
 1

Parallel Computing for Fast Spatiotemporal Weighted Regression 1

Xiang Que a,b, Chao Mab,c*, Xiaogang Mab,*, Qiyu Chend 2

 3

a Computer and Information College, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China 4

b Department of Computer Science, University of Idaho, 875 Perimeter Drive MS 1010, Moscow, ID 5

83844-1010, USA 6

c State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of 7

Technology, Chengdu 610059, China 8

d School of Computer Science, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 9

430074, China 10

*Corresponding author. Email: machao@cdut.edu.cn (Chao Ma); max@uidaho.edu (Xiaogang Ma) 11

 12

 13

Abstract: 14

The Spatiotemporal Weighted Regression (STWR) model is an extension of the Geographically 15

Weighted Regression (GWR) model for exploring the heterogeneity of spatiotemporal processes. A key 16

feature of STWR is that it utilizes the data points observed at previous time stages to make better fit 17

and prediction at the latest time stage. Because the temporal bandwidths and a few other parameters 18

need to be optimized in STWR, the model calibration is computationally intensive. In particular, when 19

the data amount is large, the calibration of STWR becomes heavily time-consuming. For example, with 20

10000 points in 10 time stages, it takes about 2307 seconds for a single-core PC to process the 21

calibration of STWR. Both the distance and the weighted matrix in STWR are memory intensive, 22

 2

which may easily cause memory insufficiency as data amount increases. To improve the efficiency of 23

computing, we developed a parallel computing method for STWR by employing the Message Passing 24

Interface (MPI). A cache in the MPI processing approach was proposed for the calibration routine. 25

Also, a matrix splitting strategy was designed to address the problem of memory insufficiency. We 26

named the overall design as Fast STWR (F-STWR). In the experiment, we tested F-STWR in a High-27

Performance Computing (HPC) environment with a total number of 204611 observations in 19 years. 28

The results show that F-STWR can significantly improve STWR’s capability of processing large-scale 29

spatiotemporal data. 30

 31

Keywords: Spatiotemporal Weighted Regression; Parallel computing; Geographically Weighted 32

Regression; Spatial analysis; Spatiotemporal non-stationarity 33

 34

1. Introduction 35

Spatiotemporal data are a topic of interest in many fields of research. The amount of spatiotemporal 36

data has significantly accumulated in recent years due to improvements in data acquisition methods 37

(Wikle, 2019). Many statistical models, such as the Bayesian hierarchical model (BHM Berliner,1996) 38

and the spatiotemporal kriging (Pebesma et al., 2012, 2016), have been proposed to facilitate 39

understanding how (and ultimately why) data vary in space and time. Nevertheless, the modeling of 40

spatiotemporal processes still faces challenges caused by the spatiotemporal non-stationarity (i.e., 41

relationships between variables change when the locations change and time variation). 42

The Geographically and Temporally Weighted Regression (GTWR) (Huang et al., 2010), an 43

extended model of the Geographically Weighted Regression (GWR) (Brunsdon et al. 1996; 44

 3

Fotheringham et al. 2003), is developed to analyze the spatiotemporal non-stationarity. Although it 45

addressed the issues to some extent (Wu et al., 2013; Wrenn and Sam 2014), calculating distance in 46

three dimensions (two-dimension in space and one dimension in time) in GTWR still can be improved. 47

Location and time are usually measured at different scales, and their units and impacts on regression 48

points are fundamentally different. Although GTWR uses the adjustment factor τ to synthesize the 49

distance between time and space, a sole measure integrating the spatial and temporal distances is not 50

enough (Fotheringham et al., 2015). Moreover, the performances of GTWR in fitting and prediction are 51

sometimes even inferior to the traditional GWR models (Que et al., 2020). 52

A new GTWR (Fotheringham et al., 2015) model was proposed to use a set of time-isolated 53

spatial bandwidths to capture the local effects from observation points on regression points in space 54

and time. But the calibration process is cumbersome and cannot simultaneously optimize the 55

bandwidths of time and space. Furthermore, both GTWR models (Huang et al., 2010; Fotheringham et 56

al., 2015) regard the time interval as the temporal distance, resulting in that all observations from 57

different locations recorded at the same previous time having an equal temporal weight on a regression 58

point. However, the magnitudes of value variation during the time interval in different observations 59

have different influences on the regression point (Que et al., 2020). The more significant the value 60

changes during the time interval, the higher its impact is on the regression point. The variation rate of 61

attribute values (non-stationarity in time) also has heterogeneity in space. Using the time intervals as 62

the temporal distances for calculating temporal weights cannot fully capture the local temporal effects 63

from observations to the regression point. Based on this idea, the Spatiotemporal Weighted Regression 64

(STWR) model (Que et al., 2020) was developed to capture better the combined effects of a non-65

stationary spatiotemporal process from observed data. 66

 4

STWR treats the time distance as the rate of value variation through a time interval rather than the 67

time interval itself, which is more suitable to measure the degree of temporal impact from each 68

observation point to a regression point. Besides, it utilizes a weighted average form to calculate the 69

spatiotemporal kernel rather than the multiplication form in GTWR (Huang et al., 2010; Fotheringham 70

et al., 2015), thus, avoiding potential underestimation of combined spatiotemporal effects (Que et al., 71

2020). Compared with GWR and GTWR, these new features in STWR significantly improve model 72

fitting and prediction capabilities for the latest time stage (Que et al., 2020). However, because the 73

temporal bandwidths and several other parameters need to be optimized, the calibration of STWR is 74

more complicated and time-consuming than the original GWR model. It requires intensive computation 75

and memory usage. It is a challenging issue and may seriously limit the application of STWR in large-76

scale spatiotemporal data processing. Inspired by FastGWR (Li et al., 2019), a parallel implementation 77

of GWR, we developed a parallel computing version of STWR, named Fast STWR (F-STWR), to scale 78

up the capacity of STWR. 79

In the remainder of this paper, Section 2 will overview STWR and its differences with GTWR. 80

Section 3 will introduce the parallel calibration approach developed for STWR. Section 4 will present 81

the experimental results. Section 5 will compare the characteristics of F-STWR and FastGWR. Finally, 82

Section 6 will summarize the highlights of F-STWR. 83

2. The calibration and optimization procedure of STWR 84

2.1 Model formulation of STWR and its differences with GTWR 85

Derived from the basic GWR framework (Brunsdon et al. 1996; Fotheringham et al. 2003), the STWR 86

formula is shown in Equation 1. 87

 𝑦𝑖
𝑡 = 𝛽0

𝑡(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘
𝑡(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘

