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Abstract:

The Spatiotemporal Weighted Regression (STWR) model is an extension of the Geographically

Weighted Regression (GWR) model for exploring the heterogeneity of spatiotemporal processes. A key

feature of STWR is that it utilizes the data points observed at previous time stages to make better fit

and prediction at the latest time stage. Because the temporal bandwidths and a few other parameters

need to be optimized in STWR, the model calibration is computationally intensive. In particular, when

the data amount is large, the calibration of STWR becomes heavily time-consuming. For example, with

10000 points in 10 time stages, it takes about 2307 seconds for a single-core PC to process the

calibration of STWR. Both the distance and the weighted matrix in STWR are memory intensive,
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which may easily cause memory insufficiency as data amount increases. To improve the efficiency of

computing, we developed a parallel computing method for STWR by employing the Message Passing

Interface (MPI). A cache in the MPI processing approach was proposed for the calibration routine.

Also, a matrix splitting strategy was designed to address the problem of memory insufficiency. We

named the overall design as Fast STWR (F-STWR). In the experiment, we tested F-STWR in a High-

Performance Computing (HPC) environment with a total number of 204611 observations in 19 years.

The results show that F-STWR can significantly improve STWR’s capability of processing large-scale

spatiotemporal data.

Keywords: Spatiotemporal Weighted Regression; Parallel computing; Geographically Weighted

Regression; Spatial analysis; Spatiotemporal non-stationarity

1. Introduction

Spatiotemporal data are a topic of interest in many fields of research. The amount of spatiotemporal

data has significantly accumulated in recent years due to improvements in data acquisition methods

(Wikle, 2019). Many statistical models, such as the Bayesian hierarchical model (BHM Berliner,1996)

and the spatiotemporal kriging (Pebesma et al., 2012, 2016), have been proposed to facilitate

understanding how (and ultimately why) data vary in space and time. Nevertheless, the modeling of

spatiotemporal processes still faces challenges caused by the spatiotemporal non-stationarity (i.e.,

relationships between variables change when the locations change and time variation).

The Geographically and Temporally Weighted Regression (GTWR) (Huang et al., 2010), an

extended model of the Geographically Weighted Regression (GWR) (Brunsdon et al. 1996;
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Fotheringham et al. 2003), is developed to analyze the spatiotemporal non-stationarity. Although it

addressed the issues to some extent (Wu et al., 2013; Wrenn and Sam 2014), calculating distance in

three dimensions (two-dimension in space and one dimension in time) in GTWR still can be improved.

Location and time are usually measured at different scales, and their units and impacts on regression

points are fundamentally different. Although GTWR uses the adjustment factor t to synthesize the

distance between time and space, a sole measure integrating the spatial and temporal distances is not

enough (Fotheringham et al., 2015). Moreover, the performances of GTWR in fitting and prediction are

sometimes even inferior to the traditional GWR models (Que et al., 2020).

A new GTWR (Fotheringham et al., 2015) model was proposed to use a set of time-isolated

spatial bandwidths to capture the local effects from observation points on regression points in space

and time. But the calibration process is cumbersome and cannot simultaneously optimize the

bandwidths of time and space. Furthermore, both GTWR models (Huang et al., 2010; Fotheringham et

al., 2015) regard the time interval as the temporal distance, resulting in that all observations from

different locations recorded at the same previous time having an equal temporal weight on a regression

point. However, the magnitudes of value variation during the time interval in different observations

have different influences on the regression point (Que et al., 2020). The more significant the value

changes during the time interval, the higher its impact is on the regression point. The variation rate of

attribute values (non-stationarity in time) also has heterogeneity in space. Using the time intervals as

the temporal distances for calculating temporal weights cannot fully capture the local temporal effects

from observations to the regression point. Based on this idea, the Spatiotemporal Weighted Regression

(STWR) model (Que et al., 2020) was developed to capture better the combined effects of a non-

stationary spatiotemporal process from observed data.
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STWR treats the time distance as the rate of value variation through a time interval rather than the
time interval itself, which is more suitable to measure the degree of temporal impact from each
observation point to a regression point. Besides, it utilizes a weighted average form to calculate the
spatiotemporal kernel rather than the multiplication form in GTWR (Huang et al., 2010; Fotheringham
et al., 2015), thus, avoiding potential underestimation of combined spatiotemporal effects (Que et al.,
2020). Compared with GWR and GTWR, these new features in STWR significantly improve model
fitting and prediction capabilities for the latest time stage (Que et al., 2020). However, because the
temporal bandwidths and several other parameters need to be optimized, the calibration of STWR is
more complicated and time-consuming than the original GWR model. It requires intensive computation
and memory usage. It is a challenging issue and may seriously limit the application of STWR in large-
scale spatiotemporal data processing. Inspired by FastGWR (Li et al., 2019), a parallel implementation
of GWR, we developed a parallel computing version of STWR, named Fast STWR (F-STWR), to scale
up the capacity of STWR.

