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Abstract: 14 

The Spatiotemporal Weighted Regression (STWR) model is an extension of the Geographically 15 

Weighted Regression (GWR) model for exploring the heterogeneity of spatiotemporal processes. A key 16 

feature of STWR is that it utilizes the data points observed at previous time stages to make better fit 17 

and prediction at the latest time stage. Because the temporal bandwidths and a few other parameters 18 

need to be optimized in STWR, the model calibration is computationally intensive. In particular, when 19 

the data amount is large, the calibration of STWR becomes heavily time-consuming. For example, with 20 

10000 points in 10 time stages, it takes about 2307 seconds for a single-core PC to process the 21 

calibration of STWR. Both the distance and the weighted matrix in STWR are memory intensive, 22 
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which may easily cause memory insufficiency as data amount increases. To improve the efficiency of 23 

computing, we developed a parallel computing method for STWR by employing the Message Passing 24 

Interface (MPI). A cache in the MPI processing approach was proposed for the calibration routine. 25 

Also, a matrix splitting strategy was designed to address the problem of memory insufficiency. We 26 

named the overall design as Fast STWR (F-STWR). In the experiment, we tested F-STWR in a High-27 

Performance Computing (HPC) environment with a total number of 204611 observations in 19 years. 28 

The results show that F-STWR can significantly improve STWR’s capability of processing large-scale 29 

spatiotemporal data.  30 

 31 
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1. Introduction  35 

Spatiotemporal data are a topic of interest in many fields of research. The amount of spatiotemporal 36 

data has significantly accumulated in recent years due to improvements in data acquisition methods 37 

(Wikle, 2019). Many statistical models, such as the Bayesian hierarchical model (BHM Berliner,1996) 38 

and the spatiotemporal kriging (Pebesma et al., 2012, 2016), have been proposed to facilitate 39 

understanding how (and ultimately why) data vary in space and time. Nevertheless, the modeling of 40 

spatiotemporal processes still faces challenges caused by the spatiotemporal non-stationarity (i.e., 41 

relationships between variables change when the locations change and time variation).  42 

The Geographically and Temporally Weighted Regression (GTWR) (Huang et al., 2010), an 43 

extended model of the Geographically Weighted Regression (GWR) (Brunsdon et al. 1996; 44 
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Fotheringham et al. 2003), is developed to analyze the spatiotemporal non-stationarity. Although it 45 

addressed the issues to some extent (Wu et al., 2013; Wrenn and Sam 2014), calculating distance in 46 

three dimensions (two-dimension in space and one dimension in time) in GTWR still can be improved. 47 

Location and time are usually measured at different scales, and their units and impacts on regression 48 

points are fundamentally different. Although GTWR uses the adjustment factor τ to synthesize the 49 

distance between time and space, a sole measure integrating the spatial and temporal distances is not 50 

enough (Fotheringham et al., 2015). Moreover, the performances of GTWR in fitting and prediction are 51 

sometimes even inferior to the traditional GWR models (Que et al., 2020).  52 

A new GTWR (Fotheringham et al., 2015) model was proposed to use a set of time-isolated 53 

spatial bandwidths to capture the local effects from observation points on regression points in space 54 

and time. But the calibration process is cumbersome and cannot simultaneously optimize the 55 

bandwidths of time and space. Furthermore, both GTWR models (Huang et al., 2010; Fotheringham et 56 

al., 2015) regard the time interval as the temporal distance, resulting in that all observations from 57 

different locations recorded at the same previous time having an equal temporal weight on a regression 58 

point. However, the magnitudes of value variation during the time interval in different observations 59 

have different influences on the regression point (Que et al., 2020). The more significant the value 60 

changes during the time interval, the higher its impact is on the regression point. The variation rate of 61 

attribute values (non-stationarity in time) also has heterogeneity in space. Using the time intervals as 62 

the temporal distances for calculating temporal weights cannot fully capture the local temporal effects 63 

from observations to the regression point. Based on this idea, the Spatiotemporal Weighted Regression 64 

(STWR) model (Que et al., 2020) was developed to capture better the combined effects of a non-65 

stationary spatiotemporal process from observed data. 66 
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STWR treats the time distance as the rate of value variation through a time interval rather than the 67 

time interval itself, which is more suitable to measure the degree of temporal impact from each 68 

observation point to a regression point. Besides, it utilizes a weighted average form to calculate the 69 

spatiotemporal kernel rather than the multiplication form in GTWR (Huang et al., 2010; Fotheringham 70 

et al., 2015), thus, avoiding potential underestimation of combined spatiotemporal effects (Que et al., 71 

2020). Compared with GWR and GTWR, these new features in STWR significantly improve model 72 

fitting and prediction capabilities for the latest time stage (Que et al., 2020). However, because the 73 

temporal bandwidths and several other parameters need to be optimized, the calibration of STWR is 74 

more complicated and time-consuming than the original GWR model. It requires intensive computation 75 

and memory usage. It is a challenging issue and may seriously limit the application of STWR in large-76 

scale spatiotemporal data processing. Inspired by FastGWR (Li et al., 2019), a parallel implementation 77 

of GWR, we developed a parallel computing version of STWR, named Fast STWR (F-STWR), to scale 78 

up the capacity of STWR.  79 

In the remainder of this paper, Section 2 will overview STWR and its differences with GTWR. 80 

Section 3 will introduce the parallel calibration approach developed for STWR. Section 4 will present 81 

the experimental results. Section 5 will compare the characteristics of F-STWR and FastGWR. Finally, 82 

Section 6 will summarize the highlights of F-STWR. 83 

2. The calibration and optimization procedure of STWR  84 

2.1 Model formulation of STWR and its differences with GTWR 85 

Derived from the basic GWR framework (Brunsdon et al. 1996; Fotheringham et al. 2003), the STWR 86 

formula is shown in Equation 1. 87 

     𝑦𝑖
𝑡 = 𝛽0

𝑡(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘
𝑡(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑘

