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Abstract—Electric vehicle (EV) transition and low-cost renew-
able energy generation are putting power grid under a challenging
transformation. Number of power electronics actuators connected
to the grid is increasing, and the legacy control methods employed
on the grid are not responsive to this growing demand. Thus, the
grid integration of EVs and their charging management requires
a system-wide solution that is scalable, autonomous, and stable.
In this article, we investigate two very complex networks: Internet
and power grid in the context of controlling mass-scale EV charging
problem. We adapt the well-known additive increase-multiplicative
decrease (AIMD) algorithm used in the Internet congestion control
to EV charging in a distributed fashion. We develop an adaptation
of the Internet’s congestion control method for power grid consider-
ing the unique grid constraints using a decentralized concept. The
advantage of the proposed method lies in its low-cost (memory-less)
congestion detection mechanism based on only local voltage mea-
surements. Results show that decentralized AIMD can successfully
help flatten the peak loading caused by high EV penetration. To test
the algorithm, a distribution grid model is designed based on IEEE
37-node test feeder with realistic load modeling. Finally, the results
are presented in comparison with two other control architectures.

Index Terms—Additive increase-multiplicative decrease
(AIMD), decentralized control, electric vehicles (EV), grid
integration, peak shaving, smart charging.

NOMENCLATURE
AIMD  Additive increase multiplicative decrease.
SOC State of charge [%].
E2E End-to-end.
TCP Transmission control protocol.
RTT Round-trip time [s].
RTO Re-transmission timeout [s].
EWMA  Exponentially weighted moving average.
R(t) Sending rate.
« Additive increase parameter.
B Multiplicative decrease parameter.

AvgRTT Mean of RTT [s].
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StdRTT  Standard deviation of RTT [s].

A EWMA parameter.

w EWMA parameter.

Ic Charging current [A].

V(t) End node voltage [V].

AvgV Mean of voltage [V].

StdvV Standard deviation of voltage [V].
7% Voltage threshold [V].

14 Decision probability.

1. INTRODUCTION

LECTRIC vehicle (EV) transformation can be an impor-
E tant turning point for the utility grid toward more flexible
and customer-oriented operation. With decreasing prices, EVs
are anticipated to increase in sales by 2025 [2]. However, con-
ventional electric utility grid operation is still not prepared for
such a change. This potential mass EV penetration brings new
problems in the distribution grid such as extreme voltage drops,
frequent and increased peak loading, thermal overheating, and
failure of equipment [3]-[10].

The EV charging solutions proposed in the literature to this
oncoming problem can be split into three categories. These are
direct, indirect, and autonomous methods [11]. In direct and
indirect methods, extensive amount of data carrying informa-
tion such as State of charge (SOC), grid congestion signals,
price tariffs, vehicle arrival, and departure times need to be
continuously exchanged between EV and the grid. Such signals
are necessary to detect and control the charging of an EV. Ma
et al. [12] proposes a decentralized charging control algorithm
aiming to minimize the charging cost. The authors use the
game theory and claim that the Nash equilibrium converges
to a valley-filling strategy for large population of EVs. They
assume that price and non-EV demand information are broadcast
to EVs, and each EV determines their own charging rate based
on this information. This information exchange still requires a
dedicated communication network, which may not be available.
Amini et al. [13] also focuses on reducing the charging cost
for EVs. They formulate the EV charging problem as a linear
programming price-based optimization. They use the Dantzig—
Wolfe decomposition to decompose the problem into small
subproblems. Their solution also requires the electricity price
to be communicated to all EVs. The above methods require
deployments of expensive networking and communication in-
frastructure at end-nodes. It is conventionally thought as more
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reasonable to use these methods when integrating EVs to the
grid, however, they are not cost-effective and practical solu-
tions, especially at massive scales. To that end, such centralized
solutions are considered to be more demanding to realize than
distributed ones in terms of the investment cost and inherent
limitations (e.g., latency, data loss, and connection problems) of
its communication network.

