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ABSTRACT Early and accurate identification of the balance deficits could reduce falls, in particular for older adults, a
prone population. Our work investigates deep neural networks’ capacity to identify human balance patterns towards predicting
fall-risk. Human balance ability can be characterized based on commonly-used balance metrics, such as those derived from
the force-plate time series. We hypothesized that low, moderate, and high risk of falling can be characterized based on balance
metrics, derived from the force-plate time series, in conjunction with deep learning algorithms. Further, we predicted that our
proposed One-One-One Deep Neural Networks algorithm provides a considerable increase in performance compared to other
algorithms. Here, an open source force-plate dataset, which quantified human balance from a wide demographic of human
participants (163 females and males aged 18-86) for varied standing conditions (eyes-open firm surface, eyes-closed firm
surface, eyes-open foam surface, eyes-closed foam surface) was used. Classification was based on one of the several indicators
of fall-risk tied to the fear of falling: the clinically-used Falls Efficacy Scale (FES) assessment. For human fall-risk prediction,
the deep learning architecture implemented comprised of: Recurrent Neural Network (RNN), Long-Short Time Memory
(LSTM), One Dimensional Convolutional Neural Network (1D-CNN), and a proposed One-One-One Deep Neural Network.
Results showed that our One-One-One Deep Neural Networks algorithm outperformed the other aforementioned algorithms
and state-of-the-art models on the same dataset. With an accuracy, precision, and sensitivity of 99.9%, 100%, 100%,
respectively at the 12th epoch, we found that our proposed One-One-One Deep Neural Network model is the most efficient
neural network in predicting human’s fall-risk (based on the FES measure) using the force-plate time series signal. This is a
novel methodology for an accurate prediction of human risk of fall.

Keywords Aging, Balance disorder, Balance impairment, CNN, C-LSTM, Deep Learning, Fall-risk, Force-plate, LSTM,
Neural Network, RNN

granted, such as getting up out of bed or from a chair,
standing, and walking (Balance Disorders — Causes, Types

I. Introduction

The detection of fall-risk linked balance impairment is of
significant societal relevance. Falling has been reported as
the second most common reason of accidental injuries and
death, with road traffic accidents being the first (World
Health Organization-Falls, n.d.). Treating fall-related
injuries is extremely costly. In the United States, costs
related to fatal and nonfatal falls in year 2000 was estimated
as $0.2 billion and $19 billion respectively for the adults over
the age of 65 (Stevens et al., 2006). This number increased
to $50 billion in 2015 (Florence et al., 2018). Balance
impairment can have devastating effects on all individuals;
though, particularly, older individuals are a vulnerable
population. Thus, studying the balance characteristics and
comparing the underlying patterns of balance attributes
could be significantly helpful in predicting fall and reduce its
associated risk.

Balance aids us in maintaining stability and preventing falls
during a variety of daily activities that we often take for

& Treatment | NIDCD, n.d.; Winter, 1995). However,
musculoskeletal, vestibular, visual, somatosensory, and
proprioceptive disorders can lead to balance disorders in
wide range of people (Balance Problems - Symptoms and
Causes - Mayo Clinic, n.d.; Pialasse et al., 2016). Numerous
studies have shown that older people, in particular, are more
affected by balance impairment (Abrahamova D, 2008;
Alexander, 1996; Brooke, 2010). Older adults are more
prone to balance impairment due to the natural process of
aging which results in degeneration of the above systems,
confounded by muscle weakness and other age-related
disorders, such as Parkinson’s disease, Stroke, Chronic
Tremor, Multiple Sclerosis, and osteoporosis. Older people
who suffer from these impairments are highly prone to fall
and fall-related injuries (Alshammari et al., 2018; Beghi et
al., 2018; Ozcan et al., 2005; Thompson et al., 2018).

Aside from physical injury due to falling, according to the
National Institute of Aging (NIA), fear of falling increases
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as people age. As a result, older people tend to isolate
themselves and avoid regular social activities (Prevent Falls
and Fractures | National Institute on Aging, n.d.). This
situation leads to other physical and mental disorders (e.g.,
decrease in bone mineral density, fractures, loss of
independence, loss of confidence, anxiety, depression, panic
attacks). Studies have shown that 13% of adults experience
imbalance during the age range of 65-69 years old and this
number increases to 46% percent after the age of 85 (Burns
& Kakara, 2018; Osoba et al., 2019).

This paper is organized as follows: Section II overviews
the available literature and highlights some of the studies
conducted on the human balance and gait characteristics;
Section III explains the materials and methods for the study
and our methodology; Section IV explains the experimental
results and V our discussions. We present our conclusions in
Section VI.

II. Literature Review

Researchers have employed various techniques to
record human static and dynamic balance characteristics
towards the ultimate goal of preventing falls. Using various
equipment and analytical methods, scientists have gained a
broad perspective towards human balance underlying
patterns and factors that might affect the ability of humans in
having a safe and normal life.

Kinematics and kinetics metrics are valuable indicators
of human balance and postural control and are acquired using
technologies, such as motion capture, force-plate,
electromyography (EMGQG), sensors, accelerometers (Winter,
1995). The force-plate is perhaps the most popular
equipment used to measure standing balance and gait. To
identify and treat balance disorders, appropriate
identification methods must be employed. Physicians and/or
physical therapists often use conventional clinical methods
to determine what is considered “good” or “poor” balance.

Clinical tests evaluate postural control of people and
their stability (balance) while doing several static and/or
dynamic motor tasks. Some examples are Activities-Specific
Balance Confidence (ABC), Berg Balance Scale (BBS),
Timed Up to Go test (TUG), Fall Efficacy Scale (FES) and
Balance Error Scoring System (BESS). The advantages of
these assessments are that they are easy to use, require
minimal (if any) equipment, are quick to administer and
inexpensive. However, they provide limited information to
quantify the underlying balance metrics and provide a
general understanding of balance ability.

Force-plates are practical devices used in research and
clinical studies to characterizes gait, balance, and other
biomechanics features. Sport and performance monitoring,
balance impairment detection, occupational safety and
motion analysis are some of the main applications of this
measuring instrument. Time series signals recorded by force-
plate sensors from which features, such as Center of Pressure
(CoP), Forces (GRFs) and Moment (M) of forces as one
moves across them, can be extracted.

The reliability of force-plate time series data with
different test conditions has been proved and discussed by
several researchers (Bauer et al., 2010; Golriz et al., 2012;
Martina Mancini et al., 2012). The displacement of Center-
of-Pressure (CoP), derived from the force-plate, is often used
to characterize gait and balance (Hof et al., 2005; Ruhe et al.,
2010). The CoP represents body motion in space as detected
at the interface between the feet and the ground. The COP
displacement time series represents the location of the
(resultant) vertical Ground Reaction Force vector. This is
used as a mean to quantify one’s balance: greater
displacement of the CoP position could mean greater
instability. Features such as Root-Mean-Square (RMS) of
medial-lateral (M/L) and anterior-posterior (A/P) directions,
Sway area, Axis length, etc. could be also extracted from
time series.

Combining functional tests results with sensor-based
measurement (e.g., force-plate) can provide valuable
information for gait and balance analysis. Force-plate
measurement provides more sensitive and precise
measurement due to its application in the experimental
environments and has decreased: test variability, subjectivity
of the scoring system and sensitivity to small changes (M.
Mancini & Horak, 2010a).

