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ABSTRACT Early and accurate identification of the balance deficits could reduce falls, in particular for older adults, a 

prone population.  Our work investigates deep neural networks’ capacity to identify human balance patterns towards predicting 

fall-risk.  Human balance ability can be characterized based on commonly-used balance metrics, such as those derived from 

the force-plate time series. We hypothesized that low, moderate, and high risk of falling can be characterized based on balance 

metrics, derived from the force-plate time series, in conjunction with deep learning algorithms.  Further, we predicted that our 

proposed One-One-One Deep Neural Networks algorithm provides a considerable increase in performance compared to other 

algorithms.   Here, an open source force-plate dataset, which quantified human balance from a wide demographic of human 

participants (163 females and males aged 18-86) for varied standing conditions (eyes-open firm surface, eyes-closed firm 

surface, eyes-open foam surface, eyes-closed foam surface) was used. Classification was based on one of the several indicators 

of fall-risk tied to the fear of falling: the clinically-used Falls Efficacy Scale (FES) assessment. For human fall-risk prediction, 

the deep learning architecture implemented comprised of: Recurrent Neural Network (RNN), Long-Short Time Memory 

(LSTM), One Dimensional Convolutional Neural Network (1D-CNN), and a proposed One-One-One Deep Neural Network. 

Results showed that our One-One-One Deep Neural Networks algorithm outperformed the other aforementioned algorithms 

and state-of-the-art models on the same dataset.  With an accuracy, precision, and sensitivity of 99.9%, 100%, 100%, 

respectively at the 12th epoch, we found that our proposed One-One-One Deep Neural Network model is the most efficient 

neural network in predicting human’s fall-risk (based on the FES measure) using the force-plate time series signal. This is a 

novel methodology for an accurate prediction of human risk of fall. 
 

Keywords Aging, Balance disorder, Balance impairment, CNN, C-LSTM, Deep Learning, Fall-risk, Force-plate, LSTM, 

Neural Network, RNN  

 

 
I. Introduction 
 

The detection of fall-risk linked balance impairment is of 

significant societal relevance.  Falling has been reported as 

the second most common reason of accidental injuries and 

death, with road traffic accidents being the first (World 

Health Organization-Falls, n.d.). Treating fall-related 

injuries is extremely costly. In the United States, costs 

related to fatal and nonfatal falls in year 2000 was estimated 

as $0.2 billion and $19 billion respectively for the adults over 

the age of 65 (Stevens et al., 2006). This number increased 

to $50 billion in 2015 (Florence et al., 2018). Balance 

impairment can have devastating effects on all individuals; 

though, particularly, older individuals are a vulnerable 

population. Thus, studying the balance characteristics and 

comparing the underlying patterns of balance attributes 

could be significantly helpful in predicting fall and reduce its 

associated risk.  

Balance aids us in maintaining stability and preventing falls 

during a variety of daily activities that we often take for 

granted, such as getting up out of bed or from a chair, 

standing, and walking (Balance Disorders — Causes, Types 

& Treatment | NIDCD, n.d.; Winter, 1995).  However, 

musculoskeletal, vestibular, visual, somatosensory, and 

proprioceptive disorders can lead to balance disorders in 

wide range of people (Balance Problems - Symptoms and 

Causes - Mayo Clinic, n.d.; Pialasse et al., 2016).  Numerous 

studies have shown that older people, in particular, are more 

affected by balance impairment (Abrahamová D, 2008; 

Alexander, 1996; Brooke, 2010). Older adults are more 

prone to balance impairment due to the natural process of 

aging which results in degeneration of the above systems, 

confounded by muscle weakness and other age-related 

disorders, such as Parkinson’s disease, Stroke, Chronic 

Tremor, Multiple Sclerosis, and osteoporosis. Older people 

who suffer from these impairments are highly prone to fall 

and fall-related injuries (Alshammari et al., 2018; Beghi et 

al., 2018; Ozcan et al., 2005; Thompson et al., 2018). 

   Aside from physical injury due to falling, according to the 

National Institute of Aging (NIA), fear of falling increases 
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as people age. As a result, older people tend to isolate 

themselves and avoid regular social activities (Prevent Falls 

and Fractures | National Institute on Aging, n.d.). This 

situation leads to other physical and mental disorders (e.g., 

decrease in bone mineral density, fractures, loss of 

independence, loss of confidence, anxiety, depression, panic 

attacks). Studies have shown that 13% of adults experience 

imbalance during the age range of 65-69 years old and this 

number increases to 46% percent after the age of 85 (Burns 

& Kakara, 2018; Osoba et al., 2019).  

    This paper is organized as follows: Section II overviews 

the available literature and highlights some of the studies 

conducted on the human balance and gait characteristics; 

Section III explains the materials and methods for the study 

and our methodology; Section IV explains the experimental 

results and V our discussions. We present our conclusions in 

Section VI.  

 

II. Literature Review  
 

Researchers have employed various techniques to 

record human static and dynamic balance characteristics 

towards the ultimate goal of preventing falls. Using various 

equipment and analytical methods, scientists have gained a 

broad perspective towards human balance underlying 

patterns and factors that might affect the ability of humans in 

having a safe and normal life.  

Kinematics and kinetics metrics are valuable indicators 

of human balance and postural control and are acquired using 

technologies, such as motion capture, force-plate, 

electromyography (EMG), sensors, accelerometers (Winter, 

1995).  The force-plate is perhaps the most popular 

equipment used to measure standing balance and gait.  To 

identify and treat balance disorders, appropriate 

identification methods must be employed. Physicians and/or 

physical therapists often use conventional clinical methods 

to determine what is considered “good” or “poor” balance.  

Clinical tests evaluate postural control of people and 

their stability (balance) while doing several static and/or 

dynamic motor tasks. Some examples are Activities-Specific 

Balance Confidence (ABC), Berg Balance Scale (BBS), 

Timed Up to Go test (TUG), Fall Efficacy Scale (FES) and 

Balance Error Scoring System (BESS). The advantages of 

these assessments are that they are easy to use, require 

minimal (if any) equipment, are quick to administer and 

inexpensive. However, they provide limited information to 

quantify the underlying balance metrics and provide a 

general understanding of balance ability.  

Force-plates are practical devices used in research and 

clinical studies to characterizes gait, balance, and other 

biomechanics features. Sport and performance monitoring, 

balance impairment detection, occupational safety and 

motion analysis are some of the main applications of this 

measuring instrument. Time series signals recorded by force-

plate sensors from which features, such as Center of Pressure 

(CoP), Forces (GRFs) and Moment (M) of forces as one 

moves across them, can be extracted.  

The reliability of force-plate time series data with 

different test conditions has been proved and discussed by 

several researchers (Bauer et al., 2010; Golriz et al., 2012; 

Martina Mancini et al., 2012). The displacement of Center-

of-Pressure (CoP), derived from the force-plate, is often used 

to characterize gait and balance (Hof et al., 2005; Ruhe et al., 

2010).  The CoP represents body motion in space as detected 

at the interface between the feet and the ground.  The COP 

displacement time series represents the location of the 

(resultant) vertical Ground Reaction Force vector.  This is 

used as a mean to quantify one’s balance: greater 

displacement of the CoP position could mean greater 

instability. Features such as Root-Mean-Square (RMS) of 

medial-lateral (M/L) and anterior-posterior (A/P) directions, 

Sway area, Axis length, etc. could be also extracted from 

time series. 

Combining functional tests results with sensor-based 

measurement (e.g., force-plate) can provide valuable 

information for gait and balance analysis. Force-plate 

measurement provides more sensitive and precise 

measurement due to its application in the experimental 

environments and has decreased: test variability, subjectivity 

of the scoring system and sensitivity to small changes (M. 

Mancini & Horak, 2010a). 

To draw a complete picture of the human’s gait and 

balance and investigate the motion’s kinetics and kinematics, 

dos Santos et al. used 42 markers, integrated with a 3-D 

motion capture system, on each subject’s full body. They 

recorded different parameters such as Ground Reaction 

Forces (GRF), Center of Pressure (CoP), Center of Gravity 

and participants’ joint angles through the combination of 

both motion capture and force-plate measurements. Using 

this approach, they managed to create a rich quantitative 

evaluation of human balance (dos Santos et al., 2017). 

In Table 1, we summarize several studies that used 

combination of force-plate and other tools to record human’s 

biomechanical gait and balance features and investigated the 

effect of various factors on postural control. Each of the 

summarized studies have used various techniques to analyze 

human balance. Giovanini et al. classified balance 

characteristics of older adults as low or high risk of falling. 