The internet’s backbone data carrying traffic also had con-
gestion problems in the past similar to the EV charging net-
work. At the number of endpoints of the Internet drastically
increased, the congestion management with scalable and easy
deployment became a critical problem [14]. Solutions that en-
sure network stability by avoiding congestion [15], maximizing
E2E throughput and guaranteeing the fair and efficient use
of network capacity became necessary after the “congestion
collapse” [16], [17] was practically observed. The multiprovider
structure of the Internet and the scalability of the problem
made it more convenient for the solution to be best imple-
mented at smart end-points that operate end-to-end with com-
pletely local measurements. This decentralized E2E congestion
management approach [18] was adopted by the mainstream
transmission control protocol (TCP). Despite all the efforts
exerted for centralized [19] and network-supported [20] con-
trol of congestion aiming at more efficient and fairer network
capacity usage, many of these solutions were only implemented
at network edges and unable to span multiple providers due
to its limited deployment. As massive scales, decentralized
structures operating at smart end-points with local/E2E mea-
surements have become the most successful in terms of prac-
ticality and solving the congestion (or data traffic rate) control
problem.

The Internet’s existing TCP uses the additive increase-
multiplicative decrease (AIMD) algorithm [15] for congestion
avoidance. AIMD takes actions every time it is triggered by
congestion events taking place on the network. The level of
the congestion is measured by how long it takes to get the
acknowledgement of a transmitted data packet from its destiona-
tion, a.k.a round-trip-time (RTT). Such a decentralized learning
architecture yields some partial knowledge of the congestion that
might be present in the shared network channels/links. Low and
Lapsley proved that this straightforward solution can provide
stable operation and proportional fairness among users [21]. As
far as allocating a limited source among competing participants
in a distributed fashion is concerned, AIMD shines out as a
strong candidate. It can be adapted into many diverse fields with
similar problems. Corless et al. provides a detailed mathematical
analysis and modeling for AIMD and also discusses possible
areas of applications [22].

The success of the AIMD algorithm in handling the Internet’s
backbone traffic due to congestion has been the main source of
motivation for this article to adapt it for EV charging problem.
Power system and Internet both have multi-input multi-output,
complex, and very dynamic operation systems as illustrated in
Fig. 1. When investigated carefully, one can observe multiple
one-to-one parameter analogies between Internet operation ver-
sus EV charging as summarized in Table I.
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Fig. 1. Analogy between EV charging over the power grid and the downloads
over the Internet.

TABLE I
EV CHARGING AND INTERNET OPERATION: ONE-TO-ONE COMPARISON

EV Charging |  Internet Operation |

Power Data
Power congestion Network congestion
Transfer : -
arameter Cost of charging power Cost of data transfer
P Charging rate Download rate
Node voltage Round-trip-time (RTT)
Time scale Minutes to hours milliseconds to seconds
Performance State of charge (SoC) Quality of service (QoS)
Fairness No policy yet Proportional fair
Control Various [7], [10], [11], [23]; AIMD
none scaled up yet

The key contributions of this article are as follows.

1) Developing a power distribution system level solution for
the EV charging problem inspired by the Internet’s proven,
stable, and autonomous architecture.

2) Adaptation of the AIMD algorithm’s congestion detection
mechanism for grid congestion via local voltage informa-
tion.

3) Large-scale simulation of the proposed decentralized
AIMD algorithm on a distribution grid with 416 cus-
tomers.

The organization of this article is as follows: Section II pro-
vides the background literature primarily on AIMD-based EV
charging control algorithms. Section III introduces the basics
of the AIMD algorithm as implemented on computer networks
and proposes a counterpart of the algorithm for EV charging.
Section IV presents the distribution grid and dynamic load
model used to benchmark the algorithm. Section V discusses the
simulation scenarios and results. Finally, Section VI concludes
this article.

