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Maximum evaporating flux of molecular fluids from a planar liquid surface

Eric Bird and Zhi Liang *

Department of Mechanical Engineering, California State University, Fresno, California 93740, USA

(Received 6 July 2020; accepted 17 September 2020; published 5 October 2020)

In this work, we use the kinetic theory of gases (KTG) to develop a theoretical model to understand the role of
internal motions of molecules on the maximum evaporation flux from a planar liquid surface. The kinetic theory
is applied to study the evaporation of molecular fluids into a vacuum and predict the dimensionless maximum
evaporation flux (JR,max, i.e., the ratio of the maximum evaporation flux to the molar flux emitted from a liquid
surface). The key assumptions regarding the velocity distribution function (VDF) of polyatomic molecules in
the highly nonequilibrium vapor near the evaporating surface are validated by the VDF obtained directly from
molecular dynamics (MD) simulations. Our KTG-based analysis shows that JR,max is affected by the specific
heat (cV,int) associated with internal degrees of freedom of fluid molecules. When the maximum evaporation flux
is reached, the isotropic evaporating vapor far from the liquid surface moves at its speed of sound regardless
of whether it is a monatomic vapor or polyatomic vapor. To fundamentally understand the evaporation of a
molecular fluid into a vacuum, we solve the Boltzmann transport equation (BTE) to obtain the temperature,
density, and flow speed distributions in the highly nonequilibrium evaporating vapor flow. Our BTE solutions
indicate that there are several universal features of the evaporating vapor when the maximum evaporation flux
occurs. In particular, we find that the evaporating vapor flow speed reaches the maximum value of

√
1.5 times

the most probable thermal speed in the vapor flow direction at the vacuum boundary, and this maximum value
is independent of fluid properties. All theoretical predictions in this work are verified by the MD simulation
results of the evaporation of the model liquid Ar and the model liquid n-dodecane into a vacuum, and existing
experimental data.

DOI: 10.1103/PhysRevE.102.043102

I. INTRODUCTION

Fast evaporation of liquids is a process of great importance
to many industrial applications such as evaporative cooling
of gas turbines [1], efficient combustion in engines [2], and
superfine inkjet printing [3,4]. Accurate prediction of the max-
imum evaporation flux from a condensed phase is one of the
basic problems in the study of fast evaporation processes [5].
The maximum evaporation flux occurs during the evaporation
into a vacuum. Due to the importance of this problem, the
process of evaporation into a vacuum has been extensively
studied in the literature using a variety of theoretical and nu-
merical methods including the kinetic theory of gases (KTG),
Boltzmann transport equation (BTE), molecular dynamics
(MD) simulation, and direct simulation Monte Carlo (DSMC)
method [6–15]. In spite of the extensive work on the process
of evaporation into a vacuum in the past decades, most mod-
eling studies only focused on the evaporation of monatomic
substances. Such modeling results are suitable for the analysis
of experimental data on the evaporation of liquid and solid
metals such as Hg and Ag [9,12] into a vacuum. However,
whether these modeling results on monatomic fluids can be
applied to predict the maximum evaporation flux of more
complex fluids such as water and polymers is questionable. To
address this question, one must have a fundamental and quan-
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titative understanding of how the internal motions including
rotations and vibrations of polyatomic fluid molecules affect
the evaporation process and the maximum evaporation flux.

The key issue in the theoretical investigation of the evap-
oration of molecular fluids into a vacuum is to choose
an appropriate velocity distribution function (VDF) for the
evaporating vapor molecules. The vapor molecules near
the evaporating surface are in highly nonequilibrium states.
Therefore, their VDF cannot be accurately described by the
Maxwellian equilibrium distribution function [7]. Near the
evaporating surface, the kinetic temperature along the evap-
oration direction is different from that perpendicular to the
evaporation direction [7,11]. The temperature anisotropy of
evaporating vapor has been observed in experiment [8] and in
multiple MD simulations of evaporation of monatomic fluids
[11,15–18]. To account for the temperature anisotropy in a
monatomic evaporating vapor, one can assign two tempera-
tures to the vapor [7,11]. For a polyatomic evaporating vapor,
one also needs to assign a temperature to internal motions in
addition to the two temperatures associated with translational
motions. It is challenging in experiment to measure the tem-
peratures of translational and internal motions to verify the
temperature anisotropy in the evaporating vapor [5]. It is even
more challenging to measure the VDF of evaporating vapor
molecules to validate the nonequilibrium VDF assumed in the
theoretical analysis.