They used the same dataset in this study (dos Santos & 

Duarte, 2016) which contains subjects’ CoP information in 

the form of time series signals. By applying six different 

Machine Learning (ML) techniques and extracting 34 

temporal/spatial features from the subjects’ CoP, they 

showed high discriminative powers in the 60 seconds-time 

series. Among all ML methods in the study, the highest 

accuracy they achieved, was 64.9% by Random Forest (RF) 

classification method (Giovanini et al., 2018). 

    Reilly used (Reilly, 2019), the same open-source 

dataset (dos Santos & Duarte, 2016) to study risk of fall. At 

the first stage, they extracted 528 features in the time and 

frequency domain.  Feature selection methods such as a 

filter-based feature selection algorithm called ReliefF, Self-

adapting feature evaluation (SAFE), etc. were employed to 

find the optimal number of features for classification. With 
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18 features through the SAFE method, the experiment result 

showed the highest classification of accuracy of 80% using 

Multiple Layer Perceptron (MLP). The experiment was 

based on 73 older subjects (out of 163 total participants) of 

the dataset, who were either at the low or high risk of fall. 

Other classifiers used were Support Vector Machine (SVM), 

K-Nearest Neighbors (K-NN) and Naïve Bayes (NB) with 

performance range of 75 to77 % accuracy (Reilly, 2019). 

Another work on the same data (dos Santos & Duarte, 

2016), was done by Cetin and his colleague. In their work, 

they discriminated between young-aged groups using 

different machine learning techniques such as SVM, K-NN, 

Decision Tree (DT), Linear Discriminant Analysis (LDA), 

etc. Employing force signals of the dataset, the experimental 

result showed the highest classification accuracy of 81.67% 

by SVMs (Cetin & Bilgin, 2019). 

   In the above studies, statistical analysis and/or 

machine learning techniques, were employed by a domain 

expert who had related research experiences and extracted 

relevant features for fall risk detection or group 

discrimination. Santos and Duarte employed the ‘shallow’ 

Neural Networks approach to analyze the same data used in 

this study (dos Santos & Duarte, 2016). The results of their 

experiment showed the highest accuracy of up to 80%; 

suggesting that extracted features were not sufficient in 

improving classification results (Giovanini et al., 2018; 

Reilly, 2019).  

Cetin and Bilgin, (Cetin & Bilgin, 2019) argued that 

achieving a relatively high classification performance is a 

function of only force signals and not the whole force-plate 

measures. However, the maximum accuracy of their study 

was still limited to 81.67%. These results agree with (Safuan 

et al., 2017) conclusion that extracting suitable features from 

gait/balance data and choosing the optimal feature 

extraction/selection methods are complicated and time-

consuming processes. Their work showed that nonlinearities, 

high dimensionality, and high variability of time-series 

signals are major constrains.  

As shown in Table 1, a Machine Learning (ML) 

algorithm or Statistical Method has the capability of 

interpreting the gait and balance biomechanical features and 

finding the relationship between variables. However as 

mentioned above, these methodologies typically require 

domains expertise and advanced experience levels which 

could be highly time and energy consuming and prone to 

error. Wang et al. used simple Neural Network (NN) along 

with Bayesian optimization algorithm to analyze human 

walking speed. The study involved feature extraction and 

feature selection stages for generating input features for a 

classifier (Wang et al., 2021).  

Table 1 suggests that methodologies used by other 

scientists in research studies on falls are not adequate.  It also 

shows that fall detection and human balance characterization 

can be a challenging task. Deep Learning (DL) models have 

been shown to have the capability of scanning a large dataset 

for relevant informative features without passing through the 

manual feature extraction stage of the traditional ML or 

statistical models  (Horsak et al., 2020). Hoffman et al. took 

advantage of recurrent neural network (RNN) based on Long 

Short-Term Memory (LSTM) to investigate gait patterns of 

42 participants. They experimented with a capacitive sensor 

floor to record walking kinematics of subjects. According to 

their result, using combination of sensor-based data and NN 

is a promising approach to be applied in in health and care 

(Hoffmann et al., 2021).  

If adequately utilized, DL algorithms have the capability 

of providing automatic feature extraction, flexibility, and 

higher accuracy on huge amount of data. This is because 

unlike traditional ML algorithms, deep learnings can learn 

high-level features from high-dimensional data in a 

hierarchical manner which eliminates the need of domain 

expertise and the complex process of feature extractions 

(Goodfellow et al., 2016; Najafabadi et al., 2015). The 

supremacy of deep learning algorithms to reveal underlying 

patterns of big data without the need of performing prior 

feature extraction and feature selection processes, can result 

in considerably higher predictive powers, and more accurate 

results.  Therefore, for a better result and balanced study, our 

experiment employed deep neural network algorithms to 

classify force-plate balance time-series signal to predict 

human’s balance impairment. We argue that this is a better 

approach.  

Exploring this capability and superiority of the DL, we 

investigate the balance patterns in different people for an 

effective characterization, using the same open-source 

dataset used by researchers in table 1. Dataset was produced 

by Santos et al. (Santos & Duarte, 2016). The dataset 

contains the force-plate time-series signals recorded from 

163 young and older individuals. Alongside the force-plate 

dataset there is another large meta data file composed of 

personal and other health characteristics of the subject such 

as age, gender, history of fall, background disease, functional 

tests’ results etc. 

Although the available meta data is composed of different 

types of information about participants which could be used 

as binary classes, e.g. gender (male vs. female) or age group 

(young vs. old), vision (open vs. closed), surface (firm vs. 

foam) etc. we decided to discriminate the study subjects 

based on their Falls Efficacy Scale (FES) test score. FES is 

an international known test which measures fear of falling. It 

implies a person’s level of confidence for carrying out 

everyday activities (Kempen et al., 2008; Morgan et al., 

2013). 

We hypothesized that low, moderate, and high risk of 

falling can be characterized based on commonly-used 

balance metrics, such as those derived from the force-plate 

time series, in conjunction with deep learning algorithms: 

Recurrent Neural Network (RNN), Long-Short Time 

Memory (LSTM), One Dimensional Convolutional Neural 

Network (1D-CNN), and our developed One-One-One Deep 

Neural Network. Further, we hypothesized that our proposed 

One-One-One neural network is the most efficient neural 

network model in predicting human’s balance impairment 

using the force-plate time series signal.   
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Table 1  

Overview of studies on commonly used balance/gait metrics and different analyzing techniques

Study Research 

Objective 

Used Features Subjects Measuring 

equipment 

Analysis 

Method/tool 

Study outcome Max 

Acc 

(Balestrucc
i et al., 

2017) 

 
 

To investigate the 
effect of dynamic 

visual cues on 

postural control 

CoP sway parameters 
(e.g., M/L and A/P 

Standard deviation, 

sway area, etc.)  

44 healthy 
individuals 

Force-plate 
 

Statistical 
Analysis 

(e.g., t-test, 

ANOVA) 

Gravity-congruent 
visual motion makes 

significantly reduced 

postural sway compared 
to gravity-incongruent 

one 

 
 

N/A 

(Fukuchi et 
al., 2017) 

To examine the 
effect of running 

speed on gait-

biomechanics 
variables 

Kinetics and 
kinematics (e.g., 

cadence, stride 

length, joints angles, 
joints torque etc.) 

28 regular 
runners  

3D motion-
capture 

system & an 

instrumented 
treadmill  

Statistical 
Analysis 

 (e.g.,  

one-way 
ANOVA, 

Kruskal-

Wallis) 

Most of gait-
biomechanics variables 

(other than foot-strike) 

are affected by running 
speed 

 
 

 

N/A 

 (dos 
Santos et 

al., 2017) 

To provide the 
subjects’ full-body 

3D kinematics and 

the GRFs in static 
balance, while 

changing support 
surface and visual 

cues 

Human body’s GRFs, 
CoPs, and 3D 

Kinematics (e.g., 

joints angles) 

27 young 
and 22 older 

individuals 

3D motion-
capture 

system & 

force platform 

Visual3D 
software and 

Python 

programming 

Biomechanical 
characteristics were 

visualized and modeled 

(e.g., CoP & COG 
displacement at the A/P 

& M/L directions versus 
time, etc.) 