𝑡 + 𝜀𝑖
𝑡

𝑘                    (1) 88 



 5 

In this equation, 𝑦𝑖
𝑡 denotes the 𝑖𝑡ℎ dependent variable at the regression point (𝑢𝑖 , 𝑣𝑖) at time 𝑡. 𝑥𝑖𝑘

𝑡  89 

denotes the 𝑘𝑡ℎ  independent variable. 𝜀𝑖
𝑡  is the independent random error term with distribution 90 

𝑁(0, σ2) (STWR assumes that all random error terms at different time stages meet the same independent 91 

and identical distribution). 𝛽0
𝑡(𝑢𝑖 , 𝑣𝑖)  and 𝛽𝑘

𝑡 (𝑢𝑖 , 𝑣𝑖)  denote the constant item and coefficient at 92 

location (𝑢𝑖 , 𝑣𝑖), respectively.  93 

Equation 2 shows the estimator for the coefficient. 94 

𝛽̂𝑡(𝑢𝑖, 𝑣𝑖) = [(𝑋𝑠𝛥𝑡
𝑇 𝑊𝛥𝑡(𝑢𝑖, 𝑣𝑖)𝑋𝑠𝛥𝑡

)−1𝑋𝑠𝛥𝑡
𝑊𝛥𝑡(𝑢𝑖, 𝑣𝑖)]𝑦𝑠𝛥𝑡

        (2) 95 

In this equation, 𝑋𝑠𝛥𝑡
 is a matrix of all observed independent variables within the time interval 𝛥𝑡. 𝑦𝑠𝛥𝑡

 96 

is the corresponding vector of dependent variables. 𝑋𝑠𝛥𝑡
𝑇  is the transpose of 𝑋𝑠𝛥𝑡

. 𝑊𝛥𝑡(𝑢𝑖 , 𝑣𝑖) denotes 97 

the spatiotemporal weight matrix of observations from different locations and time stages within 𝛥𝑡, 98 

which will be used for the regression point 𝑖(𝑢𝑖 , 𝑣𝑖) at 𝑡. 99 

In 𝑊𝛥𝑡(𝑢𝑖 , 𝑣𝑖), an element 𝑤𝑖𝑗𝑆𝑇
𝑡  is used to reflect the spatiotemporal impact from other 100 

observations. Both STWR and GTWR model have their own spatiotemporal kernel functions to 101 

calculate the weight value 𝑤𝑖𝑗𝑆𝑇
𝑡 , but their designs of the spatiotemporal kernel are different. The 102 

spatiotemporal kernel of GTWR is a multiplication form of the spatial kernel and the temporal kernel, 103 

as shown in Equation 3 (Fotheringham et al., 2015). 104 

𝑤𝑖𝑗𝑆𝑇
𝑡 = 𝑘𝑠(𝑑𝑠𝑖𝑗 , 𝑏𝑆) × 𝑘𝑇(𝑑𝑡𝑖𝑗 , 𝑏𝑇)         (3) 105 

In this equation, the weight 𝑤𝑖𝑗𝑆𝑇
𝑡  denotes the impact from observed data point 𝑗 to the regression 106 

point 𝑖 at time stage 𝑡. 𝑘𝑠 and 𝑘𝑇 are spatial kernel and temporal kernel, respectively. 𝑑𝑠𝑖𝑗 and 107 

𝑑𝑡𝑖𝑗 denote the Euclidean distance and time distance from an observed data point 𝑗 to the regression 108 

point 𝑖, respectively. 𝑏𝑆, and 𝑏𝑇 are the spatial bandwidth and temporal bandwidth, respectively.  109 

In comparison, STWR applies a new weighted average form of spatiotemporal kernel for 110 

calculating the 𝑤𝑖𝑗𝑆𝑇
𝑡 , as shown in Equation 4 (Que et al., 2020). 111 

𝑤𝑖𝑗𝑆𝑇
𝑡 = (1 − 𝛼)𝑘𝑠(𝑑𝑠𝑖𝑗, 𝑏𝑆𝑇) + 𝛼𝑘𝑇(𝑑𝑡𝑖𝑗 , 𝑏𝑇), 0 ≤ 𝛼 ≤ 1      (4) 112 
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In this equation, 𝑏𝑆𝑇 denotes the spatial bandwidth at 𝑡. Outputs of both spatial and temporal kernel 113 

functions range from 0 to 1. 𝛼 is an adjustable parameter for balancing (enlarging or reducing) the 114 

effects from time and space. 115 

To obtain the combined weight value 𝑤𝑖𝑗𝑆𝑇
𝑡 , the calculation of the time distance (𝑑𝑡𝑖𝑗) is also 116 

critical. In GTWR, the 𝑑𝑡𝑖𝑗 is the time interval (difference) between two observed time stages. 117 

However, the time distance (𝑑𝑡𝑖𝑗) in STWR is not the time interval or time difference, but the rate of 118 

value variation between an observed point and a regression point through a time interval. The temporal 119 

kernel 𝑘𝑇 is defined in Equations 5 (Que et al., 2020). 120 

   𝑤𝑖𝑗𝛥𝑡
𝑡 = {

[
2

1+𝑒𝑥𝑝(−𝑑𝑖𝑗𝛥𝑡
𝑡 )