One of the advantages of MD simulations is that MD
simulations can readily determine anisotropic temperatures of
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FIG. 1. The schematics diagram of distribution functions of fluid
molecules near the evaporating surface.

vapor near the evaporating surface. Additionally, the VDF of
evaporating vapor molecules can be directly measured from
MD simulations, which allows validating the VDF assumed in
the theoretical analysis [11]. With the appropriate VDF, one
can use the KTG to formulate boundary conditions for the
BTE to fundamentally understand the transport phenomena
in the evaporating vapor near a liquid surface, and predict
the maximum evaporation flux [6–11]. MD simulations are
able to determine fluid properties such as temperature, density,
and vapor flow speed near the evaporating surface with high
fidelity [5]. Therefore, MD simulation results can be used for
testing the accuracy of theoretical predictions of maximum
evaporation flux and BTE solutions to the process of evapora-
tion into a vacuum.

In this work, we use the combination of the KTG, BTE, and
MD simulations to fundamentally understand the effects of
internal motions of molecules on the evaporation of molecular
fluids into a vacuum, and evaluate the maximum evaporation
flux. In Sec. II, we introduce the key assumptions made in the
theoretical analysis of the evaporation of molecular fluids, and
apply the KTG to predict the maximum evaporation flux when
the vacuum boundary is far from the evaporating surface. In
Sec. III, we use MD simulations to validate the key assump-
tions made in the KTG-based analysis. In Sec. IV, we use the
moments method to solve the BTE during the evaporation of
a polyatomic vapor into a vacuum, and speculate the general
characteristics of the distributions of temperature, density and
vapor flow speed along the evaporation direction. In Sec. V
we carry out MD simulations to study the evaporation of
the model liquid n-dodecane and the model liquid Ar into a
vacuum to verify the theoretical predictions of the effects of
molecular internal motions on the maximum evaporation flux
and transport phenomena in the evaporating vapor. Finally, we
close with conclusions.

II. MAXIMUM EVAPORATION FLUX PREDICTED BY
THE KTG

A. Distribution functions of molecules near
the evaporating surface

1. Distribution functions of incoming and outgoing molecules

First, we use the KTG to study the transfer of mass, mo-
mentum, and energy across a planar evaporating surface. In
the theoretical model, we define the position of liquid surface
as the origin of the x coordinate and the evaporation direction
as the positive x direction as shown in Fig. 1. To determine the
net molar, momentum, and energy flux across an evaporating

surface, one needs to evaluate the molar, momentum, and en-
ergy fluxes of molecules coming out of the liquid surface and
striking the liquid surface. The KTG determines the molar,
momentum, and energy fluxes from the distribution functions
of fluid molecules.

The molecules that strike the evaporating surface are vapor
molecules in the immediate vicinity of the evaporating surface
and moving towards the surface. Accordingly, the distribution
of incoming molecules is

fin = f (x = 0) (vx < 0), (1)

where f (x=0) is the distribution function of vapor molecules
at the vapor side of the liquid-vapor interface, and vx is the
x-component translational velocity of molecules.