𝑡 + 𝜀𝑖
𝑡

𝑘 (1) 88

 5

In this equation, 𝑦𝑖
𝑡 denotes the 𝑖𝑡ℎ dependent variable at the regression point (𝑢𝑖 , 𝑣𝑖) at time 𝑡. 𝑥𝑖𝑘

𝑡 89

denotes the 𝑘𝑡ℎ independent variable. 𝜀𝑖
𝑡 is the independent random error term with distribution 90

𝑁(0, σ2) (STWR assumes that all random error terms at different time stages meet the same independent 91

and identical distribution). 𝛽0
𝑡(𝑢𝑖 , 𝑣𝑖) and 𝛽𝑘

𝑡 (𝑢𝑖 , 𝑣𝑖) denote the constant item and coefficient at 92

location (𝑢𝑖 , 𝑣𝑖), respectively. 93

Equation 2 shows the estimator for the coefficient. 94

𝛽̂𝑡(𝑢𝑖, 𝑣𝑖) = [(𝑋𝑠𝛥𝑡
𝑇 𝑊𝛥𝑡(𝑢𝑖, 𝑣𝑖)𝑋𝑠𝛥𝑡

)−1𝑋𝑠𝛥𝑡
𝑊𝛥𝑡(𝑢𝑖, 𝑣𝑖)]𝑦𝑠𝛥𝑡

 (2) 95

In this equation, 𝑋𝑠𝛥𝑡
 is a matrix of all observed independent variables within the time interval 𝛥𝑡. 𝑦𝑠𝛥𝑡

 96

is the corresponding vector of dependent variables. 𝑋𝑠𝛥𝑡
𝑇 is the transpose of 𝑋𝑠𝛥𝑡

. 𝑊𝛥𝑡(𝑢𝑖 , 𝑣𝑖) denotes 97

the spatiotemporal weight matrix of observations from different locations and time stages within 𝛥𝑡, 98

which will be used for the regression point 𝑖(𝑢𝑖 , 𝑣𝑖) at 𝑡. 99

In 𝑊𝛥𝑡(𝑢𝑖 , 𝑣𝑖), an element 𝑤𝑖𝑗𝑆𝑇
𝑡 is used to reflect the spatiotemporal impact from other 100

observations. Both STWR and GTWR model have their own spatiotemporal kernel functions to 101

calculate the weight value 𝑤𝑖𝑗𝑆𝑇
𝑡 , but their designs of the spatiotemporal kernel are different. The 102

spatiotemporal kernel of GTWR is a multiplication form of the spatial kernel and the temporal kernel, 103

as shown in Equation 3 (Fotheringham et al., 2015). 104

𝑤𝑖𝑗𝑆𝑇
𝑡 = 𝑘𝑠(𝑑𝑠𝑖𝑗 , 𝑏𝑆) × 𝑘𝑇(𝑑𝑡𝑖𝑗 , 𝑏𝑇) (3) 105

In this equation, the weight 𝑤𝑖𝑗𝑆𝑇
𝑡 denotes the impact from observed data point 𝑗 to the regression 106

point 𝑖 at time stage 𝑡. 𝑘𝑠 and 𝑘𝑇 are spatial kernel and temporal kernel, respectively. 𝑑𝑠𝑖𝑗 and 107

𝑑𝑡𝑖𝑗 denote the Euclidean distance and time distance from an observed data point 𝑗 to the regression 108

point 𝑖, respectively. 𝑏𝑆, and 𝑏𝑇 are the spatial bandwidth and temporal bandwidth, respectively. 109

In comparison, STWR applies a new weighted average form of spatiotemporal kernel for 110

calculating the 𝑤𝑖𝑗𝑆𝑇
𝑡 , as shown in Equation 4 (Que et al., 2020). 111

𝑤𝑖𝑗𝑆𝑇
𝑡 = (1 − 𝛼)𝑘𝑠(𝑑𝑠𝑖𝑗, 𝑏𝑆𝑇) + 𝛼𝑘𝑇(𝑑𝑡𝑖𝑗 , 𝑏𝑇), 0 ≤ 𝛼 ≤ 1 (4) 112

 6

In this equation, 𝑏𝑆𝑇 denotes the spatial bandwidth at 𝑡. Outputs of both spatial and temporal kernel 113

functions range from 0 to 1. 𝛼 is an adjustable parameter for balancing (enlarging or reducing) the 114

effects from time and space. 115

To obtain the combined weight value 𝑤𝑖𝑗𝑆𝑇
𝑡 , the calculation of the time distance (𝑑𝑡𝑖𝑗) is also 116

critical. In GTWR, the 𝑑𝑡𝑖𝑗 is the time interval (difference) between two observed time stages. 117

However, the time distance (𝑑𝑡𝑖𝑗) in STWR is not the time interval or time difference, but the rate of 118

value variation between an observed point and a regression point through a time interval. The temporal 119

kernel 𝑘𝑇 is defined in Equations 5 (Que et al., 2020). 120

 𝑤𝑖𝑗𝛥𝑡
𝑡 = {

[
2

1+𝑒𝑥𝑝(−𝑑𝑖𝑗𝛥𝑡
𝑡)

− 1] , 𝑖𝑓 0 < 𝛥𝑡 < 𝑏𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 121

where, 𝑑𝑖𝑗𝛥𝑡
𝑡 = {

|(𝑦𝑖(𝑡)−𝑦𝑗(𝑡−𝑞))/𝑦𝑗(𝑡−𝑞)|

𝛥𝑡/𝑏𝑇
, 𝑖𝑓 0 < 𝛥𝑡 < 𝑏𝑇

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 122

In Equation 6, 𝑦𝑖(𝑡) − 𝑦𝑗(𝑡−𝑞) is the value variation from regression point 𝑖 at 𝑡 to point 𝑗 at 𝑡 − 𝑞, 123

which denotes the value change during the time interval 𝛥𝑡. 𝛥𝑡 is the time difference between 𝑡 and 124

𝑡 − 𝑞. When the time interval 𝛥𝑡 is out of the range (0, 𝑏𝑇), the weight is set to zero. 125

Like most distance-decay weighting strategy, it is usually assumed that the spatial bandwidth 126

becomes narrower with the time distance increases. The spatial bandwidth 𝑏𝑆𝑇 in STWR is assumed to 127

be linearly changing along with time from the current time stage to the previous stages, as shown in 128

Equation 7 (Que et al., 2020). 129

𝑏𝑆𝑇 = 𝑏𝑆𝑡 − tanθ ∗ 𝛥𝑡, −
𝜋

2
< 𝜃 <

𝜋

2
 (7) 130

In this equation, tanθ denotes the slope, and 𝑏𝑆𝑡 denotes the initial bandwidth at the latest time stage 131