In the remainder of this paper, Section 2 will overview STWR and its differences with GTWR.
Section 3 will introduce the parallel calibration approach developed for STWR. Section 4 will present
the experimental results. Section 5 will compare the characteristics of F-STWR and FastGWR. Finally,
Section 6 will summarize the highlights of F-STWR.

2. The calibration and optimization procedure of STWR
2.1 Model formulation of STWR and its differences with GTWR
Derived from the basic GWR framework (Brunsdon et al. 1996; Fotheringham et al. 2003), the STWR

formula is shown in Equation 1.

yi = B (ui,vi) + Xk B (i, vi)xfy + €f (1
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In this equation, y{ denotes the i*" dependent variable at the regression point (u;,v;) attime t. xf,
denotes the k™" independent variable. &f is the independent random error term with distribution
N(0,02) (STWR assumes that all random error terms at different time stages meet the same independent
and identical distribution). B¢(u;,v;) and BE(u;,v;) denote the constant item and coefficient at

location (u;, v;), respectively.
Equation 2 shows the estimator for the coefficient.

Bt (i, vi) = [(XT, War(wi, vi) Xs ;) ™ X 1 Waae (us, v)1s (2)

In this equation, X, isamatrix of all observed independent variables within the time interval At. ys,,

At

is the corresponding vector of dependent variables. X

sy 18 the transpose of X, . W, (u;,v;) denotes

the spatiotemporal weight matrix of observations from different locations and time stages within At,

which will be used for the regression point i(u;, v;) at t.

In Wy, (u;,v;), an element Wl-thT is used to reflect the spatiotemporal impact from other
observations. Both STWR and GTWR model have their own spatiotemporal kernel functions to
calculate the weight value ijST, but their designs of the spatiotemporal kernel are different. The
spatiotemporal kernel of GTWR is a multiplication form of the spatial kernel and the temporal kernel,
as shown in Equation 3 (Fotheringham et al., 2015).

wiisr = kg(dsij bs) X kr(duij, br) A3)
In this equation, the weight wijT denotes the impact from observed data point j to the regression
point i at time stage t. kg and kr are spatial kernel and temporal kernel, respectively. dg;; and
dy;; denote the Euclidean distance and time distance from an observed data point j to the regression
point i, respectively. bg, and by are the spatial bandwidth and temporal bandwidth, respectively.

In comparison, STWR applies a new weighted average form of spatiotemporal kernel for
calculating the ijsr, as shown in Equation 4 (Que et al., 2020).

WithT = (1 - a)k;(dgj, bsr) + aky(dyj, br), 0 <a <1 4
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In this equation, bgr denotes the spatial bandwidth at t. Outputs of both spatial and temporal kernel
functions range from 0 to 1. « is an adjustable parameter for balancing (enlarging or reducing) the
effects from time and space.

To obtain the combined weight value WithT, the calculation of the time distance (dy;;) is also
critical. In GTWR, the dy;; is the time interval (difference) between two observed time stages.
However, the time distance (dy;;) in STWR is not the time interval or time difference, but the rate of
value variation between an observed point and a regression point through a time interval. The temporal

kernel ky is defined in Equations 5 (Que et al., 2020).

2 .
—— 1], 0<At<b
WitjAt = {[1+exp(—ditjm) ] if T )
0, otherwise
|(yi(t)_yj(t—q))/yj(t—q)| )
where, dfja = { at/by , If0<At<by ©6)
0, otherwise

In Equation 6, y;(+) — ¥j(t-q) is the value variation from regression point i at t to point j at t — g,
which denotes the value change during the time interval At. At is the time difference between t and
t — g. When the time interval At is out of the range (0, by), the weight is set to zero.

Like most distance-decay weighting strategy, it is usually assumed that the spatial bandwidth
becomes narrower with the time distance increases. The spatial bandwidth bgr in STWR is assumed to
be linearly changing along with time from the current time stage to the previous stages, as shown in
Equation 7 (Que et al., 2020).

bsr = b, — tan® * At, —§<9<§ (7
In this equation, tan® denotes the slope, and bg; denotes the initial bandwidth at the latest time stage
t. The other spatial bandwidth bg; in the past time stage is derived from bg,. Combining Equations 4

and 7 with the bi-square or Gaussian spatial kernel function (Fotheringham et al., 2002), the
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spatiotemporal kernel in STWR (Equation 4) can be further derived. As shown below, Equations 8 and

9 are based on the bi-square and Gaussian kernel, respectively.