The outgoing molecules from an evaporating surface con-
tain two parts. The first part is the molecules that are emitted
from the liquid surface and enter the vapor phase. Not all
emitted molecules will enter the vapor phase. The fraction α

of emitted molecules that change to the vapor phase is known
as the mass accommodation coefficient (MAC) [5,19,20]. The
second part is the vapor molecules that strike the liquid surface
and are reflected from the surface. Accordingly, the distribu-
tion function of outgoing molecules from the surface is given
by [15,21]

fout = α fL + fr (vx > 0), (2)

where fL is the distribution function of molecules emitted
from the liquid surface, and fr is the distribution function of
vapor molecules reflected from the surface. To determine the
net evaporation flux, one must choose appropriate distribution
functions for molecules emitted from the liquid surface, re-
flected from the surface, and vapor molecules in the vicinity
of the surface.

2. Molecules emitted from the surface

For monatomic fluids, it is commonly assumed that the
VDF of molecules emitted from the liquid surface satisfies the
Maxwellian distribution with vx > 0 [7,9,11]. To study effects
of internal motions on the evaporation of molecular fluids,
we add the distribution function of internal motions ( fint) as
a part of distribution function of polyatomic molecules. For a
polyatomic liquid surface at a temperature of TL, we assume
that fL in Eq. (2) is given by

fL(vx, vy, vz, {vint}) = ρg(TL )

(
m

2πkBTL

)3/2

e−m(v2
x +v2

y +v2
z )/2kBTL

× fint@TL ({vint})(vx > 0), (3)

where fint@TL is fint at a temperature of TL, {vint} are internal
variables or quantities, ρg(TL) is the saturated vapor density at
a temperature of TL, m is the mass of fluid molecule, kB is the
Boltzmann constant, vy and vz are translational velocity com-
ponents of molecules in the y and z directions, respectively. In
Eq. (3), fint satisfies∫

fintd ({vint}) = 1, (4a)∫
Eint fintd ({vint}) = Ēint (Tint ), (4b)
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where Tint is the temperature of molecular internal motions,
Ēint (Tint ) is the expectation value of energy of internal motions
(i.e., rotations and vibrations) at a temperature of Tint. Using
the distribution function given in Eq. (3), one can readily ob-
tain the molar flux (JL

+), momentum flux (ML
+), and energy

flux (EL
+) of polyatomic molecules emitted from the liquid

surface:

J+
L = ρg(TL )

√
kBTL

2πm
, (5a)

M+
L = ρg(TL )

kBTL

2m
, (5b)

E+
L = ρg(TL )

(
1 + Ēint (TL )

2kBTL

)
2kBTL

√
kBTL

2πm
. (5c)

Equations (5a) and (5b) are the same as those for monatomic
fluids [7,11]. In the limit of Ēint = 0, Eq. (5c) is reduced to
EL

+ for monatomic fluids [7,11] as expected. Hence, the inter-
nal motions of molecules only affect the energy flux emitted
from the liquid surface.

3. Vapor molecules near the evaporating surface

To evaluate the molar, momentum, and energy fluxes of
vapor molecules striking the liquid surface, one needs to know
the distribution function of vapor molecules near the evaporat-
ing surface. Our previous study on evaporation of monatomic
fluids [11] shows that the local VDF of vapor molecules near
an evaporating surface can be well approximated by a shifted
anisotropic Maxwellian distribution proposed by Crout [7]. In
this work, we add the distribution function of internal motions
( fint) as a part of a distribution function and assume that the
local distribution function of polyatomic vapor molecules near
the evaporating surface is given by

f (vx, vy, vz, {vint}, x)

= ρv (x)
√

m

2πkBTx(x)

× e−m[vx−va (x)]2/2kBTx (x)

(
m

2πkBTy(x)

)

× e−m(v2
y +v2

z )/2kBTy (x) fint@Tint (x)({vint}), (6)

where ρv (x) is the local vapor density, va(x) is the local
average (macroscopic) velocity of vapor, Tx and Ty are temper-
atures parallel and perpendicular to the vapor flow direction,
respectively. In Eq. (6), fint also satisfies Eqs. (4a) and (4b). In
this work, we will use MD simulations to determine the VDF
of polyatomic vapor molecules near the evaporating surface
and validate the distribution function assumption given by
Eq. (6).

