Theoretical Computer Science 846 (2020) 91-102

Theoretical Computer Science

Contents lists available at ScienceDirect & oorcteal

www.elsevier.com/locate/tcs e

Priority evacuation from a disk: The case of n > 4" R |

J. Czyzowicz !, K. Georgiou ™', R. Killick ©*+2, E. Kranakis ', D. Krizanc¢,

Check for
d updates

L. Narayanan®', J. Opatrny !, S. Shende -3

4 Départemant d'informatique, Université du Québec en Outaouais, Gatineau, QC, Canada
b Department of Mathematics, Ryerson University, Toronto, ON, Canada

€ School of Computer Science, Carleton University, Ottawa, ON, Canada

d Department of Mathematics & Comp. Sci., Wesleyan University, Middletown, CT, USA

€ Department of Comp. Sci. and Software Eng., Concordia University, Montreal, QC, Canada
fDepartment of Computer Science, Rutgers University, Camden, NJ, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 26 November 2018

Received in revised form 20 August 2019
Accepted 8 September 2020

Available online 15 September 2020

Keywords:

Mobile Robots

Priority

Evacuation

Exit

Group Search

Disk

Wireless Communication
Queen

Servants

We introduce and study a new search-type problem with (n 4+ 1)-robots on a disk.
The searchers (robots) all start from the center of the disk, have unit speed, and can
communicate wirelessly. The goal is for a distinguished robot (the queen) to reach and
evacuate from an exit that is hidden on the perimeter of the disk in as little time as
possible. The remaining n robots (servants) are there to facilitate the queen’s objective and
are not required to reach the hidden exit. We provide upper and lower bounds for the
time required to evacuate the queen from a unit disk. Namely, we propose an algorithm
specifying the trajectories of the robots which guarantees evacuation of the queen in time
always better than 2 + 4(+/2 — 1)% for n > 4 servants. We also demonstrate that for n > 4
servants the queen cannot be evacuated in time less than 2 + % + n%

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental research topic in mathematics and computer science concerns search, whereby a group of mobile robots
need to collectively explore an environment in order to find a hidden target. In the scenarios considered so far, the goal was
to optimize the time when the first searcher reaches the target position. More recently, researchers studied the evacuation
problem in which it is required to minimize the time of arrival to the target position of the last mobile robot in the group.
In the work done on search so far, all robots are generally assumed to have exactly the same capabilities. However, it is
quite natural to consider collaborative tasks in which the participant robots have different capabilities. For example, robots
may have different maximum speeds, or have different communication capabilities. Robots with different speeds have been
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studied in the context of rendezvous [21] and evacuation [26]. In the context of search, a natural situation may be that
only one of the robots has the capability to address an urgent need at the target, for example, performing an emergency
procedure, or closing a breach in the perimeter. The remaining robots can help in searching for the target, but their arrival
at the target does not accomplish the main purpose of finding the target. Therefore, the collective goal of the robots is to
get the special robot to the target as soon as possible. In this paper, we are interested in such a type of search problem,
which grants priority to a pre-selected participant. In other words, we assume that the collection of robots contains a leader,
known in advance, and as long as the leader does not get to the target position, search is considered incomplete.

In this paper we propose and investigate the priority evacuation problem, a new form of group search in which a given
selected searcher in the group is deemed more important than the rest. This distinguished robot is given priority over all
other searchers during the evacuation process in that it should be evacuated as early as possible upon the exit being located
by any searcher.

1.1. Model

In the priority evacuation, or PEVAC, problem, n 4 1 robots (searchers) are placed at the center of a unit disk. There is a
target (exit), placed at an unknown location on the boundary of the disk. The target can be discovered by any robot walking
over it. A robot that finds the exit instantaneously broadcasts its current position. Among the robots there is a distinguished
one called the queen and the remaining n robots are referred to as servants. The goal is to minimize the queen’s evacuation
time, i.e. the worst case total time until the queen reaches the target. We assume that all robots, including the queen, may
walk using maximum unit speed. We note that the queen may or may not actively participate in the search of the exit.

1.2. Related work

Search and exploration have been extensively studied in mathematics and various fields of computer science. If the en-
vironment is not known in advance, search implies exploration, and it usually involves mapping and localizing searchers
within the environment [1,20,25,27]. However, even for the case of a known, simple domain like a line, there have been
several interesting studies attempting to optimize the search time. These were initiated with the seminal works of Bell-
man [6] and Beck [5], in which the authors attempted to minimize the competitive ratio in a stochastic setting. After the
appearance of [3], where a search by a single robot was studied for infinite lines and planes, several other works on linear
search followed (cf. [2]) and more recently the search by a single searcher was studied for different models, e.g., when the
turn cost was considered [19], when a bound on the distance to the target is known in advance [8], and when the target is
moving or for more general linear cost functions [7].

For the case of a collection of searchers, numerous scenarios have been studied, such as: graph or geometric terrains,
known or unknown environments, stationary or mobile targets, etc. (cf. [22]). In many papers, the objective is to decide the
feasibility of the search or to minimize its search time.

