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ABSTRACT

We mathematically compare four competing definitions of group-
level nondiscrimination: demographic parity, equalized odds, pre-
dictive parity, and calibration. Using the theoretical framework of
Friedler et al., we study the properties of each definition under
various worldviews, which are assumptions about how, if at all, the
observed data is biased. We argue that different worldviews call for
different definitions of fairness, and we specify the worldviews that,
when combined with the desire to avoid a criterion for discrimi-
nation that we call disparity amplification, motivate demographic
parity and equalized odds. We also argue that predictive parity
and calibration are insufficient for avoiding disparity amplification
because predictive parity allows an arbitrarily large inter-group
disparity and calibration is not robust to post-processing. Finally,
we define a worldview that is more realistic than the previously
considered ones, and we introduce a new notion of fairness that
corresponds to this worldview.
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1 INTRODUCTION

Researchers in the field of fair machine learning have proposed
numerous tests for fairness, which focus on some quantitative as-
pect of a model that can be operationalized and checked using
empirical, statistical, or program analytic methods. These tests ab-
stract away more subtle issues that are difficult to operationalize or
too contentious to decide algorithmically, such as which groups or
attributes should be protected and which cases should be treated
as exceptions to general rules. Our work sheds light on some of
the possible assumptions behind and motivations for four common
empirical tests that check for discrimination against groups.
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The simplest of these tests, demographic parity, checks whether
the model gives the favorable outcome to two given groups of peo-
ple at equal rates. This test is an abstraction of the legal notion of
disparate impact, or indirect discrimination, which in certain circum-
stances requires that some approximation of demographic parity
hold. Like disparate impact, demographic parity does not depend
upon the intentions of the modeler, and it can flag a model that
does not directly use the protected attribute if it instead uses an-
other attribute that is correlated with the protected one. However,
demographic parity abstracts away disparate impact’s exceptions
for cases where there is sufficient justification for a disparity in
outcomes, such as a business necessity [e.g., 2, 18]. By completely
abstracting away such exceptions, demographic parity may lead to
models so inaccurate as to become useless, such as when predicting
physical strength while requiring demographic parity on gender.

This impossibility of accuracy motivates moving away from de-
mographic parity to tests that take the ground truth into account,
allowing a degree of accuracy. One such test, called equalized odds
by Hardt et al. [19], requires equal false positive and false negative
rates for each protected group. Two other commonly used tests
are predictive parity, which requires equal predictive values for
each protected group, and calibration, which further imposes the
constraint that the model must output the correct probability [e.g.,
6]. Like demographic parity, all of these tests can be seen as ab-
stractions of disparate impact in that they too examine disparities
in outcomes, not how or why they were reached. In contexts where
accuracy can be considered a business necessity, these tests ar-
guably provide a more refined abstraction of disparate impact than
demographic parity does.

However, disagreement exists over which of these tests is the
most appropriate, with some favoring calibration [10] and some
favoring equalized odds [1, 19]. It has been argued that adopting
the calibration or equalized odds test corresponds to adopting the
perspective of either the person using the classification or the per-
son being classified, respectively [1, 28]. We provide a different lens
on this disagreement and study the conditions under which each
test allows the amplification of pre-existing disparities.

In some cases, the “ground truth” may be tainted by past discrim-
ination, and consulting it will help perpetuate the discrimination.
In this work, we handle this issue by adopting the framework of
Friedler et al. [14], who make a distinction between the observed
ground truth and the construct, which is the attribute that is truly
relevant for prediction. For example, in the context of bail decisions,
the construct could be whether a defendant commits a crime while
out on bail, and the observed ground truth could be whether the
defendant is rearrested for a crime. Because the construct is usually
unobservable, Friedler et al. introduce and analyze two assump-
tions, or worldviews, about the construct: Under the We’re All Equal
(WAE) worldview, there is no association between the construct
and the protected attribute, and under the What You See Is What



FAccT °21, March 3-10, 2021, Virtual Event, Canada

You Get (WYSIWYG) worldview, the observations accurately reflect
the construct.

By using the construct, we specify a natural criterion for dis-
crimination. This criterion, disparity amplification, deals with the
disparity in positive classification rates, which is a widely accepted
measure of discriminatory effect in both law [12] and computer
science [4, 5, 13, 21, 35, 36]. It stipulates that a disparity in the out-
put of the model is justified by a commensurate disparity in the
construct, thereby allowing accurate models even when the base
rates are different for different protected groups, as equalized odds,
predictive parity, and calibration do. In addition, because it uses
the construct, it does not depend upon the possibly biased ground
truth. Using the often unobservable construct can make testing for
disparity amplification impossible; we argue that its value instead
comes from its ability to organize the space of empirical tests.

In particular, one of our main contributions is our argument
that the WAE and WYSIWYG worldviews, when combined with
the desire to avoid disparity amplification, motivate demographic
parity and equalized odds, respectively. We thus shed light on why
people may disagree about which empirical test of discrimination
to apply in a particular setting: Even if they agree on the need to
avoid disparity amplification, they may disagree about the correct
worldview to apply in that setting. We also show that, regardless
of the worldview and the base rates of the observed ground truth,
predictive parity does not impose any restrictions on the extent to
which a model amplifies disparity. Calibration is more restrictive
in this regard, but the common post-processing method of thresh-
olding can amplify disparity to an arbitrary extent. Since equalized
odds is incompatible with predictive parity or calibration [6, 8, 23],
this is an argument for the use of equalized odds instead of predic-
tive parity or calibration. Furthermore, we compare our approach
to that of Zafar et al. [34] in their work on disparate mistreatment,
or disparate misclassification rates, showing that the definition of
disparity amplification can be modified to apply in their setting.

Although the WAE and WYSIWYG worldviews are useful for
theoretical analysis, they are unlikely to be true in practice. To
remedy this issue, we introduce a family of hybrid worldviews that
is parametrized by a measure of how biased the observed data is
against a protected group of people. This allows us to model many
real-world situations by simply adjusting the parameter. We then
create a parametrized test for discrimination that corresponds to
the new family of worldviews, showing how one can apply the
analysis in our paper to more realistic scenarios.

Our most fundamental contribution is introducing a framework
in which to motivate empirical tests in terms of construct-based
criteria of discrimination and worldviews. Disparity amplification is
not the only relevant notion of discrimination, nor is it suitable in ev-
ery context. Indeed, there are many other aspects of discrimination
that we do not address in this paper, such as intentional discrim-
ination [2, §II-A], individual fairness [11], proxy discrimination [9],
delayed outcomes [26], and affirmative action [22]. Future work may
use our approach to tease out the assumptions implicit in these tests.