Using Eq. (6), one can readily obtain the molar (Jv), mo-
mentum (Mv), and energy (Ev) fluxes of vapor molecules
moving in the positive (+) and negative (–) x directions:

J±
v = ρv

√
kBTx

2πm
�(±vR), (7a)

M±
v = ρv

kBTx

m
�(±vR), (7b)

E±
v = ρvkBTx

√
kBTx

2πm
E(±vR), (7c)

where vR is the ratio of the macroscopic speed of vapor va to
the most probable thermal speed of vapor molecules in the x
direction:

vR = va/
√

2kBTx/m. (8)

In Eq. (7), �(vR), �(vR), and E (vR) are given by

�(vR) = e−v2
R + vR

√
π [1 + erf (vR)], (9a)

�(vR) = vRe−v2
R/

√
π +

(1

2
+ v2

R

)
[1 + erf (vR)], (9b)

E (vR) = √
πvR�(vR) + (1 + TR + TR,int )�(vR). (9c)

In Eq. (9c), TR = Ty/Tx, TR,int = Ēint (Tint )/kBTx. The mo-
lar, momentum, and energy fluxes of vapor molecules that
strike the liquid-vapor interface are J−

v,x=0, M−
v,x=0, and

E−
v,x=0, respectively. Comparing Eqs. (7a)–(7c) with those

for monatomic fluids, we find that the internal motions of
molecules only affect the energy flux of vapor. In the limit
of Ēint = 0, Eq. (7c) is reduced to Ev for monatomic fluids
[7,11] as expected.

4. Vapor molecules reflected from the surface

Our recent MD simulation results show that the thermal
accommodation coefficient of vapor molecules on their own
liquid surfaces is close to unity [22,23], which means the
reflection of vapor molecules at their own liquid surface is
mostly diffuse, rather than specular. Therefore, most of the
vapor molecules would equilibrate with the liquid surface
upon reflection. Using the diffuse reflection assumption, fr in
Eq. (2) is given by

fr (vx, vy, vz, {vint}) = ρr

(
m

2πkBTL

)3/2

e−m(v2
x +v2

y +v2
z )/2kBTL

× fint@TL ({vint}) (vx > 0). (10)

Accordingly, the molar, momentum, and energy fluxes of the
reflected vapor molecules are given by Eqs. (11a)–(11c), re-
spectively,

Jr = ρr

√
kBTL

2πm
, (11a)

Mr = ρr
kBTL

2m
, (11b)

Er = ρr

(
1 + Ēint (TL )

2kBTL

)
2kBTL

√
kBTL

2πm
. (11c)

To find ρr in Eqs. (10) and (11), we use the mass conserva-
tion of vapor molecules striking the liquid surface. Of those
molecules that strike the liquid surface, a fraction α (i.e., the
MAC), will change to the liquid. The remaining molecules
will be reflected without phase change. Hence,

Jr = J−
v,x=0 − αJ−

v,x=0. (12)

Substituting Eqs. (7a) and (11a) into Eq. (12), we obtain

ρr = (1 − α)ρv,0

√
Tx,0/TL�(−vR,0), (13)

where ρv,0, Tx,0, and vR,0 represent ρv , Tx, and vR at x = 0 (i.e.,
the vapor side of the evaporating surface), respectively.
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B. Vapor properties at the evaporating surface

Based on the distribution functions given in Sec. II A, one
can obtain the vapor properties including temperature, den-
sity, and macroscopic vapor flow speed at the vapor side of
a liquid-vapor interface by applying conservations of mass,
momentum, and energy at the interface. In the course of
steady-state evaporation, the net molar flux Jnet across the
evaporating surface is equal to Jnet in the evaporating vapor.
Applying the mass conservation at the liquid surface, we have

αJ+
L − J−

v,x=0 + Jr = J+
v,x=0 − J−

v,x=0. (14)

The left side of Eq. (14) is the Jnet across the evaporating
surface which depends on the molar flux of molecules emitted
from the liquid surface (JL