The evacuation problem from the disk was introduced in [13] where two types of robots’ communication were studied -
the wireless one and communication by contact (also called face-to-face). The bounds for evacuation of two robots commu-
nicating face-to-face were later improved in [17] and in [9]. Recently, Chuangpishit et al. considered worst-case average-case
tradeoffs for the same problem, see [11]. The case of a disk environment with more than one exit was considered in [12]
and [28]. Other variations included evacuation from environments such as regular triangles and squares [18], the case of
two robots having different maximal speeds [26], and the evacuation problem when one of the robots is crash or byzantine
faulty [14].

Group search and evacuation in the line environment were studied in [4,10]. The authors of [10] proved, somewhat
surprisingly, that having many robots using maximal speed 1 does not reduce the optimal search time as compared to the
search using only a single robot. However, interestingly, [10] shows that the same bound for group search (and evacuation)
is achieved for two robots having speeds 1 and 1/3. For both types of robots’ communication scenarios, [4] presents optimal
evacuation algorithms for two robots having arbitrary, possibly distinct, maximal speeds in the line environment.

A priority evacuation-type problem has been previously considered in [23,24] but with different terminology. Using the
jargon of the current paper, an immobile queen is hidden somewhere on the unit disk, and a number of robots try to locate
her, and fetch (evacuate) her to an exit which is also hidden. The performance of the evacuation algorithm is measured by
the time it takes the queen to reach the exit. Apart from these results, and to the best of our knowledge nothing is known
about the priority evacuation problem. In this work we provide a general strategy for the case of n > 4 servants. When there
are fewer than 4 servants more ad hoc strategies must be employed which do not fit with the general framework developed
here and they are therefore treated elsewhere [16].

1.3. Results of the paper
Section 2 introduces nomenclature and notation and discusses preliminaries. In Section 3 we provide an algorithm that

evacuates the queen in time always smaller than 2 + 4(v/2 — 1)% for n > 4 servants (the exact evacuation times of our
algorithm must be calculated numerically). In Section 4 we demonstrate that for n > 4 servants the queen cannot be evacu-

ated in time less than 1+ % ~arccos(—%) +.,/1— nil' or, asymptotically, 2 + % + n% These results improve upon naive upper
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Table 1
Evacuation times 7~ of the queen using Algorithm 2 (numerical results). The upper bound of 2 + 4(v/2 — 1)%

(Theorem 1), and the lower bound of 1+ % cos™! (’72) +./1— "iz (Theorem 2) are also provided. For comparison,

the naive upper bound and lower bound of 2 + ZT” (see Section 2.2) and 2 + X

747 (see Section 4) are included.

T UB LB UB LB

n (Algorithm 2) (Theorem 1) (Theorem 2) Naive Naive

4 3.113 3.301 2913 3.571 2.628

5 2.905 3.041 2.709 3.257 2.524

6 2.762 2.868 2.580 3.047 2.449

7 2.660 2.744 2.490 2.898 2.393

8 2.582 2.651 2424 2.785 2.349
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Fig. 1. Evacuation times 7 of Algorithm 2 for n € [4, 27] (left) and n € [4, 2'8] (right). The upper bound of 2 + 4(v/2 — 1) % (Theorem 1), the lower bound
of 1+ %cos‘l (’Tz) +,/1— niz (Theorem 2) are also provided. For comparison, a naive upper bound and lower bound of 2 + ZT” (see Section 2.2) and
24 5 (see Section 4) are included.

and lower bounds of 2 + 27” and 2 + n”? respectively (see Section 2.2 and 4). A summary of the evacuation times for our
algorithm (numerical results) as well as the upper and lower bounds (non-trivial and naive) is provided in Table 1 and in

Fig. 1. We conclude the paper in Section 5 with a discussion of open problems.
2. Notation and preliminaries
2.1. Notation

We denote by U/ the unit circle in R? centered at the origin O = (0, 0) which must be evacuated by the queen and
we assume that all robots start from the origin. We use n to denote the number of servants, and use Q (t) and Si(t),
k=1, ..., n, to represent the trajectories of the queen and k™ servant respectively. The set of all servant trajectories is
represented by S = {Sk(t); k=1,..., n}. A trajectory will be given as a parametric function of time and, when referring
to a robot’s trajectory, it will be implied that we mean the path taken by the robot in the case that the exit has not been
found.

2.2. Evacuation algorithms

A priority evacuation algorithm A is specified by the trajectories of the queen and servants, A ={Q (t)} US. We say that
A solves the PEVAc, problem if, in finite time, all points of ¢/ are visited/discovered by at least one robot. The evacuation
time 7 of an algorithm solving the PEVAc, problem is defined to be the worst-case time taken for the queen to reach the
exit. As such, the evacuation time will be composed of two parts: the time taken until the exit is discovered plus the time
needed for the queen to reach the exit once it has been found.

