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Abstract
Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is 
essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as 
drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual 
variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied 
in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the 
coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. 
From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipula-
tions both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These 
inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual 
precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP 
with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition 
of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this 
analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production 
in the future.
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Introduction

Aboveground net primary production (ANPP) is the prin-
cipal energy source for higher trophic levels, and produc-
tion of upper trophic levels depends on the amount and 
variability of ANPP over time (McNaughton et al. 1989). 
Therefore, understanding what regulates variation in ANPP 
through time is critical for predicting long-term patterns of 

ecosystem functioning and services (Daily et al. 2009). As 
such, identifying drivers of ANPP and its variability through 
time has been a central goal in ecology for decades (Cle-
ments 1916; MacArthur 1955; May 1973). This goal takes 
on greater urgency with predicted global change as ecolo-
gists seek to forecast future ecosystem function (Clark et al. 
2001).

Global change drivers (GCDs), such as land-use change, 
nitrogen deposition, elevated CO2 and more extreme climate 
regimes (Vitousek et al. 1997; Sala et al. 2000), can directly 
impact average and temporal variability of ANPP in her-
baceous systems (Morgan et al. 2004; Ladwig et al. 2012; 
Natali et al. 2012; Tilman et al. 2012; Borer et al. 2014; 
Avolio et al. 2014; Hautier et al. 2015; Koerner et al. 2016; 
Wilcox et al. 2016; Song et al. 2019). Depending on the 
type and direction of GCD, ANPP may increase, decrease, 
or exhibit no change (Smith et al. 2015; Andresen et al. 

Communicated by Heather Throop.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0044​2-020-04787​-6) contains 
supplementary material, which is available to authorized users.

 *	 Meghan L. Avolio 
	 meghan.avolio@jhu.edu

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2649-9159
http://crossmark.crossref.org/dialog/?doi=10.1007/s00442-020-04787-6&domain=pdf
https://doi.org/10.1007/s00442-020-04787-6


736	 Oecologia (2020) 194:735–744

1 3

2016; Song et al. 2019). Generally, GCDs that increase lim-
iting resources, such as CO2, nutrient, and water additions, 
increase ANPP (Morgan et al. 2004; Nowak et al. 2004; 
Wu et al. 2011; Wilcox et al. 2017; Song et al. 2019) as 
do warmer temperatures, particularly in cold environments 
(Rustad et al. 2001; Wu et al. 2011). In contrast, GCDs that 
decrease resources, such as drought, reduce ANPP (Wu et al. 
2011; Hoover et al. 2014; Song et al. 2019). A recent meta-
analysis notes that in addition to studying GCDs in isolation, 
there is a need for more research of the interacting effects 
of GCDs on ANPP (Song et al. 2019). GCDs also can affect 
temporal variability of ANPP, which may be correlated 
with how a particular GCD impacts mean ANPP. For exam-
ple, nutrient additions have been shown to increase inter-
annual variability of ANPP (Hautier et al. 2015; Koerner 
et al. 2016), whereas water additions decrease inter-annual 
variability of ANPP (Knapp et al. 2001). It remains unclear, 
however, whether these results are generalizable across eco-
systems, especially to those where ANPP is more limited 
by water, less limited by nutrients, or both. Meta-analyses 
of temporal variability of ANPP are limited because multi-
ple years of data are needed. Factors limiting productivity 
vary across ecosystems (Schimel et al. 1997; Knapp et al. 
2017), and accordingly the effects of GCDs on mean and 
temporal variability of ANPP may vary. Thus, synthesis is 
needed to infer generality (Ives and Carpenter 2007).

Generally, temporal dynamics of ANPP in herbaceous 
systems depend upon annual precipitation (Sala et al. 1988, 
1996, 2012; Knapp and Smith 2001; La Pierre et al. 2016; 
Knapp et al. 2017; Rudgers et al. 2018). Here, we define 
temporal dynamics as interannual variation. Sensitivity of 
ANPP to precipitation (i.e., change in ANPP per mm change 
in rainfall) varies with mean annual precipitation (MAP). 
For example, drier sites are more sensitive to inter-annual 
variability in precipitation than wetter sites (Huxman et al. 
2004; Sala et al. 2012). Varying sensitivity across a gradi-
ent of water limitation has been attributed to co-limitation 
by nutrients in more mesic sites (Huxman et al. 2004), 
which has been supported experimentally (Ladwig et al. 
2012). Thus, certain global change drivers (GCDs), such 
as increased nutrient inputs, may increase the sensitivity of 
ANPP to precipitation in mesic ecosystems if nutrient limi-
tation becomes alleviated, but responses may be less in more 
xeric ecosystems (Noy-Meir 1973; Collins et al. 2014). Con-
sequently, altered sensitivity to precipitation under GCDs 
would modulate the degree of temporal variability of ANPP 
across ecosystems.