II. RELATED WORK

Due to the similarity of the two systems, some research
work studied the adoption of the AIMD algorithm for EV
charging [24]-[26]. The authors in [27] improved this idea by
considering the power system constraints. Beil and Hiskens
investigated the impacts of an AIMD-based charging algorithm
on the system dynamics of a distribution grid system [28]. Liu
et al. compared two AIMD-based charging algorithms with
an ideal centralized solution to assess the performance on low
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voltage (LV) distribution grid [29]. Crisostomi ef al. studied the
allocation problems of power generation for distributed energy
sources in microgrids by proposing an AIMD approach [30].
However, they do not provide any detail on how the congestion
signals are produced, transmitted, and implemented in the field
but assume that users are notified of this information. Xia et al.
uses historical voltage measurements to calculate a voltage
threshold for triggering the AIMD algorithm [31]. However,
this may cause a flexibility problem when it comes to adapting
to the change of dynamics of the grid, i.e., EVs or photovoltaic
systems. Power flow analysis is suggested in [32] to find and
set voltage thresholds. However, this solution requires an offline
computation, thus it cannot respond to new real-time conditions.
Charging fairness, another important concept for charge man-
agement, is not analyzed in the aforementioned studies.

The congestion level on a distribution network can be mapped
to the voltage drop [33]. The decentralized version of an AIMD-
based charging algorithm utilizes the local voltage measure-
ments and maps those to threshold voltage values, and it is
triggered by voltage drops. We previously presented an analysis
to extract the relationship between the voltage drop and the
electrical distance to substation in a simplified radial distribution
grid model [34]. The result of this analysis proved that avoid-
ing voltage violations and providing charging fairness can be
simultaneously archived if the right voltage thresholds values
are found based on each node’s location in the grid. Therefore,
in the follow-up studies, the effect of such a congestion resulting
from EV integration on different levels were explored on a low-
voltage distribution grid by means of statistical analysis [35].
In [36], we used historical data of voltage measurements to ex-
tract these statistics and assign threshold values, which could be
more expensive to implement due to its memory requirements.
In this article, however, rather than collecting statistical voltage
data which takes up to a week, we propose a very similar method
used in the original AIMD control to determine the threshold
values real-time using EWMA and Chebyshev’s outlier estima-
tion method. We further verify the fairness among EV owners in
establishing proportional fairness among users based on their
distance to the substation. The main objective is controlling
each individual EV’s charging based on their local voltage
measurements that indirectly carry information regarding the
grid status. Thus, the potential grid problems (e.g., voltage drops,
congestion, etc.) can be linked to voltage and avoided by means
of this autonomous decentralized solution, which also provides
a fair distribution of the aggregated capacity among the users.
This article provides an extended version of the preliminary
paper [1]. We extended the previous study via providing 1) a
more detailed explanation of the proposed algorithm on how it
detects congestion in the grid, 2) more simulation results and
analysis that highlight the contributions, and 3) a comparison
study with two other algorithms in the literature.

III. DISTRIBUTED AIMD ALGORITHM FOR
ON-BOARD EV CHARGING

A. Basic AIMD Operation

The AIMD is implemented as a congestion control and
avoidance algorithm in TCP/IP protocol stack. It runs at every

Algorithm 1: AIMD Algorithm for the Internet End-Points.

Input: Previous sending rate: R(t)

Output: New sending rate: R(t + 1)

Parameter: Additive increase parameter: «(t) > 0

Parameter: Multiplicative decrease parameter:
0<p(t)y<1

1: if Network congestion NOT detected then
2. R(t+1)=R()+ at)

3: else

4: R(t+1) = p(t) x R(t)

5:  end if

end-point rather than network routers, which makes it an easily
scalable and distributed algorithm when the network is further
extended. When adding new end-points, it is required that only
these end-points implement the AIMD operation without any
updates to the routers. This approach relies on fate-sharing
which is the assumption that nobody wants the network to fail.
Therefore, every end-user implicitly agrees to take action when
congestion occurs even tough every user is greedy by nature.
The goal of such an agreement is to establish a stable, fair, and
efficient system. The AIMD algorithm accomplishes the goal by
adjusting the sending rate either by additive increase (Al) or mul-
tiplicative decrease (MD) depending on the network congestion.
Algorithm 1 describes the implementation of AIMD.