+), reflected from the surface (Jr),
and striking the surface (J−

v,x=0). The right side of Eq. (14) is
the Jnet in the vapor phase at x = 0 which is computed from
the difference between the molar fluxes of vapor molecules
moving in the positive and negative x directions at x = 0.
Cancelling J−

v,x=0 on two sides of Eq. (14) and substituting
Eqs. (5a), (7a), and (11a) into Eq. (14), we have

αρg(TL )

√
kBTL

2πm
+ (1 − α)ρv,0

√
kBTx,0

2πm
�(−vR,0)

= ρv,0

√
kBTx,0

2πm
�(vR). (15)

Dividing both sides of Eq. (15) by JL
+ [i.e., Eq. (5a)], we

obtain the following dimensionless equation corresponding to
the mass conservation at the evaporating surface:

α = ρR

√
Tx,R[�(vR,0) − (1 − α)�(−vR,0)], (16)

where ρR = ρv,0/ρg(TL ) and Tx,R = Tx,0/TL. The above
derivations are similar to those in our previous work for the
evaporation of monatomic fluids [11]. The only difference is
that we assumed specular reflection of vapor molecules at the
liquid surface in our previous work. In this work, we assume
the diffuse reflection of vapor molecules at the liquid surface,
which is more consistent with recent MD simulation results
[22,23].

In a similar manner, we apply the momentum and energy
conservation at the evaporating surface and obtain equations
similar to Eq. (14):

αM+
L − M−

v,x=0 + Mr = M+
v,x=0 − M−

v,x=0, (17)

αE+
L − E−

v,x=0 + Er = E+
v,x=0 − E−

v,x=0. (18)

Rearranging Eqs. (17) and (18), we have

α = M+
v,x=0/M+

L − Mr/M+
L (19)

α = E+
v,x=0/E+

L − Er/E+
L . (20)

Substituting Eqs. (5b), (7b), and (11b) into Eq. (19), and
substituting Eqs. (5c), (7c), and (11c) into Eq. (20), we obtain
the following two dimensionless equations corresponding to
the momentum conservation and the energy conservation at

the liquid surface, respectively:

α = ρR

√
Tx,R[2

√
Tx,R�(vR,0) − (1 − α)�(−vR,0)], (21)

α = 1

2
ρR

√
Tx,R

[
Tx,RE (vR,0)

/(
1 + Ēint (TL )

2kBTL

)

− 2(1 − α)�(−vR,0)

]
. (22)

Applying the conservations of mass, momentum, and en-
ergy at the evaporating surface, we obtained three equations,
i.e., Eqs. (16), (21), and (22). However, the distribution func-
tion of vapor molecules near the evaporating surface, i.e.,
Eq. (6), contains five unknown parameters: ρv , Tx, Ty, Tint, and
va. It is insufficient to use the three conservation equations to
determine the five vapor parameters at the liquid surface. To
obtain the vapor properties at the liquid surface, we further
assume that Tint ≈ Ty. In this work, we will use MD simula-
tions to calculate Tx, Ty, and Tint of evaporating vapor in the
course of steady-state evaporation of a molecular fluid into a
vacuum, and validate the assumption of Tint ≈ Ty. With this
assumption, the number of unknown parameters in Eq. (6)
is reduced to 4. Thus, we can formulate the dimensionless
temperatures Tx,R and Ty,R, of vapor and the dimensionless
density ρR of vapor at the evaporating surface as a function
of dimensionless vapor speed vR at the surface using the three
conservation equations:

Tx,R = Tx,0

TL
=

[
�(vR,0)

2�(vR,0)

]2

, (23a)

Ty,R = Ty,0

TL
= 1 +

(
1 −

[
�(vR,0)

2�(vR,0)

]2

− �(vR,0)
√

πvR,0

4�(vR,0)

)/(
cV,int

kB
+ 1

)
, (23b)

ρR = ρv,0

ρg(TL )
= 2α�(vR,0)

�(vR,0)[�(vR,0) − (1 − α)�(−vR,0)]
.