In addition to interannual precipitation variability, a num-
ber of other biotic and abiotic factors also affect temporal 
variability in ANPP (Niu et al. 2017a, b). Many studies have 
shown that biodiversity affects variation in ANPP (Hector 
et al. 2010; Isbell et al. 2015). Across grasslands globally, 
temporal variability of ANPP decreases as species richness 

increases (Tilman and Downing 1994; Hector et al. 1999, 
2010; Tilman et al. 2006; Gross et al. 2014; Hautier et al. 
2014, 2015; Isbell et al. 2015). Moreover, Seddon et al. 
(2016) showed that global productivity is also limited by 
sunlight and temperature. Because many factors impact 
ANPP, we need to better understand how GCDs will affect 
the mean and variability of ANPP in the future across a 
broad array of ecosystems.

We performed a data synthesis using the CoRRE (Com-
munity Responses to Resource Experiments; corredata.
weebly.com) database to investigate whether different global 
change manipulations affect both mean and temporal varia-
bility of ANPP in herbaceous ecosystems. The CoRRE data-
base is a collection of multi-year GCD experiments where at 
least one resource is experimentally manipulated. Manipula-
tions include increases in water and CO2, single or multiple 
resources (e.g., nitrogen, phosphorus) as well as changes in 
temperature (heat), precipitation regimes, and altered dis-
turbance regimes, such as burning and tilling. While it is 
informative to study effects of different GCDs in isolation, 
their interactive effects can produce non-intuitive responses 
(Elser et al. 2007; Darling and Côté 2008; Leuzinger et al. 
2011; Morgan et al. 2011). To reveal general patterns of the 
effects of GCD manipulations on ecosystem productivity, we 
examined both changes in the mean ANPP over the course 
of each experiment and temporal variability of ANPP as 
measured by coefficient of variation, and investigated what 
may be affecting patterns of GCD treatment effects on tem-
poral variability of ANPP. Specifically, we hypothesized: 
(1) that GCD treatments that alleviate a limiting resource 
will increase mean and temporal variability in ANPP, (2) 
that GCD treatment effects on temporal variability of ANPP 
will vary depending on abiotic (e.g., temperature, precipita-
tion) and biotic (i.e., richness, evenness) site characteris-
tics, where drier sites will become more variable with GCDs 
and sites with more plant species will be less variable with 
GCDs, and (3) that nutrient additions will increase sensitiv-
ity to precipitation.

Methods

ANPP data

To be included in the CoRRE database, an experiment had to 
manipulate at least one plant resource, but not all treatments 
in the experiment had to be resource manipulations; thus, we 
have treatments, such as warming and herbivory. All datasets 
include a measure of abundance for each species recorded 
in a plot, and 58% also include ANPP data. We used a sub-
set of the CoRRE datasets that had six or more years of 
ANPP data. To date, analyses of GCD effects on variability 
of ANPP are limited to one site, Cedar Creek LTER (Hautier 
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et al. 2014) or span several sites but are only three years in 
duration using data from the nutrient network (Hautier et al. 
2015). Our data synthesis is both long-term and includes 11 
sites to provide necessary insight into the effects of GCDs 
on ANPP and variability of ANPP. This resulted in 27 data-
sets at 11 sites and 95 treatment-to-control comparisons (see 
Table S1 in Supporting Information for details) including 
13 different GCD treatments that were included in 2 to 35 
experiments each (Table 1). Importantly, the overall effect 
of these treatments on ANPP varied over time allowing us 
to examine temporal dynamics of ANPP (ESM Figure S1).

Stability (mean/standard deviation) and coefficient of var-
iability (CV, standard deviation/mean) are both measures of 
the temporal variability of ANPP (Knapp and Smith 2001; 
Hautier et al. 2015). Stability is roughly the inverse of varia-
bility (Lehman and Tilman 2000) and we will refer to both as 
measures of variability. Here, we used CV as our measure of 
variability, but results using stability were qualitatively simi-
lar. For each plot in an experiment, we calculated the mean 
(ANPPµ) and standard deviation (ANPPSD; shown in ESM 
Figure S2) of ANPP over the number years of the experi-
ment, and from this calculated the CV (ANPPcv = ANPPSD/
ANPPµ) for each replicate in an experiment. We used these 
values to calculate percent difference between the treatment 
and control plots. First, we averaged ANPPµ and ANPPcv 
of all replicates in a treatment or control and then calculated 
percent difference as ((treatment–control)/control)*100. 