We view the discussed tests and disparity amplification as di-
agnostics that can lead to further investigations of potentially dis-
criminatory behavior in a model. As a result, we do not provide
an algorithm for ensuring that a model does not have disparity
amplification since, in our view, doing so would be treating the
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symptom rather than the cause. Such algorithms can eliminate one
aspect of discrimination, but may in the process create a model
that is obviously discriminatory from another angle. When a model
does not satisfy a notion of nondiscrimination, it should be a start-
ing point for investigation as to why. While it could be that the
learning algorithm is corrupt, it could also be due to a mismatch
between the construct and the observed data, or a need for better
features. No one test or criterion can ensure fairness [17], and no
single algorithm will be appropriate in all cases.

2 RELATED WORK

Our work is most similar in structure to that of Heidari et al. [20],
who propose a unifying framework that reformulates some exist-
ing fairness definitions through the lens of equality of opportunity
from political philosophy [29, 30]. They then propose a new fairness
definition that is inspired by this lens. Although we also present
a unifying framework, our unification is through the lens of con-
structs and worldviews.

Friedler et al. [14] introduced the concept of the construct in fair
machine learning. Although they also use the construct in their
definition of nondiscrimination, their definition uses the Gromov—
Wasserstein distance and as a result is more difficult to compute
and reason about. One benefit of their approach is that it enables
their treatment of fairness at both the individual level and the group
level. By contrast, we consider group nondiscrimination only, and
this allows us to draw a parallel between the worldviews and the
existing empirical tests of discrimination.

Barocas and Selbst [2] discuss in detail the potential legal issues
with discrimination in machine learning. One widely consulted le-
gal standard for detecting disparate impact is the four-fifths rule [12].
The four-fifths rule is a guideline that checks whether the ratio of
the rates of favorable outcomes for different demographic groups
is at least four-fifths. This guideline can be considered a relaxation
of demographic parity, which would instead require that the ratio
of the positive classification rates be exactly one.

The four-fifths rule has inspired the work of Feldman et al. [13]
and Zafar et al. [35], who deal with a generalization of the four-
fifths rule, called the p% rule, in their efforts to remove disparate
impact. On the other hand, many others [4, 5, 21, 36] consider the
difference, rather than the ratio, of the positive classification rates.
Our discrimination criterion is a generalization of this difference-
based measure, but it differs from the others in that it uses the
construct rather than the observed data.

Other works in the field of fair machine learning deal with as-
pects of discrimination that are not well described by positive clas-
sification rates. Hardt et al. [19] characterize nondiscrimination
through equalized odds, which requires that two measures of mis-
classification, false positive and false negative rates, be equal for
all protected groups. Calibration, Chouldechova [6] points out, is
widely accepted in the “educational and psychological testing and
assessment literature”. In another work, Friedler et al. [15] create a
benchmark for empirically evaluating the consequences of impos-
ing these and other definitions of fairness, finding that many, but
not all, definitions lead to similar model behavior.

Dwork et al. [11] formally define individual fairness and give ex-
amples of cases where models are blatantly unfair at the individual
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level even though they satisfy demographic parity. Although indi-
vidual fairness is sometimes considered to be in conflict with group-
based notions of fairness, Binns [3] argues otherwise, instead point-
ing to the difference in worldviews as the truly important factor. He
then lists demographic parity and calibration as corresponding to
the WAE and WYSIWYG worldviews, respectively. For the WYSI-
WYG worldview, he reasons that if calibration is satisfied, no appli-
cant would receive a less favorable outcome than a less qualified ap-
plicant, assuming that the calibrated scores accurately describe the
degree to which the applicant is qualified. By contrast, in this paper
we prove that equalized odds, but not calibration, is an effective way
to avoid disparity amplification under the WYSIWYG worldview.

As mentioned previously, discriminatory effects can be justified
if there is a sufficient reason. For prediction tasks, it is natural to
think of accuracy as a sufficient justification. Zafar et al. [35] han-
dle this by solving an optimization problem to maximize fairness
subject to some accuracy constraints. This reflects the idea that a
classifier is justified in sacrificing fairness for accuracy. To a lesser
extent, equalized odds, predictive parity, and calibration can also
be thought of as motivated by the dual desires for accuracy and
fairness. Our approach to justification is also motivated by these
desires, but we use the construct and say that a classifier is justified
in predicting the construct correctly.

3 NOTATION

In the framework introduced by Friedler et al. [14], there are three
spaces that describe the target attribute of a prediction model. The
construct space represents the value of the attribute that is truly
relevant for the prediction task. This value is usually unobservable,
so prediction models in a supervised learning problem are instead
trained with a related measurable label, whose values reside in the
observed space. Finally, the prediction space (called decision space by
Friedler et al.) describes the output of the model. We will use Y’,
Y, and Y as the random variables representing values from the con-
struct, observed, and prediction spaces, respectively. (See Figure 1.)

In addition, we will use Z to denote the protected attribute at
hand, and we will assume that Z € {0, 1}. For example, if Z is gen-
der, the values 0 and 1 could represent male and female, respectively.
Although the input features X = (X1, ..., X,) are also critical for
both the training and the prediction of the model, they are rarely
used in this paper.

Example 1. Some jurisdictions have started to use machine
learning models to predict how much risk a criminal defen-
dant poses [25]. Judges are then allowed to consider the risk
score as one of many factors when making bail or sentencing
decisions [32]. Using the three-space framework of Friedler
et al. [14], we can represent the risk score output by the
model as Y. The model would be trained with the observa-
tion Y, which in this case may be recorded data about past
criminal defendants and their failures to appear in court
(bail) or recidivism (sentencing). These models would also
be trained with features X from the input space, such as age
and criminal history.

For sentencing decisions, presumably we want to know
whether the defendant will commit another crime in the
future, regardless of whether the defendant will be caught
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committing the crime. Therefore, we argue that the recorded
recidivism rate Y is merely a proxy for the actual reoffense
rate Y/, which is the relevant attribute for the prediction
task. There is evidence that Black Americans are arrested at
a higher rate than White Americans for the same crime [27],
so it is reasonable to suspect that Y is a racially biased proxy
for Y’

Example 2. Universities want the students that they admit to
the university to be successful in the university (Y’). Because
success is a vague term that encompasses many factors, a
model that predicts success in university would instead be
trained with a more concrete measure, such as graduating
within six years (Y). This model may take inputs such as a
student’s high-school grades and standardized test scores
(X), and will output a prediction of how likely the student is
to graduate within six years (¥). Admissions officers can then
use this prediction to guide their decision about whether to
admit the student.

It is important to note that the models in the above examples do
not make the final decision and that human judgments are a major
part of the decision process. However, we are concerned about the
fairness of the model rather than that of the entire decision process.
Thus, we focus on f/, the output of the model, rather than the final
decision made using it.