To draw a complete picture of the human’s gait and
balance and investigate the motion’s kinetics and kinematics,
dos Santos et al. used 42 markers, integrated with a 3-D
motion capture system, on each subject’s full body. They
recorded different parameters such as Ground Reaction
Forces (GRF), Center of Pressure (CoP), Center of Gravity
and participants’ joint angles through the combination of
both motion capture and force-plate measurements. Using
this approach, they managed to create a rich quantitative
evaluation of human balance (dos Santos et al., 2017).

In Table 1, we summarize several studies that used
combination of force-plate and other tools to record human’s
biomechanical gait and balance features and investigated the
effect of various factors on postural control. Each of the
summarized studies have used various techniques to analyze
human balance. Giovanini et al. classified balance
characteristics of older adults as low or high risk of falling.
They used the same dataset in this study (dos Santos &
Duarte, 2016) which contains subjects’ CoP information in
the form of time series signals. By applying six different
Machine Learning (ML) techniques and extracting 34
temporal/spatial features from the subjects’ CoP, they
showed high discriminative powers in the 60 seconds-time
series. Among all ML methods in the study, the highest
accuracy they achieved, was 64.9% by Random Forest (RF)
classification method (Giovanini et al., 2018).

Reilly used (Reilly, 2019), the same open-source
dataset (dos Santos & Duarte, 2016) to study risk of fall. At
the first stage, they extracted 528 features in the time and
frequency domain. Feature selection methods such as a
filter-based feature selection algorithm called ReliefF, Self-
adapting feature evaluation (SAFE), etc. were employed to
find the optimal number of features for classification. With



18 features through the SAFE method, the experiment result
showed the highest classification of accuracy of 80% using
Multiple Layer Perceptron (MLP). The experiment was
based on 73 older subjects (out of 163 total participants) of
the dataset, who were either at the low or high risk of fall.
Other classifiers used were Support Vector Machine (SVM),
K-Nearest Neighbors (K-NN) and Naive Bayes (NB) with
performance range of 75 to77 % accuracy (Reilly, 2019).

Another work on the same data (dos Santos & Duarte,
2016), was done by Cetin and his colleague. In their work,
they discriminated between young-aged groups using
different machine learning techniques such as SVM, K-NN,
Decision Tree (DT), Linear Discriminant Analysis (LDA),
etc. Employing force signals of the dataset, the experimental
result showed the highest classification accuracy of 81.67%
by SVMs (Cetin & Bilgin, 2019).

In the above studies, statistical analysis and/or
machine learning techniques, were employed by a domain
expert who had related research experiences and extracted
relevant features for fall risk detection or group
discrimination. Santos and Duarte employed the ‘shallow’
Neural Networks approach to analyze the same data used in
this study (dos Santos & Duarte, 2016). The results of their
experiment showed the highest accuracy of up to 80%;
suggesting that extracted features were not sufficient in
improving classification results (Giovanini et al., 2018;
Reilly, 2019).

Cetin and Bilgin, (Cetin & Bilgin, 2019) argued that
achieving a relatively high classification performance is a
function of only force signals and not the whole force-plate
measures. However, the maximum accuracy of their study
was still limited to 81.67%. These results agree with (Safuan
et al., 2017) conclusion that extracting suitable features from
gait/balance data and choosing the optimal feature
extraction/selection methods are complicated and time-
consuming processes. Their work showed that nonlinearities,
high dimensionality, and high variability of time-series
signals are major constrains.

As shown in Table 1, a Machine Learning (ML)
algorithm or Statistical Method has the capability of
interpreting the gait and balance biomechanical features and
finding the relationship between variables. However as
mentioned above, these methodologies typically require
domains expertise and advanced experience levels which
could be highly time and energy consuming and prone to
error. Wang et al. used simple Neural Network (NN) along
with Bayesian optimization algorithm to analyze human
walking speed. The study involved feature extraction and
feature selection stages for generating input features for a
classifier (Wang et al., 2021).

Table 1 suggests that methodologies used by other
scientists in research studies on falls are not adequate. It also
shows that fall detection and human balance characterization
can be a challenging task. Deep Learning (DL) models have
been shown to have the capability of scanning a large dataset
for relevant informative features without passing through the
manual feature extraction stage of the traditional ML or

statistical models (Horsak et al., 2020). Hoffman et al. took
advantage of recurrent neural network (RNN) based on Long
Short-Term Memory (LSTM) to investigate gait patterns of
42 participants. They experimented with a capacitive sensor
floor to record walking kinematics of subjects. According to
their result, using combination of sensor-based data and NN
is a promising approach to be applied in in health and care
(Hoffmann et al., 2021).

If adequately utilized, DL algorithms have the capability
of providing automatic feature extraction, flexibility, and
higher accuracy on huge amount of data. This is because
unlike traditional ML algorithms, deep learnings can learn
high-level features from high-dimensional data in a
hierarchical manner which eliminates the need of domain
expertise and the complex process of feature extractions
(Goodfellow et al., 2016; Najafabadi et al., 2015). The
supremacy of deep learning algorithms to reveal underlying
patterns of big data without the need of performing prior
feature extraction and feature selection processes, can result
in considerably higher predictive powers, and more accurate
results. Therefore, for a better result and balanced study, our
experiment employed deep neural network algorithms to
classify force-plate balance time-series signal to predict
human’s balance impairment. We argue that this is a better
approach.

Exploring this capability and superiority of the DL, we
investigate the balance patterns in different people for an
effective characterization, using the same open-source
dataset used by researchers in table 1. Dataset was produced
by Santos et al. (Santos & Duarte, 2016). The dataset
contains the force-plate time-series signals recorded from
163 young and older individuals. Alongside the force-plate
dataset there is another large meta data file composed of
personal and other health characteristics of the subject such
as age, gender, history of fall, background disease, functional
tests’ results etc.

Although the available meta data is composed of different
types of information about participants which could be used
as binary classes, e.g. gender (male vs. female) or age group
(young vs. old), vision (open vs. closed), surface (firm vs.
foam) etc. we decided to discriminate the study subjects
based on their Falls Efficacy Scale (FES) test score. FES is
an international known test which measures fear of falling. It
implies a person’s level of confidence for carrying out
everyday activities (Kempen et al., 2008; Morgan et al.,
2013).

We hypothesized that low, moderate, and high risk of
falling can be characterized based on commonly-used
balance metrics, such as those derived from the force-plate
time series, in conjunction with deep learning algorithms:
Recurrent Neural Network (RNN), Long-Short Time
Memory (LSTM), One Dimensional Convolutional Neural
Network (1D-CNN), and our developed One-One-One Deep
Neural Network. Further, we hypothesized that our proposed
One-One-One neural network is the most efficient neural
network model in predicting human’s balance impairment
using the force-plate time series signal.