2
d..
(l_a){l_(Tz@w)z} +a*(2/(1+exp(-
St

Wi =1 ifAt<b,, and d; <(bs,—tan@*Ar)

0, otherwise

— ) 1 dSl_j 2 i

(l—a) exp —E m +a (2/(1+6Xp(—

St

Wisr = ifAt<b,, and d;<(bs—tan8*At)

0, otherwise

In GWR, only the single spatial bandwidth bsr needs to be

|(yi(t) - yj(tfq)) / y.i(f*q)|)) _ 1)
At/b, ’
®)
|(yi(t) ~Yiug)/ y,-(,,q)|
A a ) |
©)

optimized. In comparison (as shown in

Equations 8 and 9), STWR needs to get the optimized initial spatial bandwidth bg,, temporal bandwidth

br, and the optimized parameters a and 6. Thus, besides the increased volume of data, STWR also

needs to optimize more parameters in its calibration procedure.

2.2 Procedure for model calibration and parameter optimization in STWR

Similar to the general GWR, some popular goodness-of-fit diagnostics such as the Cross-Validation (CV)

(Cleveland, 1979), the Akaike Information Criterion (AIC) (Akaike 1973; Hurvich et al., 1998), and the

corrected AIC (AICc, Cavanaugh, 1997) (AICc performs better than AIC with small sample sizes) are

also appropriate for STWR. Once we get the weighted matrix
calculated using Equation 10.

Tit = Xie (X1eWiaeXae) ™ XaeWiae

Wy, the row r of that matrix can be

(10)

In this equation, X;, is the i*" row of the independent variable matrix at t. X,, is a matrix of all the

observed independent variables during a certain time interval At, and W, is the i®" row of the



151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

weighted matrix W);.

The optimization is a procedure of searching through multiple trials by utilizing these diagnostics
scores. Specifically, for each regression point pl-(t), STWR needs to traverse two loops to obtain the
optimized values for a, 8, the number of time stages used by STWR, and the initial spatial bandwidth
bs: at time stage t. The searching range of the temporal bandwidth b; is limited to a discrete set
BT; = {At,, At,, ... At,}, in which the element At; is the time interval from t to t — A. The initial
spatial bandwidth bg; is also limited to a discrete set BSy; = {Dys1,Dis2,---Dp,}, in which the
element Dy, U € {k + 1,k + 2,...,N;} denotes the distance from pl.(t) to the U™ nearest neighbor,
and k equals to the number of independent variables. BT, and BSy, are determined by the number of
total observation time stages and the number of observation points at time stage t, respectively. In the
two loops for STWR parameter optimization, the outer loop is to traverse the set of BTj, and the inner
loop is to traverse the set of BSy;. If the current traversed time interval elementis At, ( ¢ =1,2, ...,
A) in BT, and the initial spatial bandwidth is Dy,, (p =1, 2, ..., N), then the range of 6 can be
calculated for each past time stage t —s (s=1,2,..., q)in Aty because the spatial bandwidth bgr at
t — s is not farther than the distance Dy, (i.e., spatial bandwidth value decreases over the time in the
past). With user-specified maximum number of iterations and searching methods (e.g., Golden-section
or equal interval searching), the weighted matrix W,;(u;,v;) can be calculated for each iteration, and
its corresponding Bt (u;,v;) (Equation 2) can be solved by employing the Iteratively Reweighted Least
Squares (IRLS) method. Finally, the CV or AICc scores can be obtained at each iteration during the
traverse.

To improve the applicability of STWR, we designed a matrix splitting calculation method and a

parallel search method to save memory usage and speed up the procedure of parameter optimization in
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STWR. The development and implementation of those methods were based on the mpidpy package in

Python. More technical details are presented in the next section.

3. The method of parallel calibration and its implementation in F-STWR

3.1 Design of the parallel algorithm

Message Passing Interface (MPI) is a common protocol for parallel computing, widely adopted in many

fields (Schmidt et al., 2002; Gabriel et al., 2004; Neese 2012; Wu et al., 2013). For STWR, the most

time-consuming calculation lies in the procedure of parameter optimization, which is conducted by

searching through multiple trials. Intuitively, we can consider scattering those trials to different

processors evenly (i.e., a parallel form) to improve the efficiency. To put that idea into practice, we need

to look into the detailed procedure in STWR. In the basic GWR model, the diagnostics score only

depends on all regression points' local standard errors, whose parallel calculation form refers to the

method described by Li et al. (2019). In STWR, however, we should also code the traversal procedures

of all the time stages into the parallel form. In a multi-processor system, MPI identifies processes

according to their relative ranks in a group (Snir et al., 1998). A unique integer identifier (i.e., within the

range from 0 to group size - 1) is assigned to each processor(rank). The group size is the number of tasks

in a multi-processor system. A rank is also called a “task ID” in some studies (Barney, 2012). For F-