− 1] ,    𝑖𝑓 0 < 𝛥𝑡 < 𝑏𝑇

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (5) 121 

where, 𝑑𝑖𝑗𝛥𝑡
𝑡 = {

|(𝑦𝑖(𝑡)−𝑦𝑗(𝑡−𝑞))/𝑦𝑗(𝑡−𝑞)|

𝛥𝑡/𝑏𝑇
,    𝑖𝑓 0 < 𝛥𝑡 < 𝑏𝑇

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (6) 122 

In Equation 6, 𝑦𝑖(𝑡) − 𝑦𝑗(𝑡−𝑞) is the value variation from regression point 𝑖 at 𝑡 to point 𝑗 at 𝑡 − 𝑞, 123 

which denotes the value change during the time interval 𝛥𝑡. 𝛥𝑡 is the time difference between  𝑡 and 124 

𝑡 − 𝑞. When the time interval 𝛥𝑡 is out of the range (0, 𝑏𝑇), the weight is set to zero. 125 

Like most distance-decay weighting strategy, it is usually assumed that the spatial bandwidth 126 

becomes narrower with the time distance increases. The spatial bandwidth 𝑏𝑆𝑇 in STWR is assumed to 127 

be linearly changing along with time from the current time stage to the previous stages, as shown in 128 

Equation 7 (Que et al., 2020). 129 

𝑏𝑆𝑇 = 𝑏𝑆𝑡 − tanθ ∗ 𝛥𝑡, −
𝜋

2
< 𝜃 <

𝜋

2
                (7) 130 

In this equation, tanθ denotes the slope, and 𝑏𝑆𝑡 denotes the initial bandwidth at the latest time stage 131 

𝑡. The other spatial bandwidth 𝑏𝑆𝑇 in the past time stage is derived from 𝑏𝑆𝑡. Combining Equations 4 132 

and 7 with the bi-square or Gaussian spatial kernel function (Fotheringham et al., 2002), the 133 
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spatiotemporal kernel in STWR (Equation 4) can be further derived. As shown below, Equations 8 and 134 

9 are based on the bi-square and Gaussian kernel, respectively. 135 

2
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( ) /
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  (9) 137 

In GWR, only the single spatial bandwidth 𝑏𝑆𝑇 needs to be optimized. In comparison (as shown in 138 

Equations 8 and 9), STWR needs to get the optimized initial spatial bandwidth 𝑏𝑆𝑡, temporal bandwidth 139 

𝑏𝑇, and the optimized parameters 𝛼 and 𝜃. Thus, besides the increased volume of data, STWR also 140 

needs to optimize more parameters in its calibration procedure.  141 

2.2 Procedure for model calibration and parameter optimization in STWR 142 

Similar to the general GWR, some popular goodness-of-fit diagnostics such as the Cross-Validation (CV) 143 

(Cleveland, 1979), the Akaike Information Criterion (AIC) (Akaike 1973; Hurvich et al., 1998), and the 144 

corrected AIC (AICc, Cavanaugh, 1997) (AICc performs better than AIC with small sample sizes) are 145 

also appropriate for STWR. Once we get the weighted matrix 𝑊𝛥𝑡, the row 𝑟 of that matrix can be 146 

calculated using Equation 10. 147 

𝑟𝑖𝑡 = 𝑋𝑖𝑡(𝑋𝛥𝑡
𝑇 𝑊𝑖𝛥𝑡𝑋𝛥𝑡)−1𝑋𝛥𝑡𝑊𝑖𝛥𝑡          (10) 148 

In this equation, 𝑋𝑖𝑡 is the 𝑖𝑡ℎ row of the independent variable matrix at 𝑡. 𝑋𝛥𝑡 is a matrix of all the 149 

observed independent variables during a certain time interval 𝛥𝑡, and 𝑊𝑖𝛥𝑡 is the 𝑖𝑡ℎ row of the 150 
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weighted matrix 𝑊𝛥𝑡. 151 

The optimization is a procedure of searching through multiple trials by utilizing these diagnostics 152 

scores. Specifically, for each regression point 𝑝𝑖
(𝑡)

, STWR needs to traverse two loops to obtain the 153 

optimized values for 𝛼，𝜃, the number of time stages used by STWR, and the initial spatial bandwidth 154 

𝑏𝑆𝑡 at time stage 𝑡. The searching range of the temporal bandwidth 𝑏𝑇 is limited to a discrete set 155 

𝐵𝑇𝜆 = {𝛥𝑡1, 𝛥𝑡2, . . . 𝛥𝑡𝜆}, in which the element 𝛥𝑡𝜆 is the time interval from 𝑡 to 𝑡 − 𝜆. The initial 156 

spatial bandwidth 𝑏𝑆𝑡  is also limited to a discrete set 𝐵𝑆𝑁𝑡 = {𝐷𝑘+1, 𝐷𝑘+2, . . . 𝐷𝑁𝑡
} , in which the 157 

element 𝐷𝑈 , 𝑈 ∈ {𝑘 + 1, 𝑘 + 2, . . . , 𝑁𝑡} denotes the distance from 𝑝𝑖
(𝑡)

 to the 𝑈𝑡ℎ nearest neighbor, 158 

and 𝑘 equals to the number of independent variables. 𝐵𝑇𝜆 and 𝐵𝑆𝑁𝑡  are determined by the number of 159 

total observation time stages and the number of observation points at time stage 𝑡, respectively. In the 160 

two loops for STWR parameter optimization, the outer loop is to traverse the set of 𝐵𝑇𝜆, and the inner 161 

loop is to traverse the set of 𝐵𝑆𝑁𝑡 . If the current traversed time interval element is ∆𝑡𝑞 ( 𝑞 = 1, 2, …, 162 

𝜆) in 𝐵𝑇𝜆 and the initial spatial bandwidth is 𝐷𝑘+𝑝 (𝑝 = 1, 2, …, 𝑁𝑡), then the range of 𝜃 can be 163 

calculated for each past time stage 𝑡 − 𝑠 (s = 1, 2, …, 𝑞) in ∆𝑡𝑞, because the spatial bandwidth 𝑏𝑆𝑇 at 164 