 
 

 

 
 

N/A 

(Giovanini 

et al., 2018) 

To distinguish 

between  
different age 

groups using 

force-plate signals 
with different 

time-series 

duration  

CoP’s temporal, 

spectral and spatial 
features (e.g., root 

mean square (RMS) 

distance, sway path, 
mean frequency, etc.) 

older adults  

(dos Santos 
& Duarte, 

2016) 

healthy and 
post-stroke 

adult 

(Giovanini et 
al., 2018) 

Force-plate  

 

Statistical 

Analysis (e.g., 
Wilcoxon test, 

Mann-

Whitney U-
Test, etc.), 

Machine 

Learning 
(ML) (e.g., K-

NN, SVM, 

MLP, RF, 
etc.) 

For statistical analysis: 

optimal CoP duration 
varies based on group 

under study,  

 
For ML analysis: 60 s 

duration CoP signals is 

more discriminative 

 

 
 

 

64.9% 
(RF) 

(Reilly, 

2019) 

To classify fall-

risk in older adults 
using effective 

feature selection 

methods (e.g., 
ReliefF, SAFE, 

etc.) 

Time-domain and 

Frequency domain 
features extracted 

from CoP and Force 

signals 

163 young 

and older 
individuals 

(dos Santos 

& Duarte, 
2016) 

Force-plate  

 

Machine 

Learning (e.g., 
SVM, K-NN, 

MLP, NB) 

Feature selection 

methods identified the 
relevant features 

successfully, but were 

incapable of improving 
classifiers reliability 

while using only static 

balance measures 

 

 
 

80% 

(MLP) 

(Montesino
s et al., 

2018) 

 

To differentiate 
between fallers 

from non-fallers 

 

CoP’s Approximate 
entropy (ApEn) and 

sample entropy 

(SampEn) with 
different input 

parameters 

163 young 
and older 

individuals 

(dos Santos 
& Duarte, 

2016) 

Force-plate 
 

Statistical 
Analysis 

(e.g., three-

way ANOVA) 

SampEn represents a 
better choice for the 

analysis of CoP time-

series and to distinguish 
between groups 

 
 

 

N/A 

(Cetin & 

Bilgin, 

2019) 

To discriminate 

between young 

and aged groups 

CoP and Forces’ 

Standard Deviation 

(STD) 

163 young 

and older 

individuals 

(dos Santos 
& Duarte, 

2016) 

Force-plate  

 

Machine 

Learning (e.g., 

SVM, K-NN, 

DT, LDA, 
etc.) 

Force signals are better 

predictors than CoPs for 

group differentiation 

while using force-plate 
measures 

 

 

81.67% 

(SVM) 

 (Ren et al., 
2020) 

Using AI to 
evaluate different 

types of balance 

control subsystems 
determined by 

Mini-BESTest 

CoP’s extracted 
Traditional features 

(e.g., Mean of CoP 

displacement, etc.) 
and pixel-based 

features (e.g.,  

skewness of gray 
levels for all pixels) 

163 young 
and older 

individuals 

(dos Santos 
& Duarte, 

2016) 

Force-plate  
 

Machine 
Learning 

Regressors 

(e.g., RF, 
MLP, LR, 

etc.) 

Low mean absolute 
errors (MAE) showed 

reliability of AI 

techniques for assessing 
balance control 

subsystems 

 
 

 

N/A 
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III. Materials and Methods  

 

A. Materials: Force-Plate and Meta Data  

 

As explained above, the data used in this study is a publicly 

available dataset. It is accessible through both PhysioNet 

(DOI: 10.13026/ C2WW2W) and Figshare (DOI: 10.6084/ 

m9. figshare. 3394432) websites. The study in which the 

dataset was created, and its detailed description, can be found 

here (Santos & Duarte, 2016). The data was collected from 

163 male and female participants of different ages (18-86 

years old) and varied health conditions. Each participant 

completed a 1-2-hour study session, and all data were 

collected during this single session. To evaluate a person’s 

balance, he/she was asked to stand still on the force-plate for 

60 seconds with arms at his/her sides and repeated it three 

times for four different test conditions.  

Test conditions were defined as standing eyes-open on a firm 

surface, eyes-closed on a firm surface, eyes-open on a foam 

and finally eyes-closed on a foam. Both rigid surface and foam 

tests were done on a force-platform and the participants’ 

balance characteristics of Force, Moments of forces, and 

Centers of Pressure were measured. Participants were 

barefooted and looked at a 3 centimeters round target in front 

of them, located at a wall 3 meters away (dos Santos & Duarte, 

2016; Santos & Duarte, 2016).  

   The force-plate data was acquired at 100Hz frequency. Since 

each person did twelve 60 seconds trials in this study, twelve 

.txt files, each composing of 6000 rows and 9 columns exist 

for each subject. Therefore, after merging data files, each 

person has 72000 row time-series signal and 9 feature columns 

specified as:  Time, as well as tri-axial Force (Fx, Fy, Fz), and 

Moment (Mx, My, Mz), along the x, y, and z axes respectively 

(as shown in Figure 1), and Center of Pressure in ML and AP 

(i.e., CoPx, CoPy) recorded by the force-plate. Moment of 

force (Latash, 2012a), and can be determined by the following 

formulas: 

𝑀𝑥 = 𝐶𝑜𝑃𝑦 . 𝐹𝑧 + 𝐹𝑦. 𝑑𝑦                                                         (1) 

𝑀𝑦 = 𝐶𝑜𝑃𝑥 . 𝐹𝑧 + 𝐹𝑥. 𝑑𝑥                                                         (2) 

where M stands for Moment of force, F stands for force, dx 

and dy stand for the lever arm of the shear forces of Fx and Fy 

along the Z axis, respectively. Through those metrics, we can 

also determine Center of Pressure (CoP) with the help of the 

following simplified equations; (Latash, 2012b) 

𝐶𝑜𝑃𝑥 =
−𝑀𝑦

𝐹𝑧
                                                                          (3) 

𝐶𝑜𝑃𝑦 =
𝑀𝑥

𝐹𝑧
                                                                               (4)     

where CoPx and CoPy are the CoP coordinates along the X 

and Y axis, respectively.  

   Along with the main dataset which contains the subjects’ 

balance metrics, there is another information file, called 

BDSinfo, provided by the researchers. This supplementary file 

contains meta data about the subjects (e.g., vision, gender, 

height, BMI, illness, use of medication, number of falls, and 

disability). It also includes the results of some well-known 

conventional clinical evaluations such as Falls Efficacy Scale 

(FES), International Physical Activity Questionnaire (IPAQ), 

and Trail Making Test (TMT); these tests focus on assessing a 

specific parameter such as cognition level, concern of falling 

during different tasks and likelihood of fall and evaluate 

postural control of people and their stability (balance) while 

doing several static and/or dynamic motor tasks.  (M. Mancini 

& Horak, 2010b). To understand the concept of each 

evaluation method and the whole meta data, reading the main 

source (Santos & Duarte, 2016) is highly recommended.   

   Due to its comprehensive information, the meta data is very 

resourceful for categorizing human subjects. In other words, 

each of the columns of this dataset can be used as a proper 

label for classification purposes.   The available meta data is 

composed of different types of information about participants 

which could be used as binary classes, e.g., gender (male vs. 

female) or age group (young vs. old), vision (open vs. closed), 

surface (firm vs. foam), etc. However, we decided to 

discriminate the study subjects based on their Falls Efficacy 

Scale (FES) test score. The Falls Efficacy Scale International 

test (FES) is a well-known evaluation methodology used for 

individuals with vestibular or balance dysfunction to quantify 

his/her fear of falling. Participants answer to the questions 

about some of their regular daily activities and specify how 

concerned they are about the possibility of falling. Reliability 

and validity of FES to measure concerns of falling in people 

with imbalance and postural control deficits have been 

explained by several researchers (Kempen et al., 2008; 

Morgan et al., 2013; Yardley et al., 2005). 

 
 

 

 

B. Data Preparation 

 

The code was written in Python 3.7.3. As the first step, we 

merged all .txt files recorded with the force-plate for all 

subjects. As described earlier, time series were recorded by 

100 Hz frequency which produced 6000 rows for each 60 

second trial. Since each of the 163 subjects completed the 12 

trials, therefore we had 1956 .txt files. However, 26 of these 

.txt files are missing for five subjects who were not able to 

complete the most challenging exercises. Consequently, there 

are 11 580 000 rows of data recorded for all subjects.  

