One common example is the series of

halogenated boranes binding ammonia: BX3–NH3 where X = F, Cl, or Br. The order of
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Table 2: EDA and non-perturbative CT energy decomposition analysis (in kJ/mol) for the
series of adducts BX3–NH3 where X = F, Cl, or Br.

Energy Decomposition Analysis Non-perturbative decomposition of CT energy
∆EINT ∆EGD ∆EFRZ ∆EPOL ∆ECT BX3→BX3 BX3→NH3 NH3→BX3 NH3→NH3

BF3–NH3 -90.8 99.7 122.8 -157.4 -156.0 0.0 -5.1 -151.2 0.2
BCl3–NH3 -107.7 101.2 259.7 -282.2 -186.4 0.2 -9.8 -179.3 2.6
BBr3–NH3 -119.2 94.3 295.5 -322.6 -186.5 0.2 -11.6 -177.8 2.7

stability of these adducts is BBr3–NH3 > BCl3–NH3 > BF3–NH3 as shown in Table (2).

This ordering is rather counter-intuitive as one would naively expect the reverse ordering

consistent with ordering of electronegativity of the halogens (F > Cl > Br). One explanation

proposed for this ordering is that electron donation from the halogen to the empty p-orbital of

boron reduces the Lewis acidity of boron.73 As shape and sizes of B and F match better than

B and Cl, it was suggested that donation from F to B was stronger. While this explanation

suggests that BF3 has a stronger π-bond character than BCl3, and consequently should have

a higher energy of pyramidalization, the opposite has been found to be true (See Ref. 73 and

∆EGD in Table (2)). It was also found that the Natural Bond Orbital π-overlap between

F and B in BF3 and Cl and B in BCl3 are more or less identical.74 Another explanation

correlating the Lewis acidity of halogenated boranes with its LUMO level was proposed75,76

and then contradicted.74

In this section, we attempt to explain the trend in the strength of interaction of trihalo-

borane-ammonia adducts. The interaction energy increases upon going from BF3–NH3 to

BBr3–NH3 from −90.8 to −119.2 kJ/mol. Upon going down the periodic table from BF3–

NH3 to BCl3–NH3, the polarization and charge transfer components of the interaction energy

increase (Table (2)). While the increase in polarization is cancelled out by the increase

in the repulsive frozen interactions, charge transfer causes a true increase in the strength

of interaction. Upon decomposition of CT into pairwise additive terms, it is clear that

the increase in the NH3→BX3 component is the most significant and leads to enhanced

binding energy. On the other hand, upon going from BCl3–NH3 to BBr3–NH3, total CT

and the NH3→BX3 component remain unchanged. Most of the increase in binding energy
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arises from a decrease in the geometry distortion term. While most of the increase in the

polarization energy is offset by the increase in repulsive frozen interactions, the increase in the

polarization term still contributes a little to the overall increase in the binding energy. Energy

decomposition in an adiabatic picture (see Table S3) further emphasizes the importance of

CT relative to polarization and frozen interactions. The adiabatic energy decomposition also

shows an increase in CT upon going from BF3–NH3 to BBr3–NH3.

Table 3: Energy decomposition analysis and non-perturbative charge decomposition analysis
(in kJ/mol) for the adduct BH3–NMepHq (p+ q = 3)

Energy Decomposition Analysis Non-perturbative Decomposition of CT energy
∆EINT ∆EGD ∆EFRZ ∆EPOL ∆ECT BH3→BH3 BH3→NMepHq NMepHq→BH3 NMepHq→NMepHq

BH3–NH3 -133.1 56.3 116.5 -148.1 -157.7 -2.7 -16.4 -138.1 -0.5
BH3–NMeH2 -153.2 59.7 114.0 -172.9 -154.0 -3.4 -17.4 -131.4 -1.9
BH3–NMe2H -163.1 62.8 110.7 -185.9 -150.6 -3.7 -17.8 -127.7 -1.4
BH3–NMe3 -163.8 65.8 107.7 -178.4 -159.0 -3.6 -18.1 -136.5 -0.8

Another interesting observation is that placing electron donating groups on B decreases

the binding energy of the adduct, while placing the same group on N increases the binding

strength of the adduct. This phenomenon can be classically understood as the enhancement

of Lewis basicity when electron donating groups are placed on nitrogen. In order to gain a

further understanding of this phenomenon, we consider a series of boranes bound to ammonia

substituted with increasing numbers of methyl (−Me) groups. Methyl is an electron donating

group, and with addition of each methyl group on the nitrogen center the interaction energy

increases as shown in Table (3). Experimentally, gas phase dissociation enthalpies also

increase.77 Performing EDA on the interaction energies of this series, we can see that the total