4 PRELIMINARY DEFINITIONS

In this work, we use two notions of distance between two ran-
dom variables that measure how different the random variables
are. When the random variables are categorical, we use the total
variation distance.

DEFINITION 1 (TOTAL VARIATION DISTANCE). Let Yy and Y7 be
categorical random variables with finite supports Yy and Y;. Then,
the total variation distance between Yy and Y; is

1

dw(Yo, 1) == > |Pr[Yo=y] - Pr[Vi=y]|
2
yeShHUY,

In the special case where Yy, Y1 € {0, 1}, the total variation dis-
tance can also be expressed as | Pr[Yy=1] — Pr[Y1=1]|.

When the random variables are numerical, our notion of distance
takes into account the magnitude of the difference in the numerical
values. The following definition assumes that the random variables
are continuous, but a similar definition is applicable when they are
discrete.

DEFINITION 2 (EARTHMOVER DISTANCE). Let Yy and Y1 be contin-
uous numerical random variables with probability density functions
po and py defined over support Y . Furthermore, let T be the set of joint
probability density functions y(u,v) such that fy y(u,0) do = po(u)
forallu € Y and fy y(u,0)du = p1(v) forallv € Y. Then, the

earthmover distance between Yy and Y; is

dem (Yo, Y1) = inf/ / y(u,0) d(u,v) du do,
vl Jy Jy
where d is a distance metric defined over Y.

The joint probability density function y has marginal distribu-
tions that correspond to Yy and Y;. Intuitively, if we use the graphs
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observed space and the prediction space are measurable, and the existing empirical tests (Definitions 4, 5, 6) impose constraints
on the relationship between the two spaces. On the other hand, the construct space is usually unobservable, so we must
assume a particular worldview (e.g., Worldview 1 or 2) about how the construct space relates to the observed space, if at all.
Then, we can define disparity amplification and construct accuracy, which relate the construct space to the prediction space.

of the probability density functions pg and p; to represent mounds
of sand, y corresponds to a transportation plan that dictates how
much sand to transport in order to reshape the pg mound into the
p1 mound. In particular, the value of y(u,v) is the amount of sand
to be transported from u to v. The distance d(u,v) can then be
interpreted as the cost of transporting one unit of sand from u to v,
and the earthmover distance is simply the cost of the transportation
plan y that incurs the least cost.
Now we define Lipschitz continuity.

DEFINITION 3. Let f : Y — R bea function, and letd be a distance
metric defined over Y. f is p-Lipschitz continuous if; for allu,v € Y,

If () = f(o)| < p-d(u,0). ey

4.1 Existing Empirical Tests of Discrimination

Many fairness definitions for prediction models have been pro-
posed previously, and here we restate four of them. Because much
of the prior work does not make the distinction between the con-
struct space and the observed space, there is some ambiguity about
whether Y’ or Y is the appropriate variable to use these definitions.
Given that these works suggest that these definitions can be com-
puted, we interpret them to be empirical tests that can help verify
whether a model is fair. As a result, none of these definitions include
the construct Y. In all four definitions, the probabilities are taken
over random draws of data points from the data distribution, as
well as any randomness used by the model.

DEFINITION 4 (DEMOGRAPHIC PARITY TEST). A model passes the
demographic parity test if; for all g,
Pr[Y={ | Z=0] = Pr[Y=( | Z=1].
DEFINITION 5 (EQUALIZED OpDSs TEST [19]). A model passes the
equalized odds test if; for all y and 3,
Pr[Y={ | Y=y, Z=0] = Pr[V=i} | Y=y, Z=1].
DEFINITION 6 (PREDICTIVE PARITY TEST [6]). A model passes the
predictive parity test if, for all y and 1),
Pr[Y=y | Y=i), Z=0] = Pr[Y=y | Y=0, Z=1].
Unlike the above three tests, the calibration test is only defined
for binary observations, i.e., Y € {0, 1}.
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DEFINITION 7 (CALIBRATION TEST [6]). A model with a binary
Y passes the calibration test if, for all § in the support of Y,

Pr[Y=1| Y=§, Z=0] = Pr[Y=1| Y=}, Z=1] = 7).

4.2 Worldviews

Our intuitive notion of discrimination involves the relationship
between the construct space and the prediction space. For example,
consider the context of recidivism prediction described in Exam-
ple 1. Suppose that one group of people is much more likely to be
arrested for the same crime than another group. Then, the disparity
in arrest rates can cause the recorded recidivism rate Y to be biased,
and a model trained using such Y would likely learn to discriminate
as a result. If in fact the two groups have equal reoffense rates Y’,
it would hardly be considered justified that one group tends to be
given longer sentences as a result of the biasin Y.

However, because Y’ is typically unobservable, in practice we
do not know whether Y’ is the same for both groups. Therefore,
to reason about discrimination using the construct space, we must
make assumptions about the construct space. Two such assump-
tions, or worldviews, have previously been introduced by Friedler et
al. [14] and are described below. Our versions of these worldviews
are simpler than the original because they are exact, whereas the
original versions allow deviations by a parameter e.

WorLDVIEW 1 (WE'RE ALL EQuaL). Under the We’re All Equal
(WAE) worldview, every group is identical with respect to the construct
space. More formally, Y’ is independent of Z, i.e., Y’ L Z.

WORLDVIEW 2 (WYSIWYG). Under the What You See Is What
You Get (WYSIWYG) worldview, the observed space accurately re-
flects the construct space. More formally, Y/ =Y.

5 CONSTRUCT CRITERIA

We introduce two construct criteria for models. By using the con-
struct, these criteria must be combined with a worldview for appli-
cation to a model. Unlike the more readily applied empirical tests,
construct criteria depend upon the attribute truly relevant to the
classification task.
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Here, we consider the case where Y’ and Y are categorical (but
not necessarily binary), and in Section 9 we generalize the definition
to numerical Y.

5.1 Disparity Amplification

When Y is binary, the size of a model’s discriminatory effect is com-
monly measured by the difference in positive classification rates:
|Pr[Y=1 | Z=0] — Pr[Y=1 | Z=1]|. Output disparity generalizes
this measure for the case of non-binary categorical Y.

DEFINITION 8 (OUTPUT DISPARITY). Let the output ¥ of a model
be categorical. The output disparity of the model is the quantity
dw (Y|Z=0,Y|Z=1).

However, not all output disparities are bad in every context. In
particular, because we want the model to accurately reflect the con-
struct, we allow an output disparity insofar as it can be explained
by the inter-group disparity in Y’. This happens when

diy (Y|Z=0,Y|Z=1) < dy(Y'|Z=0,Y’|Z=1). )

Since a model can have issues with discrimination that are not char-
acterized by output disparity (see below), (2) is not the conclusive
definition of nondiscrimination. Thus, we use the logical negation
of (2) as a criterion for one particular discrimination concern, which
occurs when an output disparity is not explained by Y’.