𝑡. The other spatial bandwidth 𝑏𝑆𝑇 in the past time stage is derived from 𝑏𝑆𝑡. Combining Equations 4 132

and 7 with the bi-square or Gaussian spatial kernel function (Fotheringham et al., 2002), the 133

 7

spatiotemporal kernel in STWR (Equation 4) can be further derived. As shown below, Equations 8 and 134

9 are based on the bi-square and Gaussian kernel, respectively. 135

2

() () ()2
() /

(1) * 1 () *(2 / (1 exp()) 1) ,
tan /

, (tan

*

*)

0,

i t j t q j t qsij

St T

t

ijST T sij St

y y yd

b t b

w if t b and

t

td b

otherwise





 
− −

 − 
 − − + + − −  

−    


=    −







 (8) 136

2

() () ()() /1
(1)*exp *(2 / (1 exp()) 1) ,

2 tan /*

, (

0

)t *an

,

i t j t q j t qsij

St T

t

ijST T sij St

y y yd

b t b

w if t b and d b

othe

t

rwise

t



 
− −





   − 
 − − + + − −  

−      


=    −





 (9) 137

In GWR, only the single spatial bandwidth 𝑏𝑆𝑇 needs to be optimized. In comparison (as shown in 138

Equations 8 and 9), STWR needs to get the optimized initial spatial bandwidth 𝑏𝑆𝑡, temporal bandwidth 139

𝑏𝑇, and the optimized parameters 𝛼 and 𝜃. Thus, besides the increased volume of data, STWR also 140

needs to optimize more parameters in its calibration procedure. 141

2.2 Procedure for model calibration and parameter optimization in STWR 142

Similar to the general GWR, some popular goodness-of-fit diagnostics such as the Cross-Validation (CV) 143

(Cleveland, 1979), the Akaike Information Criterion (AIC) (Akaike 1973; Hurvich et al., 1998), and the 144

corrected AIC (AICc, Cavanaugh, 1997) (AICc performs better than AIC with small sample sizes) are 145

also appropriate for STWR. Once we get the weighted matrix 𝑊𝛥𝑡, the row 𝑟 of that matrix can be 146

calculated using Equation 10. 147

𝑟𝑖𝑡 = 𝑋𝑖𝑡(𝑋𝛥𝑡
𝑇 𝑊𝑖𝛥𝑡𝑋𝛥𝑡)−1𝑋𝛥𝑡𝑊𝑖𝛥𝑡 (10) 148

In this equation, 𝑋𝑖𝑡 is the 𝑖𝑡ℎ row of the independent variable matrix at 𝑡. 𝑋𝛥𝑡 is a matrix of all the 149

observed independent variables during a certain time interval 𝛥𝑡, and 𝑊𝑖𝛥𝑡 is the 𝑖𝑡ℎ row of the 150

 8

weighted matrix 𝑊𝛥𝑡. 151

The optimization is a procedure of searching through multiple trials by utilizing these diagnostics 152

scores. Specifically, for each regression point 𝑝𝑖
(𝑡)

, STWR needs to traverse two loops to obtain the 153

optimized values for 𝛼，𝜃, the number of time stages used by STWR, and the initial spatial bandwidth 154

𝑏𝑆𝑡 at time stage 𝑡. The searching range of the temporal bandwidth 𝑏𝑇 is limited to a discrete set 155

𝐵𝑇𝜆 = {𝛥𝑡1, 𝛥𝑡2, . . . 𝛥𝑡𝜆}, in which the element 𝛥𝑡𝜆 is the time interval from 𝑡 to 𝑡 − 𝜆. The initial 156

spatial bandwidth 𝑏𝑆𝑡 is also limited to a discrete set 𝐵𝑆𝑁𝑡 = {𝐷𝑘+1, 𝐷𝑘+2, . . . 𝐷𝑁𝑡
} , in which the 157

element 𝐷𝑈 , 𝑈 ∈ {𝑘 + 1, 𝑘 + 2, . . . , 𝑁𝑡} denotes the distance from 𝑝𝑖
(𝑡)

 to the 𝑈𝑡ℎ nearest neighbor, 158

and 𝑘 equals to the number of independent variables. 𝐵𝑇𝜆 and 𝐵𝑆𝑁𝑡 are determined by the number of 159

total observation time stages and the number of observation points at time stage 𝑡, respectively. In the 160

two loops for STWR parameter optimization, the outer loop is to traverse the set of 𝐵𝑇𝜆, and the inner 161

loop is to traverse the set of 𝐵𝑆𝑁𝑡 . If the current traversed time interval element is ∆𝑡𝑞 (𝑞 = 1, 2, …, 162

𝜆) in 𝐵𝑇𝜆 and the initial spatial bandwidth is 𝐷𝑘+𝑝 (𝑝 = 1, 2, …, 𝑁𝑡), then the range of 𝜃 can be 163

calculated for each past time stage 𝑡 − 𝑠 (s = 1, 2, …, 𝑞) in ∆𝑡𝑞, because the spatial bandwidth 𝑏𝑆𝑇 at 164

𝑡 − 𝑠 is not farther than the distance 𝐷𝑘+𝑝 (i.e., spatial bandwidth value decreases over the time in the 165

past). With user-specified maximum number of iterations and searching methods (e.g., Golden-section 166

or equal interval searching), the weighted matrix 𝑊𝛥𝑡(𝑢𝑖, 𝑣𝑖) can be calculated for each iteration, and 167

its corresponding 𝛽̂𝑡(𝑢𝑖 , 𝑣𝑖) (Equation 2) can be solved by employing the Iteratively Reweighted Least 168

Squares (IRLS) method. Finally, the CV or AICc scores can be obtained at each iteration during the 169

traverse. 170

To improve the applicability of STWR, we designed a matrix splitting calculation method and a 171

parallel search method to save memory usage and speed up the procedure of parameter optimization in 172

 9

STWR. The development and implementation of those methods were based on the mpi4py package in 173

Python. More technical details are presented in the next section. 174

3. The method of parallel calibration and its implementation in F-STWR 175

3.1 Design of the parallel algorithm 176

Message Passing Interface (MPI) is a common protocol for parallel computing, widely adopted in many 177

fields (Schmidt et al., 2002; Gabriel et al., 2004; Neese 2012; Wu et al., 2013). For STWR, the most 178

time-consuming calculation lies in the procedure of parameter optimization, which is conducted by 179

searching through multiple trials. Intuitively, we can consider scattering those trials to different 180

processors evenly (i.e., a parallel form) to improve the efficiency. To put that idea into practice, we need 181

to look into the detailed procedure in STWR. In the basic GWR model, the diagnostics score only 182

depends on all regression points' local standard errors, whose parallel calculation form refers to the 183

method described by Li et al. (2019). In STWR, however, we should also code the traversal procedures 184

of all the time stages into the parallel form. In a multi-processor system, MPI identifies processes 185

according to their relative ranks in a group (Snir et al., 1998). A unique integer identifier (i.e., within the 186

range from 0 to group size - 1) is assigned to each processor(rank). The group size is the number of tasks 187

in a multi-processor system. A rank is also called a “task ID” in some studies (Barney, 2012). For F-188