We will find it useful to define the restricted class of evacuation algorithms S containing all those algorithms in which:
a) the queen does not participate in searching for the exit, b) the servants initially move as quickly as they can to the
perimeter of U/, c) each servant searches either counter-clockwise or clockwise along the perimeter of ¢/ at full speed,
and, d) each servant stops and is no longer used once it reaches an already discovered point of /. Algorithms in this
class can be defined by the trajectory of the queen Q (t) together with the sets ® = {¢, € [0, 27]; k=1, ..., n} and
¥ ={oy==1; k=1, ..., n} which respectively specify the angular positions on &/ to which the servants initially move,
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A€S A" € Syym

Fig. 2. Depiction of the two trivial algorithms each achieving an evacuation time of 2 + ZT” Both algorithms are in the class S and the algorithm on the

right is also in the class Sgy,. The queen is indicated by the blue point and the servants by the red points. A red arc indicates points that have been
discovered. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

and the directions in which each servant searches. We will enforce an ordering on the sets ® and X such that for ¢y € P,
1<k<n-—1, we have ¢, < ¢1. With this notation we can express the trajectory of the kit servant during the time it is
searching as Sy (t) = (cos (¢y + o (t — 1)), sin (¢ + op(t — 1))).

We additionally define the class of algorithms Ssym C S containing those algorithms for which we can split the set of
servants into two groups S =S, US_ where: a) servants in S, follow trajectories which are reflections about the x-axis*
of servants in S_, and, b) all servants in S, search counter-clockwise.” In the case that n is odd we permit one servant to
follow a trajectory that is symmetric about the x-axis. For an algorithm in Ssym, we may write ® = & U &_ where &
(resp. ®_) specifies the positions on &/ to which the servants above (resp. below) the x-axis initially move. Formally we
may write &, ={¢, €[0,7]; k=1, ..., [%]} and ®_ =—®, foreven n and ®_ ={—¢; k=2, ..., [%1} for odd n. In
the class Sy, the directions in which the servants search are always counter-clockwise (resp. clockwise) for robots in &
(resp. ®_) and thus an algorithm A € Sy, is entirely specified by the set {Q ()} U ®.

As a warm-up to the next section, and to demonstrate the intuitive nature of these definitions, consider the following
trivial algorithm which achieves an evacuation time of 2 + ZT”: the queen remains at the origin until the exit is found and
the servants move directly to equally spaced locations on the perimeter of I/ each searching an arc of length 27” in the
counter-clockwise direction. This algorithm can be seen to be in the class S and we can succinctly represent the algorithm
as follows

Algorithm 1 Trivial Evacuation 1, A € S.
1: Q(t) = (0, 0).

2 o={%Vo7; k=1,...,n)

3: T={1; k=1,...,n}

Observe that the above algorithm is not in Ssy;;. We can, however, give an equivalent algorithm in Sy, which achieves
the same evacuation time. This algorithm is depicted in Fig. 2 along with Algorithm 1 for the case that n =8.

3. Upper bound

In the previous section we introduced two evacuation algorithms solving PEVAc, with evacuation time 2 + ZT” We will
show that this can be improved:

Theorem 1. There exists an algorithm solving PEVAC, for n > 4 with an evacuation time at most 2 + 4(~/2 — 1) T ~241.657Z.

We will prove Theorem 1 constructively and present an evacuation algorithm in the class Sy, achieving the desired upper
bound for n > 4 servants. For ease of presentation we will assume that n is even. Furthermore, as it will greatly simplify
the algebra, we will redefine all times (including the evacuation time) to start from the moment the servants first reach
the perimeter. To avoid confusion we will use 7, to represent the evacuation time of an algorithm as measured from the
moment the servants reach the perimeter. The total evacuation time will thus be 7 =7, + 1.

As we will describe an algorithm in the class S;yn we will only need to specify the queen’s trajectory Q (t) and the
initial angular positions @, of the servants lying above the x-axis. We start by giving the trajectory for the queen which we
parametrize using o > 0:

4 The choice of the x-axis is arbitrary since we may always rotate Z/. What is important is that a diameter of symmetry exists.
5 Again, these choices of search directions are arbitrary since we can reflect I/ about the y-axis. What is important is that all servants within a group
search in the same direction.
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t = t<a
t=1+a y<t<l4a 7
CQ ‘ @
. Colt
o A() Colt) Co(t)

Fig. 3. Illustration of the queen’s trajectory Q (t) (blue point) and the motion of the intercepts A, (t) and A_(t). The blue circle represents the circle Cq (t)
and the black circle represents the circle I{. A red arc indicates those positions of &/ that must be discovered at the indicated time. Time flows from right
to left.

(0, 0), O<t<a
QO ={(@—t 0, a<t<a+1 (M
(-1,0), t>a+1.

In words, the queen waits at the origin until the time t = o at which moment she begins moving at full speed along the
negative x-axis stopping when she arrives to the point (—1, 0) at the time t = « + 1. The crux of the algorithm will be in
specifying the set ®. In order to do this we consider the following simple observation:

Observation 1. If the queen is to achieve an evacuation time of T, then, for all t < T, all of the undiscovered points of U must remain
inside the disk centered on the queen with radius Tp — t.