Table 1

Overview of studies on commonly used balance/gait metrics and different analyzing techniques

skewness of gray
levels for all pixels)

Study Research Used Features Subjects Measuring Analysis Study outcome Max
Objective equipment Method/tool Acc
(Balestrucc | To investigate the CoP sway parameters | 44 healthy Force-plate Statistical Gravity-congruent
ietal, effect of dynamic (e.g., M/L and A/P individuals Analysis visual motion makes
2017) visual cues on Standard deviation, (e.g., t-test, significantly reduced N/A
postural control sway area, etc.) ANOVA) postural sway compared
to gravity-incongruent
one
(Fukuchi et | To examine the Kinetics and 28 regular 3D motion- Statistical Most of gait-
al., 2017) effect of running kinematics (e.g., runners capture Analysis biomechanics variables
speed on gait- cadence, stride system & an (e.g., (other than foot-strike)
biomechanics length, joints angles, instrumented one-way are affected by running N/A
variables joints torque etc.) treadmill ANOVA, speed
Kruskal-
Wallis)
(dos To provide the Human body’s GRFs, | 27 young 3D motion- Visual3D Biomechanical
Santos et subjects’ full-body | CoPs, and 3D and 22 older | capture software and characteristics were
al., 2017) 3D kinematics and | Kinematics (e.g., individuals system & Python visualized and modeled
the GRFs in static | joints angles) force platform | programming (e.g., CoP & COG
balance, while displacement at the A/P
changing support & M/L directions versus N/A
surface and visual time, etc.)
cues
(Giovanini To distinguish CoP’s temporal, older adults Force-plate Statistical For statistical analysis:
etal., 2018) | between spectral and spatial (dos Santos Analysis (e.g., | optimal CoP duration
different age features (e.g., root & Duarte, Wilcoxon test, | varies based on group
groups using mean square (RMS) 2016) Mann- under study,
force-plate signals | distance, sway path, healthy and Whitney U- 64.9%
with different mean frequency, etc.) | post-stroke Test, etc.), For ML analysis: 60 s (RF)
time-series adult Machine duration CoP signals is
duration (Giovanini et Learning more discriminative
al., 2018) (ML) (e.g., K-
NN, SVM,
MLP, RF,
etc.)
(Reilly, To classify fall- Time-domain and 163 young Force-plate Machine Feature selection
2019) risk in older adults | Frequency domain and older Learning (e.g., | methods identified the
using effective features extracted individuals SVM, K-NN, relevant features
feature selection from CoP and Force (dos Santos MLP, NB) successfully, but were 80%
methods (e.g., signals & Duarte, incapable of improving (MLP)
ReliefF, SAFE, 2016) classifiers reliability
etc.) while using only static
balance measures
(Montesino | To differentiate CoP’s Approximate 163 young Force-plate Statistical SampEn represents a
setal., between fallers entropy (ApEn) and and older Analysis better choice for the
2018) from non-fallers sample entropy individuals (e.g., three- analysis of CoP time-
(SampEn) with (dos Santos way ANOVA) | series and to distinguish N/A
different input & Duarte, between groups
parameters 2016)
(Cetin & To discriminate CoP and Forces’ 163 young Force-plate Machine Force signals are better
Bilgin, between young Standard Deviation and older Learning (e.g., | predictors than CoPs for
2019) and aged groups (STD) individuals SVM, K-NN, group differentiation 81.67%
(dos Santos DT, LDA, while using force-plate (SVM)
& Duarte, etc.) measures
2016)
(Renetal.,, | Using Al to CoP’s extracted 163 young Force-plate Machine Low mean absolute
2020) evaluate different Traditional features and older Learning errors (MAE) showed
types of balance (e.g., Mean of CoP individuals Regressors reliability of Al
control subsystems | displacement, etc.) (dos Santos (e.g.,RF, techniques for assessing N/A
determined by and pixel-based & Duarte, MLP, LR, balance control
Mini-BESTest features (e.g., 2016) etc.) subsystems




III. Materials and Methods
A. Materials: Force-Plate and Meta Data

As explained above, the data used in this study is a publicly

available dataset. It is accessible through both PhysioNet
(DOL: 10.13026/ C2WW2W) and Figshare (DOI: 10.6084/
m9. figshare. 3394432) websites. The study in which the
dataset was created, and its detailed description, can be found
here (Santos & Duarte, 2016). The data was collected from
163 male and female participants of different ages (18-86
years old) and varied health conditions. Each participant
completed a 1-2-hour study session, and all data were
collected during this single session. To evaluate a person’s
balance, he/she was asked to stand still on the force-plate for
60 seconds with arms at his/her sides and repeated it three
times for four different test conditions.
Test conditions were defined as standing eyes-open on a firm
surface, eyes-closed on a firm surface, eyes-open on a foam
and finally eyes-closed on a foam. Both rigid surface and foam
tests were done on a force-platform and the participants’
balance characteristics of Force, Moments of forces, and
Centers of Pressure were measured. Participants were
barefooted and looked at a 3 centimeters round target in front
of'them, located at a wall 3 meters away (dos Santos & Duarte,
2016; Santos & Duarte, 2016).

The force-plate data was acquired at 100Hz frequency. Since
each person did twelve 60 seconds trials in this study, twelve
.txt files, each composing of 6000 rows and 9 columns exist
for each subject. Therefore, after merging data files, each
person has 72000 row time-series signal and 9 feature columns
specified as: Time, as well as tri-axial Force (Fx, Fy, Fz), and
Moment (Mx, My, Mz), along the x, y, and z axes respectively
(as shown in Figure 1), and Center of Pressure in ML and AP
(i.e., CoPx, CoPy) recorded by the force-plate. Moment of
force (Latash, 2012a), and can be determined by the following
formulas:

M, = CoP,.F, + F,.d, (1)
M, = CoP,.F, + F..d, )
where M stands for Moment of force, F stands for force, dx
and dy stand for the lever arm of the shear forces of Fx and F,
along the Z axis, respectively. Through those metrics, we can
also determine Center of Pressure (CoP) with the help of the

following simplified equations; (Latash, 2012b)

CoP, = — 3)
CoP, = == “

where CoPx and CoPy are the CoP coordinates along the X
and Y axis, respectively.

Along with the main dataset which contains the subjects’
balance metrics, there is another information file, called
BDSinfo, provided by the researchers. This supplementary file
contains meta data about the subjects (e.g., vision, gender,
height, BMI, illness, use of medication, number of falls, and
disability). It also includes the results of some well-known
conventional clinical evaluations such as Falls Efficacy Scale

(FES), International Physical Activity Questionnaire (IPAQ),
and Trail Making Test (TMT); these tests focus on assessing a
specific parameter such as cognition level, concern of falling
during different tasks and likelihood of fall and evaluate
postural control of people and their stability (balance) while
doing several static and/or dynamic motor tasks. (M. Mancini
& Horak, 2010b). To understand the concept of each
evaluation method and the whole meta data, reading the main
source (Santos & Duarte, 2016) is highly recommended.

Due to its comprehensive information, the meta data is very
resourceful for categorizing human subjects. In other words,
each of the columns of this dataset can be used as a proper
label for classification purposes. The available meta data is
composed of different types of information about participants
which could be used as binary classes, e.g., gender (male vs.
female) or age group (young vs. old), vision (open vs. closed),
surface (firm vs. foam), etc. However, we decided to
discriminate the study subjects based on their Falls Efficacy
Scale (FES) test score. The Falls Efficacy Scale International
test (FES) is a well-known evaluation methodology used for
individuals with vestibular or balance dysfunction to quantify
his/her fear of falling. Participants answer to the questions
about some of their regular daily activities and specify how
concerned they are about the possibility of falling. Reliability
and validity of FES to measure concerns of falling in people
with imbalance and postural control deficits have been
explained by several researchers (Kempen et al., 2008;
Morgan et al., 2013; Yardley et al., 2005).

()
Figure. 1. Measuring three components of .
the force vector (FX, FY, FZ) and three ﬁ
components of the moment-of-force vector
(MX, MY, MZ) by force-plate; Retrieved ,%
from (Latash, 2012b)
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B. Data Preparation

The code was written in Python 3.7.3. As the first step, we
merged all .txt files recorded with the force-plate for all
subjects. As described earlier, time series were recorded by
100 Hz frequency which produced 6000 rows for each 60
second trial. Since each of the 163 subjects completed the 12
trials, therefore we had 1956 .txt files. However, 26 of these
.txt files are missing for five subjects who were not able to
complete the most challenging exercises. Consequently, there
are 11 580 000 rows of data recorded for all subjects.