 
C. Label Selection  

 

In this study, a supervised learning approach was used for 

the design, development, and evaluation of our learning 

algorithm. Using this approach, suppose we have a set of N 

Figure. 1. Measuring three components of 
the force vector (FX, FY, FZ) and three 
components of the moment-of-force vector 
(MX, MY, MZ) by force-plate; Retrieved 
from (Latash, 2012b) 
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training examples {(𝑥1 ,𝑦1), … (𝑥𝑁 ,𝑦𝑁)}, where 𝑥𝑖  𝑎𝑛𝑑 𝑦𝑖  

are the ith feature vector and label respectively. The goal of the 

learning algorithm is to choose the optimal function g: X → Y, 

where X and Y are the input and output states respectively, 

function g belonging to a hypothesis space G. This hypothesis 

space represents all possible functions of G.  

We chose 14 columns of meta data available at (dos 

Santos & Duarte, 2016) containing the most important 

information about participants and added those features to our 

main force-plate dataset. As discussed in section III, the main 

balance metrics recorded by force-plate were Time, Force in 

x, y and z directions (Fx, Fy, Fz), Moment of force in x, y and 

z directions (Mx, My, Mz), Center of Pressure in x and y 

directions (CoPx and CoPy).  Thus, our feature size increased 

to 23 after adding the 14 columns of vision, surface, age group, 

gender, Bone Mineral Density (BMI), illness, Number of 

medications, disability, falls12month, IPAQ_S, TMT_timeA, 

TMT_timeB, Best_T, FES_S of meta data. IPAQ is an 

International Physical Activity Questionnaire Short Version 

test (IPAQ) which measures health-related physical activity 

(PA) in populations (Hagströmer et al., 2006). TMT is 

abbreviation of Trail Making Test which screens dementia by 

assessing cognition level in two different parts A and B, and 

the goal is to complete the tests accurately and as quickly as 

possible (Salthouse, 2011). Mini Balance Evaluation Systems 

Test (Mini-BESTest) predicts the likelihood of fall 

(Yingyongyudha et al., 2016).  

In this research, we merged the force plate and meta data 

file to create our dataset and used the Falls Efficacy Scale 

(FES) as the label. The proposed classifier in this study is 

based on the FES test result which provides three different 

classes: low, moderate and high fear of falling. The reliability 

and convergent validity of this test has been proven by 

different researchers (Kempen et al., 2008; Morgan et al., 

2013). Using FES test results, subjects in this study are 

categorized into low fear (scores 2-9), moderate fear (9-13), 

and high fear (>14) of falling. We aim to distinguish between 

them using deep neural networks. 

 

 

D. Neural Network 

 

Inspired by the human’s brain, Neural Network (NN) is a set 

of interconnected artificial neurons which recognize 

underlying relationships between datapoints. Each neuron or 

perceptron is a mathematical function that takes the input data 

from the input layer (x1, x2…), multiply them by a weight (w1, 

w2…), and add a bias (b) to the weighted inputs (hidden layer). 

To introduce nonlinearity to the network, the result is then 

passed through an activation function (f). Through feeding 

neurons in a forward way and consecutive computational 

processes, patterns are recognized by the network and the 

output is predicted (output layer). To achieve the best 

estimation of desired outputs, the system adjusts the weights 

and bias continuously using backpropagation of error (B. 

Wankhede, 2014; Hecht-Nielsen, 1989). Figure 2 

demonstrates a simple architecture of neural network 

composed of three layers. For a more complex decisions, 

networks consist of several hidden layers and neurons are 

recommended.  

 

 
 
Figure. 2.  A 3-layer neural network architecture  

E. Experimental design 

 

    Figure 3 summarizes the flowchart of our experimental 

design. As shown in the diagram, our datasets comprise of two 

separate files: force-plate time series and meta data files. Thus, 

the first step was merging the two files. The time vector was 

removed from the input data since it just represented the 

elapsed time and did not contain any other information about 

subjects’ balance characteristics. Samples were randomly 

selected. Random sample selection reduces skewness, class 

imbalance and overfitting. It is also possible to generate 

several samples. This strategy has the advantage of 

repeatability of experiment. Besides being time and space 

efficient, random sampling provides an equal chance for each 

datapoint to be selected. Thus, it improves the dependability, 

reliability, and efficiency of the deep learning models 

(Gonçalves et al., 2012). 

Features were scaled, and labels were encoded in the 

preprocessing stage. Data was split into 70% train and 30% 

test data. Different deep neural network models were selected 

for the experiment. Optimal hyperparameters were calculated 

for each model and data was fed into the learning algorithms. 

Getting the exact values of the hyperparameters are critical 

because these parameters guide the training process; 

hyperparameters have a strong influence on the performance 

of a deep learning model. In other words, “wrong” choices of 

hyperparameter values are most likely to produce poor 

performance of any learning algorithm (Liu et al., 2006).  

Unlike other parameters which are learned in the training 

process, values of hyperparameters are set prior to the training. 

In most deep learning applications, some important 

hyperparameters include number of epochs, batch size, 

number of hidden layers, optimizers, activation function, 

regularizations etc. In this study, we used the Grid Search 

approach of hyperparameter search for the optimal values of 

required hyperparameters. Therefore, our systems’ structure 

was based on the values obtained from this tuning process. 
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Building the models’ architecture using the optimal 

hyperparameters values reduce the risk of overfitting thereby 

improving generalizability. 

   Deep learning algorithms categorize data through layers of 

computational neurons. Each neuron has a certain weight and 

works with an activation function, such as the “sigmoid”. In 

each iteration, the output is determined by the system based on 

the learnt information, error is calculated and fed back to the 

system using the back-propagation techniques. For an optimal 

performance, difference between the expected label and the 

predicted outcome should be minimal. But in most 

experiments, it takes more than one iteration to achieve the 

minimum error. Therefore, weights are adjusted at each 

iteration. This process is called optimization and continues 

until the maximum accuracy is achieved with the lowest error. 

Each neural network model has a capacity or complexity 

which is defined by its structure (number of weights) and 

parameters (values of weights). Therefore, to avoid/fix 

overfitting, the system’s complexity can be modified by 

various regularization techniques such as: Weight 

Regularization, Activity Regularization, Weight constraints, 

Dropout, Noise and Early Stopping (Brownlee, n.d.; Ying, 

2019). 

   For validation purposes, 20% of the training data was 

assigned for validation. As an evidence of generalizability, we 

expect a consistent overlap behavior between the training and 

validation learning curves. However, optimal consistency is 

not guaranteed. This can be due to the problem of overfitting. 

Overfitting occurs when a model learns the training dataset too 

well but does not perform well on the validation data.  

    The loss function computation for the proposed neural 

network models is “Cross-entropy”. Loss functions measures 

the difference between actual value of target variables and 

how robust the system works. To determine the loss score 

through “Cross-entropy” the following equation is used: 

 

𝐿𝑜𝑠𝑠 = − ∑ 𝑦𝑖log (𝑦0)𝑛
𝑖=1                                                                    (5) 

 

where n is the number of training samples, yi is the predicted 

value and y0 is the actual value of label. A small loss value 

represents good performance of our used classifier (Ho & 

Wookey, 2020). After each iteration, the loss score is 

calculated. Then a selected optimizer, was used to update the 

weights in a back-propagation manner to minimize the loss 

and increase accuracy. The model was trained, optimized, and 

validated continuously. The model training stops when the 

loss of validation set stops decreasing. 

    The reliability, effectiveness and repeatability of our 

experiment was demonstrated with multiple neural network 

models. We compared the performance of the models to 

determine the most efficient one for predicting human’s fall-

risk using the force-plate signal dataset. Performance 

comparison of the models were based on accuracy, losses, and 

number of iterations to attain optimization. We also compared 

precision and specificity. For easy comparison, experimental 

results are shown in graphical and tabular formats.  

E-II. Multiple Layer Perceptron (MLP) 

 

The Multiple Layer Perceptron (or MLP) is a variant of the 

deep learning neural network family.  It consists of an input 

layer, two or more hidden layers and an output layer.  

    For D input features x1, …., xD and M numbers of nodes j, 

𝑗 = 1, … , 𝑀. The M linear combinations of the input features 

at the Hidden Layer L1 (Hidden Layer L1 is the second layer 

of the network) is given as; 

 

𝑎𝑗 = ∑ 𝑤𝑖𝑗
1𝐷

𝑖=1 𝑥𝑖 +  𝑤0𝑗
1                                           (6) 

 

Where wij
1 is the weight parameters connecting the ith node 

at the first layer to the jth node at the second layer. w0j
1   is the 

bias parameter. aj is then transformed using a differentiable 

non-linear activation function h such as the “sigmoid”; 

 

𝑧𝑗 = ℎ(𝑎𝑗)                        (7)  

 

zj is  passed to Hidden Layer L2 (Hidden Layer L2 is the 

third layer of the network) 

 

𝑎𝑘=∑ 𝑤𝑗𝑘
2𝑀

𝑗=1 𝑧𝑗 +  𝑤0𝑘
2                        (8) 

w0k
2  is the bias parameter for L2.  

ak is transformed using an activation function.  

