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Abstract—Power utility grid is going through a challenging
transformation. Growing number of power electronic active end-
nodes are connected to the grid to enable large-scale integration
of electric vehicles (EVs), energy storage systems (ESSs), and
distributed energy resources (DERs), which increase the impor-
tance for high-level controllers to maintain physical limits of an
electrical network. In addition, each connected end-node has its
own controller embedded into it. These various controllers make
the power grid operation complex and further challenging. We
aim to understand the operation of these high-level controller
actions and their impact on the distribution grid. Therefore, in
this study, we analyze the local end-node voltage relationship with
total feeder power consumption in the presence of four high-level
voltage regulating devices. To serve this purpose, an IEEE 37-bus
test system is modified with on-load tap changer (OLTC), voltage
regulator (VR), shunt capacitor bank, and volt-var controlled
PV smart inverter. We ran four different dynamic simulation
cases: (i) without any high-level controller, (ii) with only OLTC
and VR, (iii) with only shunt capacitor bank, and (iv) with
only volt-var controller. Then, we investigated local active end-
node voltage variation and how it is related to substation power
consumption. This work will help to understand grid dynamics
in estimating global information from local measurements to
develop distributed controllers more effectively.

I. INTRODUCTION

Power utility grid is undergoing a transformation with
integration of distributed energy resources (DERs), electric ve-
hicles (EVs), and energy storage systems (ESSs). Large-scale
integration of these will introduce many new active end-nodes
to the network. Millions of active end-nodes will compete
with each other for the opportunity of supplying or consuming
electric power. The high number of these controllable and
dynamic end-nodes will threaten the performance of the power
system operation, quality of the power supplied, and reliability
of the entire system. The advent of compact, more powerful,
and high switching frequency power electronics integrated into
these active nodes will further complicate the problem. Dis-
tribution system operators (DSOs) are continuously working
to maintain all the end-node voltages within their limits with
the help of high-level voltage regulating controllers (i.e., on-
load tap changers (OLTCs), voltage regulators (VRs), and
shunt capacitor banks). OLTC and VR act as a variable
ratio transformer connecting the distribution network (DN) to
the transmission network (TN) or placed within the DN to
increase/decrease voltage as required. Shunt capacitor banks
connected through mechanical breakers to the DNs inject
reactive power to the grid for voltage boosting and/or power
factor correction. In addition, many local controllers, i.e., PV
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inverters and EV chargers, will exist inside the distribution
grid and may inject and/or absorb reactive power for voltage
regulation. All these control mechanism make the power grid
structure very complex.

Unpredictable supply of DERs and increasing loads at
active end-nodes make the supply-demand balance extremely
challenging. Control schemes are reported in the literature
to dispatch power properly, shape peak loads, and utilize
the existing substation transformer capacity [1]–[4]. Some
of these control algorithms are built on local measurements
only. However, local controllers are not efficient to use the
grid’s full capacity as they lack any external/global informa-
tion [5]. In a distributed control approach, active end-nodes can
communicate with other nodes and/or with a central location
to get global status [6]. The communication between end-
nodes and substation should be much less than real-time to
reduce overhead and related operational costs [7]. However,
the distributed controller may estimate global information
from local observations if the global data is sent once after
a certain period of time (e.g., day, week, or month). With
the advent of machine learning techniques, it is possible
to extract global information from local measurements in a
continuous way [8]. To get a better accuracy, we need to
reveal the relationship between local and global variables for
all operating conditions. Once this relationship is built up, end-
nodes may be able to detect any grid congestion implicitly and
utilize the grid capacity more accurately by only using their
local measurements.

Learning the relationship between local observations and the
global picture is not an easy task. There are various factors
that impact this relationship. First, the substation voltage will
have some variations [9] affecting the linear relation even
though it is usually tightly regulated at the feeder level.
Second, distribution grid topology can change due to various
reasons including system reconfiguration and expansion [10].
Third, there are number of voltage regulation devices, such as
LTC, VR, and capacitor banks operating at different points in
the network. They are very effective in changing the active
end-node voltage and thus affect the relationship. All these
factors change the grid dynamics and therefore require an
analysis to understand the complex grid well. In this paper,
we will first investigate the individual impact of high-level
controllers on local active end-nodes and its relation with total
feeder demand. For this purpose, IEEE-37 bus test system will
be modified with an OLTC, a VR, a shunt capacitor bank,
and a volt-var controlled PV farm. The rest of the paper is
organized as follows. Section II provides a description of the
test system and the high-level controller modeling. Section III
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shows simulation results and discussion. Section IV provides
the concluding remarks and plan for future study.