C. Label Selection

In this study, a supervised learning approach was used for
the design, development, and evaluation of our learning
algorithm. Using this approach, suppose we have a set of N



training examples {(x1 ,yl), (xN‘yN)}, where x; and y;
are the i” feature vector and label respectively. The goal of the
learning algorithm is to choose the optimal function g X 27,
where X and Y are the input and output states respectively,
function g belonging to a hypothesis space G. This hypothesis
space represents all possible functions of G.

We chose 14 columns of meta data available at (dos
Santos & Duarte, 2016) containing the most important
information about participants and added those features to our
main force-plate dataset. As discussed in section III, the main
balance metrics recorded by force-plate were Time, Force in
x, y and z directions (Fx, Fy, Fz), Moment of force in x, y and
z directions (Mx, My, Mz), Center of Pressure in x and y
directions (CoPx and CoPy). Thus, our feature size increased
to 23 after adding the 14 columns of vision, surface, age group,
gender, Bone Mineral Density (BMI), illness, Number of
medications, disability, falls]2month, IPAQ_S, TMT timeA,
TMT timeB, Best T, FES S of meta data. IPAQ is an
International Physical Activity Questionnaire Short Version
test (IPAQ) which measures health-related physical activity
(PA) in populations (Hagstromer et al., 2006). TMT is
abbreviation of Trail Making Test which screens dementia by
assessing cognition level in two different parts A and B, and
the goal is to complete the tests accurately and as quickly as
possible (Salthouse, 2011). Mini Balance Evaluation Systems
Test (Mini-BESTest) predicts the likelihood of fall
(Yingyongyudha et al., 2016).

In this research, we merged the force plate and meta data
file to create our dataset and used the Falls Efficacy Scale
(FES) as the label. The proposed classifier in this study is
based on the FES test result which provides three different
classes: low, moderate and high fear of falling. The reliability
and convergent validity of this test has been proven by
different researchers (Kempen et al., 2008; Morgan et al.,
2013). Using FES test results, subjects in this study are
categorized into low fear (scores 2-9), moderate fear (9-13),
and high fear (>14) of falling. We aim to distinguish between
them using deep neural networks.

D. Neural Network

Inspired by the human’s brain, Neural Network (NN) is a set
of interconnected artificial neurons which recognize
underlying relationships between datapoints. Each neuron or
perceptron is a mathematical function that takes the input data
from the input layer (xi, X2...), multiply them by a weight (w1,
w2...), and add a bias (b) to the weighted inputs (hidden layer).
To introduce nonlinearity to the network, the result is then
passed through an activation function (f). Through feeding
neurons in a forward way and consecutive computational
processes, patterns are recognized by the network and the
output is predicted (output layer). To achieve the best
estimation of desired outputs, the system adjusts the weights
and bias continuously using backpropagation of error (B.
Wankhede, 2014; Hecht-Nielsen, 1989). Figure 2
demonstrates a simple architecture of neural network

composed of three layers. For a more complex decisions,
networks consist of several hidden layers and neurons are
recommended.

oy

Ot d Ly

Figure. 2. A 3-layer neural network architecture
E. Experimental design

Figure 3 summarizes the flowchart of our experimental
design. As shown in the diagram, our datasets comprise of two
separate files: force-plate time series and meta data files. Thus,
the first step was merging the two files. The time vector was
removed from the input data since it just represented the
elapsed time and did not contain any other information about
subjects’ balance characteristics. Samples were randomly
selected. Random sample selection reduces skewness, class
imbalance and overfitting. It is also possible to generate
several samples. This strategy has the advantage of
repeatability of experiment. Besides being time and space
efficient, random sampling provides an equal chance for each
datapoint to be selected. Thus, it improves the dependability,
reliability, and efficiency of the deep learning models
(Gongalves et al., 2012).

Features were scaled, and labels were encoded in the
preprocessing stage. Data was split into 70% train and 30%
test data. Different deep neural network models were selected
for the experiment. Optimal hyperparameters were calculated
for each model and data was fed into the learning algorithms.
Getting the exact values of the hyperparameters are critical
because these parameters guide the training process;
hyperparameters have a strong influence on the performance
of a deep learning model. In other words, “wrong” choices of
hyperparameter values are most likely to produce poor
performance of any learning algorithm (Liu et al., 2006).

Unlike other parameters which are learned in the training
process, values of hyperparameters are set prior to the training.
In most deep learning applications, some important
hyperparameters include number of epochs, batch size,
number of hidden layers, optimizers, activation function,
regularizations etc. In this study, we used the Grid Search
approach of hyperparameter search for the optimal values of
required hyperparameters. Therefore, our systems’ structure
was based on the values obtained from this tuning process.



Building the models’ architecture using the optimal
hyperparameters values reduce the risk of overfitting thereby
improving generalizability.

Deep learning algorithms categorize data through layers of
computational neurons. Each neuron has a certain weight and
works with an activation function, such as the “sigmoid”. In
each iteration, the output is determined by the system based on
the learnt information, error is calculated and fed back to the
system using the back-propagation techniques. For an optimal
performance, difference between the expected label and the
predicted outcome should be minimal. But in most
experiments, it takes more than one iteration to achieve the
minimum error. Therefore, weights are adjusted at each
iteration. This process is called optimization and continues
until the maximum accuracy is achieved with the lowest error.
Each neural network model has a capacity or complexity
which is defined by its structure (number of weights) and
parameters (values of weights). Therefore, to avoid/fix
overfitting, the system’s complexity can be modified by
various regularization techniques such as: Weight
Regularization, Activity Regularization, Weight constraints,
Dropout, Noise and Early Stopping (Brownlee, n.d.; Ying,
2019).

For validation purposes, 20% of the training data was
assigned for validation. As an evidence of generalizability, we
expect a consistent overlap behavior between the training and
validation learning curves. However, optimal consistency is
not guaranteed. This can be due to the problem of overfitting.
Overfitting occurs when a model learns the training dataset too
well but does not perform well on the validation data.

The loss function computation for the proposed neural
network models is “Cross-entropy”. Loss functions measures
the difference between actual value of target variables and
how robust the system works. To determine the loss score
through “Cross-entropy” the following equation is used:

Loss = =X, yilog (¥o) ®)

where 7 is the number of training samples, y; is the predicted
value and yy is the actual value of label. A small loss value
represents good performance of our used classifier (Ho &
Wookey, 2020). After each iteration, the loss score is
calculated. Then a selected optimizer, was used to update the
weights in a back-propagation manner to minimize the loss
and increase accuracy. The model was trained, optimized, and
validated continuously. The model training stops when the
loss of validation set stops decreasing.

The reliability, effectiveness and repeatability of our
experiment was demonstrated with multiple neural network
models. We compared the performance of the models to
determine the most efficient one for predicting human’s fall-
risk using the force-plate signal dataset. Performance
comparison of the models were based on accuracy, losses, and
number of iterations to attain optimization. We also compared
precision and specificity. For easy comparison, experimental
results are shown in graphical and tabular formats.

E-II. Multiple Layer Perceptron (MLP)

The Multiple Layer Perceptron (or MLP) is a variant of the
deep learning neural network family. It consists of an input
layer, two or more hidden layers and an output layer.

For D input features xi, ...., Xxp and M numbers of nodes j,
j=1,...,M. The M linear combinations of the input features
at the Hidden Layer L1 (Hidden Layer L1 is the second layer
of the network) is given as;

— D 1 1
a; = Xi=1 Wij X; + wo; (6)

Where wilj is the weight parameters connecting the i node

at the first layer to the j* node at the second layer. w(l,j is the

bias parameter. a; is then transformed using a differentiable
non-linear activation function h such as the “sigmoid”;

zj is passed to Hidden Layer L2 (Hidden Layer L2 is the
third layer of the network)

Qg :Z;/Iﬂ Wj2k z + W (3)
w¢, is the bias parameter for L2.
ay is transformed using an activation function.