STWR, we use rank 0 as the rank root in MPI, responsible for assigning tasks and collecting results. To

implement MPI in STWR, we should make sure that each rank's traversing progress keeps pace with the

MPI rank root consistently. Moreover, during the optimization procedure, we should combine some

results for further calculation, such as gathering all the points’ impacts from different observed time

stages to the rank root to calculate each trial's scores. The details of the algorithm to compute the

diagnostics scores are summarized in Algorithm 1.
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Algorithm 1: Parallel implementation of F-STWR for model fitting and parameter optimization

1: Root (rank 0) reads the data, the searching method, and diagnostics type, then calculates the initial

spatial bandwidth according to the number of the latest observation points

2: Broadcast data to other processes with ranks not equal to 0. Each process gets its own chunk of

index numbers of the latest observation points. Divide the total number of latest observations by the

size of MPI processes and then get the ceiling value m_ck, and each process keeps a chunk of index

numbers ranging from rank * m_ck to rank * (m_ck+1)

3: For each element in set BTy:

4: The root changes current Cache_Type to 0 and broadcasts the Cache_Type

5: For each element in BSy;:

6: Calculate the range of 6

7: For iteration element in 6:

8: Execute searching function («):

9: (1) Root executes function F1

10: (2) Each rank executes searching function mpi_CalCriterion
11: (3) Root executes function F2

12: Root collects all diagnostics scores and then outputs the best score and its corresponding

parameters

196

197 The parameter Cache_Type and its two control functions (F1 and F2) are used here to keep the pace

198 consistent with the rank root and avoid unnecessary iterative calculations. A different cache type stands

10
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for a different computing status. The mpi_CalCriterion function will retrieve matrixes from different

memory (if cached) or make different matrixes cached (if not cached). Table 1 outlines the status of

different cache types and their corresponding descriptions.

Table 1. Status and description of each cache type

Cache_Type

Status and description

No content cached and unstable. Automatically change to M in the next step. If the

previous status is 4, M will be 2, otherwise M is its default value 1

Both the spatial distance (SD) and temporal distance (TD) matrixes are cached and

stable but should be truncated before recalculating the spatiotemporal weight matrix

4

Both SD and TD are cached and unstable, but they should be further truncated,

masked and cached. Automatically change to 3 after the masked SD and TD are

cached.

Both masked SD and TD are cached and stable. Only need to adjust the factor a to

enlarge/reduce the spatiotemporal effect (W)

Auxiliary status to control the M value

The rank root mainly controls the status of Cache_Type except for some unstable status (0 or 2).

There are three different scenarios for the mpi_CalCriterion function in Algorithm 1: (1) Traverse to a

new element in set BT,. The total time interval that the model used will be changed, so all the matrixes

(if cached) will be invalid. So, the Cache_Type will be set to 0. (2) Two different branches before we

11
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219

execute the mpi_CalCriterion function (in F1): One is that our program’s Cache Type is 0, and we should

change its status to 4. This is because in our searching function (Line 8 in Algorithm 1), we only need to

adjust a, and there is no need to recalculate all the distance matrixes. The other is that our program’s

Cache_Type is 1, which means that we have only cached the distance matrixes without masking. The

matrix should be masked, so the Cache_Type is set to be 2. (3) After the mpi_CalCriterion function (in

F2): If our program’s Cache Type is 3, we may execute another iteration, and the masked matrixes will

be invalid. So, the Cache_Type will be reset to 1. After executing the F1 and F2 functions, the rank root

should broadcast the current Cache_Type to all other ranks.

Next, the mpi_CalCriterion function is inspected, which will obtain a diagnostic score through the

rank root. In the implementation, the rank root gathers results from all other ranks, which calculate with

their own chunk of data. The detail is summarized in Algorithm 2.

Algorithm 2: mpi_CalCriterion function for calculating diagnostics scores of different cache

types

1: Given a chunk of index numbers CK

2: Check cached matrixes and set M value (described in Table 1)

3: switch Cache_Type:

4: case 0:

5: Clear cached matrixes

6: For index in CK:

7: Execute function local_CalSearch to get component value
8: Root gathers all the component values

9: Root calculates diagnostics score (Li et al., 2019)

12
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10: Submit distance matrixes (corresponding to chunk) into cached matrixes

11: Set current Cache_Type to M

12: case 1:

13 Copy and sort current cached distance matrixes

14: Truncate matrixes according to current bandwidth (element in BSy;)

15: Calculate the weighted matrix W according to the truncated matrixes

16: For index in CK:

17: Calculate component value according to corresponding index in W
18: Root gathers all the component values

19: Root calculates diagnostics score (see Line 9)

20: case 2:

21: Execute same as Line 13 to 19

22: Cache current masked distance matrixes (truncated)

23: Set current Cache_Type to 3

24: case 3:

25: Calculate the weighted matrix W according to the cached masked matrixes
26: Execute same as Line 16 to 19

The function local_CalSearch (Line 7 in Algorithm 2) calculates the component (in a pointwise way),

which is gathered by the rank root for calculating the diagnostics scores. The details of diagnostics score

calculation (such as CV and AICc) were adopted from Li et al. (2019). Here we describe the

local_CalSearch in Algorithm 3.