STWR, we use rank 0 as the rank root in MPI, responsible for assigning tasks and collecting results. To 189

implement MPI in STWR, we should make sure that each rank's traversing progress keeps pace with the 190

MPI rank root consistently. Moreover, during the optimization procedure, we should combine some 191

results for further calculation, such as gathering all the points’ impacts from different observed time 192

stages to the rank root to calculate each trial's scores. The details of the algorithm to compute the 193

diagnostics scores are summarized in Algorithm 1. 194

 10

 195

Algorithm 1: Parallel implementation of F-STWR for model fitting and parameter optimization

1: Root (rank 0) reads the data, the searching method, and diagnostics type, then calculates the initial

spatial bandwidth according to the number of the latest observation points

2: Broadcast data to other processes with ranks not equal to 0. Each process gets its own chunk of

index numbers of the latest observation points. Divide the total number of latest observations by the

size of MPI processes and then get the ceiling value m_ck, and each process keeps a chunk of index

numbers ranging from rank * m_ck to rank * (m_ck+1)

3: For each element in set 𝐵𝑇𝜆:

4: The root changes current Cache_Type to 0 and broadcasts the Cache_Type

5: For each element in 𝐵𝑆𝑁𝑡 :

6: Calculate the range of 𝜃

7: For iteration element in 𝜃:

8: Execute searching function (𝛼):

9: (1) Root executes function F1

10: (2) Each rank executes searching function mpi_CalCriterion

11: (3) Root executes function F2

12: Root collects all diagnostics scores and then outputs the best score and its corresponding

parameters

 196

The parameter Cache_Type and its two control functions (F1 and F2) are used here to keep the pace 197

consistent with the rank root and avoid unnecessary iterative calculations. A different cache type stands 198

 11

for a different computing status. The mpi_CalCriterion function will retrieve matrixes from different 199

memory (if cached) or make different matrixes cached (if not cached). Table 1 outlines the status of 200

different cache types and their corresponding descriptions. 201

 202

Table 1. Status and description of each cache type 203

Cache_Type Status and description

0 No content cached and unstable. Automatically change to M in the next step. If the

previous status is 4, M will be 2, otherwise M is its default value 1

1 Both the spatial distance (SD) and temporal distance (TD) matrixes are cached and

stable but should be truncated before recalculating the spatiotemporal weight matrix

W

2 Both SD and TD are cached and unstable, but they should be further truncated,

masked and cached. Automatically change to 3 after the masked SD and TD are

cached.

3 Both masked SD and TD are cached and stable. Only need to adjust the factor α to

enlarge/reduce the spatiotemporal effect (W)

4 Auxiliary status to control the M value

 204

The rank root mainly controls the status of Cache_Type except for some unstable status (0 or 2). 205

There are three different scenarios for the mpi_CalCriterion function in Algorithm 1: (1) Traverse to a 206

new element in set 𝐵𝑇𝜆. The total time interval that the model used will be changed, so all the matrixes 207

(if cached) will be invalid. So, the Cache_Type will be set to 0. (2) Two different branches before we 208

 12

execute the mpi_CalCriterion function (in F1): One is that our program’s Cache_Type is 0, and we should 209

change its status to 4. This is because in our searching function (Line 8 in Algorithm 1), we only need to 210

adjust 𝛼, and there is no need to recalculate all the distance matrixes. The other is that our program’s 211

Cache_Type is 1, which means that we have only cached the distance matrixes without masking. The 212

matrix should be masked, so the Cache_Type is set to be 2. (3) After the mpi_CalCriterion function (in 213

F2): If our program’s Cache_Type is 3, we may execute another iteration, and the masked matrixes will 214

be invalid. So, the Cache_Type will be reset to 1. After executing the F1 and F2 functions, the rank root 215

should broadcast the current Cache_Type to all other ranks. 216

Next, the mpi_CalCriterion function is inspected, which will obtain a diagnostic score through the 217

rank root. In the implementation, the rank root gathers results from all other ranks, which calculate with 218

their own chunk of data. The detail is summarized in Algorithm 2. 219

Algorithm 2: mpi_CalCriterion function for calculating diagnostics scores of different cache

types

1: Given a chunk of index numbers CK

2: Check cached matrixes and set M value (described in Table 1)

3: switch Cache_Type:

4: case 0:

5: Clear cached matrixes

6: For index in CK:

7: Execute function local_CalSearch to get component value

8: Root gathers all the component values

9: Root calculates diagnostics score (Li et al., 2019)

 13

10: Submit distance matrixes (corresponding to chunk) into cached matrixes

11: Set current Cache_Type to M

12: case 1:

13 Copy and sort current cached distance matrixes

14: Truncate matrixes according to current bandwidth (element in 𝐵𝑆𝑁𝑡)

15: Calculate the weighted matrix W according to the truncated matrixes

16: For index in CK:

17: Calculate component value according to corresponding index in W

18: Root gathers all the component values

19: Root calculates diagnostics score (see Line 9)

20: case 2:

21: Execute same as Line 13 to 19

22: Cache current masked distance matrixes (truncated)

23: Set current Cache_Type to 3

24: case 3:

25: Calculate the weighted matrix W according to the cached masked matrixes

26: Execute same as Line 16 to 19

 220

The function local_CalSearch (Line 7 in Algorithm 2) calculates the component (in a pointwise way), 221

which is gathered by the rank root for calculating the diagnostics scores. The details of diagnostics score 222

calculation (such as CV and AICc) were adopted from Li et al. (2019). Here we describe the 223

local_CalSearch in Algorithm 3. 224

 14

 225

Algorithm 3 local_CalSearch function for calculating component value of each regression point

1：Given current regression point 𝑝𝑖
(𝑡)

 corresponding to the index number in chunk

2：For past time stages 𝑡 − 𝑠 in ∆𝑡𝑞 (element in 𝐵𝑇𝜆):

3: Calculate spatial distance and temporal distance (Equation 6) matrixes to 𝑝𝑖
(𝑡)

4: Calculate weight matrix from Equation 8 or 9

5: Calculate component value according to the diagnostics type:

(a) CV score: calculate the coefficient matrix (Equation 2) and get the residuals

(b) AICc score: calculate residual squared εi2 and the diagonal element of the hat

matrix (Hoaglin and Welsch, 1978) from Equation 10

6: Return component value and spatial and temporal distance matrixes

3.2 Strategy of splitting matrix for calculation 226

The implementation of a parallel algorithm reduces memory usage (Li et al., 2019). However, in 227