The process continues.

Combining equations 6 and 8, the sets of weight and bias
parameters can be represented as a vector W, and the input
features as a vector X.

Mathematically,
The output y, (X, W) =
o(ZHy wi h(ZL, wiixi + wi;) + wiy ) )

Equation 9 suggests that the output y, is a nonlinear
function of sets of input features {x;} and adjustable
parameters vector W. We can reduce the size of equation 9
by defining a variable x, such that its value equals 1, thereby
the bias parameter is represented in the weight parameters
vector W. Then, equation 9 becomes;

Ve, W) = (T, wi h(ZZwihix:) ) (10)

In general, given an output label y with input vector X, an
MLP finds the best function f mapping y= f(X, W) while
learning the optimal value of the parameter W.

MLPs are also called feedforward neural networks
because of the flow of information from the input to the
output via the intermediate layers. It exhibits a directed
acyclic architectural graph represented as a chain structural
function of the form;

f@) = fulo o (i), or)) (11)
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Where f;, f,and f; are the n, second- and first-layers
non-linear functions, respectively.

An example of MLP comprising of an input layer, two
hidden layers and an output layer is shown in figure 4. As
shown, the architectural layout of an MLP depicts that all
layers in the network are fully connected. This implies that
all nodes in the middle layer are connected to all nodes in the
next and previous layers. All nodes in the input and output
layers are connected to all nodes in the next and previous
layers respectively. For example, as shown in the diagram,
each node in layer 1 is connected to all the nodes in layer 2, all
nodes in layer 2 are also connected to all nodes in layer 3, the
process continues till the output layer.

For a complex MLP network, layers can be in hundreds or
thousands. The input layer is considered as the first layer,
hidden layer 1 as the second layer, hidden layer 2 as the third
layer, etc. Edges between nodes from one layer to the next are
denoted as w;i", where # is the layer number, #j is the weighted
edges connecting the j node in the n” layer to the i node in
the (n + 1) " layer. For example, the weight connecting the
second node in the first layer (input layer) to the third node
in the second layer (hidden layer 1) is denoted as w'ss.
Using the annotated diagram in figure 4, the above
relationship can be represented in matrix form for easy
computation. The input features are vectorized:

Input vector X= [X; X;] (12)

The weight matrix at Hidden Layer L1 is computed and
multiplied by the input vector. Result sent through an
activation function o (e.g sigmoid) for non-linearization.

1 1 1
_ Wll W12 W13

wt=
Wiy Wiy Wi

(13)

L1=XWlto (14)
The weight matrix at Hidden Layer L2 is computed

W121 W122 W123
w? = W221 szz W223 (15)
W321 W322 W323

The output of Hidden Layer L1 is passed to the Hidden
Layer L2 and multiplied by the activation function

L2=L1.W2. o (16)

Depending on the number of hidden layers, the chain
continues, and the final layer is passed to the output layer

The architectural arrangement of an MLP shows that it
has the mechanism of performing complex computation,
however, at a high cost. Furthermore, it suggests that an MLP
is a global connected neural network, lacking the capability
of exploiting a spatial or temporal representation of a dataset.
This high space and time complexity of an MLP is its major
drawback.

Since our dataset is spatial as well as temporal, our models
are built on the flavors of convolutional and recurrent neural
networks. Therefore, the experimental design comprises of the
following deep learning models: 1D-Convolutional Neural
Networks (CNN), Vanilla Recurrent Neural
Network (VRNN), Long-Short-term Memory (LSTM) and a
proposed One-One-One Neural Networks. The next section
discusses the architectures of each of the four models.

Figure. 4. A Multiple Layer Perceptron consisting of an input layer with 2 input
features x1 and x2, and 2 hidden layers each with 3 neurons and an output
layer with 2 neurons

E-III. 1D Convolutional Neural Network (CNN) Model

Convolutional Neural Network (CNN) is a popular method in
deep learning. Convolutional layers are made of basic
structures known as feature detectors or kernels. Unlike the
MPL where weights are assigned directly to each feature,
CNN is based on kernel feature engineering. Each kernel is a
matrix of integers sliding on the input data as a filter to detect
necessary informative features for an efficient representation
and characterization of the dataset. There is an abundant
application of CNN to images and videos. Poma et al.
investigated optimization of CNNs using Fuzzy Gravitational
Search Algorithm method (FGSA) for pattern recognition and
image classification (Poma, Melin, Gonzélez, & Martinez,
2020; Poma, Melin, Gonzalez, & Martinez, 2020). However,
it has been proven that 1D-CNN can be applied efficiently for
time series signals analysis (Jiang et al., 2019).

As shown in figure 5, the architecture of our 1D CNN
model comprises of first two consecutive convolutional layers,
follows by a max pooling layer. For this experiment, using two
consecutive convolutional layers at the initial stage of learning
before max pooling has the advantage of preserving the true
spatial representation of the dataset. Unlike images and videos
that may need more convolutional layers, we limited the
consecutive convolutional layers to only 2. Intuitively,
information lost is minimized. This is logical because we are



experimenting with force-plate time series signal. There are 32
filters in each of the convolutional layers.

From a mathematical viewpoint, convolution is a dot
product of input and kernel functions which ultimately
results in convolved features, also known as feature or
activation maps (Wu, 2017). There is an activation function
called Rectified Linear Units (RELU) on top of each
convolutional step. This adds non-linearity to the extracted
features and improves the discriminatory capability of the
system (Kuo, 2016).
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Figure. 5. Schematic architectural diagram of the 1D-CNN used in this study,
composed of three convolutional layers, Max Pooling and Global Average
Pooling

Features were extracted by the 1 D-Convolution Network from
each segment of force-plate data using the following equation:

fij = o(b; + Xike1 Wik Xj4re-1) (17)

In equation (17), f;;is the extracted features vector from
the jth neuron of the ith filter in the hidden layer, ¢ is the
activation function which was assigned as “RELU” in this
work, b; is the i-th filter corresponding overall bias, wy the
featuring weight matrix, and x;+.; represents the input signals
vector (Jiang et al., 2019). “RELU” provides the non-linear
transformation of the input data for a better hypothesis space
generated from its deeper representation. Without the non-
linear activation function, the model will only be limited to the
dot product and addition linear operations. “RELU” outputs
the input number if it is greater than zero otherwise it outputs
zero. Mathematically, “RELU” is represented as; g(z)=max (0,
z) , where z is the input number.

At the pooling layer, we reduced the variance and
computational complexity of the dataset. Pooling is the
dimensionality reduction path of the 1D CNN model. Pooling
operation can be minimum, average, Or maximum,
summarizing the least, average, and most activated features in
each patch of the feature map respectively (Yamashita et al.,
2018). The most popular approaches are the maximum and
average pooling, minimum pooling is rarely used. In this
study, we used max pooling because unlike the average

pooling, max pooling provides the maximum presence of a
feature. Therefore, max pooling tends to preserve the most
valuable information. We used a 2 by 2 window with the
stride of 2 for the max pooling layer. After the pooling layer
we have another convolutional layer and finally a global
average layer. The third convolutional layer has 64 filters.
Each of the filters has a kernels size of 1*3.