To look for any indication of congestion, TCP/IP [18] mea-
sures the change in the network capacity by looking at the end-to-
end network throughput, and probes the network by constantly
doing Al on the sending rate as long as it does not observe any
congestion. The throughput here refers to the rate of successful
packet delivery over the network. This rate tends to increase
as a result of the AI phase until a point at which the capacity
of the network is reached. Such an event occurs due to long
packet queues on the routers, and this causes slow network traffic
(congested network), which eventually causes delays and packet
losses. Loss or delay in packets result in lower throughput, and
therefore, sending rate should be decreased when the network
is congested. This is the point, where the MD is implemented.
In this phase, end-users reduce their sending rates, and thus free
up the network resource for further distribution. The reduction
is done by each user individually via rescaling their sending rate
by a factor less than one, which is the multiplication decrease.
Al and MD phases keep following one another as the users are
competing for the resource. The desired operation region, termed
as “knee,” defines the set of points on the throughput versus rate
curve right before the roll-off, where the capacity is reached and
congestion collapse occurs (see Fig. 2).

One important feature of TCP/IP is its ability to detect the
congestion autonomously without the need of a central com-
mand [14]. This is achieved through local RTT measurements.
When data packets arrive at their final destination, an acknowl-
edgment (ACK) is sent back to indicate that the packets have
been delivered. RTT refers to the total time it takes for the
data packets to get to the destination and their ACKs to be
received back by the sender. The measured RTTs vary very much
depending on the packet destination and the dynamic nature of
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Fig. 2. TCP’s congestion control management: As end users keep increasing

their sending rate, throughput first increases but then saturates and sharply
reduces.

the background traffic load on the network. Thus, AvgRTT and
StdRTT are used as metrics to assess if a congestion may be
happening in the middle of the network. The EWMA is used to
estimate AvgRTT and StdRTT values as follows:

AVERTT ;) = % - RTT() + (1 — 1) - AvgRTT ;). (1)
+ (1 —w) - SdRTT . )

where A and w are the coefficients that determine the contribution
of the recent measurements to the average values and thereby,
the response time of the system.

Average RTT increases as the network starts being congested
due to the background traffic. A congestion event is said to be de-
tected if RTT exceeds a certain threshold, that is re-transmission
timeout (RTO). RTO is a very important parameter as it is
used in self congestion detection, and it is dynamically updated
at regular intervals to adapt to constantly changing network
conditions. In essence, RTO is calculated as an outlier of the
estimated average RTT value based on Chebyshev’s outlier es-
timation. Chebyshev’s Inequality [37] states for any probability
distribution that

1
P(X ¢ [p£ko|) = 15 3)

This means that 100 x (1 — 75) percent of the measured X
values are to be between p — ko and p+ ko. For TCP/IP
protocol, k value is chosen to be 4, that is, around 93% of the
time the true average of RTT must be within the measured RTTs.
Then, the 7% should correspond to the outliers, which can be
used as RTO as follows:

RTO(; ;1) = AVgRTT(;, 1) + 4 - StARTT ;4 1). 4)

Equations (1), (2), and (4) have the subscripts ¢ and ¢ + 1
to denote the ith and (i + 1)th update intervals, respectively.
In steady state, the difference between any two consecutive
intervals i and (i + 1) is equal to AvgRTT ;). This means that
a lightly utilized/congested network is pushed to its limits by
executing the Al phase at relatively shorter intervals to quickly
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Algorithm 2: AIMD Algorithm for EV Charging Network.

Input: Previous charging current: I..(¢)
Output: New charging current: I.(¢ + 1)
Parameter: Additive increase parameter: «(t) > 0
Parameter: Multiplicative decrease parameter:
0<pB(t) <1
Parameter: Decision probability: 0 < p < 1
1: if Grid congestion NOT detected then

2: else

3:  ifp > rand(1l) then

4. I.(t+ 1) = B(t) x I.(t)
5: end if

6: end if

reach the network capacity. As the capacity utilization increases,
update intervals get longer (due to high RTTs) and the increase
rate slows down contributing to the stability of the system.