II. DESCRIPTION OF TEST SYSTEM

A. Distribution System Modeling

For our study, we modeled a modified IEEE-37 bus test
system in MATLAB-Simulink as shown in Fig. 1. It represents
a three-phase AC distribution grid that operates at a nominal
voltage of 4.8 kV. A synchronous generator (swing type,
230 kV) is added at the beginning of the test system as a
lumped generation and transmission section. A three-phase
two-winding substation transformer connects the transmission-
end with the distribution side and converts the transmission
voltage of 230 kV to the distribution voltage level of 4.8 kV.
Twenty-six residential neighborhoods are connected to the test
system as described in [11]. In total, the feeder supplies power
to 416 residential customers. To model household load profile,
we have used real and reactive power consumption data of
a typical house in Alabama. An eGauge smart meter [12]
installed to the house records one second resolution of active
and reactive power consumption data. The recorded data is
sent to the cloud using local Wi-Fi connection. The data is
publicly available at the University of Alabama institutional
repository [13]. The procedure described in [11] is used to
model power profile of 416 houses. One example of such
a household load profile is shown in Fig. 2. The overall
distribution grid operates slightly over 950 KVA at peak hours.

B. Modeling of High-level Controllers

The IEEE-37 bus test system is modified with three volt-
age regulating devices: OLTC, VR and a 75 (25+50) kVAR
switched capacitor bank. A three-phase 300 kW PV farm
is also added to the system with a volt-var controller. The
detailed models of these devices are described in the following
subsections.

1) OLTC Modeling: A three-phase OLTC is modeled with
the substation transformer of the test bus system. It regulates
voltage at bus 701. Three multi-winding transformer blocks
are used to model three phases of OLTC. Each phase has a
regulation winding connected at primary side. The regulation
winding has nine taps in total (eight taps marked as 1 to 8 and
a 0 tap) that allows ±10% voltage regulation. Each transformer
block is equipped with a reversing switch that allows the regu-
lation winding to be connected either in additive or subtractive
polarity. Tap 0 provides nominal voltage (230/4.8 kV) ratio.
Each tap change provides a voltage correction of ±0.0125 pu
(±10%÷8). The voltage regulation is performed by varying
the transformer primary and secondary voltage ratio, V2/V1
as follows:

V2
V1

=
1

1 +N.∆U
× Vnom2

Vnom1
(1)

where N denotes the tap position; ∆U is the amount of voltage
change per tap; Vnom1 and Vnom2 are the primary and sec-
ondary side nominal voltage of the transformer, respectively.
1/(1 +N∆U) is also called voltage correction factor.

The tap change of OLTC is controlled by a compensator
circuit. Positive-sequence voltage (Vmes) measured at the
regulation point bus 701 is provided as an input of the control

Figure 1: Modified IEEE-37 bus test system with OLTC, VR,
shunt capacitor bank, and PV smart inverter.
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Figure 2: Sample active [kW] and reactive [kVAR] power
consumption profile of a residential house.

circuit. Reference voltage (Vref ) is set to 1 pu. The OLTC
will only change a tap if the condition in (2) sustains for a
specific delay time, otherwise the tap will remain at the same
position.

|Vmes − Vref | > dead band/2 (2)

where dead band is a user-defined variable for the allowable
range of voltage variation at the regulation point. In this study,
we have chosen 0.0375 pu as the dead band and 4 s as the
delay time to observe OLTC tap changes within the existing
loading environment.

2) Voltage Regulator Modeling: A VR is modeled by a
three-phase transformer with a series tap changing mechanism
as described in [14]. The VR is connected in series between
bus 703 and 730. It also has eight taps and a reversing switch to
provide ±10% regulation in both positive and negative polar-
ity. The tap position is determined by a compensator circuit.
An important task in modeling VR is to select a regulation
node where voltage needs to be controlled and to measure
the voltage of that node. In this study, the farthest node (741)
of the test system is chosen as the regulation point since it
faces the highest voltage drop. We measured the equivalent
impedance (Zline) and the current (Iline) flowing from the
physical location of VR (bus 730) to the regulation node by a
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steady-state analysis under maximum loading condition. The
voltage (Vmes) at the regulation node is estimated by (3):

Vmes = V730 + IlineZline (3)

where V730 denotes as the voltage of bus 730.
Vmes is provided as an input to the VR compensator circuit.

The reference voltage (Vref ) is set to 1 pu. The taps of VR
will only be changed if (2) holds true.

3) Switched Capacitor Bank Modeling: A 75 kVAR three-
phase switched capacitor bank is modeled at bus 730 of the
test system. It has two capacitor banks rated at 25 kVAR and
50 kVAR. The two capacitor banks inject reactive power to
the grid and take part in voltage regulation. They are not
connected to the grid all the time, rather they are switched
on and off several times during a day. An automatic switch
control is embedded on each capacitor bank, which senses a
particular condition (i.e., node voltage). If the condition goes
beyond their preset levels, the controller will initiate a trip
signal to connect the capacitor bank to the power system. In
this study, we have assumed two predefined trip signals to
enable the switches of capacitor banks. When a switch is on,
the corresponding capacitor will be connected to the grid.