     The process continues.  

 

     Combining equations 6 and 8, the sets of weight and bias 

parameters can be represented as a vector W, and the input 

features as a vector X.   

 

Mathematically,  

The output   𝑦𝑘(𝑋, 𝑊) = 

 𝜎(∑ 𝑤𝑗𝑘
2𝑀

𝑖=1 ℎ(∑ 𝑤𝑖𝑗
1𝐷

𝑖=1 𝑥𝑖 +  𝑤0𝑗
1 ) + 𝑤0𝑘

2  )                     (9) 

  

    Equation 9 suggests that the output 𝑦𝑘  is a nonlinear 

function of sets of input features {xi} and adjustable 

parameters vector W. We can reduce the size of equation 9 

by defining a variable x0 such that its value equals 1, thereby 

the bias parameter is represented in the weight parameters 

vector W. Then, equation 9 becomes; 

 

𝑦𝑘(𝑋, 𝑊) =  𝜎(∑ 𝑤𝑗𝑘
2𝑀

𝑖=1 ℎ(∑ 𝑤𝑖𝑗
1𝐷

𝑖=1 𝑥𝑖) )      (10) 

 

    In general, given an output label y with input vector X, an 

MLP finds the best function f mapping y= f(X, W) while 

learning the optimal value of the parameter W.  

     MLPs are also called feedforward neural networks 

because of the flow of information from the input to the 

output via the intermediate layers. It exhibits a directed 

acyclic architectural graph represented as a chain structural 

function of the form; 

 

𝑓(𝑥) = 𝑓𝑛(, … , 𝑓2(𝑓1(𝑥)), … , )       (11) 
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                      Figure. 3.  System Architectural flowchart
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   Where 𝑓𝑛, 𝑓2 and 𝑓1 are the nth, second- and first-layers 

non-linear functions, respectively.  

     An example of MLP comprising of an input layer, two 

hidden layers and an output layer is shown in figure 4.  As 

shown, the architectural layout of an MLP depicts that all 

layers in the network are fully connected. This implies that 

all nodes in the middle layer are connected to all nodes in the 

next and previous layers. All nodes in the input and output 

layers are connected to all nodes in the next and previous 

layers respectively. For example, as shown in the diagram, 

each node in layer 1 is connected to all the nodes in layer 2, all 

nodes in layer 2 are also connected to all nodes in layer 3, the 

process continues till the output layer. 

      For a complex MLP network, layers can be in hundreds or 

thousands. The input layer is considered as the first layer, 

hidden layer 1 as the second layer, hidden layer 2 as the third 

layer, etc. Edges between nodes from one layer to the next are 

denoted as wij
n, where n is the layer number, ij is the weighted 

edges connecting the jth node in the nth layer to the ith node in 

the (n + 1) th layer. For example, the weight connecting the 

second node in the first layer (input layer) to the third node 

in the second layer (hidden layer 1) is denoted as w1
23.    

Using the annotated diagram in figure 4, the above 

relationship can be represented in matrix form for easy 

computation. The input features are vectorized:  

 

𝐼𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑋=  [𝑋1 𝑋2]      (12) 

 

The weight matrix at Hidden Layer L1 is computed and 

multiplied by the input vector. Result sent through an 

activation function σ (e.g sigmoid) for non-linearization.  

 

𝑊1 =  [
𝑊11

1 𝑊12
1 𝑊13

1

𝑊21
1 𝑊22

1 𝑊23
1 ]        (13) 

 

𝐿1 =  𝑋. 𝑊1. 𝜎                      (14) 

 

The weight matrix at Hidden Layer L2 is computed 

 

𝑊2 =  [

𝑊11
2 𝑊12

2 𝑊13
2

𝑊21
2 𝑊22

2 𝑊23
2

𝑊31
2 𝑊32

2 𝑊33
2

]      (15) 

 

The output of Hidden Layer L1 is passed to the Hidden 

Layer L2 and multiplied by the activation function 

 

L2= 𝐿1. 𝑊2. 𝜎         (16) 

 

Depending on the number of hidden layers, the chain 

continues, and the final layer is passed to the output layer 

    The architectural arrangement of an MLP shows that it 

has the mechanism of performing complex computation, 

however, at a high cost. Furthermore, it suggests that an MLP 

is a global connected neural network, lacking the capability 

of exploiting a spatial or temporal representation of a dataset. 

This high space and time complexity of an MLP is its major 

drawback.  

     Since our dataset is spatial as well as temporal, our models 

are built on the flavors of convolutional and recurrent neural 

networks. Therefore, the experimental design comprises of the  

following deep learning models: 1D-Convolutional Neural 

Networks (CNN), Vanilla Recurrent Neural 

Network (VRNN), Long-Short-term Memory (LSTM) and a 

proposed One-One-One Neural Networks. The next section 

discusses the architectures of each of the four models. 

 

 
Figure. 4. A Multiple Layer Perceptron consisting of an input layer with 2 input 
features x1 and x2, and 2 hidden layers each with 3 neurons and an output 
layer with 2 neurons  

 

E-III. 1D Convolutional Neural Network (CNN) Model 

 

Convolutional Neural Network (CNN) is a popular method in 

deep learning. Convolutional layers are made of basic 

structures known as feature detectors or kernels. Unlike the 

MPL where weights are assigned directly to each feature, 

CNN is based on kernel feature engineering. Each kernel is a 

matrix of integers sliding on the input data as a filter to detect 

necessary informative features for an efficient representation 

and characterization of the dataset. There is an abundant 

application of CNN to images and videos. Poma et al.  

investigated optimization of CNNs using Fuzzy Gravitational 

Search Algorithm method (FGSA) for pattern recognition and 

image classification (Poma, Melin, González, & Martinez, 

2020; Poma, Melin, González, & Martínez, 2020). However, 

it has been proven that 1D-CNN can be applied efficiently for 

time series signals analysis (Jiang et al., 2019). 

     As shown in figure 5, the architecture of our 1D CNN 

model comprises of first two consecutive convolutional layers, 

follows by a max pooling layer. For this experiment, using two 

consecutive convolutional layers at the initial stage of learning 

before max pooling has the advantage of preserving the true 

spatial representation of the dataset. Unlike images and videos 

that may need more convolutional layers, we limited the 

consecutive convolutional layers to only 2. Intuitively, 

information lost is minimized.  This is logical because we are 



 

  10 

experimenting with force-plate time series signal. There are 32 

filters in each of the convolutional layers. 

From a mathematical viewpoint, convolution is a dot 

product of input and kernel functions which ultimately  

results in convolved features, also known as feature or 

activation maps (Wu, 2017). There is an activation function 

called Rectified Linear Units (RELU) on top of each 

convolutional step. This adds non-linearity to the extracted 

features and improves the discriminatory capability of the 

system (Kuo, 2016). 

   

 
Figure. 5. Schematic architectural diagram of the 1D-CNN used in this study, 
composed of three convolutional layers, Max Pooling and Global Average 
Pooling  
 

Features were extracted by the 1D-Convolution Network from 

each segment of force-plate data using the following equation: 

 

𝑓𝑖𝑗 = 𝜑(𝑏𝑖 + ∑ 𝑤𝑖𝑘 . 𝑥𝑗+𝑘−1)𝑚
𝑘=1                                                 (17) 

 

In equation (17),  𝑓𝑖𝑗  is the extracted features vector from 

the jth neuron of the ith filter in the hidden layer, 𝜑 is the 

activation function which was assigned as “RELU” in this 

work, 𝑏𝑖 is the i-th filter corresponding overall bias, wik the 

featuring weight matrix, and xj+k-1 represents the input signals 

vector (Jiang et al., 2019). “RELU” provides the non-linear 

transformation of the input data for a better hypothesis space 

generated from its deeper representation. Without the non-

linear activation function, the model will only be limited to the 

dot product and addition linear operations. “RELU” outputs 

the input number if it is greater than zero otherwise it outputs 

zero. Mathematically, “RELU” is represented as; g(z)=max (0, 

z) , where z is the input number. 