B. Counterpart Algorithm for EV Charging

There are major differences between the operation of Internet
and power grid such as time-scale of the events, severity of
failure, and digital versus analog operation. These cannot be ig-
nored and should be managed with respect to specific operation
conditions. However, the problem in the EV charging case is very
similar to that of the Internet end-points’ sending rate control.
Furthermore, the electrical energy needs to be distributed among
EVs in a fair, efficient (high utilization factor), and stable way
taking the system capacity constraints into account. The solution
should respond to the dynamic changes in the grid on time and
result in the best utilization of the power capacity. The very
similarity of the two problems gives us the courage to safely
adapt the AIMD algorithm for EV charging [36].

The sending rate R(t) in the Internet implementation can be
modified as charging current I..(t), and the counterpart algorithm
for EV charging can then be written as in Algorithm 2. The key
part of implementing this algorithm, as in the Internet case, is
the detection of the congestion. The voltage of the node to which
the EV is connected can be used for congestion monitoring as a
counterpart of RTT. Grid voltage carries significant information
regarding the loading level of the grid, and it is responsive to
changes due to highly dynamic loads such as EVs, or sources
such as intermittent renewable energy generation. As AIMD
is concerned, increasing the charging current in the Al phase
will lead to voltage drops. If the voltage V' (¢) drops below a
certain threshold voltage value, Vjy, the grid can be regarded as
congested, and the MD phase activates and reduces the current.
Additionally, as an extra control nub, we introduced another
parameter, namely “decision probability,” p in the counterpart
algorithm. This is the probability that the user decreases its
current at the congestion event. When p is set to one, the user
will always respond to every congestion detection and activates
MD phase. Any value of p less than one will make it more likely
for the user to ignore the congestion and result in an increase in
the average charging power. Along with «, we can also use p to
converge to a desired operation point.
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Fig. 3. Update interval calculation for the EV charging algorithm.

The critical voltage threshold value is similar to RTO and can
be calculated using AvgV and StdV of the measured voltage.
If EWMA is applied again, then the following equations are
obtained:

AVEV (ip1y = A Vi + (1 — 1) - AvgV ;. (5)
StdV 41y = w - (AveVip) = Vip)
+ (1 — w) . Sth(i). (6)

Unlike RTO, V4, should be inversely proportional to the con-
gestion level, since it decreases as the congestion increases.
Therefore, a voltage outlier below the average voltage should
be chosen as the voltage threshold value Vy, i.e.,

‘/lh(iJrl) - AVgV(Z‘+1) —4. Sth(Z+1) (7)

In the Internet case, the length of the update interval [t(;; 1) —
t@iy| was set to be AvgRTT ;), since both are time quantities.
As for the EV charging case, AvgV ;) must be mapped to a
time value through a function. This function can be intuitively
assumed to be a positive-sloped line with the following equation
and illustrated in Fig. 3:

240 — 240 - (1 — 10%)

t(i-i—l) = . (tu — tl) +t;. (8)
where t,, and t; denote the upper and lower possible values for the
update interval, respectively. 216 V corresponds to the minimum
utilization voltage level (-10%) allowed by the distribution grid
standards [38].

In order for the algorithm to respond to capacity changes,
it should further be modified. Capacity can be monitored by
voltage [39]. Therefore, the difference between the operating
point and the minimum utilization voltage can be used as a
capacity indicator, and the increase parameter «/(t) is adjusted
through a simple linear function as follows:

Vi — 240 (1 — 10%)
D T 940 — 240 (1 — 10%)

* (O¥min — amax) + Qmin-
)
The same adjustment can also be made for the decision prob-

ability p. By relating it to the voltage through a simple linear
function, we can further force the algorithm to adapt itself to the

e
» f) |
A W Linearfunc.w/
positive slope al B I(t-1)
/J_L\ v
R
V() —| AvgV(t), (
R, N EWMA Chebyshev's AIMD
AvgV(t-1) Filter | Estimation Vg | Algorithm I(t)
StaV(t-1)—p—>( JTstav(n) ) -
P t V(t)
s flo)
> f) )
Linear func. w/
positive slope
Fig. 4. Schematic overview of the proposed methodology.