Assume that we have an algorithm with evacuation time 7, and define Cq (t) as the circle centered on the queen with
radius 7, —t. Then, in light of Observation 1, it is not so hard to imagine that the intersection points of the circles Cq (t) and
U will be of importance. Thus, assume that 7, is small enough that at some time t > « the circles Cq (t) and U/ intersect.
Considering the form of the queen’s trajectory, we can conclude that the circles &/ and Cq (t) will first intersect at the time

y = w at the point (1, 0). For times t > y the circles will intersect at two points A+ which are symmetric about the
x-axis and which move from right to left along the perimeter of ¢/ (see Fig. 3). The importance of the points A is clear
when one considers that A, mark the boundary between those points of ¢/ which must be discovered and those which
may yet be undiscovered at the time t. Intuitively, we will want to position the servants such that they are searching only
when they are to the left of Ay and A_. In particular, a servant will stop searching at precisely the moment the intercept
A or A_ catches up to it (with a small caveat to be described shortly). This condition will allow us to specify the set ®.

At this time we will find it useful to re-express the evacuation time as 7, =14« + o where p is a parameter that will
ultimately depend on «. Intuitively, o represents the radius of Cq (t) at the moment the queen reaches the perimeter of I/
and its inclusion will greatly simplify algebra. Note that, with this definition, the circles Cq (t) and &/ will first intersect at
the time y =a + 5.

As we only need to specify the set &, we will only consider the intercept A. The coordinates of A for times y <
t <a +1 can be determined by simultaneously solving the implicit equations for ¢/ and Cq (t), i.e. U : x> +y>=1and
Co®): x—a+D?2+y>=(1+a+p—1t)> We find that A, (t) = (xa(t), ya(t)) where

— 7‘(2 P) 11—
xa(t) = 2 ) 1—-p (2)
and
P(P+2)2(t—a)—pllp+2-2(t -«

2(t — @)
The angular position of A4 will be represented as ¢4 and is given by:
t
¢A(t)=tan_1<yA()>. (4)
xa(t)
We define vs4 as the speed at which Ay moves along the perimeter of U/{/. We can determine v4 using va(t) =

(C’C’l‘—tf‘)z + (‘%")2 from which we find that:

1 p(p+2)
VA(t)—t_a\/[p+2_2(t—a)][2(t—06)—,0] .
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Consider v4(t). For times just after t = o« we can see that Ay will move with a speed v4 >> 1 and, as such, no single
servant will be able to stay to the left of Ay for long. What is not so obvious from (5) is that v4 continuously decreases
until some time 7 at which v4 = 1.% Furthermore, starting at the time t there will be an interval of time during which
va < 1. Thus, if the intercept reaches a servant at exactly the time t that servant does not have to stop searching. We will
choose p to ensure that the servant Sy, € Sy satisfies exactly this property.

We can describe the following general overview of our algorithm: the servant S; begins at ¢y =0 (for even n) and
searches until the time t; at which Sq(t1) = A4+ (t1) or when t; 4+ ¢1 = ¢a(t1). The servant S, will begin its search at the
position ¢ = ¢1 + t1 and it will search for a time t; until Sy(t2) = A4 (t2) or until t; + ¢ = Pa(tz). The servant S3 will
begin at the position ¢3 = ¢ + t = ¢1 + t1 + t2, and so on. Continuing on like this we can see that the servant Sj;
will begin its search at the position ¢y1 = ¢y + tx = 1 + Zf:] t; with the t; satisfying tp = ¢a(tx) — ¢y or, equivalently,
b1+ Z{fﬂ ti = ¢a(ty). We want the servant S,/2 to be coincident with the intercept A at exactly the time 7 (recall that
T is the time at which the speed of A, is v4 =1) and thus we will choose p to satisfy ¢n/2 + T = ¢4 (7). In this case the
servant Sy, will search for a total time 7 — ¢y/2 after which all of ¢/ will have been discovered.

To extend this algorithm to the case that n is odd we will need to split the trajectory of the servant S; € S between
the upper and lower halves of /. We will therefore start the servant S; at the position ¢ = ’T“ All of the other relevant
equations remain unchanged.

We provide links ([29] and [30]) to short animations of the algorithm for n =4, 8. In these animations the queen is
represented by the blue point, the servants by red points, and the intercepts A+ by green points. A plot of the evacuation
time as a function of the time at which the servants find the exit is also shown. Note that the servants stop searching at
the exact moment the intercept reaches them (except for the two servants furthest to the left) and at these moments the
evacuation time is maximized. The two servants that are last active will be coincident with the intercepts at the moment
these intercepts reach a speed of one, and, again, at this moment the evacuation time is maximized. In total there will be
n different locations for the exit (counting the top and bottom of /) which will maximize the evacuation time. A keen eye
will note that the queen reaches the perimeter of I/ before the servants have finished searching the perimeter and this
would appear to hint that Algorithm 2 can be improved. We will argue in Section 5 that this is not the case.

Fig. 4 illustrates an example configuration for the described algorithm when n = 8. The algorithm is formally presented
in Algorithm 2 where we have left o as a parameter. We claim that Algorithm 2 will always do better than the bound of
Theorem 1 when the evacuation time is minimized over «. We will now prove this claim.