FastGWR studies, the memory reduction only happens during the procedure of parameter optimization. 228

For F-STWR, a new design is needed because when the optimized parameters are used for predicting 229

unobserved points, STWR needs to calculate or build up new big matrixes. At that stage, if the total 230

number of points is too large, the STWR program may break down. We can alleviate this problem by 231

adopting the strategy of matrix splitting for calculation. The idea of avoiding big matrixes in STWR is 232

to split them into small ones. A strategy was proposed and applied in the F-STWR program. 233

(1) Before splitting the matrix, we should first know how many data points (or memory) are used 234

for calculation. Users specify the maximum number of points (max_tol). If the available memory reduces, 235

our model will need more iterations, increasing the total time for calculation. So, it is suggested to specify 236

 15

a proper value for splitting according to the user’s system. If the max_tol is set, the minimum memory 237

size must be greater than 𝑀𝑒𝑚_𝑚𝑖𝑛, given in Equation 11. 238

𝑀𝑒𝑚_𝑚𝑖𝑛 = 𝑟𝑎𝑛𝑘_𝑛𝑢𝑚 × max _𝑡𝑜𝑙2 × 𝑀𝑒𝑚_𝑑𝑡𝑦𝑝𝑒 (11) 239

In this equation, 𝑟𝑎𝑛𝑘_𝑛𝑢𝑚 is the number of ranks we plan to use, 𝑀𝑒𝑚_𝑑𝑡𝑦𝑝𝑒 is the memory size 240

of the data type of matrix, e.g., float32 in python is 4 bytes. 241

(2) The next step is to determine how many parts we should have. This issue is solved by obtaining 242

the ceiling value of the result in a division calculation (i.e., the number of observations divided by 243

max_tol). We should also calculate each part's row number, which is determined by the number of points 244

at the latest time stage (suppose the number is N_latest). In the calibration of STWR, the distance matrix 245

(or weighted matrix) is from the past observation points to each regression point at the latest time stage. 246

If the total number of past points is N_past, then the dimension of this matrix is N_latest by N_past, 247

which is larger than the limitation of max_tol by max_tol. In this case, the N_latest is split into several 248

parts to ensure that every part's size is smaller than the limitation. A note here is that the matrix should 249

not be split by N_past, which may cause missing data when calculating weights from observations to 250

each regression point. 251

(3) Instead of directly calculating the spatial and temporal distance matrixes for all the regression 252

points, each part's matrixes are calculated. Then the weights of regression points in each part are 253

calculated. All the rows in each part are assigned a number to keep a consistent order with the points 254

observed at the latest time stage. 255

(4) Last, a list of weight values is built to replace the original big matrix. To this end, all the data 256

are gathered for calculating summary information such as AICc, R-squared, Effective number of 257

parameters (trace(S)), etc., by tracking the assigned number. 258

 16

4. Experiments and comparison of results 259

We use the mpi4py package (Dalcin et al., 2008) in Python to call the OpenMPI program (which is an 260

open-source implementation of MPI that can be executed on a single CPU computer and High-261

Performance Computing clusters) to execute STWR. Our parallel algorithm (F-STWR) was deployed on 262

the University of Idaho’s IBEST Computational Resources Core, which has a total of 1500 processor 263

cores. We ran our experiments on the SuperMocro rack server (named Watson & Crick) with 48 logical 264

cores and 256 GB of system memory. Crick features 4 Intel Xeon Phi 5110p Co-processor cards. Watson 265

has 2 NVIDIA P100 cards. 266

4.1 Verification of the calibration results of the parallel algorithm 267

To verify the consistency of the fitting results of the parallel algorithm F-STWR, we used the same real-268

world data in Que et al. (2020) for comparison. The data are the daily mean precipitation hydrogen 269

isotopes (δ2H) of three consecutive days in Northeastern United States. To be consistent with the previous 270

setting in the STWR experiment (Que et al., 2020), we set θ in Equation 7 to zero for the F-STWR 271

algorithm. A comparison of the results in F-STWR and STWR is shown in Table 2. All values are the 272

same except for some slight differences in the sum of squared errors (SSE) of the second (D2) and third 273

(D3) days. The differences are most likely caused by rounding the decimal point in assigning parallel 274

tasks and collecting results from the parallel cores. 275

Table 2. Comparing model calibration results of F-STWR and STWR. 276

Model

Model Parameters &

Diagnostic information

STWR F-STWR

 SSE 24022.226 24022.195

 R2 0.834 0.834

 17

D2 AICc 977.181 977.181

 Init Bandwidth 16 16

 alpha 0 0

 Time stages model used 2 2

 SSE 25118.096 25118.082

 R2 0.763 0.763

D3 AICc 669.648 669.648

 Init Bandwidth 16 16

 alpha 0 0

 Time stages model used 2 2

4.2 Efficiency test of F-STWR 277

The parallel algorithm and matrix splitting approach described earlier were employed to calibrate the 278

STWR model using house price data in London obtained through the Nationwide Building Society 279

(Fotheringham et al., 2015). Interested readers can contact the authors of Fotheringham et al. (2015) for 280

the data. The data consists of a set of annual house prices from 1980 to 1998 with 204,611 observation 281

points, and each data point contains 21 independent variables. Here, the in-depth analysis of the data is 282

omitted. Instead, we present the experimental results demonstrating parallel computing ability in F-283

STWR for tackling large-scale spatiotemporal data. 284

In the first experiment, we compared our parallel algorithm F-STWR with STWR for different numbers 285

of samples (1K to 10K points, K denotes 1000). The results show that F-STWR is much less time-286

consuming than STWR. As Fig. 1 shows, the average runtime (in seconds) of STWR increases from 287

12.68s of 1K points to 258.85s of 5K points, and then up to 2307.68s of 10K points. In contrast, F-288

 18

STWR_15, F-STWR_30, and F-STWR_45 (F-STWR_15, F-STWR_30, and F-STWR_45 denote 289

running F-STWR with 15, 30, and 45 MPI processors, respectively) are much faster than the original 290

STWR, especially when the number of observations increases. For 10K points, the average runtime of 291

F-STWR_15, F-STWR_30, and F-STWR_45 are 136.75s, 108.35s, and 112.29s, respectively. Those 292

results are almost just one-twentieth of the runtime in STWR. The F-STWR_45 is slightly slower than 293

F-STWR_30. This may because there are more internal communications within F-STWR_45 (45 294

processors) than F-STWR_30 (30 processors) during the parallel processing. 295

 296

Fig. 1. Comparing average runtime of scalability as data size grows. (a) Comparison results of STWR 297

and F-STWR with multiple processors (b) Comparison of F-STWR with different numbers of employed 298