DEFINITION 9 (DISPARITY AMPLIFICATION). Let Y’ and Y be cat-
egorical. Then, a model exhibits disparity amplification if

div(Y|1Z=0,Y|Z=1) > dw (Y'|Z=0,Y’|Z=1). 3)

5.2 Construct Accuracy

As mentioned in Section 5.1, we want the output of the model to
accurately reflect the value of Y’. However, the simple accuracy
measure Pr[Y’ = Y] incentivizes the model to become more ac-
curate on the larger protected group at the expense of becoming
less accurate on the smaller protected group. Therefore, we instead
measure accuracy as the average of the accuracy on the two groups.

DEFINITION 10 (CONSTRUCT ACCURACY). The construct accuracy
of a model is

©

DEFINITION 11 (CONSTRUCT OPTIMALITY). A model is construct
optimal if its construct accuracy is 1, i.e., its output Y and the construct
Y’ are always equal.

$(Pr[Y’=Y | Z=0] + Pr[Y’=Y | Z=1]).

Because the construct Y’ usually cannot be observed, construct
accuracy usually cannot be measured or directly optimized for.
Even when it can measured, construct optimality would be rare
since the quality of the features, data, or machine learning algo-
rithm may preclude perfection. As with disparity amplification, we
introduce construct accuracy not to empirically measure it, but as a
theoretical tool for analyzing discrimination. In particular, note that
equality holds in (2) for every construct optimal model. In other
words, a construct optimal model displays the maximum amount
of output disparity allowed by Definition 9. On the other hand, if
the output disparity is greater than the disparity in Y’, the model
must be amplifying a disparity in a way that cannot be justified by
the desire to achieve construct optimality.
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The above definitions can be generalized to the setting where
the range Y’ of the values that Y’ takes differs from the range Y
of Y. If there exists a bijective mapping between Y’ and Y, we can
use the mapping to characterize when a value from Y accurately
reflects a value from Y’.

5.3 Limitations

These criteria, separately or jointly, are neither necessary nor suf-
ficient for fairness. Technical criteria allow precision but elide the
context-specific and social aspects of fairness [17].

The criteria fail to be sufficient for fairness by not capturing
forms of discrimination unrelated to output disparity. For example,
a model could have a higher misclassification rate for one group
of people [34], which goes undetected by Definition 9. (See Sec-
tion 7 for discussion.) Furthermore, by examining just a model’s
input/output behavior, the criteria cannot catch a model produced
by an unacceptable process or performing unacceptable computa-
tions internally to reach its outputs. For example, Datta et al. [9]
show the impossibility of externally detecting whether a model
internally reconstructs a sensitive attribute that it should not use.

We believe avoiding disparity amplification does better as a nec-
essary condition for fairness, but limitations exist here as well. For
example, when correcting historical wrongs, it may be fair to am-
plify certain disparities that benefit an oppressed group. Such cases
also provide a counterexample to the necessity of construct accu-
racy. In some cases, carefully selecting a historically informed con-
struct can avoid violating our criteria while achieving a reparative
goal. However, some goals, such as achieving adequate representa-
tion for a group, cannot be expressed in terms of an individual-level
construct. Nevertheless, our criteria highlight when a model’s be-
havior is suspicious enough to warrant an explanation and can
serve as a basis for selecting between empirical tests.

6 USING CRITERIA AND WORLDVIEWS
TO MOTIVATE EMPIRICAL TESTS

In this section, we use our construct criteria to analyze which world-
views motivate the existing empirical tests of discrimination. If an
empirical test does not guarantee the lack of disparity amplifica-
tion, it may not be sufficient as an anti-discrimination measure as
it effectively allows certain forms of discrimination. On the other
hand, if the test disallows a construct optimal model, the test may
be too strict in a way that lowers the utility of the model. There-
fore, to argue that a worldview motivates an empirical test, we will
prove the following two statements: (a) Every model that passes the
empirical test does not have disparity amplification, and (b) every
optimal model passes the empirical test.

We apply this reasoning to demographic parity (Definition 4)
and equalized odds (Definition 5), showing that the WAE and WYSI-
WYG worldviews, respectively, motivate these empirical tests. More
formally, we will prove statements (a) and (b) for every joint dis-
tribution of Y’, Y, f/, and Z that is consistent with the worldview.
Table 1 summarizes these results.

6.1 Demographic Parity and WAE

THEOREM 1. A model that passes the demographic parity test
does not have disparity amplification under Definition 9. Moreover,
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Table 1: Summary of the results in Section 6. We say that
a worldview motivates an empirical test if it precludes
disparity amplification (Definition 9) but does not preclude
a perfectly predictive model. The We’re All Equal (WAE)
worldview motivates the demographic parity test, and if the
worldview does not hold, the demographic parity test tends
to lower the utility of the model. The WYSIWYG worldview
motivates the equalized odds test, and if the worldview does
not hold, the equalized odds test allows models that have
disparity amplification. Finally, regardless of the worldview,
the predictive parity and calibration tests do not effectively
prevent disparity amplification. Here, we assume that WAE
and WYSIWYG do not hold simultaneously.

We’re All Equal WYSIWYG
(Worldview 1) (Worldview 2)
Demo. Parity v Always suboptimal
(Definition 4) Theorem 1 Theorem 2
Equal. Odds Amplification allowed 4
(Definition 5) Theorem 5 Theorem 4

Predictive Parity Amplification allowed
(Definition 6)
Calibration

(Definition 7)

Theorem 6

Not robust to post-processing

Theorem 7

if the WAE worldview holds, every construct optimal model satisfies
demographic parity.

ProoF. By the definition of demographic parity, the left-hand
side of (3) is diy (Y|Z=0, Y|Z=1) = 0. Since the total variation dis-
tance is always nonnegative, demographic parity ensures the lack
of disparity amplification.

If the WAE worldview holds, we have Y’ L Z, so every opti-
mal model satisfies ¥ L Z. This implies demographic parity by
Definition 4. ]

The first part of Theorem 1 shows that we can guarantee that a
model will not have disparity amplification by training it to pass the
demographic parity test. However, this does not mean that demo-
graphic parity is appropriate for every situation. First, we remind
the reader that the lack of disparity amplification does not mean
that the model will be free of all issues related to discrimination. In
particular, disparity amplification is only designed to catch the type
of discrimination akin to disparate impact. If the WAE worldview
holds, demographic parity is the only way to avoid disparity ampli-
fication, so it makes sense to enforce demographic parity. On the
other hand, blindly enforcing demographic parity may introduce
other forms of discrimination. For example, the U.S. Supreme Court
held in Ricci v. DeStefano [31] that the prohibition against inten-
tional discrimination can sometimes override the consideration of
disparate impact, ruling that an employer unlawfully discriminated
by discarding the results of a bona fide job-related test because of
a racial performance gap.