Algorithm 2 IntersectChase(w), Ay € Ssym.
1:

0, 0), O<t<a«a
QB ={(@—-t 0, a<t<a+1
(=1,0), tza+l,

2: @y ={¢; k=1, ..., [51}, where:
0, n even ket
P=1"4 nodd ¢k=¢1+§ri. P2+ T =a(r)
and,

k
¢1+ Y ti=galty), va()=1

i=1

Proof. (Theorem 1) To simplify the algebra we will assume that n is even. Algorithm 2 specifies that we choose the t
in order to satisfy Zf;l ti = pa(ty) where ¢4(t) is defined in (4). We note that each servant will be able to search for at
least a time y since this marks the first time at which Cq (t) and ¢/ intersect. This motivates us to define the primed time
coordinate ' =t — y. In this primed coordinate the defining relation for the t; is Zile t, = ¢a(t,) —ky (where we assume
that ¢4 is properly redefined for the primed time coordinate). We are interested in an asymptotic limit and thus we make
the following claim which is based on the standard definition of Riemann integration:

Claim 1.Let f = % Then, holding f constant and taking the limit in large n, the sum Zfﬂ t! becomes a definite integral

limp— oo Z{fﬂ i= f(f t'(u)du where % = f is to be interpreted as the fractional servant number and u is a dummy integration
variable.

6 It is not guaranteed that for all p > 0 this intercept will reach a speed of one before the queen reaches the perimeter of /. However, we will choose a
p such that this does happen.
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Fig. 4. Example configuration of Algorithm 2 when n = 8. The configuration is only shown for the 4 servants on the upper half of the circle ¢/. In this
diagram all servants move counter-clockwise. The servants S; and S, have already finished their search and are located at the starting positions of the
respective servants S and S3. The servant S3 is just about to finish its search. The point A4 (7) marks the location where the intercept A (t) slows to a
speed of 1. The servant S4 will reach the point A, (7) at the exact moment the intercept does.

Proof. Consider the sum 22‘21 ti. Write t; =t'(k), define fi = % as the fractional servant number, and let Af = Af = %
Finally, defining t’(0) = 0 allows us to rewrite the sum as Zile ti=n Z:-(:o t'(nfi) A fi. Now, for a given constant fraction 0 <
fk < % the bounds of the sum Zf:o t'(nfi)A f; are constant. Furthermore, in the limit n — oo the interval A f; — 0. Thus,
the limit, limy_, o Z?:o t'(nfi)Af; is simply the definition of the Riemann integral of t'(nf) over the domain f € [0, fi],
i.e., limp oo Zi":o t'mf)Afi = fof" t'(nf)df. By defining « = nf;, we get fof" t'(nf)df = %fé{ t'(u)du and this leads us to our

desired result limy_, Zg‘:] t=fy du. O

Due to the Claim 1, the asymptotic defining relation for t’(x) becomes an integral equation f(;( t'(u)du = ga(t' (k) —ky.
Using the fundamental theorem of calculus we can rewrite this as a differential equation: t'(k) = %(m (t'(k) —ky) =
%;(K)) — y. Applying the chain rule we find that d"’Aéﬁ;(")) = dd”*éttl,(")) . %. Observe that d"”‘g# is simply the speed

dt _ _t'+y

of the intercept A, and we can therefore write the differential equation for t'(k) as I = @y This ordinary differential

equation can easily be solved for « in terms of t’ by separation of variables. We find that « (t') = fot ‘;AT“}’,)du. The equation

for the speed v, is given in (5), which, in the primed time coordinate takes the form v, (t') = (2t’17+p)‘/ f,gfl’ff; . Substituting

this into the expression for & (t') yields & (t') = fof/ (u+y)}2u+p)‘/ ‘u’f{’ﬁf du. This integral has the closed form solution

1 (Y@ +p) [p(p+2) 1 [ 1+y /
N—=—_12 L Ny (BT 1 2 _tr .
K(t) " |: tan ( P va(t )) v 1) tan <t( t'+ p) oo 2)v,q(t )>:|

We require that the servant S/, be coincident with the intercept A, at the time v/ =t — y and this implies that we need
k(t)=3 or

E=l 2tan~! (MVA(T/)>— Mtan_1 /2t + p) p(y+1)UA(T/) ]
2 « P yiy+1 P v(p+2)

If we set « =a% and note that, by definition, v4(t’) =1, we can simplify the above to obtain

T _1 2tan—1<f’(2t’+p)>_ pp+2) 1 (T'RT+p) [py +DY |
2 a P yiy+1 P v(p+2)

Define D(a, p) as the quantity

pap="-1 Ztan’1<rl(2t/+p)>— pp+2) 1 (TR 4P [ply +1)
2 I3 yy+1) 0 y(p+2)

which we want to be zero. We now make the following claim:

Claim 2. The asymptotic behaviour of 7 is 0 (p1/3).

Proof. We want to show that 7 has asymptotic behaviour O (,01/ 3). One way that we can do this is by formally computing

a Puiseux series of T from which one would find that the first few terms in the expansion are T = (3)1/3 +% (%)2/3 +0 (p).