      At the pooling layer, we reduced the variance and 

computational complexity of the dataset. Pooling is the 

dimensionality reduction path of the 1D CNN model. Pooling 

operation can be minimum, average, or maximum, 

summarizing the least, average, and most activated features in 

each patch of the feature map respectively (Yamashita et al., 

2018). The most popular approaches are the maximum and 

average pooling, minimum pooling is rarely used. In this 

study, we used max pooling because unlike the average 

pooling, max pooling provides the maximum presence of a 

feature. Therefore, max pooling tends to preserve the most 

valuable information.  We used a 2 by 2 window with the 

stride of 2 for the max pooling layer. After the pooling layer 

we have another convolutional layer and finally a global 

average layer. The third convolutional layer has 64 filters. 

Each of the filters has a kernels size of 1*3.  

     The conventional approach is feeding information 

extracted through the convolution and pooling layers into a 

fully connected dense layer. This completes the process of data 

characterization.  However, for this experiment, we did not use 

a fully connected layer. Instead, the output of the last 

convolution layer is fed into a global average pooling layer. 

The global average pooling layer computes the average value 

of each feature map. Computed averages are sent directly into 

the “softmax” layer for classification. It has been shown that 

global average pooling is less prone to overfitting and more 

robust to spatial data translations when compared with the 

fully connected layer (Lin et al., 2013). The output layer is 

made of 3 neurons and “softmax” activation function. To get 

the best out of our network, we also performed Grid Search 

and determined the optimal value for the hyperparameters. 

 

E-IV. Recurrent Neural Network (RNN) and Long Short-Term 

Memory Models 

 

We continued our investigation by training a Vanilla 

Recurrent neural networks (RNN) deep learning model. RNNs 

are variants of Neural Networks that process input data 

through number of layers in which the output of each step is 

dependent on previous computations. In other words, RNNs 

have a short-term memory which saves the calculated 

information and uses it for further analysis in the next layer. In 

fact, RNNs are several copies of the same structure consist of 

loops which allow the information to persist. This chain-like 

nature makes RNNs as powerful tools for different 

applications such as speech recognition, language processing, 

translation, image captioning, etc. The problem with RNNs is 

their short memory and looking at just the recent information 

disables the model to look back longer. A proposed strategy 

for solving this drawback is using a long short-term memory 

network (LSTM).  

     Figure 6 shows the architecture of an LSTM. As shown in 

figure 6, each memory cell is composed of input, forget and 

output gates 𝑓𝑡 , 𝑖𝑡  𝑎𝑛𝑑 𝑜𝑡  respectively. The “sigmoid” 

function 𝜎 in the forget gate ‘looks’ at the previous state 

ℎ𝑡−1 and current input x(t) and decides what information 

should be discarded at the forget gate . Using “sigmoid” and 

“tanh” functions, the input gate decides about which input 

values should be. Finally, the output gate uses a “sigmoid” 

function to decide what parts of the cell we are going to output 

(Ot) and then employs a “tanh” function which is multiplied 

by the output of “sigmoid” and gives weights to the values 

based on their level of importance (ht).  

     The mathematical formulation of an LSTM is shown 

below; 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)                                       (18) 
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𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)                                         (19) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)                                      (20) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)                                (21) 

𝑐𝑡 = 𝑓𝑡 • 𝑐𝑡−1 + 𝑖𝑡 • 𝑐̃𝑡                                                  (22) 

ℎ𝑡 = 𝑜𝑡 • 𝑡𝑎𝑛 ℎ(𝑐𝑡)                                                             (23) 

 

As shown in equations (18 to 23) 𝑊𝑓 , 𝑊𝑖  𝑎𝑛𝑑 𝑊𝑜 are the 

weight matrices at the forget, input and output gates 

respectively, while 𝑏𝑓 , 𝑏𝑖  𝑎𝑛𝑑  𝑏𝑐 are the biases in the same 

order. ft and it are the activation vectors for the forget and input 

vectors. Detailed Mathematical description of LSTM and its 

architecture can be found at (Olah, n.d.; Staudemeyer & 

Morris, 2019; Zhou et al., 2015). 

   Due to this advanced hierarchical manner, it was 

hypothesized that better result is achievable using LSTM 

system rather than RNN. In fact, it is assumed that by using 

LSTMs we can overcome the Vanishing Gradient problem of 

RNNs and get a more accurate classification at lower 

computational cost (Tiwang, Oladunni & Xu. 2019). To test 

this hypothesis, we employed both the simple RNN and 

LSTM models. RNN was designed with 64 units along with a 

dense layer of 3 neurons and “softmax”  

activation. The LSTM architecture was designed with one 

LSTM layer of 256 units along with two dense layers each  

made of 128 neurons and an output layer of 3 neurons with 

“softmax” activation.  

 

 
Figure. 6.  Memory cell of a long short-term memory network (LSTM);  (Olah, 
n.d.; Staudemeyer & Morris, 2019) 

 
E-V. Proposed Model – The One-One-One Neural Network 

for Human’s Balance Impairment Prediction 

  

The performance of models built with CNN, RNN and LSTM 

architectures described in sections E-III and E-IV proved to be 

inadequate; i) 1D-CNN attained 99.3 % accuracy at the 50th 

epoch, ii) RNN and LSTM learnt faster when compared with 

the 1D-CNN but achieved accuracies of 96.9% and 98.3% 

respectively. Therefore, we explored a combination of 1D-

CNN, LSTM and the Dense. 

   We hypothesized that the proposed one-one-one neural 

network is the most efficient neural network model in 

predicting human’s balance impairment using the force-plate 

time series signal.  The optimization of the proposed model is 

based on; i) random sampling for data selection, ii) 

architectural simplicity and minimum complexity approach, 

and iii) Exhaustive search technique of hyper parameters’ 

values using the grid searching methodology. The proposed 

optimization approach is in line with Occam razor principle of 

parsimony and plurality which have been shown to improve 

generalization (Clark, n.d.). It is also in line with the Isaac 

Newton rule 1 of scientific reasoning (Four Rules of Scientific 

Reasoning from Principia Mathematica, n.d.). Furthermore, it 

agrees with Minimum Description Length (MDL) principle. 

MDL is a trade-off between the complexity of the model and 

the goodness of fit. Overly complex modeling has been linked 

to overfitting (Grünwald, 2007). 

 

i. Random Sampling 

 

As described in section III, our dataset comprised of 11 580 

000 rows recorded for all subjects. A Microsoft Surface 

Laptop 2, Core i7 processor, 8 GB RAM was available for the 

experiment. It took 24 hours just to merge the files. Since 

merging data files was highly time-expensive on the laptop, 

intuitively, using this device for running deep learning 

algorithms with large number of epochs could be dramatically 

more expensive, laborious and may lead to an unsuccessful 

experimental outcome. The question here is; do we need 11M 

records of the dataset to build the proposed model? If the 

answer to this question is no, then the next question is; can we 

reduce the number of records and still maintain a balanced 

class for a reliable experiment? To answer these questions, we 

used a random sampling approach. A code was written which 

randomly selected a subset of the dataset. The result of our 

experiment shows the effectiveness of the approach.   

 

ii. Architectural Simplicity and Minimum Complexity of the 

Proposed Neural Network Architecture  

 

    To test our hypothesis and investigate the efficiency of 

architectural simplicity and minimum complexity approach, 

we designed, developed, and evaluated three models from 

high to low complexity level: 1) One-One-Three, 2) One-One-

Two, and 3) One-One-One neural networks. The first and 

second layers of all the three models have one 1D-CNN and 

one LSTM comprising of 64 filters with a kernel size of 1*3 

and 256 units, respectively. However, we designed different 

dense layers for each architecture. In One-One-Three, there 

are three dense layers of 128, 64 and 32 neurons. In One-One-

Two, there are two dense layers of 128 and 64 neurons. The 

proposed One-One-One deep neural network comprises of 

only one dense layer of 128 neurons. 
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    As shown in figure 7, feature extraction was done at the 

convolutional layer. The filters ‘looks’ through the window for 

a true characterization of the dataset. Unlike the CNN 

architecture at section E-III where we used two consecutive 

convolutional layers at the beginning, here we used only one 

layer. Using one layer reduces complexity. 

    After the 1D-convolutional layer, we employed one LSTM 

layer composed of 256 units. LSTM provides information 

about the temporal associations of the features extracted at the 

Convolutional layer. “Tanh” activation function was used for 

non-linearity. Output of the LSTM was passed to a fully dense 

connected layer.  The output layer comprises of 3 neurons with 

the “softmax” activation function. 

 

iii. Hyperparameter Tuning 

 

Building an efficient deep learning model is a very challenging 

task. One of these challenges is the selection of 

hyperparameters’ values. Choice of hyperparameters’ values 

affect the generalization capability and the overall classifier 

performance (Bergstra & Bengio, 2012; Liu et al., 2006).  