MPI processors. F-STWR_15, F-STWR_30, and F-STWR_45 denote F-STWR model run with 15, 30, 299

and 45 processors, respectively. 300

The second experiment was with a fixed number (10K) of observation points and an increasing 301

number of MPI processors. As show in Fig. 2, the runtime decreases significantly as the number of MPI 302

processors increases, especially in the first 20 processors. The runtime (in seconds) drops from 307.26s 303

of 5 processors to 103.32s of 35 processors. When the number of processors is above 35 the runtime does 304

not further decrease, and even slightly increases. As mentioned in the last paragraph, this may be caused 305

 19

by the increased internal communications. 306

 307

Fig. 2. Runtime of F-STWR for utilizing an increasing number of MPI processors with a fixed number 308

of 10K data points. 309

In the third experiment, all the 204,611 observation points were used in a step-wise process. As 310

shown in Fig. 3, when the total number of accumulated data points increases along the years, the running 311

time of F-SWTR, however, shows an interesting pattern of ups and downs. Overall, the running time of 312

F-STWR at a time stage (shown in blue square spots) is consistent with the number of observation points 313

at that time stage (shown in red round spots). Our thoughts for the patterns in Fig.3 are that the running 314

time is affected primarily by the number of points at the latest time stage and secondly by the cumulative 315

number of data points. In this step-wise and accumulative process, each year becomes the latest time 316

stage in a sequence. On one hand, an intuitive understanding is that the increasing number of time stages 317

and accumulated data points will put more workload in each parallel core, which will increase the running 318

time. On the other hand, only the data points at the latest time stage were used as regression points, which 319

determines the size of the workload in each parallel core. A smaller number of regression points means 320

lighter workload and thus less running time (e.g., at time stages 1992, 1993, 1995 and 1998). We may 321

raise a hypothesis that the number of observation points at the latest time stage is the key controlling 322

 20

factor for the running time of F-STWR. Nevertheless, here the experiment was done with only one dataset. 323

To verify that hypothesis, we plan to test F-STWR with more datasets in the future work. 324

 325

Fig. 3. Runtime test of F-STWR on each time stage of large-scale data points (50 MPI processors 326

employed). 327

When the whole dataset (204,611 points) was tested with 50 MPI processors (time stage 1998 in 328

Fig. 3), it took 110001.49 seconds (30.5 hours) to run F-STWR. As shown in Table 3, the results are 329

compared with the ordinary least squares (OLS) method and GWR applied to the latest time stage (11,282 330

points at 1998). The temporal bandwidth (optimized time stages) in F-STWR is 5, which means that a 331

total of 38,936 observation points in the recent 5 time stages were employed to fit the F-STWR. Different 332

metrics in Table 3 show that F-STWR is better than the general GWR and OLS in this experiment. The 333

Root Sum Square (RSS) of F-STWR is smaller than OLS and GWR. Also, both the AICc and R-squared 334

(R2) of F-STWR are better. The estimated standard errors (Sigma) of F-STWR are less than two-thirds 335

of GWR. 336

Table 3. Comparison of model performance. 337

RSS AICc R2 Sigma Bandwidth

 21

OLS 16852704643550.800 270390.408 0.701

GWR 11383507478243.400 266278.067 0.798 32015.787 3604.000

F-STWR 8475299504397.160 263500.640 0.850 19287.224 649

 338

4.3 Memory usage test on F-STWR and STWR 339

In most desktop computers, the original STWR is not able to be calibrated for large datasets (such as 340

the one used in section 4.2) due to the limitation of memory size. F-STWR can further employ the 341

strategy of matrix splitting to address the issue. In our work we utilized the function “tracemalloc” in 342

python 3.6.8 to test the memory usage of F-STWR and STWR. For easier comparison, we prepared a 343

dataset of 1000 points and 5 time stages, and we recorded the peak memory usage during the model 344

calibration of both F-STWR and STWR. The comparison result is listed in Table 4. The column F-345

STWR shows the result of F-STWR without matrix splitting. The F-STWR_SP1, F-STWR_SP2, F-346

STWR_SP3 are three cases in which we used matrix splitting, and their parameter “max_tol” were set 347

to 90000(300*300),160000(400*400) and 250000 (500*500), respectively. The peak memory usage of 348

STWR is the largest (23.182 MB), which is about 162% much more than F-STWR (14.329 MB), and 349

about 326% much more than F-STWR_SP1(7.109 MB). 350

In general, this result verifies the effectiveness of the matrix splitting strategy. Nevertheless, not all 351

the settings of matrix splitting can facilitate memory saving. For instance, the peak memory usage of F-352

STWR_SP3 (14.332 MB) is not less than F-STWR (14.329 MB). Moreover, the results show that both 353

the peak memory usage of F-STWR (14.329 MB) and F-STWR_SP3 (14.332 MB) are close to the current 354

memory usage of STWR (14.206 MB). It seems that the maximum amount of memory usage in our 355

parallel algorithm is a little larger than the STWR model after calibration. This can be a topic for more 356

 22

exploration in our future work. 357

Table 4. Comparison of memory usage and runtime of F-STWR and STWR 358

STWR F-STWR F-STWR_SP1 F-STWR_SP2 F-STWR_SP3

Current (MB) 14.206 5.034 3.512 3.445 5.041

Peak (MB) 23.182 14.329 7.109 8.891 14.332

Runtime(seconds) 705.180 106.470 95.831 98.254 101.090

F-STWR, F-STWR_SP1, F-STWR_SP2, F-STWR_SP3 run on 12 processors. 359

 360

5. Discussion 361

5.1 A reflection on the applicability of F-STWR and STWR 362

The current F-STWR only considers how to parallelize STWR and solve the issues of 363

computational efficiency and memory usage. We have not considered the influence of 364

different types of data on the algorithm. For example, to employ the current F-STWR 365

algorithm to analyze large-scale grid data, it still needs to calculate in a pointwise procedure 366

(see above-mentioned Algorithms 2 and 3), although points can be assigned to different 367

nodes. We can not simply split the grid data subjectively to achieve parallelism because it 368

might destroy the spatial continuity of the study area, causing issues such as the modifiable 369

areal unit problem (Wong 2004; Dark et al., 2007). One possible solution is to use clustering 370

or other methods to find the best solution for dividing grid data before assigning them to 371

different parallel cores. 372

In the Introduction section we have briefly compared STWR, GWR, and GTWR. Based 373

on the presented examples of F-STWR, we can further extend the comparison with a few 374