2
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Alternatively, we note that 7’ solves the equation v4(t’) =1, i.e. 2t’1+p‘/ ﬁfftz; = 1. Expanding the above we arrive at the

quartic equation t"4 — (p +1)t"3 + p(pTﬂ)(t”z +1)=0 where t" =t'+ 4 =t—a. Asn— oo we have 1+t"? > 1,2+ p — 2
and t"# — 0. As n gets large T approaches the solution to —t”3 + £ =0 which also demonstrates that 7 = 0 (p'/3). O

Using Claim 2, we have that lim,_ o =1limy—0 0 (p~1/3) = 00 and thus

'Qt’ o1’ 1
z = lim tan_l <w) = lim tan_l T ( T +10) ,0()’ + ) .
2  n—oo 0 n—o0 P y(p+2)

We can therefore write limy_.o, D(a, p) = % (1 -5- %) Now set p =qZ such that y =« + § = Z(a+ ). Using this

/21 +p)
0

n

notation we have lim,_» D(a, p) = % (1 — % - /2aq—+q). We want this limit to equal zero which implies that we need

a q _ 22-a)?
1-5— m—OOI‘Q— T

Now, to optimize the algorithm we need to minimize the evacuation time 7. Since 7, increases with a we equivalently
. 2_ . N L . .
need to minimize a +q = %. Taking the derivative of this with respect to a and setting the result equal to zero gives

us the optimal value of a and g to be a =2(2 — +/2) and q = 2(3+/2 — 4). The asymptotic cost of the algorithm is therefore
Tp=1+a+p=1+ 442 - 1)%. The overall evacuation time is then 7 =1+ 7, which is the bound given in Theorem 1.

We note that, in the case that n is odd, the results of the proof will not change due to the fact that, as n — oo, we have
o1 = —% —0. O

4. Lower bound

In this section we develop a lower bound on the evacuation time of the queen. We first note that we can derive a naive

g

lower bound of 2 + 747 since each robot can travel with a maximum speed of one and we have n + 1 robots in total. We

will show that this can be improved:

Theorem 2. In any algorithm with n > 4 the queen cannot be evacuated in time less than 1 + % cos~! (_TZ) +.,/1— niz. In the limit
; 2
of large n this bound approaches 2 + % +5.

The outline of the proof is as follows: we first demonstrate that the lower bound holds for any algorithm in which the
queen does not participate in searching for the exit before some critical time. We will then show that the queen is not
able to participate in the search for the exit before this critical time. We begin with a lemma first given in [13] which is
reproduced here for convenience:

Lemma 1. Consider a perimeter of a disk whose subset of total length u + € > 0 has not been explored for some € > 0 and &t > u > 0.
Then there exist two unexplored boundary points between which the distance along the perimeter is at least u.

In the next two lemmas we demonstrate that the lower bound holds if the queen does not participate in the search.

Lemma 2. For n > 2, any x satisfying % <x< ZT” and any evacuation algorithm in which the queen does not participate in searching

for the exit before the time 1 + x, it takes time at least 1 + x + sin (%) to evacuate the queen.

Proof. Consider an algorithm A with evacuation time 7 and with n servants. Then, at the time t =1 + x, the total length
of perimeter that the robots have explored is at most nx > m (since each robot may search at a maximum speed of one,
the queen does not search by assumption, and the servants need at least a unit of time to reach the perimeter). Thus,
by Lemma 1, there exists two unexplored points on the perimeter of I/ whose distance along the perimeter is at least

2w —nx — € for any € > 0. The chord connecting these points has length at least 2sin (7'[ —x_ é) and an adversary may

2 2
place the exit at either endpoint of this chord. Since the queen is at least a distance sin (n -5 %) from one of the

endpoints of this chord she will take at least sin (n - % — %) more time to evacuate and the total evacuation time will be

at least 1+x+sin (7 — 5 — §). As this is true for any € > 0 taking the limit € — 0 we obtain 7 > 1+ x+sin (7 — %) =
1+x+sin(%). O

Lemma 3. For any n > 2 and any evacuation algorithm in which the queen does not participate in searching for the exit before the
timet =1+ % cos™! (‘72) it takes time at least 1+ 2 cos™! (%) +/1— 2 to evacuate the queen.
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Fig. 5. Setup for the proof of Lemma 4.

Proof. Set f(x) =1+ x + sin(”z—"). The maximum value of f(x) occurs when % =0 or when x = %cos‘1 (’72)

Since % < %cos*1 (—Tz) < ZT” we can invoke Lemma 2 to get a lower bound on the evacuation time of 7 > 1 +

2 cos~1 (’72) +sin (cos‘1 (*72)) =1+ 2 cos™! <—Tz> +,/1— 2, provided that the queen does not search before the time
t=1+2cos™! (‘—2) ]

n

We will now demonstrate that the queen is not able to search before the time 1 + %cos*1 (‘72) This will be the goal
of the next four lemmas and the following simple observation

Observation 2. If the queen is to achieve an evacuation time of T, then, for any time t < T, she must remain in the region of intersec-
tion of all disks centered on the undiscovered points of U with radii T —t.