Second, demographic parity can lower the utility of a model. If
the WAE worldview does not hold, dy, (Y’|Z=0, Y’|Z=1) is positive,
and Theorem 2 shows that any model that satisfies demographic
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parity must be suboptimal. In fact, the more we deviate from the
WAE worldview, the lower the maximum possible construct accu-
racy becomes.

THEOREM 2. If a model satisfies demographic parity, the construct
accuracy of the model is at most 1 — %dtv(Y’IZzo, Y’|Z=1). Moreover,
there exists a distribution of Y that satisfies demographic parity and
attains this construct accuracy.

To prove this theorem, we will use Lemma 3.

LEMMA 3. Let Yy and Y1 be categorical random variables with
finite supports Yo and Y. Then,

Z min (Pr[Yp=y], Pr[Yi=y]) = 1 — d (Yo, Y7).
yEyQUyl

Proor or LEMMA 3. First, we can express the total variation dis-
tance in terms of max and min.

Z max ( Pr[Yo=y], Pr[Y1=y]) — min ( Pr[Yo=y], Pr[Yi=y])
yeyou%

Do [PrlYo=y] - Pr[Yi=y]| = 2de, (Yo, 11).
yehulY;
In addition, we have

Z max (Pr[Y():y], Pr[ley]) + min (Pr[Yozy], Pr[ley])
yEygUyl

Z (Pr[Yo=y] +Pr[Y;=y]) = 2.
yehUY

Subtracting the first equation from the second gives us the desired
result. O

ProoF oF THEOREM 2. We first prove the upper bound on the
construct accuracy. Let Y’ and Y/ be the supports of Y’ and Y,
respectively. Then, by the law of total probability we have

Pr[Y'=y’, f’:y' | Z=z] < min(Pr[Y'=y’ | Z:z],Pr[f/:y' | Z=z])

forally’ € Y’ UY and z € {0,1}. We then sum this over y’ and
apply Lemma 3 to get

Pr[Y'=Y | Z=¢]

=2y eyuy PrlY'=y. Y=y’ | Z=2]

< Zy'ey'uy min (Pr[Y’=y’ | Z=z],Pr[V=y’ | Z=z])
=1—dw(Y'|Z=2,Y|Z=2)

=1-dw(Y'|Z=2Y),

where the last equality follows from our assumption that the model
satisfies demographic parity. Therefore, the construct accuracy can
be bounded as

$(Pr[Y’=Y | Z=0] + Pr[Y’=Y | Z=1])
< 3(1-dw(Y'1Z=0,7) + 1 - dn(Y'|Z=1,Y))
<1-ddw(Y'|Z=0,Y’|Z=1),

where the last inequality is an application of the triangle inequality.

Now we construct a random variable ¥ that satisfies demo-
graphic parity and attains this bound. When Z=0, we simply let
Y = Y’, making the first term in (4) equal to 1. When Z=1, we
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constrain the marginal distribution of (Y|Z=1) to be the same
as that of (Y|Z=0) = (Y’|Z=0), and we make the joint distribu-
tion of (Y’|Z=1) and (Y|Z=1) a maximal coupling [24, pp. 19-20].
Then, by the theorem in [24, p. 19], such Y attains the value of
1 - dn(Y|Z=1,Y'=1) = 1 — dy(Y’|Z=0,Y’|Z=1) for the second
term of (4). This means that the construct accuracy, which is the
average of the two terms, is 1 — %dtv(Y’|Z=0, Y’|Z=1), which is
what we want. Moreover, (Y|Z=1) and (?|Z=O) have the same
distribution, so ¥ satisfies demographic parity. O

Theorems 1 and 2 demonstrate that the WAE worldview, com-
bined with the desire to avoid disparity amplification while retain-
ing the utility of models, motivates the demographic parity test.

6.2 Equalized Odds and WYSIWYG

We now argue that a similar relationship exists between the equal-
ized odds test and the WYSIWYG worldview.

THEOREM 4. If the WYSIWYG worldview holds, a model that passes
the equalized odds test does not have disparity amplification under
Definition 9. Moreover, if the WYSIWYG worldview holds, every con-
struct optimal model satisfies equalized odds.

ProOF. Let Y’ and Y be the supports of Y’ and ¥, respectively.
Applying the WYSIWYG worldview to the definition of equalized
odds, we get Pr[Y=y) | Y'=y’,Z=0] = Pr[Y=i) | Y'=y’,Z=1]
Pr[¥=j | Y'=y'] forall y’ € Y’ and j € Y. Therefore, we have

dw (Y]Z=0,Y|Z=1)
=1 Sgey |Pr[Y=g | Z=0] — Pr[Y= | Z=1]|
= 1%,0y| Sy ey Prli=g | Y=y
(Pr[Y'=y’ | Z=0] - Pr[Y’=y/’ | Z:l])’
< 38y Syey PrlV=g | Y'=y/]
“|Pr[Y'=y’ | Z=0] - Pr[Y'=y’ | Z=1]|

=5 Dyey ( Pr[Y’=y’ | Z=0] - Pr[Y'=y’ | Z=1]|

Doy PrlT=i 1 Y'=y'1)
=1 Y yey |Pr[Y'=y’ | Z=0] - Pr[Y'=y’ | Z=1]|

= dw (Y'|2=0,Y'|Z=1).

This concludes the proof of the first statement.

For an optimal model, we have ¥ = Y’ = Y by the WYSIWYG
worldview. Because Y fully determines the value of ¥, Definition 5
implies that every optimal model satisfies equalized odds. O

On the other hand, our intuition is that when the observation
process is biased, and WYSIWYG does not hold, treating the obser-
vation Y as accurate, as implicit with equalized odds, may lead to
a failure to pass our construct-based criterion. We prove as much:

THEOREM 5. Ifthe WYSIWYG worldview does not hold, a model
passing the equalized odd test can still have disparity amplification.
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Proor. We show that there exists a joint distribution of Y”, Y, Y,
and Z such that a model with equalized odds still has disparity ampli-
fication. Many models with equalized odds have nonzero output dis-
parity, i.e., diy (Y|Z=0,Y|Z=1) > 0. Consider any such model. Since
the WYSIWYG worldview does not hold, we have no guarantee that
Y’ will resemble Y in any way. Therefore, the equalized odds require-
ment does not restrict the distribution of Y’, and the model can have
disparity amplification if di, (Y’|Z=0, Y’|Z=1) is small enough. O

6.3 Predictive Parity

Under the WYSIWYG worldview, optimal models pass the predic-
tive parity test, but any model that passes the test must satisfy
div(Y|Z=0,Y|Z=1) > d,(Y’|Z=0,Y’|Z=1), as can be seen from
switching Y’ and Y in the proof of the first part of Theorem 4.
The inequality here is in the opposite direction of that in (2), so
the predictive parity test does not place any upper bound on the
output disparity of ¥ and guarantees that it is equal to that of Y’ or
amplified beyond this limit. In fact, the following theorem shows
that, regardless of the worldview and the base rates of Y, even a
model with almost the maximum output disparity can still pass the
predictive parity test.