Figures 8 and 9 show the accuracy and loss graph of an un-

tuned classifier using some randomly selected hyper-

parameters’ values. 

   Looking at the figures, it is obvious that the training and 

validation graphs at some point show convergence, however, 

after a while they became unstable. Therefore, choosing the 

appropriate hyperparameters’ values is a crucial step in this 

experiment. The question here is, how do we choose the best 

values of hyperparameters for a reliable and optimal 

performance of the proposed model? We answered this 

question by computing a Grid Search of hyperparameters’ 

values for the experiment. Random search and manual 

selection are other popular approaches of choosing the values 

of hyperparameters. Grid Search is our preferred choice 

because it is the most exhaustive search approach when 

compared with the manual and random search. Successful 

implementation of the manual selection in a reasonable time 

depends to a large extent on the experience of the researcher. 

On the other hand, time and space constrain of the random 

search makes its iterations non-exhaustive. Grid Search 

produces better accuracy at a higher computational cost.  

    We imported GridSearchCV from the sklearn library in 

python programming environment and defined our desired 

model at the estimator component of the GridSearchCV 

module. We did this process for the 1D CNN, RNN, LSTM 

and the proposed One-One-One Neural Networks. The best 

values of each hyperparameter were determined. Through 

Grid Search we obtained the best values for the number of 

epochs, batch size, activation function, optimizer etc. 

 

 

 
 
Figure. 7. Proposed One-One-One Neural Networks Architecture; composed 
of one 1D-convolutional layer, one LSTM layer, and one dense layer  

 

 

 
Figure. 8. Training vs.  Validation Accuracy of an un-tuned classifier 

 

Figure. 9. Training vs.  Validation Loss of an un-tuned classifier 
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IV. Results 

 

We implemented our experiment based on the architectural 

designs of section E explained in methodology. 1D CNN, 

VANILLA RNN, LSTM and the proposed One-One-One 

Neural Networks models were trained, tested, and evaluated. 

Results of each model is discussed in this section. 

 

A. Performance Evaluation 

To evaluate our models’ performance, we used confusion 

matrix and its four different outcomes, namely true positives 

(TP), true negatives (TN), false positives (FP), and false 

negatives (FN) (Table 2). These metrics are produced as a 

result of classification predictions and are employed to 

evaluate the model’s performance by calculating its 

sensitivity, precision and accuracy through the following 

formulas: 

 

Sensitivity (recall) = 
TP

TP+ FN
                                                  (24) 

 

Sensitivity is the ratio of truly predicted labels belonging to a 

class to all samples that truly belong to that class. A higher 

value of sensitivity represents higher value of true positive and 

thus lower value of false negative predictions. 

 

Precision = 
TP 

TP+FP
                                                                    (25) 

 

Precision is the ratio of truly predicted labels belonging to a 

class to all samples that were predicted to belong to that class 

by the classifier. Precision shows the relevance of positive 

detections. 

 

Accuracy = 
TP+TN

TP+FP+TN+FN
                                                             (26) 

 

Accuracy is the ratio of correct samples predictions to total 

number of all predictions and shows the general model’s 

performance in terms of correct classification. Determined 

high value of all used metrics can be representative of the 

model’s high dependability and discriminative power. 

B. CNN Model 

As discussed earlier, the model used two 1-dimensional 

convolutional layers, Max Pooling and Global Average 

Pooling. Since we are working with numerical force-plate 

time-series signal here, and not pictures, using 1-D 

Convolutional Neural Network turns out to be more 

appropriate. Figures 10 (a & b) show the accuracy and loss 

results of our designed model along with validation results. As 

it is seen in the graphs, there is a high consistency between 

accuracy and loss of both training and validation data.  

    The highest classification accuracy of 0.993 was achieved 

at the 50th epoch. The reliable performance of the model in 

predicting true labels can be also observed through the 

receiver operating characteristics graph shown in figure 10 (c). 

 

C. RNN and LSTM Models 

 

We also trained and evaluated the RNN and LSTM models. 

As discussed earlier, for the RNN model, we used a simple 

RNN. The number of units and neurons were defined as 64 

and 3 for RNN and dense layer, respectively. To improve 

results of the RNN classifier, we also performed LSTM. The 

highest classification of 0.969 and 0.983 were attained by 

RNN and LSTM models, respectively. As the results imply, 

LSTM has almost same accuracy as the 1-D CNN but with 

lower number of epochs. Lower number of epochs suggests 

that LSTM has a lower computational cost. However, a more  

detailed look at the LSTM graphs, shows some level of 

instability after the 17th epoch.  

D. The One-One-One deep neural network Model 

As discussed above and in section E-V of our methodology, 

there are significant shortcomings of RNN, CNN and LSTM.  

Therefore, we proposed the One-One-One Deep Neural 

Network Architecture to discriminate between people based 

on their balance abilities. The loss and accuracy graphs, shown 

in figures 13 (a & b), of train and validation data gave excellent 

results with significantly high consistency. As shown in the 

graphs, the validation and train data started to converge at 

about the 12th epoch and remained totally stable. This level of 

stability was not observed in any other models despite their 

high classification performance. Figure 13 (c) shows the 

receiver operating characteristics graph of the proposed One-

One-One Neural Networks classifier performance.  

    Table 2 shows the experimental summary using confusion 

matrix, precision, sensitivity, and accuracy. Based on this 

table, the experimental result suggests that the proposed model 

is the most efficient with a precision, sensitivity, and accuracy 

of 100 %, 100% and 99.9% respectively at the 12th epoch.  
Table 2  

Summary of experimental results     

Model Confusion 

matrix 

Precision 

(%) 

Sensitivity 

(%) 

Acc 

(%) 

 

CNN 

610 1 5 99.3 99 99.3 

1 977 2 

8 4 1392 

 

RNN 

595 9 23 96.6 96.6 96.9 

4 935 17 

18 20 1379 

 

LSTM 

662 7 6 98.3 98.6 98.3 

0 939 19 

1 17 1349 

One-

One-

Three 

NN 

585 2 1 99.3 99.6 99.5 

2 999 8 

0 2 1401 

One-

One-Two 

NN 

604 0 1 100 99.6 99.7 

0 960 1 

0 5 1429 

Proposed 

One-

One-One 

NN 

631 0 0 100 100 99.9 

0 998 2 

0 1 1368 

 

As shown on table 2, the proposed One-One-One model 

provides higher performance and accuracy than more complex 

http://onlineconfusionmatrix.com/#measures
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systems of One-One-Three and One-One-Two Neural 

Networks. This suggests that architectural simplicity can be 

prior to complexity while designing NN models. Thus, the 

proposed One-One-One model is computationally less 

expensive for the given input size. 

V. DISCUSSION 

 

Although we got almost the same classification accuracy by 

all four models, they may not be equally efficient in analyzing 

the force-plate dataset. As shown in figures (10-11), CNN was 

time-expensive; it needed at least 50 epochs to experience 

stability and high system performance of 99.3% accuracy. 

This may be due to the fact the optimal performance of a CNN 

architecture is influenced by the number of convolutional 

layers used. To reduce the influence of multiple layers, we 

minimized the number of CNN convolutional layers.   

     RNN gave us an accuracy of 96.9%, as discussed earlier. 

The low accuracy may be due to the inherent problem of 

vanishing gradient. We addressed this shortcoming using its 

variant; LSTM version. LSTM gave a better result, however, 

at the 17th epoch it shown some degrees of instability; figures 

16 and 17. The ineffectiveness and shortcomings of CNN, 

RNN and LSTM necessitated the design of the of the proposed 

One-One-One Neural Networks model.  

     The proposed One-One-One Neural Networks classifier 

system was designed using only one 1D-convolutional layer 

on top of one LSTM and one dense layer. Therefore, the 

proposed approach reduced complexity and improves fitness. 

For example, using only one 1D CNN layer eliminates the 

complexity of multiple layers. It also ensures that the model 

does not remove too many informative features during 

convolution.  In fact, through the following formula we can 

determine the number of output features by each convolutional 

layer: 

 

𝑛𝑜𝑢𝑡 = 𝑛𝑖𝑛 − (𝑘 − 1)                                                           (24) 

 

in which nout is number of output features, nin is the number of 

input features and k is the kernel size (Dumoulin et al., 2018). 