4) PV Volt-Var Controller Modeling: A three-phase
300 kW PV farm is modeled by three controlled current
sources and connected at bus 703. Active power generation
data of a 50 kW PV farm is used and scaled up to 100 kW
to model each phase of the PV farm. The active current
(Ip) generated by the PV system is directly injected to the
grid. Ip represents the current due to the active power (PPV )
portion of the PV system. As active PV current injection
causes voltage rise to the bus 703, a volt-var controller is
modeled to regulate the bus voltage as described in [15]. The
controller takes the complex bus voltage, V 703 as input and
commands the required amount of reactive current (Iq) to be
absorbed/injected to the inverter as output. Iq represents the
current due to the reactive power (QPV ) generation/absorption
of the PV system. The total current, IPV is the complex sum
of Ip and Iq . The mathematical equations to find Ip, Iq , and
IPV are shown in (4):

Ip =
PPV

|V 703|

Iq =
QPV

|V 703|
IPV = Ip + jIq (4)

A volt-var controller is characterized by three parameters:
slope of the Volt-VAR (V-Q) controller characteristic curve,
voltage set-point and lower and upper limits of VAR genera-
tion. We assumed a constant slope (Xs = 0.9) for V-Q char-
acteristic curve and set the reference voltage to 1 pu. The PV
inverter has S = 600 kVA rating. Then, the maximum reactive
current, ± Iq(max) can be computed by

√
S2 − P 2

PV /|V 703|.
As long as the injected/absorbed reactive current of PV stays
within the maximum reactive current value (± Iq(max)), the
voltage at bus 703 is regulated at the reference voltage.

III. SIMULATION RESULTS AND ANALYSIS

To understand the actions of high-level controllers and their
impacts on grid dynamics, we run four different simulation
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Figure 3: Total feeder power consumption vs. local active end-
node voltage when all voltage regulation devices are disabled
in the model.

cases: (i) without any high-level controller, (ii) with only
OLTC and VR, (iii) with only capacitor bank, and (iv) with
only PV inverter. In all simulations, the same household load
profiles are used, and the model runs in the same time frame.
We have chosen the simulation time from 4 PM to 12 AM to
capture the grid peak loading and high voltage drops. First,
the model runs with household loads only. Total substation
power demand (Stotal) and voltage at the farthest node (Vend)
are recorded during the specified simulation time frame. To
understand the relationship between Stotal and Vend, an X/Y
(scatter) plot is used with Stotal along the vertical axis and
Vend on the horizontal axis (Fig. 3). Each dot on the plot
indicates Vend and the corresponding Stotal at a sample time.
The scatter plot with the simulation data is well fit with a
straight line. The parameters of the linear line are estimated
as θ1 = −0.1259 and θ2 = 30.3535. It is also observed that
the voltage at the farthest node varies between 236 − 240 V ,
and the maximum consumed total feeder power is about
0.6 MVA.

Then, the model runs again with the same household loads
keeping OLTC and VR enabled. The initial tap position of
OLTC and VR are set to tap 0 positions. Figs. 4a and 4b show
the time frame when OLTC/VR changes its tap and how the
local active end-node voltage varies due to the tap change,
accordingly. In the simulation time frame (4 PM-12 AM),
OLTC does not change its tap since its regulation node is very
close to the substation and faces less voltage drop severity.
However, VR changes its tap three times (at 5:54 PM, 7:27
PM, and 7:41 PM). We have recorded Stotal and the same
Vend data and separated the data into four categories: part-
A (4:00 PM-5:54 PM), part-B (5:55 PM-7:27 PM), part-C
(7:28 PM-7:41 PM), and part-D (7:42 PM-12:00 AM). Part A
and C denote the Stotal and corresponding Vend data when VR
was in tap position 0 and part B and D denote the Stotal and
corresponding Vend data when VR was in tap position 1. The
data of all four categories are plotted in Fig. 5. It is found
that Stotal and Vend relationship is still linear in both tap
positions 0 and 1 but the lines are shifted in parallel. Their
relationship switches between two parallel lines when the tap
of VR changes its position from 0 to 1 and vice versa. Both
fitted lines in Fig. 5 have almost the same slope (-0.1411 vs.
-0.1158) with a different intercept (33.9770 and 28.2960). We
can conclude that the substation power and active end-node
voltage relationship changes from a single line to a series of
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Figure 4: (a) Enable signals of OLTC and VR; and (b) voltage
variation at the farthest active end-node due to the actions of
OLTC and VR.
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Figure 5: Total feeder power consumption vs. local active end-
node voltage in the presence of OLTC and VR actions.

parallel lines when the tap changes from one step to another. It
is also observed that Vend varies between 238−242 V , slightly
higher than the previous scenario. The operation of VR has
shifted up the local active end-node voltage. The maximum
total feeder power demand is seen to be the same as before
due to the same household loading. The impact of OLTC on
the Stotal and Vend relationship is similar to VR since their
operating principle is quite the same.