Percent difference values near 0 indicate no change, positive 
values indicate that the treatment had increased the response 
variable relative the controls, and negative values indicate 
the treatments had reduced the response variable relative to 
the controls.

Site abiotic and biotic descriptors

Because precipitation data were not included in the CoRRE 
database, we obtained local annual precipitation data for 
each of the experimental sites for each year of an experi-
ment. For the five sites where there was a local station 
(ANG, CDR, KNZ, MAERC, NWT), we used the Global 
Historical Climatology Network to access daily observations 
from the closest weather station using the rnoaa R library 
(Chamberlain 2018). For Global Historical Climatology 
Network data, we excluded years missing more than 10% of 
the data. For one site (KLU), we used monthly precipitation 
data from Environment Canada, as this datum was not in 
Global Historical Climatology Network. For three sites that 
did not have local weather stations with reliable data, we 
used data collected from weather stations located at the site 
(SEV: hourly data; SERC: a combination of hourly and daily 
data; KBS: daily data). For two sites (DL and IMGERS), we 
could only obtain yearly totals that were provided by site 
investigators. In addition, mean annual precipitation (MAP) 
and mean annual temperature (MAT) were obtained from 

Table 1   Global change driver 
(GCD) treatments used across 
the 27 experiments included in 
this analysis

We note the number of experiments in which that treatment occurred, which is the sample size for each 
individual GCD treatment in the analyses, and the number of sites where a treatment was manipulated. 
An asterisk denotes those treatments that were performed at five or more locations. Two asterisks denote 
those treatments were included in interacting drivers treatment category, which has 11 control-treatment 
comparisons. In total there were 95 control-treatment comparisons. See Table S1 for more details on the 
treatments and experiments

Treatment Number of 
experiments

Number of 
sites

Notes

CO2 5 2
Water* 7 5 All experiments were water additions
Nitrogen* 11 8
Phosphorus 5 2
Heat 4 3
Non-Resource 7 4 Includes fungicide, soil depth, 

altered precipitation patterns, burn-
ing, and tilling

Nitrogen + CO2** 2 2
Nitrogen + Water** 3 3
Nitrogen + Heat** 2 2
Water + Heat** 2 2
Multiple Nutrients* 33 5 Includes all treatments with more 

than one nutrient (e.g. N + P, 
N + P + K)

Nitrogen + Water + Heat** 2 2
Nutrients + Non-Resource 12 4
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the WorldCLIM database (https​://www.world​clim.org) for 
all sites.

To calculate evenness at a site, we used the average even-
ness of control plots over all time points using the commu-
nity_structure() function in the library(“codyn”) R package 
(Hallett et al. 2019). We used Evar as our measure of even-
ness (Smith and Wilson 1996). To remove bias in sampling 
area and effort, we calculated rarefied species richness using 
poolaccum() function in the vegan package (Oksanen et al. 
2019) in R and drew estimates for the lowest sampling effort 
in our database across all sites. See Komatsu et al. (2019) 
for more details.

Statistical analyses

All statistical analyses were conducted in R version 3.6.0 
(R Core Team 2019) with an alpha set to 0.05 and all code 
can be found at the github repository mavolio/ANPP_Vari-
ability_Oecologia. Treatment was not included as a fixed 
effect in our models because treatment types were not well 
replicated across experiments (Table 1). Multi-nutrient addi-
tions, nitrogen addition, water, and interacting drivers (e.g. 
nitrogen and water addition) were well-replicated across 
sites, so we examined their effects separately, otherwise all 
treatments were grouped together.

To assess how GCDs affect ANPP and the temporal vari-
ability of ANPP, we performed two complementary analy-
ses. First, for each treatment in an experiment, we performed 
two-tailed t tests between control and treated replicates to 
determine whether mean or temporal variability of ANPP 
differed and then tallied these results. Next, to assess the 
magnitude of treatment effects, we performed one-tailed t 
tests of the percent difference between treatment and con-
trols for mean and temporal variability of ANPP to see if 
they differed from zero across all experimental treatments as 
well as for each of the three well-replicated treatment types 
and interacting drivers.