THEOREM 6. Let Y be a categorical random variable with finite
support such that Pr[Y=y | Z=z] is positive for all y and z. Then,
for any sufficiently small € > 0, there exists a model that passes the
predictive parity test such that dw(Y]Z=0,Y|Z=1) =1 - .

Proor. The main idea behind the proof is that the model simply
outputs the value of Z. However, because predictive parity is not
well-defined if Pr[ Y=, Z=z] = 0 for any § and z, we must allow the
model to output the other value with some very small probability.

More specifically, we construct a model such that
1- ifg=2z
ifg # z.

€
Pr[V=i | Z=z] = {6 2
7
We can choose which values our constructed model outputs, so
assume without loss of generality that ¥ € {0,1}.

Let Y be the support of Y. By the predictive parity test, we have
Pr[Y=y | Y=4,2Z=0] = Pr[Y=y | Y=g, Z=1] = Pr[Y=y | Y=3] for
ally € Y and g € {0,1}. Let pyy = Pr[Y=y | Y=ij]. Our goal is to
find the values of pyo and py; that are consistent with the fixed
observed probabilities Pr[Y=y | Z=0] and Pr[Y=1 | Z=1].

By the law of total probability, our model must satisfy

(Pr[Y=y|Z=o]):(1—§ £ )(pyo)
5 1-5)/\py)

Pr[Y=y | Z=1]

Solving for pyo and py1, we see that they converge to Pr[Y=y |
Z=0] and Pr[Y=y | Z=1], respectively, as € approaches zero. By
assumption, these probabilities are positive. Since Y is finite, this
means that there exists a small enough € > 0 such that pyo, py1 > 0
for all y € Y. Moreover, it is easy to verify that 3, cy pyo =
2yey py1 = 1, making them valid probability distributions.

Now, when given Y=y and Z=z, our model can output Y= with
probability

pyy - PrlV=g | Z=2]
Pr[Y=y | Z=z]

Pr[f’:ﬁ | Y=y,Z=z] =

5
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where Pr[?:g} | Z=z] is either § or 1 — £ depending on whether
J=z m]

Because the predictive parity test allows models, such as the one
we constructed in the above proof, that clearly amplify disparity,
it is unsuitable for ensuring nondiscrimination as characterized by
output disparity.

6.4 Calibration

Compared to the predictive parity test, the calibration test imposes
an additional requirement that the output of the model must be the
correct probability. Theorem 7 shows this additional requirement
limits the model behavior by the disparity in observed values, ruling
out the model described in the proof of Theorem 6.

THEOREM 7. If the WYSIWYG worldview holds, a model that
passes the calibration test satisfies dy, (Y’|Z=0,Y’|Z=1) = |E[Y |
Z=0] — E[Y | Z=1]|. Moreover, if the WYSIWYG worldview holds,
every construct optimal model with binary Y satisfies calibration.

Proor. Combining the definition of calibration with the WYSI-
WYG worldview, we get a binary Y’ with Pr[Y’=1 | Y=§, Z=0] = .
Therefore, we have

Pr[Y’'=1|Z=0] =Y. . Pr[Y’'=1]| Y=i), Z=0] - Pr[Y=1) | Z=0]

gey
=Y gey U Prl¥=g | Z=0]
=E[Y | Z=0],

and a similar statement holds for Z=1.
Since Y’ is binary, the construct disparity then becomes

dw(Y'|Z=0,Y’|Z=1) = | Pr[Y'=1]| Z=0] - Pr[Y'=1| Z=1]|
= [E[Y | Z=0] - E[Y | Z=1]|,

which is what we want for the first statement.

To prove the second statement, note that an optimal model sat-
isfies Y = Y’ = Y by the WYSIWYG worldview. Then, for binary
Y € {0, 1} it is easy to verify that calibration holds. O

Unlike Theorems 1 and 4, which bound the total variation dis-
tance between the outputs by the disparity in the construct, this
theorem bounds only the difference in the expected values of the
outputs. This contrast is significant because expected value, un-
like total variation distances, are not robust to post-processing. We
demonstrate this issue with an example where Y’ = Y and Z are
independent and uniformly random binary variables and the model
sets the value of Y as follows: if Z = 0, then Y= 0.5;if Z =1 and
Y =1, then Y = 0.5 + € for some small positive constant €; and if
Z=1and Y =0, then Y = 0 with probability o.zsﬁ and Y =05+¢
otherwise. Some computation reveals that this model passes the
calibration test, with all of the Z = 0 group receiving a prediction
of 0.5 and the vast majority of the Z = 1 group receiving 0.5 + €.
However, in practice the predictions are often post-processed with
a threshold because it is impossible to, say, admit half of a student.
Therefore, although the inter-group difference in the model predic-
tions is small, it can be amplified if the threshold is set between 0.5
and 0.5 + €. In this case, the resulting decision is almost perfectly
correlated with Z and exhibits disparity amplification.
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As a result, in the rest of the paper we focus on equalized odds
rather than predictive parity or calibration. We leave as future work
the identification of a discrimination criterion and a worldview that
together motivate the predictive parity or calibration test.

7 CONNECTION TO MISCLASSIFICATION

Here, we show that the definition of disparity amplification is
closely related to that given by Zafar et al. [34] in their treatment
of disparate misclassification rates. First, we motivate the issue of
disparate misclassification rates with an example. Let Y’ and Z be
independent and uniformly random binary variables. If ¥ = Y’ & Z,
where @ is the XOR, both protected groups are given the positive
label exactly half of the time, so there is no output disparity. How-
ever, one group always receives the correct classification and the
other always receives the incorrect classification, so the disparity
in the misclassification rates is as large as it can be. This shows that
a lack of disparity amplification does not imply a lack of disparity
in misclassification rates.

Conversely, a lack of disparity in misclassification rates does not
imply a lack of disparity amplification. To see this, modify the above
example so that ¥ = Z instead. Now, both groups have half of its
members misclassified since Z is independent of Y’, so they have
the same overall misclassification rate. On the other hand, we have
diy(Y'|Z=0,Y"|Z=1) = di(Y’,Y’) = 0 and diy(Y|Z=0,Y|Z=1) =
dvy(Z|Z=0,Z|Z=1) = 1. Thus, Y has disparity amplification.