available system capacity

AvgV ;) — 240 - (1 — 10%)
240 — 240 - (1 — 10%)

p=1- (10)
For this article, the following parameters are used: A = 0.7,
w=0.2, apn =1, amax =5, t, =60s,t; =5sand 5 =0.5.
We chose these values based on the practices of the TCP imple-
mentation. The schematic overview of the presented methodol-
ogy is illustrated in Fig. 4.

IV. SYSTEM DESCRIPTION FOR THE DISTRIBUTION
GRID TEST CASE

This section covers the description of the test system in which
the proposed algorithm will be implemented. The testing sce-
narios and their results will be given in the next section together
with a discussion analyzing the results.

EV charging network is essentially a LV distribution grid with
a substation being the source and grid-connected EVs being
the consumers. Grid topology describes how the sources and
loads are interconnected through distribution lines. Similar to
the Internet case, the topology gets more complicated as new
end-users (EVs) get connected to it. Usually, the grid topology is
also unknown to grid operators, as already is to end-users. There-
fore, having decentralized algorithms running independent of
the topology is surely of significant importance. A distribution
grid with a nonregular topology would serve as a good testing
medium to get more consistent results compared to testing on
specific topologies such as the single line, radial types. Such a
complex distribution grid model will be presented in the next
section. In addition to this, a more realistic distribution grid
model does not only have EVs, but also other dynamic loads
such as households and commercial buildings whose power
consumptions fluctuate over time. Accurately modeling these
type of loads based on real data will also contribute to the fidelity
of the results as well as the quality of the analysis.

A. Distribution Grid Model

For our test benchmark, the distribution grid model with pri-
mary and secondary networks presented in [40] is used. This test
feeder is modeled according to the IEEE 37-node test system,
which operates at a nominal voltage of 4.8 kV and a peak power
of 1.5 MW. We designed the primary and secondary networks in
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Fig. 5. Primary and secondary distribution network implemented in the

MATLAB model.

MATLAB Simulink as shown in Fig. 5. Each red node in Fig. 5
represents a neighborhood that is connected to a primary feeder
bus. There are a total of 26 neighborhoods located at different
points of the grid.

We model each neighborhood as a secondary network as
shown in Fig. 5. The secondary network is developed following a
similar procedure and the data described in [40]. It contains four
inner nodes, and at each node a pole-mounted transformer of
25 kVA is located. Each transformer steps down the primary
feeder voltage of 4.8 kV to a secondary split-phase voltage
level of 120/240 V and supplies power to four houses. In total,
there are 416 residential customers in the model. The overall
distribution grid operates slightly over 350 kW at peak hours
without any charging event.

B. EV Load Model

In order to model EV charging load on the distribution grid,
we focused on their critical parameters. We derived their arrival
and departures times from a Gaussian distribution with mean
and standard deviation of (17 h30,1 h00) and (07 h47, 0 h23),
respectively. The load model generates (SOC) values for each
EV at the time of grid connection based on a Gaussian daily
trip distribution with mean and standard deviation of (40.0 mi,
5.0 mi). Each EV is assumed to have a 70 kWh battery pack
with an on-board charger of 10 kW corresponding to around
41 A RMS ac current for a rated voltage of 240 V. Finally, the
battery charging takes place at a 90% efficiency for all vehicles.
The battery SOC is computed by the following equation:

_ Qo + [ in(t)dt
Qn

where () is the initial battery charge, @,, is the nominal charge
capacity of the battery, and 4, is the battery charging current.
The reason all the EVs are modeled with the same configura-
tion type is to prevent possible confusions that might arise in the
discussion of addressing fairness performance of the algorithm.
We wanted to make sure the EVs’ rates of charge do not interfere
with the charging control algorithm’s capability of attaining a
fair charging scheme. Designing a charging control algorithm
that can attain fairness across heterogeneous EVs with different
capabilities is a future direction this article can be taken to.