𝑡 − 𝑠 is not farther than the distance 𝐷𝑘+𝑝 (i.e., spatial bandwidth value decreases over the time in the 165 

past). With user-specified maximum number of iterations and searching methods (e.g., Golden-section 166 

or equal interval searching), the weighted matrix 𝑊𝛥𝑡(𝑢𝑖, 𝑣𝑖) can be calculated for each iteration, and 167 

its corresponding 𝛽̂𝑡(𝑢𝑖 , 𝑣𝑖) (Equation 2) can be solved by employing the Iteratively Reweighted Least 168 

Squares (IRLS) method. Finally, the CV or AICc scores can be obtained at each iteration during the 169 

traverse. 170 

To improve the applicability of STWR, we designed a matrix splitting calculation method and a 171 

parallel search method to save memory usage and speed up the procedure of parameter optimization in 172 



 9 

STWR. The development and implementation of those methods were based on the mpi4py package in 173 

Python. More technical details are presented in the next section. 174 

3. The method of parallel calibration and its implementation in F-STWR 175 

3.1 Design of the parallel algorithm 176 

Message Passing Interface (MPI) is a common protocol for parallel computing, widely adopted in many 177 

fields (Schmidt et al., 2002; Gabriel et al., 2004; Neese 2012; Wu et al., 2013). For STWR, the most 178 

time-consuming calculation lies in the procedure of parameter optimization, which is conducted by 179 

searching through multiple trials. Intuitively, we can consider scattering those trials to different 180 

processors evenly (i.e., a parallel form) to improve the efficiency. To put that idea into practice, we need 181 

to look into the detailed procedure in STWR. In the basic GWR model, the diagnostics score only 182 

depends on all regression points' local standard errors, whose parallel calculation form refers to the 183 

method described by Li et al. (2019). In STWR, however, we should also code the traversal procedures 184 

of all the time stages into the parallel form. In a multi-processor system, MPI identifies processes 185 

according to their relative ranks in a group (Snir et al., 1998). A unique integer identifier (i.e., within the 186 

range from 0 to group size - 1) is assigned to each processor(rank). The group size is the number of tasks 187 

in a multi-processor system. A rank is also called a “task ID” in some studies (Barney, 2012). For F-188 

STWR, we use rank 0 as the rank root in MPI, responsible for assigning tasks and collecting results. To 189 

implement MPI in STWR, we should make sure that each rank's traversing progress keeps pace with the 190 

MPI rank root consistently. Moreover, during the optimization procedure, we should combine some 191 

results for further calculation, such as gathering all the points’ impacts from different observed time 192 

stages to the rank root to calculate each trial's scores. The details of the algorithm to compute the 193 

diagnostics scores are summarized in Algorithm 1. 194 
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 195 

Algorithm 1: Parallel implementation of F-STWR for model fitting and parameter optimization 

1: Root (rank 0) reads the data, the searching method, and diagnostics type, then calculates the initial 

spatial bandwidth according to the number of the latest observation points 

2: Broadcast data to other processes with ranks not equal to 0. Each process gets its own chunk of 

index numbers of the latest observation points. Divide the total number of latest observations by the 

size of MPI processes and then get the ceiling value m_ck, and each process keeps a chunk of index 

numbers ranging from rank * m_ck to rank * (m_ck+1) 

3: For each element in set 𝐵𝑇𝜆:  

4:    The root changes current Cache_Type to 0 and broadcasts the Cache_Type 

5:    For each element in 𝐵𝑆𝑁𝑡 :  

6:       Calculate the range of 𝜃  

7:       For iteration element in 𝜃: 

8:    Execute searching function (𝛼):  

9:     (1) Root executes function F1 

10:     (2) Each rank executes searching function mpi_CalCriterion 

11:     (3) Root executes function F2 

12: Root collects all diagnostics scores and then outputs the best score and its corresponding 

parameters 

 196 

The parameter Cache_Type and its two control functions (F1 and F2) are used here to keep the pace 197 

consistent with the rank root and avoid unnecessary iterative calculations. A different cache type stands 198 
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for a different computing status. The mpi_CalCriterion function will retrieve matrixes from different 199 

memory (if cached) or make different matrixes cached (if not cached). Table 1 outlines the status of 200 

different cache types and their corresponding descriptions. 201 

 202 

Table 1. Status and description of each cache type 203 

Cache_Type Status and description 

0 No content cached and unstable. Automatically change to M in the next step. If the 

previous status is 4, M will be 2, otherwise M is its default value 1 

1 Both the spatial distance (SD) and temporal distance (TD) matrixes are cached and 

stable but should be truncated before recalculating the spatiotemporal weight matrix 

W 

2 Both SD and TD are cached and unstable, but they should be further truncated, 

masked and cached. Automatically change to 3 after the masked SD and TD are 

cached. 

3 Both masked SD and TD are cached and stable. Only need to adjust the factor α to 

enlarge/reduce the spatiotemporal effect (W) 

4 Auxiliary status to control the M value 

 204 

The rank root mainly controls the status of Cache_Type except for some unstable status (0 or 2).  205 

There are three different scenarios for the mpi_CalCriterion function in Algorithm 1: (1) Traverse to a 206 

new element in set 𝐵𝑇𝜆. The total time interval that the model used will be changed, so all the matrixes 207 

(if cached) will be invalid. So, the Cache_Type will be set to 0. (2) Two different branches before we 208 
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execute the mpi_CalCriterion function (in F1): One is that our program’s Cache_Type is 0, and we should 209 

change its status to 4. This is because in our searching function (Line 8 in Algorithm 1), we only need to 210 

adjust 𝛼, and there is no need to recalculate all the distance matrixes. The other is that our program’s 211 