However, we can still find a connection between misclassifi-
cation parity and disparity amplification. Let C be the indicator
1(Y’ = Y), and replace ¥ with C in the definition of output dis-
parity (Definition 8). Since C is binary, the resulting expression
div(C|Z=0,C|Z=1) is simply the difference in the misclassification
rates. We would like to compare this value to some measure of
disparity in the construct space. Since our standard measure of
dry(Y’|Z=0,Y’|Z=1) does not necessarily justify inter-group differ-
ences in C, it may not be a correct measure to use. Exploring what
measures provide justification for disparate misclassification rates
is interesting future work.

8 HYBRID WORLDVIEWS

So far, we have assumed either the WAE or the WYSIWYG world-
view. While these worldviews are interesting from a theoretical
perspective, in practice it is unlikely that these worldviews hold.
In this section, we propose a family of more realistic worldviews
for the case where Y’ and Y are categorical. As we have depicted
in Figure 1, worldviews describe the relationship between the con-
struct and observed spaces. Because our definition of disparity
amplification has to do with inter-group disparities, here we focus
specifically on the inter-group disparities in Y’ and Y. Note that the
WAE worldview has the effect of assuming that none of the disparity
in Y is explained by Y’. By contrast, under the WYSIWYG world-
view, all of the disparity in Y is explained by Y”. Described below is
the a-Hybrid worldview, which is a family of worldviews that oc-
cupy the space between the two extremes of WAE and WYSIWYG.

WORLDVIEW 3 (a-HYBRID). Let a € [0, 1]. Under the a-Hybrid
worldview, exactly an a fraction of the disparity in'Y is explained by
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Y’. More formally,
dw(Y'|Z=0,Y"|Z=1) = a - d(Y|Z=0, Y|Z=1) (5)

While the WAE worldview is equivalent to the 0-Hybrid world-
view, the relationship between the WYSIWYG and 1-Hybrid world-
views is only unidirectional. Although the WYSIWYG worldview
implies the 1-Hybrid worldview, there are plenty of ways to satisfy
dry(Y'|Z=0,Y’|Z=1) = diy(Y|Z=0, Y|Z=1) even when the equality
Y’ = Y does not hold. If we wanted to make the relationship bidi-
rectional, we could instead have assumed that Y’ can be broken
down into two components, one of which satisfies WAE and the
other WYSIWYG. However, this would mean that every compo-
nent of Y’ is either equal with respect to Z (WAE) or observable
(WYSIWYG), whereas in practice many inter-group disparities in
the construct space are not easily observable. Thus, to make the
a-Hybrid worldview more realistic, we sacrifice one direction of
the relationship between the WYSIWYG and 1-Hybrid worldviews.

Now we introduce the a-disparity test and prove that it corre-
sponds to the a-Hybrid worldview. Unlike the demographic parity
and equalized odds tests, the a-disparity test is parametrized and
therefore can be applied to various real-world situations.

DEFINITION 12 (a-D1SPARITY TEST). A model passes the a-disparity
test if
dw (Y|Z=0,Y|Z=1) < a - dw, (Y|Z=0, Y|Z=1). (©6)

THEOREM 8. If the a-Hybrid worldview holds, a model that passes
the a-disparity test does not have disparity amplification under Def-
inition 9. Moreover, if the a-Hybrid worldview holds, every construct
optimal model satisfies the a-disparity test.

Proor. To prove the first part of the theorem, we simply com-
bine the inequality guaranteed by the a-disparity test under (6) with
the equation that defines the a-Hybrid worldview under (5). We get

diy (Y1220, Y|Z=1) < a-dey(Y|Z=0,Y|Z=1) = diy (Y'|Z=0, Y'|Z=1),

which is what we want.
For the second part of the theorem, an optimal model has Y’ = Y,
so we can substitute the Y’ in (5) with Y to get

div(Y]Z2=0,Y|Z=1) = a - dw, (Y|Z=0, Y|Z=1).
This is simply the equality in (6), so we are done. ]

The a-disparity test is closely related to demographic parity and
equalized odds. 0-disparity is satisfied if and only if the output dis-
parity is zero, so it is equivalent to demographic parity. In addition,
we can easily adapt the proof of Theorem 4 to show that equalized
odds implies 1-disparity. However, because equalized odds imposes
a condition for each possible value of Y, 1-disparity does not imply
equalized odds. Although it may thus seem that equalized odds
is stronger and better than 1-disparity, recent results by Corbett-
Davies and Goel [7] show that the threshold rule, which they argue
is optimal, does not lead to equalized odds in general. Therefore,
there is a trade-off between the stronger fairness guarantee pro-
vided by equalized odds and the higher utility that is attainable
under 1-disparity. Of course, the 1-disparity test has the additional
benefit that it can be generalized to other values of a.

We end this section with theorems describing the consequences
of enforcing the a-disparity test with a wrong value of a. These
theorems are close analogues of Theorems 2 and 5, respectively.
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THEOREM 9. If the a-Hybrid worldview holds, a model that passes
the o’ -disparity test, with « > a’, has a construct accuracy at most
1-3(a-a') - dw(Y]Z=0,Y|Z=1).

Proor. By the reasoning in the proof of Theorem 2, we have
forallz € {0,1}, Pr[Y’'=Y | Z=z] < 1—dw(Y'|Z=z,Y|Z=z), which
can be rewritten as Pr[Y’#Y | Z=z] > dw(Y’|Z=2,Y|Z=z2).

Thus, the construct inaccuracy of the model is

L(Pr[Y’#Y | Z=0] + Pr[Y'#Y | Z=1])
1 (dw (Y'1Z=0,Y|Z=0) + d (Y| Z=1,Y|Z=1))
$(dw (Y'1Z2=0,Y’|Z=1) - dr (Y] Z=0, V| Z=1))
3(

vV IV

\%

a—a’) - dw(Y|Z=0,Y|Z=1),

where the second inequality is an application of the triangle in-
equality and the third follows from the definitions of the a-Hybrid
worldview and the a’-disparity test.

Therefore, the construct accuracy, which is one minus the con-
struct inaccuracy, is at most 1 — %(a —a’)-dw(Y|Z=0,Y|Z=1). O

THEOREM 10. If the a-Hybrid worldview holds, a model that passes
the o’ -disparity test, with & < ', can still have disparity amplifica-
tion.