13
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Algorithm 3 local_CalSearch function for calculating component value of each regression point

1: Given current regression point pi(t) corresponding to the index number in chunk

2: For past time stages t —s in At, (elementin BT)):

3: Calculate spatial distance and temporal distance (Equation 6) matrixes to pi(t)

4: Calculate weight matrix from Equation § or 9

5:  Calculate component value according to the diagnostics type:
(a) CV score: calculate the coefficient matrix (Equation 2) and get the residuals
(b) AICc score: calculate residual squared €i? and the diagonal element of the hat
matrix (Hoaglin and Welsch, 1978) from Equation 10

6: Return component value and spatial and temporal distance matrixes

3.2 Strategy of splitting matrix for calculation

The implementation of a parallel algorithm reduces memory usage (Li et al., 2019). However, in

FastGWR studies, the memory reduction only happens during the procedure of parameter optimization.

For F-STWR, a new design is needed because when the optimized parameters are used for predicting

unobserved points, STWR needs to calculate or build up new big matrixes. At that stage, if the total

number of points is too large, the STWR program may break down. We can alleviate this problem by

adopting the strategy of matrix splitting for calculation. The idea of avoiding big matrixes in STWR is

to split them into small ones. A strategy was proposed and applied in the F-STWR program.

(1) Before splitting the matrix, we should first know how many data points (or memory) are used

for calculation. Users specify the maximum number of points (max_tol). If the available memory reduces,

our model will need more iterations, increasing the total time for calculation. So, it is suggested to specify

14
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a proper value for splitting according to the user’s system. If the max_tol is set, the minimum memory

size must be greater than Mem_min, given in Equation 11.

Mem_min = rank_num X max _tol? X Mem_dtype (11)

In this equation, rank_num is the number of ranks we plan to use, Mem_dtype is the memory size

of the data type of matrix, e.g., float32 in python is 4 bytes.

(2) The next step is to determine how many parts we should have. This issue is solved by obtaining

the ceiling value of the result in a division calculation (i.e., the number of observations divided by

max_tol). We should also calculate each part's row number, which is determined by the number of points

at the latest time stage (suppose the number is N_latest). In the calibration of STWR, the distance matrix

(or weighted matrix) is from the past observation points to each regression point at the latest time stage.

If the total number of past points is N_past, then the dimension of this matrix is N_latest by N_past,

which is larger than the limitation of max_tol by max_tol. In this case, the N_latest is split into several

parts to ensure that every part's size is smaller than the limitation. A note here is that the matrix should

not be split by N_past, which may cause missing data when calculating weights from observations to

each regression point.

(3) Instead of directly calculating the spatial and temporal distance matrixes for all the regression

points, each part's matrixes are calculated. Then the weights of regression points in each part are

calculated. All the rows in each part are assigned a number to keep a consistent order with the points

observed at the latest time stage.

(4) Last, a list of weight values is built to replace the original big matrix. To this end, all the data

are gathered for calculating summary information such as AICc, R-squared, Effective number of

parameters (trace(S)), etc., by tracking the assigned number.

15
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4. Experiments and comparison of results

We use the mpidpy package (Dalcin et al., 2008) in Python to call the OpenMPI program (which is an

open-source implementation of MPI that can be executed on a single CPU computer and High-

Performance Computing clusters) to execute STWR. Our parallel algorithm (F-STWR) was deployed on

the University of Idaho’s IBEST Computational Resources Core, which has a total of 1500 processor

cores. We ran our experiments on the SuperMocro rack server (named Watson & Crick) with 48 logical

cores and 256 GB of system memory. Crick features 4 Intel Xeon Phi 5110p Co-processor cards. Watson

has 2 NVIDIA P100 cards.

4.1 Verification of the calibration results of the parallel algorithm

To verify the consistency of the fitting results of the parallel algorithm F-STWR, we used the same real-

world data in Que et al. (2020) for comparison. The data are the daily mean precipitation hydrogen

isotopes (8%H) of three consecutive days in Northeastern United States. To be consistent with the previous

setting in the STWR experiment (Que et al., 2020), we set 6 in Equation 7 to zero for the F-STWR

algorithm. A comparison of the results in F-STWR and STWR is shown in Table 2. All values are the

same except for some slight differences in the sum of squared errors (SSE) of the second (D2) and third

(D3) days. The differences are most likely caused by rounding the decimal point in assigning parallel

tasks and collecting results from the parallel cores.