Cache_Type is 1, which means that we have only cached the distance matrixes without masking. The 212 

matrix should be masked, so the Cache_Type is set to be 2. (3) After the mpi_CalCriterion function (in 213 

F2): If our program’s Cache_Type is 3, we may execute another iteration, and the masked matrixes will 214 

be invalid. So, the Cache_Type will be reset to 1. After executing the F1 and F2 functions, the rank root 215 

should broadcast the current Cache_Type to all other ranks. 216 

Next, the mpi_CalCriterion function is inspected, which will obtain a diagnostic score through the 217 

rank root. In the implementation, the rank root gathers results from all other ranks, which calculate with 218 

their own chunk of data. The detail is summarized in Algorithm 2.  219 

Algorithm 2: mpi_CalCriterion function for calculating diagnostics scores of different cache 

types 

1: Given a chunk of index numbers CK  

2: Check cached matrixes and set M value (described in Table 1)  

3: switch Cache_Type: 

4:  case 0:  

5:    Clear cached matrixes   

6:    For index in CK: 

7:     Execute function local_CalSearch to get component value 

8:    Root gathers all the component values 

9:    Root calculates diagnostics score (Li et al., 2019) 
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10:    Submit distance matrixes (corresponding to chunk) into cached matrixes 

11:       Set current Cache_Type to M 

12:  case 1: 

13    Copy and sort current cached distance matrixes  

14:           Truncate matrixes according to current bandwidth (element in 𝐵𝑆𝑁𝑡)  

15:    Calculate the weighted matrix W according to the truncated matrixes 

16:    For index in CK: 

17:     Calculate component value according to corresponding index in W 

18:    Root gathers all the component values 

19:    Root calculates diagnostics score (see Line 9) 

20:  case 2:   

21:    Execute same as Line 13 to 19 

22:    Cache current masked distance matrixes (truncated) 

23:    Set current Cache_Type to 3 

24:  case 3: 

25:    Calculate the weighted matrix W according to the cached masked matrixes 

26:    Execute same as Line 16 to 19   

 220 

The function local_CalSearch (Line 7 in Algorithm 2) calculates the component (in a pointwise way), 221 

which is gathered by the rank root for calculating the diagnostics scores. The details of diagnostics score 222 

calculation (such as CV and AICc) were adopted from Li et al. (2019). Here we describe the 223 

local_CalSearch in Algorithm 3. 224 
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 225 

Algorithm 3 local_CalSearch function for calculating component value of each regression point  

1：Given current regression point 𝑝𝑖
(𝑡)

 corresponding to the index number in chunk 

2：For past time stages 𝑡 − 𝑠 in ∆𝑡𝑞 (element in 𝐵𝑇𝜆): 

3:   Calculate spatial distance and temporal distance (Equation 6) matrixes to 𝑝𝑖
(𝑡)

  

4:  Calculate weight matrix from Equation 8 or 9 

5:  Calculate component value according to the diagnostics type: 

(a) CV score: calculate the coefficient matrix (Equation 2) and get the residuals 

(b) AICc score: calculate residual squared εi2 and the diagonal element of the hat 

matrix (Hoaglin and Welsch, 1978) from Equation 10 

6:  Return component value and spatial and temporal distance matrixes 

3.2 Strategy of splitting matrix for calculation 226 

The implementation of a parallel algorithm reduces memory usage (Li et al., 2019). However, in 227 

FastGWR studies, the memory reduction only happens during the procedure of parameter optimization. 228 

For F-STWR, a new design is needed because when the optimized parameters are used for predicting 229 

unobserved points, STWR needs to calculate or build up new big matrixes. At that stage, if the total 230 

number of points is too large, the STWR program may break down. We can alleviate this problem by 231 

adopting the strategy of matrix splitting for calculation. The idea of avoiding big matrixes in STWR is 232 

to split them into small ones. A strategy was proposed and applied in the F-STWR program. 233 

(1) Before splitting the matrix, we should first know how many data points (or memory) are used 234 

for calculation. Users specify the maximum number of points (max_tol). If the available memory reduces, 235 

our model will need more iterations, increasing the total time for calculation. So, it is suggested to specify 236 
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a proper value for splitting according to the user’s system. If the max_tol is set, the minimum memory 237 

size must be greater than 𝑀𝑒𝑚_𝑚𝑖𝑛, given in Equation 11. 238 

𝑀𝑒𝑚_𝑚𝑖𝑛 =  𝑟𝑎𝑛𝑘_𝑛𝑢𝑚 × max _𝑡𝑜𝑙2 × 𝑀𝑒𝑚_𝑑𝑡𝑦𝑝𝑒           (11) 239 

In this equation, 𝑟𝑎𝑛𝑘_𝑛𝑢𝑚 is the number of ranks we plan to use, 𝑀𝑒𝑚_𝑑𝑡𝑦𝑝𝑒 is the memory size 240 

of the data type of matrix, e.g., float32 in python is 4 bytes. 241 

(2) The next step is to determine how many parts we should have. This issue is solved by obtaining 242 

the ceiling value of the result in a division calculation (i.e., the number of observations divided by 243 

max_tol). We should also calculate each part's row number, which is determined by the number of points 244 

at the latest time stage (suppose the number is N_latest). In the calibration of STWR, the distance matrix 245 

(or weighted matrix) is from the past observation points to each regression point at the latest time stage. 246 

If the total number of past points is N_past, then the dimension of this matrix is N_latest by N_past, 247 

which is larger than the limitation of max_tol by max_tol. In this case, the N_latest is split into several 248 

parts to ensure that every part's size is smaller than the limitation. A note here is that the matrix should 249 

not be split by N_past, which may cause missing data when calculating weights from observations to 250 

each regression point.  251 

(3) Instead of directly calculating the spatial and temporal distance matrixes for all the regression 252 

points, each part's matrixes are calculated. Then the weights of regression points in each part are 253 

calculated. All the rows in each part are assigned a number to keep a consistent order with the points 254 

observed at the latest time stage. 255 

(4) Last, a list of weight values is built to replace the original big matrix. To this end, all the data 256 

are gathered for calculating summary information such as AICc, R-squared, Effective number of 257 

parameters (trace(S)), etc., by tracking the assigned number. 258 
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4. Experiments and comparison of results 259 