The conventional approach is feeding information
extracted through the convolution and pooling layers into a
fully connected dense layer. This completes the process of data
characterization. However, for this experiment, we did not use
a fully connected layer. Instead, the output of the last
convolution layer is fed into a global average pooling layer.
The global average pooling layer computes the average value
of each feature map. Computed averages are sent directly into
the “softmax” layer for classification. It has been shown that
global average pooling is less prone to overfitting and more
robust to spatial data translations when compared with the
fully connected layer (Lin et al., 2013). The output layer is
made of 3 neurons and “softmax” activation function. To get
the best out of our network, we also performed Grid Search
and determined the optimal value for the hyperparameters.

E-1V. Recurrent Neural Network (RNN) and Long Short-Term
Memory Models

We continued our investigation by training a Vanilla
Recurrent neural networks (RNN) deep learning model. RNNs
are variants of Neural Networks that process input data
through number of layers in which the output of each step is
dependent on previous computations. In other words, RNNs
have a short-term memory which saves the calculated
information and uses it for further analysis in the next layer. In
fact, RNNs are several copies of the same structure consist of
loops which allow the information to persist. This chain-like
nature makes RNNs as powerful tools for different
applications such as speech recognition, language processing,
translation, image captioning, etc. The problem with RNNs is
their short memory and looking at just the recent information
disables the model to look back longer. A proposed strategy
for solving this drawback is using a long short-term memory
network (LSTM).

Figure 6 shows the architecture of an LSTM. As shown in
figure 6, each memory cell is composed of input, forget and
output gates f;, i, and o, respectively. The “sigmoid”
function o in the forget gate ‘looks’ at the previous state
h¢_; and current input x(z) and decides what information
should be discarded at the forget gate . Using “sigmoid” and
“tanh” functions, the input gate decides about which input
values should be. Finally, the output gate uses a “sigmoid”
function to decide what parts of the cell we are going to output
(O)) and then employs a “tanh” function which is multiplied
by the output of “sigmoid” and gives weights to the values
based on their level of importance (7).

The mathematical formulation of an LSTM is shown
below;

ft = O-(fo.xt + thht—l + bf) (18)
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iy = o(Wyxy + Wyihe_q + by) (19)
0y = 0 (Wyoxy + Wiohe_q + by) (20)
¢ = tanh(Wyex, + Wy he_q + b.) 2D
Ce=froCqt+ire (22)
h; = o,  tan h(c;) (23)

As shown in equations (18 to 23) W, W; and W, are the
weight matrices at the forget, input and output gates
respectively, while by, b; and b, are the biases in the same
order. f; and i, are the activation vectors for the forget and input
vectors. Detailed Mathematical description of LSTM and its
architecture can be found at (Olah, n.d.; Staudemeyer &
Morris, 2019; Zhou et al., 2015).

Due to this advanced hierarchical manner, it was
hypothesized that better result is achievable using LSTM
system rather than RNN. In fact, it is assumed that by using
LSTMs we can overcome the Vanishing Gradient problem of
RNNs and get a more accurate classification at lower
computational cost (Tiwang, Oladunni & Xu. 2019). To test
this hypothesis, we employed both the simple RNN and
LSTM models. RNN was designed with 64 units along with a
dense layer of 3 neurons and “softmax”
activation. The LSTM architecture was designed with one
LSTM layer of 256 units along with two dense layers each
made of 128 neurons and an output layer of 3 neurons with
“softmax” activation.
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Figure. 6. Memory cell of a long short-term memory network (LSTM); (Olah,
n.d.; Staudemeyer & Morris, 2019)

E-V. Proposed Model — The One-One-One Neural Network
for Human's Balance Impairment Prediction

The performance of models built with CNN, RNN and LSTM
architectures described in sections E-I1I and E-I'V proved to be
inadequate; i) ID-CNN attained 99.3 % accuracy at the 50th

epoch, ii) RNN and LSTM learnt faster when compared with
the 1D-CNN but achieved accuracies of 96.9% and 98.3%
respectively. Therefore, we explored a combination of 1D-
CNN, LSTM and the Dense.

We hypothesized that the proposed one-one-one neural
network is the most efficient neural network model in
predicting human’s balance impairment using the force-plate
time series signal. The optimization of the proposed model is
based on; i) random sampling for data selection, ii)
architectural simplicity and minimum complexity approach,
and iii) Exhaustive search technique of hyper parameters’
values using the grid searching methodology. The proposed
optimization approach is in line with Occam razor principle of
parsimony and plurality which have been shown to improve
generalization (Clark, n.d.). It is also in line with the Isaac
Newton rule 1 of scientific reasoning (Four Rules of Scientific
Reasoning from Principia Mathematica, n.d.). Furthermore, it
agrees with Minimum Description Length (MDL) principle.
MDL is a trade-off between the complexity of the model and
the goodness of fit. Overly complex modeling has been linked
to overfitting (Griinwald, 2007).

i. Random Sampling

As described in section III, our dataset comprised of 11 580
000 rows recorded for all subjects. A Microsoft Surface
Laptop 2, Core i7 processor, 8 GB RAM was available for the
experiment. It took 24 hours just to merge the files. Since
merging data files was highly time-expensive on the laptop,
intuitively, using this device for running deep learning
algorithms with large number of epochs could be dramatically
more expensive, laborious and may lead to an unsuccessful
experimental outcome. The question here is; do we need 11M
records of the dataset to build the proposed model? 1If the
answer to this question is no, then the next question is; can we
reduce the number of records and still maintain a balanced
class for a reliable experiment? To answer these questions, we
used a random sampling approach. A code was written which
randomly selected a subset of the dataset. The result of our
experiment shows the effectiveness of the approach.

ii. Architectural Simplicity and Minimum Complexity of the
Proposed Neural Network Architecture

To test our hypothesis and investigate the efficiency of
architectural simplicity and minimum complexity approach,
we designed, developed, and evaluated three models from
high to low complexity level: 1) One-One-Three, 2) One-One-
Two, and 3) One-One-One neural networks. The first and
second layers of all the three models have one 1D-CNN and
one LSTM comprising of 64 filters with a kernel size of 1*3
and 256 units, respectively. However, we designed different
dense layers for each architecture. In One-One-Three, there
are three dense layers of 128, 64 and 32 neurons. In One-One-
Two, there are two dense layers of 128 and 64 neurons. The
proposed One-One-One deep neural network comprises of
only one dense layer of 128 neurons.
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As shown in figure 7, feature extraction was done at the
convolutional layer. The filters ‘looks’ through the window for
a true characterization of the dataset. Unlike the CNN
architecture at section E-III where we used two consecutive
convolutional layers at the beginning, here we used only one
layer. Using one layer reduces complexity.

After the 1D-convolutional layer, we employed one LSTM
layer composed of 256 units. LSTM provides information
about the temporal associations of the features extracted at the
Convolutional layer. “Tanh” activation function was used for
non-linearity. Output of the LSTM was passed to a fully dense
connected layer. The output layer comprises of 3 neurons with
the “softmax” activation function.

iii. Hyperparameter Tuning

Building an efficient deep learning model is a very challenging
task. One of these challenges is the selection of
hyperparameters’ values. Choice of hyperparameters’ values
affect the generalization capability and the overall classifier
performance (Bergstra & Bengio, 2012; Liu et al., 2006).
Figures 8 and 9 show the accuracy and loss graph of an un-
tuned classifier using some randomly selected hyper-
parameters’ values.