 23

more algorithms in spatial and spatiotemporal data analysis, especially with the kriging-based 375

models. The kriging-based approach and GWR-based approach each has its own focuses and 376

characteristics. First, the kriging-based approaches mainly aim at interpolation, and they do 377

not require the input data to be multivariate in the spatial (or spatiotemporal) coordinates. In 378

contrast, the GWR-based approaches require their input data having explanatory 379

(independent) variables and response (dependent) variables. Second, the kriging-based 380

approaches assume that a study area has various degrees of stationarity. Take the simple 381

kriging as an example, it assumes stationarity of the first moment over the entire domain with 382

a known mean. However, GWR-based approaches mainly target at exploring the non-383

stationarity relationships between the explanatory and response variables. Third, the kriging-384

based approaches can obtain the Best Linear Unbiased Prediction (BLUP), while in GWR-385

based approaches, Fotheringham et al., (2003) frame the choice of bandwidth as a trade-off 386

between bias and variance. Thus, in our understanding, GWR-based approaches are perhaps 387

more like exploratory methods rather than methods used to draw inference. 388

With the above-mentioned main differences, the running time of GWR, in fact, is not 389

comparable to the general kriging model. Although the basic GWR is more time consuming 390

than standard kriging, GWR-based approaches can handle some problems that the current 391

kriging method cannot, such as constructing the spatially varying coefficients (SVC) between 392

the explanatory variables and the response variables. Some studies have tried to combine 393

GWR with kriging and apply it to specific topics, such as mapping soil organic carbon stock 394

(Kumar et al., 2012) and topsoil electrical conductivity (Yang et al, 2019). For our future 395

work, we have the interest to consider how to combine the current STWR model with the 396

 24

kriging (or spatiotemporal kriging) approach. But in this paper, we mainly focus on the 397

parallel calibration of STWR model for exploring the non-stationarity relationships of large-398

scale data points between variables in space and time. 399

5.2 Comparison between F-STWR and FastGWR 400

Without parallel processing, the current open-source GWR software can handle up to approximately 401

15,000 observations, which is a severe limitation (Li et al., 2019). A parallel implementation of GWR, 402

called FastGWR (Li et al., 2019), was proposed to address the calibration problem of large-scale data 403

in GWR. FastGWR reshaped the optimization algorithm of GWR and employed the MPI method for 404

parallel computing. However, FastGWR is only able to handle data without a time dimension. Its 405

algorithm design is for GWR, which cannot be used directly to the calibration procedure of STWR. 406

Moreover, the spatiotemporal kernel of STWR is much more complicated than the spatial kernel in the 407

original GWR, which increases the difficulty of parallel implementation of STWR. 408

Although our idea of applying parallel implementation to STWR was inspired by FastGWR, F-409

SWTR was very different from FastGWR, mostly due to the difference between STWR and GWR. On 410

one hand, the weighting method of the STWR model is different from GWR, and its kernel function 411

and calibration procedures are more challenging, because STWR needs to weigh the combined effect of 412

time and space and to optimize the spatial bandwidths at different time stages, as well as the temporal 413

bandwidths. On the other hand, the current FastGWR does not consider the combination matrix of 414

weighted calculated by each parallel core, which is needed for prediction and may further cause 415

insufficiency memory usage. 416

To address these limitations, we designed a parallel implementation algorithm for STWR together 417

with a strategy of matrix splitting. We named the overall design as Fast STWR (F-STWR). There are 418

 25

five aspects to show that F-STWR is different from FastGWR. (1) F-STWR provides spatiotemporal 419

kernel functions for calculating the combined weights from time and space, while FastGWR only has 420

the spatial kernel for calculating weights from space. (2) F-STWR can optimize the best number of 421

time stages for the model to use, which is not considered in FastGWR. (3) The weight matrixes of each 422

time stage in F-STWR are not necessarily the same because the number of observation points in each 423

time stage is different. In comparison, FastGWR does not need to consider this issue. (4) F-STWR uses 424

a method of caching on the MPI nodes, which can avoid repeatedly calculating the spatial distance 425

matrix and the time distance matrix during the calibration process. To obtain the optimized adjustable 426

parameter (a parameter for weighting the influence from local space and time on the regression point) 427

in STWR, the F-STWR adopts a searching method (e.g., golden section or equal interval) to try and 428

calculate the combined spatiotemporal weight values. In the process, the weight value needs to be 429

calculated by the updated and the spatial distance and temporal distance matrixes for each step. If there 430

is not a strategy for caching, there will be many unnecessary and repeated calculations. In comparison, 431

FastGWR does not consider the combined spatiotemporal effect, so there is not caching design in its 432

parallel algorithm. (5) In addition to parallel computing, F-STWR adopts a matrix splitting strategy for 433

memory saving, and this strategy can help generate combined matrixes to be used for model prediction. 434

The matrix splitting strategy is not considered in current FastGWR. 435

6. Conclusions 436

The parallel calibration routine developed by this study improves the ability of STWR for processing 437

large-scale spatiotemporal data. The resulting F-STWR can leverage existing computing resources 438

(processor cores and memory) and solve many challenges that large-scale data bring to the original 439

STWR model (Que et al., 2020). Some features of F-STWR and STWR are summarized below. 440

 26

(1) Runtime may be related to the number of observation points in the latest time stage. 441

(2) STWR can easily reach its bottleneck during the calibration procedure because it is 442

computationally intensive and memory intensive. The parallel computing algorithm F-STWR is a better 443

choice for handling datasets with a large number of observation points. 444

(3) With appropriate settings of the matrix splitting strategy, F-STWR can save more memory usage 445

than STWR, making it more flexible in different memory configurations. 446

(4) F-STWR can obtain the consistent results of STWR, which means that it can combine the 447

weights calculated by different parallel cores into the calibration weighted matrixes and enable further 448

predictions out of sample points. 449

Extending the parallel calibration routine for multiple bandwidths of space and time will be one of 450

the most challenging issues in our future work. Another topic of interest is to try other strategies to further 451

speed-up the calculation of F-STWR. 452

 453

Author Contribution 454

X.Q., X.M. and C.M. designed the algorithm together. X.Q. developed the code. Q.C. contributed to the 455

discussion and revision of the algorithm. All authors contributed to the writing of the manuscript. 456

 457

Competing Interests 458

The authors declare that they have no known competing financial interests or personal relationships that 459

could have appeared to influence the work reported in this paper. 460

 461

Acknowledgement 462

 27

The research presented in this paper was partially supported by the National Science Foundation under 463

Grants No. 1835717 and No. 2019609, the China Scholarship Council under Grant No. 201807870006, 464

the Fujian Provincial Department of Education under Grant No. JT180130, the special projects for local 465

science and technology development guided by the central government under grant no. 2020L3006, and 466

the Digital Fujian Environmental Monitoring Internet of Things Laboratory open fund no. 202008. The 467

authors thank Prof. Stewart Fotheringham and other colleagues at the Spatial Analysis Research Center 468