Table 2. Comparing model calibration results of F-STWR and STWR.

Model Parameters &
Model STWR F-STWR

Diagnostic information

SSE 24022.226 24022.195

R2 0.834 0.834

16
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D2 AlCc 977.181 977.181

Init Bandwidth 16 16
alpha 0 0
Time stages model used 2 2

SSE 25118.096 25118.082

R2 0.763 0.763
D3 AlCc 669.648 669.648

Init Bandwidth 16 16
alpha 0 0
Time stages model used 2 2

4.2 Efficiency test of F-STWR

The parallel algorithm and matrix splitting approach described earlier were employed to calibrate the

STWR model using house price data in London obtained through the Nationwide Building Society

(Fotheringham et al., 2015). Interested readers can contact the authors of Fotheringham et al. (2015) for

the data. The data consists of a set of annual house prices from 1980 to 1998 with 204,611 observation

points, and each data point contains 21 independent variables. Here, the in-depth analysis of the data is

omitted. Instead, we present the experimental results demonstrating parallel computing ability in F-

STWR for tackling large-scale spatiotemporal data.

In the first experiment, we compared our parallel algorithm F-STWR with STWR for different numbers

of samples (1K to 10K points, K denotes 1000). The results show that F-STWR is much less time-

consuming than STWR. As Fig. 1 shows, the average runtime (in seconds) of STWR increases from

12.68s of 1K points to 258.85s of 5K points, and then up to 2307.68s of 10K points. In contrast, F-
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305

STWR_15, F-STWR_30, and F-STWR_45 (F-STWR_15, F-STWR_30, and F-STWR_45 denote

running F-STWR with 15, 30, and 45 MPI processors, respectively) are much faster than the original

STWR, especially when the number of observations increases. For 10K points, the average runtime of

F-STWR_15, F-STWR_30, and F-STWR_45 are 136.75s, 108.35s, and 112.29s, respectively. Those

results are almost just one-twentieth of the runtime in STWR. The F-STWR_45 is slightly slower than

F-STWR_30. This may because there are more internal communications within F-STWR_45 (45

processors) than F-STWR_30 (30 processors) during the parallel processing.
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Fig. 1. Comparing average runtime of scalability as data size grows. (a) Comparison results of STWR

and F-STWR with multiple processors (b) Comparison of F-STWR with different numbers of employed

MPI processors. F-STWR_15, F-STWR_30, and F-STWR_45 denote F-STWR model run with 15, 30,

and 45 processors, respectively.

The second experiment was with a fixed number (10K) of observation points and an increasing

number of MPI processors. As show in Fig. 2, the runtime decreases significantly as the number of MPI

processors increases, especially in the first 20 processors. The runtime (in seconds) drops from 307.26s

of 5 processors to 103.32s of 35 processors. When the number of processors is above 35 the runtime does

not further decrease, and even slightly increases. As mentioned in the last paragraph, this may be caused
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Fig. 2. Runtime of F-STWR for utilizing an increasing number of MPI processors with a fixed number

of 10K data points.

In the third experiment, all the 204,611 observation points were used in a step-wise process. As

shown in Fig. 3, when the total number of accumulated data points increases along the years, the running

time of F-SWTR, however, shows an interesting pattern of ups and downs. Overall, the running time of

F-STWR at a time stage (shown in blue square spots) is consistent with the number of observation points

at that time stage (shown in red round spots). Our thoughts for the patterns in Fig.3 are that the running

time is affected primarily by the number of points at the latest time stage and secondly by the cumulative

number of data points. In this step-wise and accumulative process, each year becomes the latest time

stage in a sequence. On one hand, an intuitive understanding is that the increasing number of time stages

and accumulated data points will put more workload in each parallel core, which will increase the running

time. On the other hand, only the data points at the latest time stage were used as regression points, which

determines the size of the workload in each parallel core. A smaller number of regression points means

lighter workload and thus less running time (e.g., at time stages 1992, 1993, 1995 and 1998). We may

raise a hypothesis that the number of observation points at the latest time stage is the key controlling
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323 factor for the running time of F-STWR. Nevertheless, here the experiment was done with only one dataset.

324 To verify that hypothesis, we plan to test F-STWR with more datasets in the future work.

Large Scale Spatiotemporal Data Test
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326 Fig. 3. Runtime test of F-STWR on each time stage of large-scale data points (50 MPI processors

327 employed).