Lemma 4. Consider any two points A and B on the unit circle connected by a chord of length 8. Define the circles C4 and Cg as the
circles centered on A and B with radii r. Then, if r > % the circles intersect at two points C and D at distances \/rz — %52 + \/1 — }182
from the origin.

Proof. Assume that r > %6. Set C and D as the intersection points of C4 and Cg, and set E as the midpoint of A and B.
Refer to Fig. 5 for a setup of the proof.

Since C4 and Cp have the same radius the points C and D are each separately equidistant to A and B and they will
therefore lie on the perpendicular bisector of A and B. Since A and B lie on the unit circle this bisector will pass through the
origin. Referring to Fig. 5 it is therefore clear that’ |[EC|=|ED|=,/r? — }162 and |OE|=,/1— }182. Since |0C| =|0E|+|EC]|
and |OD| = |ED| — |OE| we get the desired result. O

Lemma 5. For a given r > 0 define the functions f+(x) = 1v/4r2 —x2 + %\/4 — x2. Then, for 0 < x <min{2, 2r} f, is a decreasing
function of x and f_ is an increasing function of x if r > 1 otherwise it is decreasing.

.. . . . s dfy . —x 1 1
Proof. Assume that x is in the interval 0 <x <min{2, 2r}. The rate of change of fi with x is = = 5 <m + ﬂ).
1 1

VAarZ—x?2 T Va2

For x in the given interval it is clear from this expression that % < 0. On the other hand, dd—; < 0 when

>

0. It is not hard to see that this occurs whenr <1. O

Lemma 6. Consider any r > 0 and assume that the unexplored subset of U has total length ¢. Define Dp as the disk centered on an
undiscovered point P € U with radius r and define G as the region of intersection of all such disks. Then, if r > sin (%) G is completely

contained inside of a disk centered on the origin with radius R = _[r? — sin? (%) + cos (%) Ifr <sin % then G = .

7 |AB| represents the Euclidean distance between two points A and B.
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Proof. By Lemma 1 there exists two undiscovered points A, B € U such that the length between them along the perimeter

of U is at least ¢. Take these two points and set § > 2sin %) as the length of the chord connecting them. Since A and B

are unexplored there must exist a corresponding point G € G such that G is at most a distance r from both A and B. Since
s

the chord connecting A and B has length §, G is at least a distance 5 > sin (%) from one of A and B. We can therefore

conclude that in order for G to exist we must have r > sin (%) This proves the second part of the lemma.

Take r > sin (%) and define the functions fi(x) as in Lemma 5. Observe that

f+(2sin

f—(2sin

)). 0=eé=m
) . T <¢<2m.

|
NS NS

We consider the cases ¢ <m and ¢ > 7 separately.

Case 1: Take ¢ <7 and assume that the lemma is false. In this case there must be a point on the boundary of G that is
at a distance d¢ > f+(2 sin(%)) from the origin. Let G be such a point. Since G is on the boundary of G there are two

undiscovered points A, B € U that are at a distance r from G. The point G is therefore a point of intersection of two
circles C4 and Cp centered on A and B with radii r. If § is the length of the chord connecting A and B then by Lemma 4
the point G lies a distance f;(§) or f_(5) from the origin. Since fi(x) > f_(x) then G must in fact lie a distance f ()
from the origin. By assumption d¢ > f4+ (2 sin (%)) and thus f;(8) > f+ <2 sin (%)) Since f, is a decreasing function we
can further say that § < 2sin (%) and we can thus conclude that there cannot exist two undiscovered points A, Bl a
distance § > 2sin (%) from each other. However, Lemma 1 states there must exist two undiscovered points in ¢/ such that

the chord joining them has length at least 2 sin (%) We have arrived at a contradiction and must therefore accept that the
lemma is valid in the case that ¢ <.

Case 2: When ¢ > m we only have to consider a subset of the unexplored points of I/ of length m. We can then use the
same argument of the previous case to conclude that the lemma must be valid in this case as well. O

Lemma 7. Consider an algorithm with evacuation time T < 3. Then if the queen is able to search the perimeter of U we must have

R(t) = \/(T— t)2 — sin® (n(tT—l)) — cos (@) > 1.

Proof. By Observation 2 and Lemma 6 we can immediately conclude that the queen must be within a distance R(t) =

/(T— £)2 — sin? (@) + cos (%t)) of the origin at any time t. Consider the time t = 1. At this time the robots have not

been able to search any of the perimeter of I/ and thus ¢(1) = 27. At this time the queen can be a distance at most
R(1) =T — 2 from the origin and, since we have assumed that 7 < 7y < 3, we have R(1) < 1. Therefore the queen cannot
be on the perimeter of I/ at the time t =1.

Now, for a given fixed time t consider how R changes with ¢ (t). We find that

2

dR 1 (qb) - COS(%)

— =——sin
\/(T— £)2 — sin? (@)

First consider the case that w < ¢ < 27. We want to determine when R is increasing with ¢. Since cos (%) <0 for <

¢ <2m, R can only increase with ¢ if \/(T— t)2 — sin? (@) < CoS % which translates to 7 —t < 1. Now assume that at

the time t the robots have searched the perimeter at a rate of u such that ¢ = 2w — ut. Since we are considering the case
that ¢ > m we need w > ut. To have ¢ increasing we needed 7 —t <1 or t > 7 — 1 and thus we must have 7 > u(7 — 1)
or i< % A trivial lower bound on 7 is 2 and thus u < . We claim that this case can be ignored since the robots will
need to search at a much higher rate if they are to achieve the lower bound of Theorem 2.