SOC(t) x 100 an

C. Residential Load Model

We designed a random consumption data generator for res-
idential houses. This generator uses 16 days of real residential
power consumption data downloaded from E-gauge [41] (see
Fig. 6). These data are used to create a statistical distribution of
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Fig. 6. Sixteen days (shown in different colors) of power consumption data of
a household.

the load model in I-min resolution assuming a normal distribu-
tion. The developed power consumption probability distribution
function is then used to populate a load profile in 1-min reso-
lution for each house in the grid model. Each house is assumed
to operate at 0.9 power factor lagging to include reactive power
consumption into study as well.

D. Performance Comparison Benchmark Studies

In order to analyze the proposed algorithm on the distribution
test grid, we first need a reference case to compare our results
with. This case covers the scenario, where the EV penetration
is set 100% (full-load). For the full-load case, the charging is
assumed to be done at the rated power of 10 kW for all vehicles
(no control). The time interval for the simulations is chosen to
be between 16:00 and 24:00 when almost all of the charging
events take place.

Besides, we run the test scenario with one fully decentral-
ized [42] and one centralized [24] algorithm to evaluate and
compare the performances. Studli et al. proposes a centralized,
AIMD-based charging control assuming that the capacity con-
gestion event is notified to each user over a unidirectional com-
munication link [24]. This algorithm is the ideal implementation
of the AIMD algorithm and, therefore, will serve as a benchmark.
o and 3 parameters presented in Algorithm 1 are setto 1 and 0.5,
respectively. These values are chosen specifically based on their
domain set (¢« > Oand 0 < S < 1). An increment current
of 1 A rms in each Al phase is assumed. Geth er al. proposes
to use droop control, where the power-voltage droop functions
are predefined [42]. In this article, we adapt the LM2 type droop
function presented in [42] for the nominal charging power of
10 kW. The algorithm cuts off the charging power when the
voltage goes below 0.9 p.u. (216 V). Charging power is linearly
changed with voltage when the voltage is between 0.9—1.0 p.u.
When the voltage is above 1.0 p.u., the EVs will be charged at
the maximum rated power of 10 kW.

We refer the algorithms as follows: D-AIMD for the proposed
distributed AIMD algorithm, C-AIMD for the ideal central-
ized AIMD algorithm [24], Droop for the droop control algo-
rithm [42], and No-Control for the rated charging power for all
EVs.
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V. RESULTS, ANALYSIS, AND DISCUSSION

Minimum of all the household voltages in the grid across the
simulation time of 8 h for all four scenarios are shown in Fig. 7.
The minimum allowed utilization voltage is also shown in red.
The baseline case clearly shows that the minimum voltage in the
grid drops far below the minimum critical level (216 V) when
No-control action is taken. This result strongly suggests that the
EV charging should be controlled to mitigate the impact.

All three algorithms successfully managed to keep the lowest
voltage above the critical level of 216 V. Droop is operating
well above this voltage level, since all vehicles simultaneously
decrease most of their charging power as their voltage gets close
to 216 V. This naturally results in lower capacity utilization,
lower average charging power, and longer charging time, which
will be discussed later. C-AIMD marks the benchmark points
for our decentralized AIMD algorithm. It is also programmed to
decrease the current by half as the voltage hits the minimum (or
when overloading of substation transformer occurs). C-AIMD
is operating right at 216 V and D-AIMD operates closely above
C-AIMD minimum voltage levels. This suggests that D-AIMD
finds itself a place between the ideal (C-AIMD) and static droop
operation in terms of voltage control.