We performed three additional analyses to further investi-
gate GCD treatment effects on temporal variability of ANPP. 
We examined the effect of site characteristics on GCD treat-
ment effects on temporal variability of ANPP. To do so, we 
used Pearson’s correlations and stepwise multiple regression 
[stepAIC() function in the library(“MASS”) package (Vena-
bles and Ripley 2002)] to investigate which site character-
istics (MAT, MAP, rarefied site species richness, and site 
evenness) correlated with percent difference temporal vari-
ability of ANPP. Partial R2 values were determined with the 
rsq.partial() function in the library(“rsq”) package (Zhang 
2018). Next, we determined if GCD treatments affected the 
sensitivity of ANPP to environmental variation. We calcu-
lated the difference (treatment control) of the slopes from 
a linear regression between yearly ANPP and precipitation 
for each treatment in each experiment. A positive number 

indicated that treatment plots are more responsive to pre-
cipitation than the control plots. To test whether each GCD 
treatment affected ANPP sensitivity to precipitation, we ran 
a one-tailed t test to determine if the change in sensitivity 
(difference in slopes) differed from zero.

Results

Do GCDs affect mean and temporal variability 
of ANPP?

In 56% of the GCD treatments, ANPP of treated plots was 
not significantly different than controls (Fig. 1a), and for 
76% of GCD treatments, temporal variability of ANPP of 
treated plots did not differ from controls (Fig. 1b). When 
treatment differed from control, mean ANPP increased 
in 38 out of 42 comparisons (Fig. 1a), whereas, temporal 
variability of ANPP increased in eight and decreased in 15 
comparisons (Fig. 1b). Multiple nutrients and water addition 
increased ANPP more often than nitrogen alone and when 
several interacting drivers were simultaneously manipulated 
(Fig. 1a). In > 75% of comparisons, multiple nutrients, water 
and nitrogen addition and interacting drivers had no effect 
on the temporal variability of ANPP (Fig. 1b).

Across all treatment–control comparisons, GCDs 
increased mean ANPP by 28% (t = 7.014; p < 0.001; 
Fig. 1c) but did not affect the temporal variability of ANPP 
(t = − 1.669; p = 0.099; Fig. 1d). Multiple nutrient additions 
increased ANPP by 47% (t = 6.54; p < 0.001; Fig. 1c) but 
had no effect on temporal variability of ANPP (t = 1.59; 
p = 1.121; Fig. 1d). Similarly, nitrogen and water addi-
tions both increased ANPP by 25% and 35%, respectively, 
(nitrogen: t = 3.35; p = 0.007; water: t = 3.44; p = 0.014; 
Fig. 1c), but neither affected the temporal variability of 
ANPP (nitrogen: t = − 0.872; p = 0.400; water: t = − 1.23, 
p = 0.264; Fig. 1d). Interacting drivers increased ANPP by 
26% (t = 3.30; p = 0.008), but had no effect on the temporal 
variability of ANPP (t = 1.51; p = 0.162). We found no effect 
of the amount of nitrogen or water added on mean ANPP 
and temporal variability ANPP, however, there was greater 
production response with higher amounts of multiple nutri-
ents added, but no effect on CV of ANPP (ESM Figure S3).

Do abiotic and biotic characteristics alter the effect 
of GCDs on temporal variability of ANPP?

We found that, together, site MAT, MAP, and evenness 
explained 45% of the variation in percent difference of 
temporal variability of ANPP (adj. R2 = 0.446; p < 0.001). 
GCD treatments increased temporal variability of ANPP 
in ecosystems that were drier (partial R2 = 0.086; p < 0.05: 
Fig. 2c) and colder (partial R2 = 0.108; p < 0.001; Fig. 2d). 

https://www.worldclim.org
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Removing the coldest site did not change the relationship 
between MAT and temporal variability of ANPP (data not 
shown). In contrast, GCD treatments decreased temporal 
variability in ANPP at less even sites (partial R2 = 0.101; 
p < 0.05; Fig. 2b).

Do GCDs affect sensitivity of ANPP to annual 
precipitation?

Overall, GCDs increased sensitivity of ANPP to precipi-
tation (Fig. 3; t value = 4.12; p value < 0.001). The multi-
nutrient additions increased sensitivity of ANPP to precipi-
tation (t value = 2.95, p = 0.006), but nitrogen (t value = 1.27, 

p = 0.232), water additions (t value = − 1.89, p = 0.107) and 
interacting drivers (t value = 1.18; p = 0.265; Fig. 3) had no 
effect.