We use the mpi4py package (Dalcin et al., 2008) in Python to call the OpenMPI program (which is an 260 

open-source implementation of MPI that can be executed on a single CPU computer and High-261 

Performance Computing clusters) to execute STWR. Our parallel algorithm (F-STWR) was deployed on 262 

the University of Idaho’s IBEST Computational Resources Core, which has a total of 1500 processor 263 

cores. We ran our experiments on the SuperMocro rack server (named Watson & Crick) with 48 logical 264 

cores and 256 GB of system memory. Crick features 4 Intel Xeon Phi 5110p Co-processor cards. Watson 265 

has 2 NVIDIA P100 cards. 266 

4.1 Verification of the calibration results of the parallel algorithm 267 

To verify the consistency of the fitting results of the parallel algorithm F-STWR, we used the same real-268 

world data in Que et al. (2020) for comparison. The data are the daily mean precipitation hydrogen 269 

isotopes (δ2H) of three consecutive days in Northeastern United States. To be consistent with the previous 270 

setting in the STWR experiment (Que et al., 2020), we set θ in Equation 7 to zero for the F-STWR 271 

algorithm. A comparison of the results in F-STWR and STWR is shown in Table 2. All values are the 272 

same except for some slight differences in the sum of squared errors (SSE) of the second (D2) and third 273 

(D3) days. The differences are most likely caused by rounding the decimal point in assigning parallel 274 

tasks and collecting results from the parallel cores. 275 

Table 2. Comparing model calibration results of F-STWR and STWR. 276 

Model 

Model Parameters & 

Diagnostic information 

STWR F-STWR 

 SSE 24022.226 24022.195 

 R2 0.834 0.834 
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D2 AICc 977.181 977.181 

 Init Bandwidth 16 16 

 alpha 0 0 

 Time stages model used 2 2 

 SSE 25118.096 25118.082 

 R2 0.763 0.763 

D3 AICc 669.648 669.648 

 Init Bandwidth 16 16 

 alpha 0 0 

 Time stages model used 2 2 

4.2 Efficiency test of F-STWR 277 

The parallel algorithm and matrix splitting approach described earlier were employed to calibrate the 278 

STWR model using house price data in London obtained through the Nationwide Building Society 279 

(Fotheringham et al., 2015). Interested readers can contact the authors of Fotheringham et al. (2015) for 280 

the data. The data consists of a set of annual house prices from 1980 to 1998 with 204,611 observation 281 

points, and each data point contains 21 independent variables. Here, the in-depth analysis of the data is 282 

omitted. Instead, we present the experimental results demonstrating parallel computing ability in F-283 

STWR for tackling large-scale spatiotemporal data. 284 

In the first experiment, we compared our parallel algorithm F-STWR with STWR for different numbers 285 

of samples (1K to 10K points, K denotes 1000). The results show that F-STWR is much less time-286 

consuming than STWR. As Fig. 1 shows, the average runtime (in seconds) of STWR increases from 287 

12.68s of 1K points to 258.85s of 5K points, and then up to 2307.68s of 10K points. In contrast, F-288 
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STWR_15, F-STWR_30, and F-STWR_45 (F-STWR_15, F-STWR_30, and F-STWR_45 denote 289 

running F-STWR with 15, 30, and 45 MPI processors, respectively) are much faster than the original 290 

STWR, especially when the number of observations increases. For 10K points, the average runtime of 291 

F-STWR_15, F-STWR_30, and F-STWR_45 are 136.75s, 108.35s, and 112.29s, respectively. Those 292 

results are almost just one-twentieth of the runtime in STWR. The F-STWR_45 is slightly slower than 293 

F-STWR_30. This may because there are more internal communications within F-STWR_45 (45 294 

processors) than F-STWR_30 (30 processors) during the parallel processing. 295 

  296 

Fig. 1. Comparing average runtime of scalability as data size grows. (a) Comparison results of STWR 297 

and F-STWR with multiple processors (b) Comparison of F-STWR with different numbers of employed 298 

MPI processors. F-STWR_15, F-STWR_30, and F-STWR_45 denote F-STWR model run with 15, 30, 299 

and 45 processors, respectively. 300 

The second experiment was with a fixed number (10K) of observation points and an increasing 301 

number of MPI processors. As show in Fig. 2, the runtime decreases significantly as the number of MPI 302 

processors increases, especially in the first 20 processors. The runtime (in seconds) drops from 307.26s 303 

of 5 processors to 103.32s of 35 processors. When the number of processors is above 35 the runtime does 304 

not further decrease, and even slightly increases. As mentioned in the last paragraph, this may be caused 305 
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by the increased internal communications.  306 

 307 

Fig. 2. Runtime of F-STWR for utilizing an increasing number of MPI processors with a fixed number 308 

of 10K data points.  309 

In the third experiment, all the 204,611 observation points were used in a step-wise process. As 310 

shown in Fig. 3, when the total number of accumulated data points increases along the years, the running 311 

time of F-SWTR, however, shows an interesting pattern of ups and downs. Overall, the running time of 312 