Looking at the figures, it is obvious that the training and
validation graphs at some point show convergence, however,
after a while they became unstable. Therefore, choosing the
appropriate hyperparameters’ values is a crucial step in this
experiment. The question here is, iow do we choose the best
values of hyperparameters for a reliable and optimal
performance of the proposed model? We answered this
question by computing a Grid Search of hyperparameters’
values for the experiment. Random search and manual
selection are other popular approaches of choosing the values
of hyperparameters. Grid Search is our preferred choice
because it is the most exhaustive search approach when
compared with the manual and random search. Successful
implementation of the manual selection in a reasonable time
depends to a large extent on the experience of the researcher.
On the other hand, time and space constrain of the random
search makes its iterations non-exhaustive. Grid Search
produces better accuracy at a higher computational cost.

We imported GridSearchCV from the sklearn library in
python programming environment and defined our desired
model at the estimator component of the GridSearchCV
module. We did this process for the 1D CNN, RNN, LSTM
and the proposed One-One-One Neural Networks. The best
values of each hyperparameter were determined. Through
Grid Search we obtained the best values for the number of
epochs, batch size, activation function, optimizer etc.
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Figure. 7. Proposed One-One-One Neural Networks Architecture; composed
of one 1D-convolutional layer, one LSTM layer, and one dense layer
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IV. Results

We implemented our experiment based on the architectural
designs of section E explained in methodology. 1D CNN,
VANILLA RNN, LSTM and the proposed One-One-One
Neural Networks models were trained, tested, and evaluated.
Results of each model is discussed in this section.

A. Performance Evaluation

To evaluate our models’ performance, we used confusion
matrix and its four different outcomes, namely true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN) (Table 2). These metrics are produced as a
result of classification predictions and are employed to
evaluate the model’s performance by calculating its
sensitivity, precision and accuracy through the following
formulas:

TP
TP+ FN

Sensitivity (recall) = 24)
Sensitivity is the ratio of truly predicted labels belonging to a
class to all samples that truly belong to that class. A higher
value of sensitivity represents higher value of true positive and
thus lower value of false negative predictions.

Precision = (25)

TP+FP
Precision is the ratio of truly predicted labels belonging to a
class to all samples that were predicted to belong to that class
by the classifier. Precision shows the relevance of positive
detections.

TP+TN

Accuracy = ———
Y T TPIFP+TN+FN

(26)
Accuracy is the ratio of correct samples predictions to total
number of all predictions and shows the general model’s
performance in terms of correct classification. Determined
high value of all used metrics can be representative of the
model’s high dependability and discriminative power.

B. CNN Model

As discussed earlier, the model used two 1-dimensional
convolutional layers, Max Pooling and Global Average
Pooling. Since we are working with numerical force-plate
time-series signal here, and not pictures, using 1-D
Convolutional Neural Network turns out to be more
appropriate. Figures 10 (a & b) show the accuracy and loss
results of our designed model along with validation results. As
it is seen in the graphs, there is a high consistency between
accuracy and loss of both training and validation data.

The highest classification accuracy of 0.993 was achieved
at the 50th epoch. The reliable performance of the model in
predicting true labels can be also observed through the
receiver operating characteristics graph shown in figure 10 (c).

C. RNN and LSTM Models

We also trained and evaluated the RNN and LSTM models.
As discussed earlier, for the RNN model, we used a simple
RNN. The number of units and neurons were defined as 64
and 3 for RNN and dense layer, respectively. To improve
results of the RNN classifier, we also performed LSTM. The
highest classification of 0.969 and 0.983 were attained by
RNN and LSTM models, respectively. As the results imply,
LSTM has almost same accuracy as the 1-D CNN but with
lower number of epochs. Lower number of epochs suggests
that LSTM has a lower computational cost. However, a more
detailed look at the LSTM graphs, shows some level of
instability after the 17th epoch.

D. The One-One-One deep neural network Model

As discussed above and in section E-V of our methodology,
there are significant shortcomings of RNN, CNN and LSTM.
Therefore, we proposed the One-One-One Deep Neural
Network Architecture to discriminate between people based
on their balance abilities. The loss and accuracy graphs, shown
in figures 13 (a & b), of train and validation data gave excellent
results with significantly high consistency. As shown in the
graphs, the validation and train data started to converge at
about the 12th epoch and remained totally stable. This level of
stability was not observed in any other models despite their
high classification performance. Figure 13 (c¢) shows the
receiver operating characteristics graph of the proposed One-
One-One Neural Networks classifier performance.

Table 2 shows the experimental summary using confusion
matrix, precision, sensitivity, and accuracy. Based on this
table, the experimental result suggests that the proposed model
is the most efficient with a precision, sensitivity, and accuracy

of 100 %, 100% and 99.9% respectively at the 12 epoch.
Table 2

Summary of experimental results

Model Confusion Precision | Sensitivity | Acc
matrix (%) (%) (%)
610 1 5 99.3 99 99.3
CNN 1 977 2
8 4 1392
595 9 23 96.6 96.6 96.9
RNN 4 935 17
18 20 1379
662 7 6 98.3 98.6 98.3
LSTM 0 939 19
1 17 1349
One- 585 2 1 99.3 99.6 99.5
%':e- 2 |99 | 8
ree
NN 0 2 1401
One- 604 0 1 100 99.6 99.7
One-Two 0 960 1
NN 0 5 1429
Proposed | 631 0 0 100 100 99.9
8!16-0 0 | 998 2
ne-One
NN 0 1 1368

As shown on table 2, the proposed One-One-One model
provides higher performance and accuracy than more complex
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systems of One-One-Three and One-One-Two Neural
Networks. This suggests that architectural simplicity can be
prior to complexity while designing NN models. Thus, the
proposed One-One-One model is computationally less
expensive for the given input size.

V. DISCUSSION

Although we got almost the same classification accuracy by
all four models, they may not be equally efficient in analyzing
the force-plate dataset. As shown in figures (10-11), CNN was
time-expensive; it needed at least 50 epochs to experience
stability and high system performance of 99.3% accuracy.
This may be due to the fact the optimal performance of a CNN
architecture is influenced by the number of convolutional
layers used. To reduce the influence of multiple layers, we
minimized the number of CNN convolutional layers.

RNN gave us an accuracy of 96.9%, as discussed earlier.
The low accuracy may be due to the inherent problem of
vanishing gradient. We addressed this shortcoming using its
variant; LSTM version. LSTM gave a better result, however,
at the 17th epoch it shown some degrees of instability; figures
16 and 17. The ineffectiveness and shortcomings of CNN,
RNN and LSTM necessitated the design of the of the proposed
One-One-One Neural Networks model.

The proposed One-One-One Neural Networks classifier
system was designed using only one 1D-convolutional layer
on top of one LSTM and one dense layer. Therefore, the
proposed approach reduced complexity and improves fitness.
For example, using only one 1D CNN layer eliminates the
complexity of multiple layers. It also ensures that the model
does not remove too many informative features during
convolution. In fact, through the following formula we can
determine the number of output features by each convolutional
layer:

Noue = Nip — (K — 1) (24)

in which 7, is number of output features, n;, is the number of
input features and £ is the kernel size (Dumoulin et al., 2018).
Here, we have 21 input features and a 1D-convolutional layer
with kernel size:3. Using equation 24, the number of output
features nu is givens as:

Nowe = 21 — (3 —1) =19

Therefore, only 2 features are removed after data is filtered
by 1D-convolutional layer in the proposed One-One-One
Neural Networks classifier architecture. Thus, information
loss is minimized. Furthermore, the calculated result is
consistent with the model summary generated from keras. As
shown in table 3, the output of the Convl1d displayed -None,
19, 64.