In the second case both cos (%) >0 and sin <%) >0 for 0 < ¢ <m. Thus, it is not possible that R increases with ¢.

We can conclude from the above analysis that R decreases with ¢ in all reasonable cases and thus we maximize R
when ¢ (t) is minimized. Since the queen cannot be on the perimeter of I/ at the beginning of the algorithm the robots can
search at most at a rate n and therefore ¢(t) is minimized when ¢ (t) = 2w — n(t — 1). Thus, up until the time the queen
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reaches the perimeter of I/, the queen must be located within a distance R(t) = \/(T— £)2 — sin? <@> — cos (@) of

the origin. We can finally conclude that in order for the queen to search we must have R(t) = \/(7’— t)2 — sin? (”“;”) —

cos <@) >1. O
Armed with these lemmas we are now able to tackle our main result.

Proof. (Theorem 2) Set 7o =1+ %cos*1 (—Tz) +./1— n% and assume we have an algorithm with an evacuation time

T < To. By Lemma 3, this implies that the queen must search the perimeter of I/ before the time t. =1+ %cos‘1 (’72)8
Assume that at the time t. the robots have collectively searched the perimeter of I/ at a rate u satisfying n < u <n+1. Then
at the time t. the unexplored subset of ¢/ has length ¢ (t) =27 — u(tc — 1) =2m — 2% cos™! 2 < 7. Since ¢(t;) <m we

can use Lemma 6 to say that the queen must be located within a distance of R(t.) of the origln at the time t.. Furthermore,
in order for the queen to have searched the perimeter of I/ at the time t., we must have R(t.) > 1. However, observe that

R(to) =\/ T — )2 — sin? (M> ~ cos <M>
2 2
< \/(76 — t)? = sin (@) _ cos (@)
\/1 — — —sin® <cos*1 <_T2>> — cos (cos_1 (%))

2

which is clearly less than one for n > 4. We have therefore arrived to a contradiction and must conclude that the lower
bound holds.

To determine the asymptotic behaviour of 7y we can compute a Taylor series of 7y about n = co. We find that the first
few terms in the series are 2 4 % + n% a

5. Conclusions

We studied an evacuation problem concerning priority search on the perimeter of a unit disk where only one robot (the
queen) needs to exit from an unknown location. We focused on the case of n > 4 servants and showed in Section 3 that for
any n > 4 the queen can be evacuated in time at most 2 + 4(+/2 — 1)Z. Furthermore, in Section 4, we demonstrated that

the queen cannot be evacuated in time less than 1+ % cos~! (_TZ) +,/1— % >2+ % + n% Thus, in the limit of large n, we

are left with a gap of (4v/2 — 5)% ~0.657% between the best upper and lower bounds. We conjecture that Algorithm 2 is
in fact optimal. We will now justify this conjecture.

We have already mentioned that in Algorithm 2 the queen is able to reach the perimeter of I/ before the servants have
finished their search. This would seem to indicate that it is possible to improve on our algorithm. We will now argue why
we do not think this is true. Similar to the proof of Theorem 2, there are critical times (% of them) that occur before the
queen reaches the perimeter and anything she does after these critical times cannot improve the evacuation time. These
critical times result from a tradeoff between maximizing the rate at which the servants search — which implies that the
servants are spread out on the perimeter and thus the queen must be near the origin so as to minimize her distance from
potential exits - and minimizing the distance of the queen from possible exits near the end of the algorithm - for which
the queen would like to position herself closer to the perimeter. In order to achieve the best tradeoff, the queen should
travel as fast as she can from the origin to the perimeter without getting too far away from possible exits found earlier
in the algorithm. In other words, between these critical times, the queen should maximize her radial velocity. If we could
prove that the queen does not need to participate in searching then it would not be difficult to conclude why Algorithm 2
is optimal. Any other trajectory of the queen between the critical search times will result in the same or a reduced radial
velocity of the queen. It therefore does not seem likely that, with a reduced radial velocity, we can reduce the evacuation
time.

8 Alternatively we can say that the robots must search at a collective rate > n by the time t.. This is why we were able to ignore the “unreasonable case”
in Lemma 7.
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In addition to improving the bounds obtained in this paper there are several interesting open problems related to pri-
ority search and evacuation. In particular, we may define a weighted evacuation problem (for a given group of agents) as a
generalization of the priority evacuation problem studied here. One can differentiate on agent preferences by assigning a
weight w; to each agent i and require to evacuate a subset of agents of total weight > W in minimum time. With this
formulation in mind, the regular evacuation problem (see [13]) is the case where w; =1 for all agents and W = n, while
for the problem considered in this work w; =0 for all agents except the queen for which wgyeen =1 and W =1.
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