Proor. The a’-disparity test ensures that
dw (Y]Z=0,Y|Z=1) < &’ - dy (Y|Z=0, Y|Z=1),
and if equality holds here, we have
dw (Y]2=0,Y|Z=1) = a’-dw (Y|Z=0, Y|Z=1) > a-dw (Y|Z=0,Y|Z=1)

whenever di, (Y|Z=0, Y|Z=1) # 0. By the a-Hybrid worldview, the
rightmost quantity equals di (Y’|Z=0, Y’|Z=1), making the above
inequality exactly that of disparity amplification (see (3)). O

9 A MORE GENERAL
NOTION OF DISPARITY AMPLIFICATION

In this section, we present a more general definition of disparity
amplification that is a broader discrimination criterion and is appli-
cable to numerical Y’. Due to space constraints, proofs of theorems
in this section are given in the supplementary material.
Definition 9 allows an output disparity if there exists an equally
large disparity in Y’, but it does not explicitly reflect the fact that
we care about how the model came to exhibit the disparity. The only
reason why we allow the disparity is that Y is the right attribute to
use. Thus, if the model does not use Y’ at all, then there should be no
output disparity. More formally, we want that if Y’ 1 ¥, then ¥ L Z.
Definition 13 generalizes this requirement and, unlike Defini-
tion 9, is applicable for both categorical and numerical Y’ at the
expense of limiting ¥ to be binary. The generalization deals with
cases where Y is not independent of Y’ by measuring how much
Y depends upon Y’. For binary Y, this dependence is captured by
the likelihood function ¢(y’) = Pr[¥=1 | Y’=y’], and we use the
Lipschitz continuity of this function to measure the dependence.
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DEFINITION 13 (DISPARITY AMPLIFICATION, STRONGER). For Ve
{0,1} and £(y’) = Pr[¥=1| Y'=y'], let p; be the smallest nonneg-
ative p such that € is p-Lipschitz continuous.! Then, a model exhibits
disparity amplification if

dw (Y12=0,Y1Z=1) > p; - dem(Y'|Z=0,Y’|Z=1). (7

p; characterizes how much impact Y’ can have on the output of
the model. If the impact is small, we can conclude that the model is
not using Y’ much, so not much output disparity can be explained
by Y’. On the other hand, if a small change in Y’ can cause a large
change in the probability distribution of Y, then even a large output
disparity can possibly be due to a small inter-group difference in
Y’. In fact, the use of pt,* makes Definition 13 invariant to scaling in
Y’.If a numerical Y” is increased by some factor, p;" will decrease
by the same factor, so the quantity on the right-hand side of (7)
will not change.

We now show relationships between the new Definition 13 and
the previous definition (Definition 9). First, we show that the old
definition combined with a reasonable distance metric implies the
new definition. The previous definition assumes that Y’ is categor-
ical, and in this case a natural distance metric for its support Y’ is
the indicator d(u,v) = 1(u # v). With this distance metric, we can
relate the total variation distance used in the right-hand side of (3)
with the earthmover distance used in (7).

THEOREM 11. Let the construct Y’ be categorical with support
Y’, which has distance metric d(u,0) = 1(u # v). If a model has
disparity amplification under Definition 9, the model has disparity
amplification under Definition 13 as well.

The proof relies upon a theorem using coupling [16, Theorem 4].

Second, we show that Theorems 1 and 4 still hold under the
refined definition of disparity amplification. Since the definitions
of optimality and the empirical tests have not changed, we focus
strictly on the nondiscrimination portions of the theorems.

THEOREM 12. A model that passes the demographic parity test
does not have disparity amplification under Definition 13.

The proof of Theorem 12 is very similar to that of Theorem 1.

THEOREM 13. Ifthe WYSIWYG worldview holds, then a model that
passes the equalized odds test does not have disparity amplification
under Definition 13.

This proof uses Kantorovich duality [33, Equation 5.4].

We now discuss the tightness of the above result. In the extreme
case where ¢ is a step function over real-valued y’, p;" is infinite,
so we trivially have a lack of disparity amplification under Defi-
nition 13. Thus, to receive meaningful fairness guarantees from
Theorem 13, we must make sure that p;" is not too large. One way
to achieve this is to apply the function ¢ to the construct space
and reason about the transformed construct space. If any trans-
formation of the construct space results in a finding of disparity
amplification under Definition 13, then it is evidence that there
could be a problem with the model with respect to discrimination.

Technically, p; should be the infimum of all p such that ¢ is p-Lipschitz continuous,
but it is not difficult to show then that ¢ is in fact p;'-Lipschitz continuous.

10
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Let §’ = £(y’) be a value in the transformed construct space, and
¢ denote the likelihood function on this space. Then,

(§") =Pr[Y=1| V'=¢'] =Pr[Y=1]|Y'=y'] = £(y') = §/,
so the transformation ensures that pi* =1

Connection to the a-Disparity Test. When Y’ and Y are numerical,

a natural extension of the a-disparity test (Definition 12) is

d (Y12=0,Y1Z=1) < p} - & - dem (Y|Z=0,Y|Z=1). (8)
For this to work, Worldview 3 would have to change to use the
earthmover distance rather than the total variation distance. Since
the earthmover distance is defined over a distance metric, the pa-
rameter « is not very meaningful unless Y’ and Y have the same
scale. As a result, here we consider the case where Y’ and Y are
defined over the same metric space (Y, d).

Unfortunately, (8) is still not an empirical test because p;" is de-
fined in terms of Y’. As tempting as redefining p;" in terms of Y is,
Y’ and Y can have vastly different likelihood functions despite hav-
ing the same disparity, so this new empirical test will not guarantee
the lack of disparity amplification under Definition 13. We leave
as future work the discovery of an empirical test for numerical Y’
and Y that corresponds to the a-Hybrid worldview.

10 CONCLUSION

We showed that demographic parity and equalized odds are related
through our construct-based discrimination criterion of disparity
amplification, arguing that the difference between the two empir-
ical tests boils down to one’s worldview. In addition, we proved
that calibration is not robust to post-processing and that predictive
parity allows a model with an arbitrarily large output disparity
regardless of the worldview and the observed base rates.

Our work differs from much of the prior work in that we con-
sider the construct as separate from the observed data. In particular,
we interpreted the existing fairness definitions as acting on the
observed data, whereas the discrimination criterion was viewed as
a property of the construct. This bifurcation allowed us to handle
the following issues simultaneously: (a) prohibitions against dis-
parate impact have exceptions such as a business necessity, but (b)
due to past discrimination, the observed data can be biased in an
unjustified way. It is the second of these points that motivates our
use of worldviews to characterize how biased the observed data is.

To illustrate how this might work in practice, let us revisit the
examples in Section 3. In Example 1, there are reasons to believe
that the observed recidivism rate is a racially biased measurement
of the actual reoffense rate. In Example 2, for various socioeconomic
reasons, some protected groups may have disproportionately many
people who take longer than six years to graduate but are eventually
considered successful in the university. The a-Hybrid worldview
can characterize these real-world scenarios, and the value of a
reflects one’s beliefs about how much more biased the observed
data is than the construct. Then, a practitioner can apply the a-
disparity test as a substitute for demographic parity or equalized
odds, with the value of « determined through social research and
public dialogue.
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