328 When the whole dataset (204,611 points) was tested with 50 MPI processors (time stage 1998 in

329  Fig. 3), it took 110001.49 seconds (30.5 hours) to run F-STWR. As shown in Table 3, the results are

330 compared with the ordinary least squares (OLS) method and GWR applied to the latest time stage (11,282

331 points at 1998). The temporal bandwidth (optimized time stages) in F-STWR is 5, which means that a

332 total of 38,936 observation points in the recent 5 time stages were employed to fit the F-STWR. Different

333 metrics in Table 3 show that F-STWR is better than the general GWR and OLS in this experiment. The

334 Root Sum Square (RSS) of F-STWR is smaller than OLS and GWR. Also, both the AICc and R-squared

335 (R2) of F-STWR are better. The estimated standard errors (Sigma) of F-STWR are less than two-thirds

336 of GWR.

337 Table 3. Comparison of model performance.

RSS AlCc R2 Sigma Bandwidth
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OLS 16852704643550.800 270390.408 0.701

GWR 11383507478243.400 266278.067 0.798 32015.787  3604.000

F-STWR  8475299504397.160  263500.640 0.850 19287.224 649

4.3 Memory usage test on F-STWR and STWR

In most desktop computers, the original STWR is not able to be calibrated for large datasets (such as

the one used in section 4.2) due to the limitation of memory size. F-STWR can further employ the

strategy of matrix splitting to address the issue. In our work we utilized the function “tracemalloc” in

python 3.6.8 to test the memory usage of F-STWR and STWR. For easier comparison, we prepared a

dataset of 1000 points and 5 time stages, and we recorded the peak memory usage during the model

calibration of both F-STWR and STWR. The comparison result is listed in Table 4. The column F-

STWR shows the result of F-STWR without matrix splitting. The F-STWR_SP1, F-STWR_SP2, F-

STWR_SP3 are three cases in which we used matrix splitting, and their parameter “max_tol” were set

to 90000(300*300),160000(400*400) and 250000 (500*500), respectively. The peak memory usage of

STWR is the largest (23.182 MB), which is about 162% much more than F-STWR (14.329 MB), and

about 326% much more than F-STWR_SP1(7.109 MB).

In general, this result verifies the effectiveness of the matrix splitting strategy. Nevertheless, not all

the settings of matrix splitting can facilitate memory saving. For instance, the peak memory usage of F-

STWR_SP3 (14.332 MB) is not less than F-STWR (14.329 MB). Moreover, the results show that both

the peak memory usage of F-STWR (14.329 MB) and F-STWR_SP3 (14.332 MB) are close to the current

memory usage of STWR (14.206 MB). It seems that the maximum amount of memory usage in our

parallel algorithm is a little larger than the STWR model after calibration. This can be a topic for more
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exploration in our future work.

Table 4. Comparison of memory usage and runtime of F-STWR and STWR

STWR F-STWR F-STWR_SP1 F-STWR_SP2 F-STWR_SP3

Current (MB) 14.206 5.034 3.512 3.445 5.041
Peak (MB) 23.182 14.329 7.109 8.891 14.332
Runtime(seconds) 705.180 106.470 95.831 98.254 101.090

F-STWR, F-STWR_SP1, F-STWR_SP2, F-STWR_SP3 run on 12 processors.

5. Discussion

5.1 A reflection on the applicability of F-STWR and STWR

The current F-STWR only considers how to parallelize STWR and solve the issues of

computational efficiency and memory usage. We have not considered the influence of

different types of data on the algorithm. For example, to employ the current F-STWR

algorithm to analyze large-scale grid data, it still needs to calculate in a pointwise procedure

(see above-mentioned Algorithms 2 and 3), although points can be assigned to different

nodes. We can not simply split the grid data subjectively to achieve parallelism because it

might destroy the spatial continuity of the study area, causing issues such as the modifiable

areal unit problem (Wong 2004; Dark et al., 2007). One possible solution is to use clustering

or other methods to find the best solution for dividing grid data before assigning them to

different parallel cores.

In the Introduction section we have briefly compared STWR, GWR, and GTWR. Based

on the presented examples of F-STWR, we can further extend the comparison with a few
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396

more algorithms in spatial and spatiotemporal data analysis, especially with the kriging-based

models. The kriging-based approach and GWR-based approach each has its own focuses and

characteristics. First, the kriging-based approaches mainly aim at interpolation, and they do

not require the input data to be multivariate in the spatial (or spatiotemporal) coordinates. In

contrast, the GWR-based approaches require their input data having explanatory

(independent) variables and response (dependent) variables. Second, the kriging-based

approaches assume that a study area has various degrees of stationarity. Take the simple

kriging as an example, it assumes stationarity of the first moment over the entire domain with

a known mean. However, GWR-based approaches mainly target at exploring the non-

stationarity relationships between the explanatory and response variables. Third, the kriging-

based approaches can obtain the Best Linear Unbiased Prediction (BLUP), while in GWR-

based approaches, Fotheringham et al., (2003) frame the choice of bandwidth as a trade-off

between bias and variance. Thus, in our understanding, GWR-based approaches are perhaps

more like exploratory methods rather than methods used to draw inference.