F-STWR at a time stage (shown in blue square spots) is consistent with the number of observation points 313 

at that time stage (shown in red round spots). Our thoughts for the patterns in Fig.3 are that the running 314 

time is affected primarily by the number of points at the latest time stage and secondly by the cumulative 315 

number of data points. In this step-wise and accumulative process, each year becomes the latest time 316 

stage in a sequence. On one hand, an intuitive understanding is that the increasing number of time stages 317 

and accumulated data points will put more workload in each parallel core, which will increase the running 318 

time. On the other hand, only the data points at the latest time stage were used as regression points, which 319 

determines the size of the workload in each parallel core. A smaller number of regression points means 320 

lighter workload and thus less running time (e.g., at time stages 1992, 1993, 1995 and 1998). We may 321 

raise a hypothesis that the number of observation points at the latest time stage is the key controlling 322 
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factor for the running time of F-STWR. Nevertheless, here the experiment was done with only one dataset. 323 

To verify that hypothesis, we plan to test F-STWR with more datasets in the future work.  324 

 325 

Fig. 3. Runtime test of F-STWR on each time stage of large-scale data points (50 MPI processors 326 

employed).  327 

When the whole dataset (204,611 points) was tested with 50 MPI processors (time stage 1998 in 328 

Fig. 3), it took 110001.49 seconds (30.5 hours) to run F-STWR. As shown in Table 3, the results are 329 

compared with the ordinary least squares (OLS) method and GWR applied to the latest time stage (11,282 330 

points at 1998). The temporal bandwidth (optimized time stages) in F-STWR is 5, which means that a 331 

total of 38,936 observation points in the recent 5 time stages were employed to fit the F-STWR. Different 332 

metrics in Table 3 show that F-STWR is better than the general GWR and OLS in this experiment. The 333 

Root Sum Square (RSS) of F-STWR is smaller than OLS and GWR. Also, both the AICc and R-squared 334 

(R2) of F-STWR are better. The estimated standard errors (Sigma) of F-STWR are less than two-thirds 335 

of GWR. 336 

Table 3. Comparison of model performance. 337 

 

RSS AICc R2 Sigma Bandwidth 
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OLS 16852704643550.800 270390.408 0.701 

  

GWR 11383507478243.400 266278.067 0.798 32015.787 3604.000 

F-STWR 8475299504397.160 263500.640 0.850 19287.224 649  

 338 

4.3 Memory usage test on F-STWR and STWR 339 

In most desktop computers, the original STWR is not able to be calibrated for large datasets (such as 340 

the one used in section 4.2) due to the limitation of memory size. F-STWR can further employ the 341 

strategy of matrix splitting to address the issue. In our work we utilized the function “tracemalloc” in 342 

python 3.6.8 to test the memory usage of F-STWR and STWR. For easier comparison, we prepared a 343 

dataset of 1000 points and 5 time stages, and we recorded the peak memory usage during the model 344 

calibration of both F-STWR and STWR. The comparison result is listed in Table 4. The column F-345 

STWR shows the result of F-STWR without matrix splitting. The F-STWR_SP1, F-STWR_SP2, F-346 

STWR_SP3 are three cases in which we used matrix splitting, and their parameter “max_tol” were set 347 

to 90000(300*300),160000(400*400) and 250000 (500*500), respectively. The peak memory usage of 348 

STWR is the largest (23.182 MB), which is about 162% much more than F-STWR (14.329 MB), and 349 

about 326% much more than F-STWR_SP1(7.109 MB).  350 

In general, this result verifies the effectiveness of the matrix splitting strategy. Nevertheless, not all 351 

the settings of matrix splitting can facilitate memory saving. For instance, the peak memory usage of F-352 

STWR_SP3 (14.332 MB) is not less than F-STWR (14.329 MB). Moreover, the results show that both 353 

the peak memory usage of F-STWR (14.329 MB) and F-STWR_SP3 (14.332 MB) are close to the current 354 

memory usage of STWR (14.206 MB). It seems that the maximum amount of memory usage in our 355 

parallel algorithm is a little larger than the STWR model after calibration. This can be a topic for more 356 
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exploration in our future work.  357 

Table 4. Comparison of memory usage and runtime of F-STWR and STWR 358 

 

STWR F-STWR F-STWR_SP1 F-STWR_SP2 F-STWR_SP3 

Current (MB) 14.206 5.034 3.512 3.445 5.041 

Peak (MB) 23.182 14.329 7.109 8.891 14.332 

Runtime(seconds) 705.180 106.470 95.831 98.254 101.090 

F-STWR, F-STWR_SP1, F-STWR_SP2, F-STWR_SP3 run on 12 processors.  359 

 360 

5. Discussion 361 

5.1 A reflection on the applicability of F-STWR and STWR 362 

The current F-STWR only considers how to parallelize STWR and solve the issues of 363 

computational efficiency and memory usage. We have not considered the influence of 364 

different types of data on the algorithm. For example, to employ the current F-STWR 365 

algorithm to analyze large-scale grid data, it still needs to calculate in a pointwise procedure 366 

(see above-mentioned Algorithms 2 and 3), although points can be assigned to different 367 

nodes. We can not simply split the grid data subjectively to achieve parallelism because it 368 

might destroy the spatial continuity of the study area, causing issues such as the modifiable 369 

areal unit problem (Wong 2004; Dark et al., 2007). One possible solution is to use clustering 370 

or other methods to find the best solution for dividing grid data before assigning them to 371 

different parallel cores.  372 

In the Introduction section we have briefly compared STWR, GWR, and GTWR. Based 373 

on the presented examples of F-STWR, we can further extend the comparison with a few 374 
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more algorithms in spatial and spatiotemporal data analysis, especially with the kriging-based 375 

models. The kriging-based approach and GWR-based approach each has its own focuses and 376 

characteristics. First, the kriging-based approaches mainly aim at interpolation, and they do 377 

not require the input data to be multivariate in the spatial (or spatiotemporal) coordinates. In 378 

contrast, the GWR-based approaches require their input data having explanatory 379 