(SPARC) of Arizona State University for their insightful comments and suggestions during a seminar 469

about the STWR model. We also thank three anonymous reviewers for their constructive comments and 470

suggestions on an earlier version of the manuscript. 471

 472

Code and Data Availability 473

The code for F-STWR and the installer of an executable program for Windows are shared on GitHub: 474

https://github.com/quexiang/Fast-STWR/releases. 475

The test datasets, examples in Jupyter Notebook format, and the operation manual are also shared on 476

GitHub: https://github.com/quexiang/Fast-STWR. 477

 478

References: 479

Akaike, H., 1973. Maximum likelihood identification of Gaussian autoregressive moving average 480

models. Biometrika 60, 255-265. DOI: 10.1093/biomet/60.2.255 481

Barney, B., 2012. OpenMP. Lawrence Livermore National Laboratory. 482

https://computing.llnl.gov/tutorials/mpi/ 483

Berliner, L.M., 1996. Hierarchical Bayesian time series models. In Maximum entropy and Bayesian 484

 28

methods (pp. 15-22). Springer, Dordrecht. DOI: 10.1007/978-94-011-5430-7_3 485

Brunsdon, C., Fotheringham, A.S. and Charlton, M.E., 1996. Geographically weighted regression: a 486

method for exploring spatial nonstationarity. Geographical analysis, 28(4), pp.281-298. DOI: 487

10.1111/1467-9884.00145. 488

Cavanaugh, J.E., 1997. Unifying the derivations of the Akaike and corrected Akaike information 489

criteria, Statistics & Probability Letters, 31 (2): 201–208. DOI: 10.1016/s0167-7152(96)00128-9 490

Cleveland, W.S., 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the 491

American statistical association 74, 829-836. DOI: 10.1080/01621459.1979.10481038 492

Dalcín, L., Paz, R., Storti, M. and D’Elía, J., 2008. MPI for Python: Performance improvements and 493

MPI-2 extensions. Journal of Parallel and Distributed Computing, 68(5), pp.655-662. DOI: 494

10.1016/j.jpdc.2007.09.005 495

Dark, S.J. and Bram, D., 2007. The modifiable areal unit problem (MAUP) in physical geography. 496

Progress in Physical Geography, 31(5), pp.471-479. 497

Fotheringham, A. S., Brunsdon, C., and Charlton, M., 2003. Geographically Weighted Regression: The 498

Analysis of Spatially Varying Relationships, John Wiley & Sons. 499

Fotheringham, A.S., Crespo, R., Yao, J., 2015. Geographical and temporal weighted regression 500

(GTWR). Geographical Analysis 47, 431-452. DOI: 10.1111/gean.12071 501

Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, 502

P., Barrett, B., Lumsdaine, A. and Castain, R.H., 2004. September. Open MPI: Goals, concept, 503

and design of a next generation MPI implementation. In European Parallel Virtual 504

Machine/Message Passing Interface Users’ Group Meeting (pp. 97-104). Springer, Berlin, 505

Heidelberg. DOI: 10.1007/978-3-540-30218-6_19 506

 29

Hoaglin, D.C. and Welsch, R.E., 1978. The hat matrix in regression and ANOVA. The American 507

Statistician, 32(1), pp.17-22. 508

Huang, B., Wu, B. and Barry, M., 2010. Geographically and temporally weighted regression for 509

modeling spatio-temporal variation in house prices. International Journal of Geographical 510

Information Science, 24(3), 383-401. 511

Hurvich, C.M., Simonoff, J.S., Tsai, C.L., 1998. Smoothing parameter selection in nonparametric 512

regression using an improved Akaike information criterion. Journal of the Royal Statistical 513

Society: Series B (Statistical Methodology) 60, 271-293. DOI: 10.1111/1467-9868.00125 514

Kumar, S., Lal, R. and Liu, D., 2012. A geographically weighted regression kriging approach for 515

mapping soil organic carbon stock. Geoderma, 189, pp.627-634. 516

https://doi.org/10.1016/j.geoderma.2012.05.022 517

Li, Z., Fotheringham, A.S., Li, W. and Oshan, T., 2019. Fast Geographically Weighted Regression 518

(FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of 519

observations. International Journal of Geographical Information Science, 33(1), pp.155-175. 520

Neese, F., 2012. The ORCA program system. Wiley Interdisciplinary Reviews: Computational 521

Molecular Science, 2(1), pp.73-78. DOI: 10.1002/wcms.81 522

Pebesma, E., 2012. spacetime: Spatio-temporal data in R. Journal of Statistical Software,51, 1–30. 523

Pebesma, E. and Heuvelink, G., 2016. Spatio-temporal interpolation using gstat. RFID Journal, 8(1), 524

pp.204-218. 525

Que, X., Ma, X., Ma, C. and Chen, Q., 2020. A spatiotemporal weighted regression model (STWR v1. 526

0) for analyzing local nonstationarity in space and time. Geoscientific Model Development, 527

13(12), pp.6149-6164. 528

 30

Schmidt, H.A., Strimmer, K., Vingron, M. and von Haeseler, A., 2002. TREE-PUZZLE: maximum 529

likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 18(3), 530

pp.502-504. DOI: 10.1093/bioinformatics/18.3.502 531

Snir, M., Otto, S., Huss-Lederman, S., Walker, D. and Dongarra, J., 1998. MPI: The Complete 532

Reference Vol. 1, The MPI Core. 533

Wikle, C.K., Zammit-Mangion, A. and Cressie, N., 2019. Spatio-temporal Statistics with R. CRC 534

Press. 535

Wrenn, D.H. and Sam, A.G., 2014. Geographically and temporally weighted likelihood regression: 536

Exploring the spatiotemporal determinants of land use change. Regional Science and Urban 537

Economics, 44, pp.60-74. 538

Wong, D.W., 2004. The modifiable areal unit problem (MAUP). In WorldMinds: geographical 539

perspectives on 100 problems (pp. 571-575). Springer, Dordrecht. 540

Wu, Y., Li, T., Sun, L. and Chen, J., 2013. Parallelization of a hydrological model using the message 541

passing interface. Environmental modelling & software, 43, pp.124-132. DOI: 542

10.1016/j.envsoft.2013.02.002 543

Yang, S.H. et al, 2019. Mapping topsoil electrical conductivity by a mixed geographically weighted 544

regression kriging: A case study in the Heihe River Basin, northwest China. Ecological Indicators, 545

102, pp.252-264. https://doi.org/10.1016/j.ecolind.2019.02.038 546

https://doi.org/10.1016/j.envsoft.2013.02.002