Next, we run the model with the same house loads and
enable only the capacitor banks to operate. The switches
connected to 25 kVAR and 50 kVAR capacitor are turned ON
at 6:40 PM and 9:20 PM, respectively, and they remain ON for
the rest of the simulation time. The capacitor bank switching
signals are illustrated in Fig. 6a, and corresponding farthest
active end-node voltage variations are shown in Fig. 6b.
Fig. 6b shows that the local active end-node voltage increases
when capacitors inject reactive power to the grid as expected.
We have recorded Stotal and the same Vend data and separated
the data into three categories: no capacitor bank connected,
25 kVAR capacitor ON, and 75 (25+50) kVAR capacitor ON.
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Figure 6: (a) Enable signals of 25 kVAR and 50 kVAR
capacitor banks and (b) voltage variation at the farthest active
end-node due to the actions of capacitor banks.
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Figure 7: Total feeder power consumption vs. local active end-
node voltage in the presence of capacitor banks actions.

The data of all categories are plotted in Fig. 7. Three separate
lines in Fig. 7 illustrate the Stotal and Vend relationship when
no capacitor, 25 kVAR capacitor, and 75 kVAR capacitor
connected to the grid. Fig. 7 shows that both the slope and
intercept of Stotal and Vend linear relationship changes due to
the reactive power injection to the grid. We can conclude that
the substation power and active end-node voltage relationship
changes from a single line to a number of separate lines due to
discrete amount of kVAR injection by the switched capacitor
banks.

To understand the effects of continuous reactive power
injection/absorption to the grid and its impact on Stotal and
Vend relationship, we have simulated the model with the
same household loads and with a three-phase 300 kW volt-
var controlled PV farm. The house loads are powered from
the PV farm and the feeder itself. Injecting active power
to the grid will cause a voltage rise to the node where it
is connected at. Volt-var controller implemented in the PV
inverter continuously injects/absorbs the required amount of
reactive current to control that node voltage. Fig. 8a shows
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Figure 8: (a) Active and reactive power injected by the PV
smart inverter and voltage variation at Bus 703, and (b) Total
apparent power vs. local active end-node voltage relationship
when PV volt-var controller was active only.

the active and reactive power injected by the PV farm and
corresponding voltage change at bus-703. We have recorded
Stotal and the same Vend data and plotted the data in Fig. 8b.
The Stotal and Vend relationship changes its characteristic
parameters continuously during the simulation time frame due
to the change (small and/or large) of active and reactive power
supplied/absorbed by the PV inverter. We have also noticed in
Fig. 8b that Vend varies in between 236 -240 V. The maximum
value of Vend is somewhat higher than the base case (model
with house loads only). Injecting/absorbing reactive power
to/from the smart PV inverter impacts the active end-node
voltage, therefore, Vend have a closer value to the nominal
voltage. At some point, the PV generates more power than
the total load demand, which causes reverse power flow within
the test system. The negative total apparent power in Fig. 8b
represents the bi-directional power flow due to the excessive
PV power generation.

IV. CONCLUSION

Power grid structure is complex and dynamic in nature.
Large-scale integration of EVs, DERs and ESSs will make
the system even more complex. Changing one component at
one side of the system might have a big impact on the very
far corner of the other side. It’s hard to predict parameters and
their relationship within this dynamic/changing environment.
In this study, we have investigated the operation of high-level
voltage regulating controllers; i.e., OLTC, VR, capacitor bank,
and PV smart inverter and their impact on the relationship
between total feeder apparent power and active end-node volt-
age. It is observed that the relation between substation power

and end-node voltage is quite linear without any operation
of high-level controllers. However, enabling OLTC/VR in the
model changes the linear relation from a single line to multiple
parallel lines. Discrete amount of reactive power injection
to the grid creates several separate lines, whereas continu-
ous injection/absorption of kVAR changes the characteristic
parameters of the linear relationship. The understanding of
high-level controller actions and their impact on local active
nodes will help to estimate substation power from local
measurements only. Therefore, the distributed controllers will
able to detect congestion issues and utilize grid’s full capacity.
The future study will focus on developing the described cases
in a real-time simulation environment.
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