Discussion

The analysis of GCD treatment effects on mean and variabil-
ity of ANPP across several herbaceous ecosystems revealed 
that mean ANPP was affected by GCD treatments more 
often than temporal variability of ANPP. Overall, the GCD 
treatments studied here increased mean ANPP, but there 
were no consistent effects of GCD treatments on temporal 

Fig. 1   Proportion of treatments with no change (based on a t test 
between control and treated plots), an increase, or decrease in a) 
mean ANPP and b) temporal variability (CV) of ANPP. Percent dif-
ference between treated and control plots for c) mean ANPP and 

d) temporal variability (CV) of ANPP. Shown are means ± S.E. An 
asterisk denotes significant difference from zero at p < 0.05. n = 95 
for all treatments, 33 for multiple nutrients, 11 for nitrogen, 7 for 
water, 11 for interacting drivers, and 33 for other GCDs
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variability of ANPP. While we found examples of temporal 
variability increasing and decreasing, most often it did not 
change. Differential effects of GCDs on temporal variability 
of ANPP could be explained by several factors. First, sites 
that were wetter, warmer and had lower evenness became 

less variable. Second, our results also showed that GCD 
treatments increased ANPP sensitivity to precipitation. We 
also found that when studying interacting drivers (e.g. ele-
vated CO2 and nitrogen), their effects were similar to single 
drivers suggesting multiple drivers are not diminishing nor 
amplifying one another. Overall, these results demonstrate 
that site differences, both biotic and abiotic, are important 
determinants of responses of temporal variability of ANPP 
to GCDs across ecosystems.

We found general support for our hypothesis that GCD 
treatments investigated here would increase ANPP. This 
is not too surprising given that many of the treatments in 
these experiments were resource additions and mirror other 
findings (Nowak et al. 2004; Wu et al. 2011; Wilcox et al. 
2017; Song et al. 2019). However, although GCD treat-
ments increased ANPP overall, ANPP significantly differed 
between control and treatment in only 44% of the compari-
sons. Treatments that had two or more interacting factors did 
not result in augmented or diminished effects on ANPP com-
pared with single drivers, which is possible evidence that 
predicting the effects of multiple interacting GCDs together 
might be difficult using data from single GCD manipulations 
alone (Leuzinger et al. 2011).

Contrary to our first hypothesis, we found no overall 
effect of GCD treatments on temporal variability of ANPP 
as measured by the coefficient of variation. This result 
was consistent for the analysis of all GCD treatments and 
for the multiple nutrient, nitrogen, water, and interacting 

Fig. 2   Correlations of percent differences between treated and control 
plots temporal variability of ANPP with different biotic a Sp. richness 
b species evenness (measured using Evar), and abiotic c MAP (mm), 
d MAT (°C) variables (see text for details). The correlation coeffi-
cient, r, is shown in the top right, and smoothed lines were included 
when correlations were significant (p < 0.05). Blue points indicate 

that treatment plots differed significantly from controls. Points above 
the zero line indicate that treated plots had higher values than the 
controls and vice versa. Please note two sites have MAT of 12 °C and 
two sites have very similar MAP and are difficult to tease apart (369–
386). n = 95

Fig. 3   Effect of GCDs on the sensitivity of ANPP to precipitation 
(differences in slopes of treated and control plots of the relationship 
between annual precipitation and ANPP) for all treatments, three dif-
ferent GCDs, and interacting GCDs. An asterisk denotes significant 
difference from zero at p < 0.05). n = 95 for all trts, 33 for multiple 
nutrients, 11 for nitrogen, 7 for water, and 11 for interacting drivers
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driver treatments when analyzed separately. This contrasts 
with findings from some single site studies where temporal 
variability was influenced by treatments. For example, at 
Cedar Creek, Minnesota, Hautier et al. (2015) found that 
GCD treatments increased temporal variability of ANPP and 
attributed this to species loss. In contrast, at the Kellogg 
Biological Station, Michigan, Grman et al. (2010) found 
nitrogen and disturbance decreased variability, which they 
attributed to species compositional differences. At Lanzhou, 
China, Niu et al. (2017a, b) reported that greater amounts 
of N addition resulted in greater variability of ANPP. In 
a cross-site study of grassland responses to three years of 
nutrient additions, temporal variability of ANPP increased 
(Hautier et al. 2014), which was attributed to nutrient addi-
tions weakening biodiversity effects. While we did find 
examples of temporal variability of ANPP increasing and 
decreasing in some experiments, overall, we found no sys-
tematic response, and overwhelmingly the majority of treat-
ments had no effect on variability. A caveat of our findings 
is that the majority of our GCD treatments were resource 
increases and resource reductions may have yielded differ-
ent results, which demonstrate the need for more long-term 
resource-reduction experiments, especially drought.