CT energy shows no trend with increasing the number of methyl groups on ammonia. EDA

in the adiabatic framework is also in agreement with this although the relative magnitude

of CT is much larger than the polarization (See Table S4). This shows that understanding

the enhancement in binding energy of these adducts in terms of increased Lewis basicity of

substituted ammonia is incorrect. The CTA further supports this claim by not showing a

clear trend in the CT energy associated with donation from NMepHq to BH3, which lies in

the range of −138.1 to −127.7 kJ/mol, and does not become stronger with increasing number
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of methyl substituents at N. By contrast, the polarization energy increases with increasing

number of methyl substituents and is thus the main origin of enhanced binding. The reason

is likely because −Me is more polarizable than −H, and consequently more −Me groups

cause larger polarization interactions.
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Figure 8: (a) Energy decomposition of BH3–NClpHq binding energy into geometry distortion
(GD), frozen (Frz), polarization (Pol), and charge transfer (CT) terms. (b) Non-perturbative
decomposition of charge transfer into pairwise additive terms. A table containing the ener-
getics shown in this figure is included in the Supporting Information (Table S2).

Now, let us consider a chloride (−Cl) substitution at N instead of −Me substitution.

The chloride, being an electron withdrawing group, reduces the electron density available

for donation in forming an adduct. As the number of chloride groups on N increases, the

binding energy of the adduct decreases from −133.1 kJ/mol in the case of BH3–NH3 adduct

to just −58.2 kJ/mol for BH3–NCl3. EDA shown in Fig. (8a) shows that this is a result of

the decrease in both polarization and charge transfer. The non-perturbative CTA reveals

two important trends upon chloride substitution: First, as expected, NClpHq→BH3 CT

decreases significantly from −138.1 kJ/mol to −95.6 kJ/mol on going from NH3 to NCl3.

Second, BH3→NClpHq CT energy increases upon chloride substitution. However, the latter

increase is rather small and is eclipsed by the former leading to an overall decrease in the CT

energy lowering. Thus, the non-perturbative CTA can elucidate the interplay of different

pairwise CT energy components in order to explain the observed binding energies of borane-

amine adducts.
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Carbonyl complexes

Transition metal – carbonyl interactions are ubiquitous in transition metal chemistry and

catalysis,78,79 such as in important intermediates in CO2 reduction.49 These are cases of syn-

ergic bonding with significant binding arising from both forward electron donation (carbonyl

to metal complex) and backward (metal complex to carbonyl) donation. The Dewar-Chatt-

Duncanson16,17 model has been invoked to explain bonding in metal carbonyls with differing

degrees of success.80 According to this model, the red shift in the carbonyl stretching fre-

quency is understood as a consequence of back-donation from the metal to the anti-bonding

2π∗ orbitals of CO, decreasing its bond strength, lengthening the C−O bond, and conse-

quently decreasing its vibrational stretching frequency.

Free CO is IR active and its stretching frequency appears at 2143 cm-1.81 Consider

the sequence of isoelectronic 3d transition metal hexacarbonyls: V(CO) –
6 , Cr(CO)6, and

Mn(CO) +
6 .82,83 The electron density on the metal decreases as we go from anionic V(CO) –

6

to cationic Mn(CO) +
6 . As a consequence, the metal has less electrons to donate to the 2π∗

orbitals of CO. Figure (9) shows that the non-perturbative M(CO)5→CO CT decreases from

−172.9 kJ/mol in V(CO) –
6 to −78.7 kJ/mol in Mn(CO) +

6 . The experimental red shift also

decreases in the same order: 285 cm-1 for V(CO) –
6 , 140 cm-1 for Cr(CO)6, and 37 cm-1 for

Mn(CO) +
6 . The computed red shifts show a similar trend: 262 cm-1 for V(CO) –

6 , 127 cm-1

for Cr(CO)6, and 11 cm-1 for Mn(CO) +
6 . As back-donation is a major component of the CT

interaction, total CT energy also decreases as one moves to the right in the 3d transition metal

sequence. The non-perturbative CTA also reveals the contrasting mechanisms dominating

the nature of CT in V(CO) –
6 and Mn(CO) +

6 : back donation is the major component of

CT contributing about 73% of the CT energy in V(CO) –
6 , whereas forward donation is the

major driving force accounting for 55% of the charge transfer energy in Mn(CO) +
6 . Thus,

the CTA reveals the intricate interplay between different mechanisms driving CT in 3d metal

hexacarbonyls. The variational forward-backward CTA49 also shows that the adiabatic back-

donation (M(CO)5→CO) decreases upon moving from V(CO) –
6 to Mn(CO) +

6 while the
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forward (CO→M(CO)5) component decreases (See Table S5).
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Figure 9: Stabilization energy associated with forward (CO→M(CO)5) and backward
(M(CO)5→CO) CT interactions in the perturbative and non-perturbative schemes for 3
isoelectronic transition metal hexacarbonyls. The M(CO)5→CO component is shown on the
top and the CO→M(CO)5 is shown below it.