(independent) variables and response (dependent) variables. Second, the kriging-based 380 

approaches assume that a study area has various degrees of stationarity. Take the simple 381 

kriging as an example, it assumes stationarity of the first moment over the entire domain with 382 

a known mean. However, GWR-based approaches mainly target at exploring the non-383 

stationarity relationships between the explanatory and response variables. Third, the kriging-384 

based approaches can obtain the Best Linear Unbiased Prediction (BLUP), while in GWR-385 

based approaches, Fotheringham et al., (2003) frame the choice of bandwidth as a trade-off 386 

between bias and variance. Thus, in our understanding, GWR-based approaches are perhaps 387 

more like exploratory methods rather than methods used to draw inference. 388 

With the above-mentioned main differences, the running time of GWR, in fact, is not 389 

comparable to the general kriging model. Although the basic GWR is more time consuming 390 

than standard kriging, GWR-based approaches can handle some problems that the current 391 

kriging method cannot, such as constructing the spatially varying coefficients (SVC) between 392 

the explanatory variables and the response variables. Some studies have tried to combine 393 

GWR with kriging and apply it to specific topics, such as mapping soil organic carbon stock 394 

(Kumar et al., 2012) and topsoil electrical conductivity (Yang et al, 2019). For our future 395 

work, we have the interest to consider how to combine the current STWR model with the 396 
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kriging (or spatiotemporal kriging) approach. But in this paper, we mainly focus on the 397 

parallel calibration of STWR model for exploring the non-stationarity relationships of large-398 

scale data points between variables in space and time. 399 

5.2 Comparison between F-STWR and FastGWR  400 

Without parallel processing, the current open-source GWR software can handle up to approximately 401 

15,000 observations, which is a severe limitation (Li et al., 2019). A parallel implementation of GWR, 402 

called FastGWR (Li et al., 2019), was proposed to address the calibration problem of large-scale data 403 

in GWR. FastGWR reshaped the optimization algorithm of GWR and employed the MPI method for 404 

parallel computing. However, FastGWR is only able to handle data without a time dimension. Its 405 

algorithm design is for GWR, which cannot be used directly to the calibration procedure of STWR. 406 

Moreover, the spatiotemporal kernel of STWR is much more complicated than the spatial kernel in the 407 

original GWR, which increases the difficulty of parallel implementation of STWR. 408 

Although our idea of applying parallel implementation to STWR was inspired by FastGWR, F-409 

SWTR was very different from FastGWR, mostly due to the difference between STWR and GWR. On 410 

one hand, the weighting method of the STWR model is different from GWR, and its kernel function 411 

and calibration procedures are more challenging, because STWR needs to weigh the combined effect of 412 

time and space and to optimize the spatial bandwidths at different time stages, as well as the temporal 413 

bandwidths. On the other hand, the current FastGWR does not consider the combination matrix of 414 

weighted calculated by each parallel core, which is needed for prediction and may further cause 415 

insufficiency memory usage. 416 

To address these limitations, we designed a parallel implementation algorithm for STWR together 417 

with a strategy of matrix splitting. We named the overall design as Fast STWR (F-STWR). There are 418 
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five aspects to show that F-STWR is different from FastGWR. (1) F-STWR provides spatiotemporal 419 

kernel functions for calculating the combined weights from time and space, while FastGWR only has 420 

the spatial kernel for calculating weights from space. (2) F-STWR can optimize the best number of 421 

time stages for the model to use, which is not considered in FastGWR. (3) The weight matrixes of each 422 

time stage in F-STWR are not necessarily the same because the number of observation points in each 423 

time stage is different. In comparison, FastGWR does not need to consider this issue. (4) F-STWR uses 424 

a method of caching on the MPI nodes, which can avoid repeatedly calculating the spatial distance 425 

matrix and the time distance matrix during the calibration process. To obtain the optimized adjustable 426 

parameter (a parameter for weighting the influence from local space and time on the regression point) 427 

in STWR, the F-STWR adopts a searching method (e.g., golden section or equal interval) to try and 428 

calculate the combined spatiotemporal weight values. In the process, the weight value needs to be 429 

calculated by the updated and the spatial distance and temporal distance matrixes for each step. If there 430 

is not a strategy for caching, there will be many unnecessary and repeated calculations. In comparison, 431 

FastGWR does not consider the combined spatiotemporal effect, so there is not caching design in its 432 

parallel algorithm. (5) In addition to parallel computing, F-STWR adopts a matrix splitting strategy for 433 

memory saving, and this strategy can help generate combined matrixes to be used for model prediction. 434 

The matrix splitting strategy is not considered in current FastGWR. 435 

6. Conclusions 436 

The parallel calibration routine developed by this study improves the ability of STWR for processing 437 

large-scale spatiotemporal data. The resulting F-STWR can leverage existing computing resources 438 

(processor cores and memory) and solve many challenges that large-scale data bring to the original 439 

STWR model (Que et al., 2020). Some features of F-STWR and STWR are summarized below.  440 
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(1) Runtime may be related to the number of observation points in the latest time stage. 441 

(2) STWR can easily reach its bottleneck during the calibration procedure because it is 442 

computationally intensive and memory intensive. The parallel computing algorithm F-STWR is a better 443 

choice for handling datasets with a large number of observation points.  444 

(3) With appropriate settings of the matrix splitting strategy, F-STWR can save more memory usage 445 

than STWR, making it more flexible in different memory configurations. 446 

(4) F-STWR can obtain the consistent results of STWR, which means that it can combine the 447 

weights calculated by different parallel cores into the calibration weighted matrixes and enable further 448 

predictions out of sample points. 449 

Extending the parallel calibration routine for multiple bandwidths of space and time will be one of 450 

the most challenging issues in our future work. Another topic of interest is to try other strategies to further 451 

speed-up the calculation of F-STWR. 452 
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