We found evidence for our second hypothesis that biotic 
site characteristics underlie differential responses of tem-
poral variability of ANPP. Contrary to our hypothesis that 
sites with more species would have less variable production 
in response to GCDs, we found higher species richness did 
not buffer against year-to-year fluctuations of production. 
Previous studies found that more diverse areas (higher spe-
cies richness) have more stable production over time (Til-
man et al. 2006) and GCD treatments that cause declines in 
species richness also have reduced stability of production 
over time (Hautier et al. 2015). However, we did find that 
in less even ecosystems GCD treatments reduced temporal 
variability of ANPP, highlighting dominance as a potential 
mechanism of stability (Hallett et al. 2014). GCD treatments, 
especially nutrient additions, can decrease evenness (House-
man et al. 2008; Avolio et al. 2014) and when evenness is 
low, production is most likely driven by a few species and 
perhaps these species are less responsive to GCDs (Lepš 
et al. 1982; MacGillivray and Grime 1995; Yu et al. 2015).

In addition to evenness, we found abiotic site character-
istics drive differential responses of temporal variability of 
ANPP, further supporting our second hypothesis. Treat-
ments increased temporal variability of ANPP in colder 
and drier ecosystems and decreased temporal variability of 
ANPP in wetter and warmer ecosystems. Maximum plant 
growth rate often limits ANPP, which is evidenced by satu-
rating non-linear relationships between resources and pri-
mary productivity (Knapp et al. 2017; Wilcox et al. 2017). 
In high-resource years at wetter and warmer ecosystems, 
GCD treatments that increase resources may have minimal 

impacts on ANPP. This would effectively reduce the year-
to-year variability in ANPP in more mesic systems, as we 
observed here. Alternately, resource-poor ecosystems are 
often below their productivity potential so that responses 
in wet years to GCDs are often large. For example, Ladwig 
et al. (2012) showed that nitrogen addition in a Chihuahuan 
Desert grassland greatly increased ANPP responses in wet 
years, but not in dry years, leading to increased variability 
of ANPP in nitrogen addition plots.

Finally, we found support for our third hypothesis that 
sensitivity of ANPP to precipitation was increased by GCD 
treatments, and further, that multiple nutrient additions 
caused ANPP to be more sensitive to precipitation. Multiple 
nutrient additions would alleviate many co-limitations on 
ANPP (Fay et al. 2015), thus making the productivity of an 
ecosystem more dependent on water as a limiting resource 
(Huxman et al. 2004; Ladwig et al. 2012). However, we 
found that water addition had no overall effect on sensitiv-
ity to precipitation. The fact that nitrogen additions alone 
did not affect sensitivity, but multiple nutrients did support 
prior work indicating that many ecosystems are co-limited 
by multiple resources (Harpole et al. 2016).

Conclusion

Understanding variability of ANPP through time is impor-
tant for the maintaining consistency of ecosystem services, 
as well as informing about the probability of ecosystems 
crossing catastrophic thresholds, such as the 1930′s Dust 
Bowl. We found no significant differences in temporal 
variability of ANPP for 76% of control-treatment compari-
sons, and when differences were found, both increases and 
decreases occurred resulting in no overall effect. Several fac-
tors contribute to the contrasting effects of GCDs on tempo-
ral variability of ANPP including site differences in biotic 
and abiotic characteristics as well as altered sensitivity to 
precipitation. Our results suggest GCDs are more likely to 
increase temporal variability of ANPP in dry and cool eco-
systems and in communities with high evenness that lack a 
strong dominant species. We suggest that these ecosystems 
should be a priority for future research and conservation 
efforts to mitigate increased variability under various global 
change drivers. Our finding that multiple nutrient additions 
increased the sensitivity of ANPP to precipitation highlights 
the need to closely monitor eutrophication rates and their 
effects, especially when multiple types of nutrient enrich-
ment may occur, such as simultaneous N and P fertilization. 
We conclude that GCDs that increase resources are more 
likely to affect mean than temporal variability in ANPP, and 
thus, the impacts of GCDs on reliability of ecosystem pro-
duction are expected to be minimal relative to the magnitude 
of change in production.
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