This example also brings out the main limitation of the perturbative CTA, which is

capable of capturing only ∼67% of the total CT energy. In the V(CO) –
6 case, for exam-

ple, the perturbative treatment underestimates the forward component by only 21.5 kJ/mol

compared to the non-perturbative counterpart, but makes a much larger error in the back-

ward component underestimating it by 62.8 kJ/mol. This inconsistency in the magnitude

of underestimation in the perturbative scheme underscores the advantage of the new non-

perturbative CTA.

Computational cost

As established above, the non-perturbative CTA is a superior alternative to perturbative

analysis for studying charge decomposition. To address the computational cost of obtaining

these improved results, we will briefly compare the cost of the non-perturbative scheme

against its perturbative predecessor. The perturbative scheme computes XRS
V O by solving for

the Roothaan step, Eq. (6), which involves only cubic-scaling matrix multiplications, where
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the dimension of these matrices involves the number of occupied (O) and virtual (V ) orbitals

of the complex. Given XRS
V O, the pairwise energy decomposition follows by taking its trace

with the Fock matrix constructed from the polarized ALMOs (ΦPOL). This Fock matrix is

already constructed in the order to converge those orbitals and compute the energy of the

polarized wavefunction (E(ΦPOL)).

By contrast, the non-perturbative CTA involves solving Eq. (23) in order to compute

the non-perturbative CT matrix, XCT
V O. The process of solving this equation involves cubic

scaling matrix diagonalization and multiplications of matrices whose dimension is the number

of MOs, N = O + V of the complex. Given XCT
V O, the non-perturbative pairwise energy

decomposition requires computation of the FCT using Eq. (27). This requires five different

Fock matrices at different interpolating density points between ΦPOL and ΦCT. Two of

these five Fock matrices (F(0) and F(X) in Eq. (27)) are available from computing the

energy of the polarized wavefunction and energy of the fully-relaxed complex, leaving three

additional Fock matrix constructions. Given that the complete ALMO-EDA scheme typically

requires tens of Fock matrix constructions for determining the polarized and fully-relaxed

wavefunctions, the addition of three more Fock matrix constructions only adds very little to

the total computational cost.

Conclusions

We have introduced a non-perturbative approach that (numerically) exactly decomposes the

variational energy lowering due to charge transfer (CT) in molecular complexes into pairwise

additive terms in the context of ALMO-based energy decomposition analysis (ALMO-EDA)

for density functional theory.9,13 The non-perturbative CT analysis (CTA) is a superior re-

placement for the existing perturbative CTA,25 which relied on a perturbative approximation

to incompletely and inexactly extract the pairwise contributions. As demonstrated here, the

perturbative CTA decomposes different percentages of the total charge transfer energy at
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different points on a potential energy surface, and also has a dependence on the density func-

tional used, typically underestimating CT for hybrid and range-separated density functionals

while overestimating it for pure functionals.

This new method introduced in this work finds the generator, XCT
V O, of the unitary trans-

formation that transforms the polarized wavefunction into that of the fully-relaxed wavefunc-

tion. Next, an effective Fock-like matrix, FCT, is constructed from Fock matrices computed at

different density points connecting the polarized wavefunction and fully-relaxed wavefunction

along the path given by XCT
V O. Taking the trace of the product of the FCT

OV and XCT
V O along with

appropriate orbital projectors sandwiched in the middle gives the non-perturbative charge

decomposition in terms of donor and acceptor orbital pairs of the fragments comprising the

complex. This completes the (numerically) exact pairwise energy decomposition scheme for

CT. We also extended the CTA to decompose the charge flow in a pairwise fashion as well.

Finally, singular value decomposition (SVD) of XCT
V O yields complementary occupied-virtual

orbital pairs (COVPs), which are the most important orbitals involved in CT.

We have demonstrated the usefulness of the new CTA by applying it to various chemical

systems with varying strengths of charge transfer interaction. Application to DNA base-

pairs reveals the nature of hydrogen bonding in the thymine:adenine and guanine:cytosine

complexes. Additionally, CTA reveals the effect of metallation on the hydrogen bonding

patterns of the guanine:cytosine base-pair. Investigating the interaction energy of a series

of borane adducts of the form BX3−NH3 (X = F, Cl, or Br) reveals that an increase in

polarization and CT energy from NH3 to BX3 enhances the binding energy of the BX3−NH3

complex as we go down the halogen group. The CTA also revealed interesting aspects of

the effect of methyl and halogen substitution on the nitrogen center. Additionally, the CTA

provided insight into the delicate interplay of forward and backward donation in a series of

isoelectronic transitional metal hexacarbonyls. It is likely to be useful for a wide variety of

other interpretive problems in intermolecular interactions, as well as other applications such

as for training force-fields to account for pairwise decomposition of charge transfer.10,11
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38
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