Fig. 8 shows the overall substation transformer loading in
MW for all three cases. As seen, the substation capacity is
overloaded (highly congested feeder) and the peak power rises
as vehicles arrive home when there is no control over charging
vehicles. All algorithms manage to stay below/around the rated

g
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Fig. 9.  Average charging powers for 100% EV penetration under different
control methods (blue circle: D-AIMD; red square: Droop; magenta star: C-
AIMD:; black diomand: No-control.
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Fig. 10.  Voltage profiles of 416 households for 100% EV penetration with

AIMD charging.

capacity, whereas Droop is slightly under the capacity making
it deliver the same energy in a longer time. C-AIMD operates
right at the capacity, since it already receives the congestion
information. We see that the D-AIMD is also able to operate
close to the capacity limit without needing an explicit capacity
information. Compared to the no control case, D-AIMD handles
the congestion by shifting the peak load of the system toward the
midnight, and thus performs an autonomous demand-response
management.

Fig. 9 presents the average charging powers of each customer
in ascending order of electrical distance to substation for all
control methods. The average charging powers among all EVs
for D-AIMD, Droop, and C-AIMD algorithms are calculated as
4.07, 3.50, and 5.00 kW, respectively. This can also be better
observed as boxplots of average charging powers in Fig. 10.
The red lines inside each box represent the median value of the
average charging powers for each algorithm, whereas the height
of the boxes show how big the variations among the charging
powers are. C-AIMD has the highest average charging power
overall but shows a lot of variations among them. Droop has
lower variations, however, it provides less average charging
power that results in longer charging times. D-AIMD again
locates itself in between these two cases having less variations
compared to C-AIMD and higher charging power compared to
Droop.

Fig. 11 shows typical charging current waveforms of a ran-
domly chosen vehicle for all presented cases. Droop presents
a continuous current trend as its control action is defined to be
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Fig. 13.  SOCs of all vehicles for 100% EV penetration with D-AIMD.

a linear function over a small voltage range and takes longer
time to complete charging. D-AIMD and C-AIMD exhibit a
very dynamic behavior because these algorithms are constantly
probing and monitoring the network and take control actions
accordingly. However, note that the algorithm does not diverge
into instability as expected by the stability proof provided
by [15]. As a consequence of this service, the charging durations
are expected to be longer compared to the no control case.
Figs. 12 and 13 show the SOC changes of all vehicles under
100% penetration for uncontrolled and controlled (D-AIMD)
EV charging, respectively. As seen, the charging takes longer
times on average in the controlled case because of the managed
charging powers. All the EVs are fully charged, up to 98%,
leaving a protection margin for battery safety.

IEEE SYSTEMS JOURNAL

The distribution system used in this article is not completely
balanced. If one phase is significantly more loaded than the
others, its voltage will drop more. This will trigger the AIMD
algorithm more often causing it to enter the MD phase more.
Reducing the charging rate will also reduce the stress on the
particular phase under discussion and help avoid a possible
congestion in that phase. Therefore, it is fair to say that the
algorithm operates independent of whether the network phases
are balanced or not.

VI. CONCLUSION

This article presented the well-known AIMD algorithm used
for Internet congestion management and adapts a revised version
of it for the EV charging problem. We observed the following
key findings: First, the algorithm can respond to grid congestion
events in a decentralized way without causing instability via
observing changes in the end-node voltage. Second, a propor-
tionally fair capacity allocation is established while operating
fully decentralized without any central information or com-
mand. Third, peak-shifting of the load on the distribution grid
is successfully accomplished without any need for a centralized
controller. The comparison in the article showed that the pro-
posed algorithm (D-AIMD) has an overall performance between
the ideal AIMD case (C-AIMD) and the static decentralized
operation (Droop).

The future work will include improvements for the proposed
algorithm for more dynamic conditions. It will be worthy to
explore better tuning of AIMD’s various parameters adopted
for EV charging. For instance, the update interval calculation
based on average local voltage measurements could be done
in a more or less aggressive way than a linear model. Further,
the increase and decrease parameters of AIMD can be tuned
for better probing the available grid network capacity and/or
stronger guarantees for stable operation. These explorations will
enable better understanding of the tradeoff between stability
and efficiency of purely decentralized EV charging with AIMD.
We will also explore battery lifetime/aging implications of the
AIMD-type dynamic charging profiles as opposed to Droop-like
steady-state controllers. This can provide an insight to better tune
AIMD controller parameters.
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