Here, we have 21 input features and a 1D-convolutional layer 

with kernel size:3. Using equation 24, the number of output 

features nout is givens as: 

 

𝑛𝑜𝑢𝑡 = 21 − (3 − 1) =19 

 

Therefore, only 2 features are removed after data is filtered 

by 1D-convolutional layer in the proposed One-One-One 

Neural Networks classifier architecture.  Thus, information 

loss is minimized. Furthermore, the calculated result is 

consistent with the model summary generated from keras. As 

shown in table 3, the output of the Conv1d displayed -None, 

19, 64.  
 

 

 

Table 3  

Model Summary 

The batch_size is not fixed; this is shown as None values in 

each of the output shapes. The numbers of features output at 

the Conv1d is shown as 19, this agrees with value we 

computed using equation 24 above.  64 is the number of filters 

used. 

      The param # is the number of parameters or weights that 

are produced. These parameters are learned during the training 

of the model. The LSTM and the Dense produced 328 794 and 

32 896 parameters, respectively. The large value of the weight 

produced at the LSTM shows the impact of the 256 filters in 

learning the temporal nature of the dataset. The “softmax” 

layer (dense_4) has 3 output shape because our dataset is 

classified into 3 classes.  

     The param # of the “softmax” shows 387, this implies that 

each node in dense_3 (128) is mapped to each of the 3 nodes 

in the “softmax” layer with an added 3 for the bias: 3 * 128 +3 

=387. The total params at the bottom of the table is the sum 

total of all the parameters learned in the network; 256 + 328 

704 + 32 896 + 387 = 362 243. The trainable parameters are 

the total number of parameters or weights that the networked 

learned and adjusted their values for the optimization of the 

model.  

    As shown in the experimental result, among four models, 

the proposed One-One-One Neural Networks classifier can be 

considered as the least computationally expensive model for 

classification of the human balance dataset in this study. This 

is because it took only 12 epochs to the reach 99.9% accuracy 

and maintain stability.  
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VI. Conclusion 

 

According to Occam razor principle, simplicity is prior to 

complexity until proven otherwise (Oladunni & Sharma, 

2017). In this work, simple architecture of the proposed One-

One-one Neural Networks classifier produced the best result. 

Thus, eliminated the need for a more complex architecture. 

Our results also prove that the proposed One-One-One Neural 

Networks classifier has the capability of extracting the 

maximum amount of required spatiotemporal information 

from the force-plate using the randomized sample datasets. 

The extracted information from the dataset turns out to be 

necessary and sufficient for training and testing the proposed 

model with maximum accuracy, sensitivity, and precision 

without unnecessary architectural complexity.  

Generalizability of the model was further improved by 

hyperparameter tuning based on the exhaustive search of the 

grid for the optimal values of its hyperparameters’ values. 

Section IV illustrates the effectiveness of this methodology. 

The outcome of our experiments (Table 2) shows that we 

do not have enough evidence to reject our hypothesis. 

Therefore, we contend that the proposed one-one-one neural 

network demonstrated to be the most efficient neural network 

model in predicting human’s fall-risk using the force-plate 

time series signal.   
 

Table 4  

Comparison with the state-of-the-art 

Study Year Best Result 

(Acc%) 

RF: with six (temporal, spatial, spectral) 

features used in random selection  (Giovanini 
et al., 2018) 

2018 64.9 

MLP; used 18 time and frequency domain 

features by SAFE feature extraction method 
(Reilly, 2019) 

2019 80 

SVM; used force signals as features (Cetin & 

Bilgin, 2019) 

2019 81.67 

CNN (ours); used all force, moment, and 

CoP features 

 
 

 

 
 

2020 

99.3 

RNN (ours); used all force, moment, and 

CoP measures 

96.9 

LSTM (ours); used all force, moment, and 

CoP measures 

98.3 

One-One-Three NN (ours); used all force, 

moment, and CoP measures 

99.5 

One-One-Two NN (ours); used all force, 

moment, and CoP measures 

99.7 

One-One-One NN (Proposed); used all 

force, moment, and CoP measures 

99.9 

 

Intuitively, the hybrid of the proposed One-One-One 

Neural Networks classifier benefits from advantages of both 

CNN, LSTM and Dense. Therefore, it is logical that the model 

is effective in analyzing the 1D data with a spatiotemporal 

structure such as force-plate time series. In fact, CNN does the 

feature extraction process and prepares data for LSTM which 

interprets the features across time steps (Brownlee, n.d.; Zhou 

et al., 2015). 

Table 4 compares the performance of our experiment with 

the state-of-the-art on the same dataset. Balance metrics of 163 

subjects were used by different researchers to differentiate 

people based on their gender, age, risk of fall, etc. We focused 

on a non-binary classification and discriminated people based 

on their balance abilities not only on their gender or age as 

done in previous studies.  

Based on the outcome of our experiment, we argue that the 

proposed model is reliable and efficient in predicting risk of 

fall in human subjects of different ages based on their fall 

concern and balance abilities. In other words, this model can 

detect balance impairment in different range of people with 

age, gender, health status, fall history, illness, medication use, 

impairment background and other specifications. The dataset 

for this work was retrieved from (dos Santos & Duarte, 2016; 

Santos & Duarte, 2016) and contains the balance 

characteristics of many human subjects recorded by a force-

plate. 

This study shows the effectiveness and performance of deep 

neural networks in building an accurate predictive model. Its 

effectiveness without the feature extraction stage of the 

traditional machine learning is evident as compared with our 

previous experiments (Savadkoohi et al., 2020). The 

promising result of the present study is a motivation in 

exploring the architecture of the proposed One-One-One Deep 

Neural Networks in discerning patterns and discovering 

knowledge in other scientific problems. However, 

experimental result may not be the same for all datasets. This 

is a limitation of this work because architectural simplicity and 

minimum complexity approach may not be adequate for all 

problems. 

 

Major contributions of this work are as follows. 

a. Table 4 shows that the worst classification accuracy of 

our work, 96.9% using RNN, is far above and beyond the 

highest accuracy of 80 and 81.67% achieved by other 

researchers in 2019 (Cetin & Bilgin, 2019; Reilly, 2019). 

To the best of our knowledge, we do not find any other 

study on this dataset with higher classification results. 

Therefore, we consider this work as the new baseline. 

b. 4 deep neural network models were designed, developed, 

and evaluated to predict human’s balance impairment 

using the force-plate time series signal. With an accuracy 

of 99.9% at the 12th epoch, our experiment shows that the 

proposed One-One-One Neural Networks has 

computational cost advantage over other models.  

c. Optimization of the proposed One-One-One Neural 

Networks classifier architecture was based on a 

combination of: i) random sampling for data selection, ii) 

architectural simplicity and minimum complexity 

approach, and iii) Exhaustive search technique of 

hyperparameters’ values using the grid searching 

methodology.  

d. Classification was based on the Short Falls Efficacy Scale 

International test (FES) for the identification of 

individuals’ concern (fear) of a fall. Subjects were 

classified as low, moderate, and high concern groups due 

to their FES test results which is a standard test to measure 

the fall risk. 
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The implications of the study are as follows: 

1. Balance impairment in human is predictable using deep 

neural networks. Our experiment employed this state-of-

the-art learning algorithms to classify force-plate balance 

time-series signal to predict human’s balance impairment.  

Classification was based on low, moderate, and high risk 

of a fall. 

2. Combining one layer of 1D CNN with one layer of LSTM 

and a Dense layer produces the most efficient neural 

network model in predicting human’s balance 

impairment using the force-plate time series signal. The 

proposed One-One-One Neural Networks classifier 

model provides a considerable increase in performance 

compared to other algorithms. Our experimental results 

show precision, sensitivity, and accuracy of 100 %, 100% 

and 99.9% respectively at the 12th epoch. 

3. Ultimately, using faster computers with higher CPU and 

more powerful processors, can lead to achieving more 

insightful perspective and gain a new knowledge 

regarding the human balance underlying patterns and its 

characteristics. 

4. Our experiment suggests that architectural simplicity and 

minimum complexity approach is critical in building 

efficient deep neural networks. The proposed One-One-

One Neural Networks classifier demonstrated the 

capability of extracting maximum spatiotemporal 

information from the randomized sample datasets. The 

extracted information turned out to be necessary and 

sufficient for training and testing the proposed model. The 

outcome of our experiment showed the effectiveness of 

the strategy. 

 
In the future, we will consider the following: 

1. A multiclass identification of individuals’ concern (fear) 

of a fall into very low, low, moderate, high, and very high. 

2. Dimensionality reduction of the explanatory variables to 

improve computational efficiency. 
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