With the above-mentioned main differences, the running time of GWR, in fact, is not

comparable to the general kriging model. Although the basic GWR is more time consuming

than standard kriging, GWR-based approaches can handle some problems that the current

kriging method cannot, such as constructing the spatially varying coefficients (SVC) between

the explanatory variables and the response variables. Some studies have tried to combine

GWR with kriging and apply it to specific topics, such as mapping soil organic carbon stock

(Kumar et al., 2012) and topsoil electrical conductivity (Yang et al, 2019). For our future

work, we have the interest to consider how to combine the current STWR model with the
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kriging (or spatiotemporal kriging) approach. But in this paper, we mainly focus on the

parallel calibration of STWR model for exploring the non-stationarity relationships of large-

scale data points between variables in space and time.

5.2 Comparison between F-STWR and FastGWR

Without parallel processing, the current open-source GWR software can handle up to approximately

15,000 observations, which is a severe limitation (Li et al., 2019). A parallel implementation of GWR,

called FastGWR (Li et al., 2019), was proposed to address the calibration problem of large-scale data

in GWR. FastGWR reshaped the optimization algorithm of GWR and employed the MPI method for

parallel computing. However, FastGWR is only able to handle data without a time dimension. Its

algorithm design is for GWR, which cannot be used directly to the calibration procedure of STWR.

Moreover, the spatiotemporal kernel of STWR is much more complicated than the spatial kernel in the

original GWR, which increases the difficulty of parallel implementation of STWR.

Although our idea of applying parallel implementation to STWR was inspired by FastGWR, F-

SWTR was very different from FastGWR, mostly due to the difference between STWR and GWR. On

one hand, the weighting method of the STWR model is different from GWR, and its kernel function

and calibration procedures are more challenging, because STWR needs to weigh the combined effect of

time and space and to optimize the spatial bandwidths at different time stages, as well as the temporal

bandwidths. On the other hand, the current FastGWR does not consider the combination matrix of

weighted calculated by each parallel core, which is needed for prediction and may further cause

insufficiency memory usage.

To address these limitations, we designed a parallel implementation algorithm for STWR together

with a strategy of matrix splitting. We named the overall design as Fast STWR (F-STWR). There are
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five aspects to show that F-STWR is different from FastGWR. (1) F-STWR provides spatiotemporal

kernel functions for calculating the combined weights from time and space, while FastGWR only has

the spatial kernel for calculating weights from space. (2) F-STWR can optimize the best number of

time stages for the model to use, which is not considered in FastGWR. (3) The weight matrixes of each

time stage in F-STWR are not necessarily the same because the number of observation points in each

time stage is different. In comparison, FastGWR does not need to consider this issue. (4) F-STWR uses

a method of caching on the MPI nodes, which can avoid repeatedly calculating the spatial distance

matrix and the time distance matrix during the calibration process. To obtain the optimized adjustable

parameter (a parameter for weighting the influence from local space and time on the regression point)

in STWR, the F-STWR adopts a searching method (e.g., golden section or equal interval) to try and

calculate the combined spatiotemporal weight values. In the process, the weight value needs to be

calculated by the updated and the spatial distance and temporal distance matrixes for each step. If there

is not a strategy for caching, there will be many unnecessary and repeated calculations. In comparison,

FastGWR does not consider the combined spatiotemporal effect, so there is not caching design in its

parallel algorithm. (5) In addition to parallel computing, F-STWR adopts a matrix splitting strategy for

memory saving, and this strategy can help generate combined matrixes to be used for model prediction.

The matrix splitting strategy is not considered in current FastGWR.

6. Conclusions

The parallel calibration routine developed by this study improves the ability of STWR for processing

large-scale spatiotemporal data. The resulting F-STWR can leverage existing computing resources

(processor cores and memory) and solve many challenges that large-scale data bring to the original

STWR model (Que et al., 2020). Some features of F-STWR and STWR are summarized below.
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(1) Runtime may be related to the number of observation points in the latest time stage.

(2) STWR can easily reach its bottleneck during the calibration procedure because it is

computationally intensive and memory intensive. The parallel computing algorithm F-STWR is a better

choice for handling datasets with a large number of observation points.

(3) With appropriate settings of the matrix splitting strategy, F-STWR can save more memory usage

than STWR, making it more flexible in different memory configurations.

(4) F-STWR can obtain the consistent results of STWR, which means that it can combine the

weights calculated by different parallel cores into the calibration weighted matrixes and enable further

predictions out of sample points.

Extending the parallel calibration routine for multiple bandwidths of space and time will be one of

the most challenging issues in our future work. Another topic of interest is to try other strategies to further

speed-up the calculation of F-STWR.
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