Table 3

Model Summary
e (tyee Oetput Shupe Faram 2
I T NI T T T T I T T T I T T T I T I T I T II T IT T PR T T IT R I T II TN TS
zomvld 2 [ComviD Norw, 17, © i3
Ista 7 (LSTH) Nome, 158 AT
ense 3 (Dense Noew, 138 Lié

Trainable paraes: 362,343

ion-trainable param:

The batch_size is not fixed; this is shown as None values in
each of the output shapes. The numbers of features output at
the Convld is shown as 19, this agrees with value we
computed using equation 24 above. 64 is the number of filters
used.

The param # is the number of parameters or weights that
are produced. These parameters are learned during the training
of the model. The LSTM and the Dense produced 328 794 and
32 896 parameters, respectively. The large value of the weight
produced at the LSTM shows the impact of the 256 filters in
learning the temporal nature of the dataset. The “softmax”
layer (dense 4) has 3 output shape because our dataset is
classified into 3 classes.

The param # of the “softmax” shows 387, this implies that
each node in dense 3 (128) is mapped to each of the 3 nodes
in the “softmax” layer with an added 3 for the bias: 3 * 128 +3
=387. The total params at the bottom of the table is the sum
total of all the parameters learned in the network; 256 + 328
704 + 32 896 + 387 = 362 243. The trainable parameters are
the total number of parameters or weights that the networked
learned and adjusted their values for the optimization of the
model.

As shown in the experimental result, among four models,
the proposed One-One-One Neural Networks classifier can be
considered as the least computationally expensive model for
classification of the human balance dataset in this study. This
is because it took only 12 epochs to the reach 99.9% accuracy
and maintain stability.
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VI. Conclusion

According to Occam razor principle, simplicity is prior to
complexity until proven otherwise (Oladunni & Sharma,
2017). In this work, simple architecture of the proposed One-
One-one Neural Networks classifier produced the best result.
Thus, eliminated the need for a more complex architecture.
Our results also prove that the proposed One-One-One Neural
Networks classifier has the capability of extracting the
maximum amount of required spatiotemporal information
from the force-plate using the randomized sample datasets.
The extracted information from the dataset turns out to be
necessary and sufficient for training and testing the proposed
model with maximum accuracy, sensitivity, and precision
without unnecessary architectural complexity.
Generalizability of the model was further improved by
hyperparameter tuning based on the exhaustive search of the
grid for the optimal values of its hyperparameters’ values.
Section IV illustrates the effectiveness of this methodology.

The outcome of our experiments (Table 2) shows that we
do not have enough evidence to reject our hypothesis.
Therefore, we contend that the proposed one-one-one neural
network demonstrated to be the most efficient neural network
model in predicting human’s fall-risk using the force-plate
time series signal.

Table 4
Comparison with the state-of-the-art
Study Year Best Result
(Acc%)
RF: with six (temporal, spatial, spectral) 2018 64.9
features used in random selection (Giovanini
et al., 2018)
MLP; used 18 time and frequency domain 2019 80
features by SAFE feature extraction method
(Reilly, 2019)
SVM; used force signals as features (Cetin & 2019 81.67
Bilgin, 2019)
CNN (ours); used all force, moment, and 99.3
CoP features
RNN (ours); used all force, moment, and 96.9
CoP measures
LSTM (ours); used all force, moment, and 98.3
CoP measures 2020
One-One-Three NN (ours); used all force, 99.5
moment, and CoP measures
One-One-Two NN (ours); used all force, 99.7
moment, and CoP measures
One-One-One NN (Proposed); used all 99.9
force, moment, and CoP measures

Intuitively, the hybrid of the proposed One-One-One
Neural Networks classifier benefits from advantages of both
CNN, LSTM and Dense. Therefore, it is logical that the model
is effective in analyzing the 1D data with a spatiotemporal
structure such as force-plate time series. In fact, CNN does the
feature extraction process and prepares data for LSTM which
interprets the features across time steps (Brownlee, n.d.; Zhou
et al., 2015).

Table 4 compares the performance of our experiment with
the state-of-the-art on the same dataset. Balance metrics of 163
subjects were used by different researchers to differentiate

people based on their gender, age, risk of fall, etc. We focused
on a non-binary classification and discriminated people based
on their balance abilities not only on their gender or age as
done in previous studies.

Based on the outcome of our experiment, we argue that the
proposed model is reliable and efficient in predicting risk of
fall in human subjects of different ages based on their fall
concern and balance abilities. In other words, this model can
detect balance impairment in different range of people with
age, gender, health status, fall history, illness, medication use,
impairment background and other specifications. The dataset
for this work was retrieved from (dos Santos & Duarte, 2016;
Santos & Duarte, 2016) and contains the balance
characteristics of many human subjects recorded by a force-
plate.

This study shows the effectiveness and performance of deep
neural networks in building an accurate predictive model. Its
effectiveness without the feature extraction stage of the
traditional machine learning is evident as compared with our
previous experiments (Savadkoohi et al., 2020). The
promising result of the present study is a motivation in
exploring the architecture of the proposed One-One-One Deep
Neural Networks in discerning patterns and discovering
knowledge in other scientific problems. However,
experimental result may not be the same for all datasets. This
is a limitation of this work because architectural simplicity and
minimum complexity approach may not be adequate for all
problems.

Major contributions of this work are as follows.

a. Table 4 shows that the worst classification accuracy of
our work, 96.9% using RNN, is far above and beyond the
highest accuracy of 80 and 81.67% achieved by other
researchers in 2019 (Cetin & Bilgin, 2019; Reilly, 2019).
To the best of our knowledge, we do not find any other
study on this dataset with higher classification results.
Therefore, we consider this work as the new baseline.

b. 4 deep neural network models were designed, developed,
and evaluated to predict human’s balance impairment
using the force-plate time series signal. With an accuracy
0£99.9% at the 12% epoch, our experiment shows that the
proposed One-One-One  Neural Networks has
computational cost advantage over other models.

c. Optimization of the proposed One-One-One Neural
Networks classifier architecture was based on a
combination of: i) random sampling for data selection, ii)
architectural simplicity and minimum complexity
approach, and iii) Exhaustive search technique of
hyperparameters’ values using the grid searching
methodology.

d. Classification was based on the Short Falls Efficacy Scale
International test (FES) for the identification of
individuals’ concern (fear) of a fall. Subjects were
classified as low, moderate, and high concern groups due
to their FES test results which is a standard test to measure
the fall risk.
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The implications of the study are as follows:

Balance impairment in human is predictable using deep
neural networks. Our experiment employed this state-of-
the-art learning algorithms to classify force-plate balance
time-series signal to predict human’s balance impairment.
Classification was based on low, moderate, and high risk
of a fall.

Combining one layer of 1D CNN with one layer of LSTM
and a Dense layer produces the most efficient neural
network model in predicting human’s balance
impairment using the force-plate time series signal. The
proposed One-One-One Neural Networks classifier
model provides a considerable increase in performance
compared to other algorithms. Our experimental results
show precision, sensitivity, and accuracy of 100 %, 100%
and 99.9% respectively at the 12 epoch.

Ultimately, using faster computers with higher CPU and
more powerful processors, can lead to achieving more
insightful perspective and gain a new knowledge
regarding the human balance underlying patterns and its
characteristics.

Our experiment suggests that architectural simplicity and
minimum complexity approach is critical in building
efficient deep neural networks. The proposed One-One-
One Neural Networks classifier demonstrated the
capability of extracting maximum spatiotemporal
information from the randomized sample datasets. The
extracted information turned out to be necessary and
sufficient for training and testing the proposed model. The
outcome of our experiment showed the effectiveness of
the strategy.

In the future, we will consider the following:

1. A multiclass identification of individuals’ concern (fear)
of a fall into very low, low, moderate, high, and very high.

2. Dimensionality reduction of the explanatory variables to
improve computational efficiency.
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