(23c)

The subscript 0 in Eq. (23) indicates that all vapor properties
are evaluated at the vapor side of the liquid-vapor interface.
In Eq. (23b), cV,int is the specific heat associated with the
internal motions of molecules. Using the dimensionless vapor
properties given in Eq. (23), we finally obtain dimensionless
molar flux (JR), which is defined as the ratio of net molar
flux from the evaporating surface (Jnet,x=0) to the molar flux
emitted from the surface (JL

+), as a function of vR,0:

JR = Jnet,x=0

J+
L

= 2
√

παvR,0

�(vR,0) − (1 − α)�(−vR,0)
. (24)

The derivations of Eqs. (23) and (24) are shown in the Ap-
pendix.

In Fig. 2, we plot dimensionless density, temperature, and
molar flux of vapor at the evaporating surface as a function
of vR,0 for different values of α and cV,int . It is evident in
Fig. 2 that the extent of nonequilibrium in the evaporating
vapor increases with increasing evaporation flux. As vR,0 in-
creases, ρR falls farther below 1, which means that the density
of vapor at the evaporating surface, ρv,0, gets farther below
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FIG. 2. The dimensionless (a) density, (b) temperature, and (c)
molar flux of vapor at the evaporating surface as a function of
dimensionless vapor speed at the evaporating surface for different
values of α and cV,int .

the saturated vapor density, ρg(TL ). When the evaporation
vapor speed increases, more microscopic kinetic energy in
the direction of evaporation is converted to the macroscopic
kinetic energy in the vapor flow. As a result, Tx,R gets lower
and the difference between Tx,R and Ty,R gets bigger as vR,0

increases. Figure 2(b) also shows that Ty,R is cV,int dependent
since we assumed Ty = Tint, which implies Ty,R is also the
dimensionless temperature of internal motions in our model.

The objective of this work is to determine the maximum
evaporation flux. For a given α, Fig. 2(c) shows that JR is a
function of vR,0 only, and approaches the value of α in the
limit of large vR,0 as was to be expected [11]. However, this
result does not mean the maximum JR is independent of cV,int .
We will show in the next section that the maximum vR,0 an
evaporating vapor can reach is cV,int dependent, which in turn
makes the maximum JR dependent on cV,int .

C. Maximum JR

1. Calculation method

In the last section, we show in Fig. 2(c) that the dimension-
less molar flux JR is an increasing function of dimensionless
vapor speed at the evaporating surface vR,0. Hence, the max-
imum JR is determined by the maximum vR,0 an evaporating
vapor can reach. To find the maximum vR,0, we apply the KTG
to study the steady-state evaporation of a liquid into a vacuum
where the vacuum boundary is far from the liquid surface.

Using Eqs. (7a)–(7c), one can readily find that the net
molar (Jnet), momentum (Mnet) and energy (Enet) fluxes in the
vapor flow are given by

Jnet = ρvva, (25a)

Mnet = ρv

(
kBTx

m
+ v2

a

)
, (25b)

Enet = ρvva

[1

2
mv2

a + 3

2
kBTx + kBTy + Ēint (Ty)

]
. (25c)

Note that we used the assumption of Tint = Ty in Eq. (25c).
We will use MD simulations to validate this assumption in
Sec. III. In the course of steady-state evaporation, Jnet, Mnet,
and Enet are constant along the vapor flow direction. Dividing
Eq. (25c) by Eq. (25a), therefore, we have

1
2 mv2

a + 3
2 kBTx + kBTy + Ēint (Ty) = const. (26)

At the evaporating surface, we show in Fig. 2(b) that Tx of
vapor is lower than Ty and Tint of vapor. When the evaporating
vapor molecules move through a long distance, they will have
enough time to collide with one another and become isotropic,
i.e., Tx = Ty = Tint. Applying Eq. (26) to the vapor at the evap-
orating surface (denoted by subscript 0) and to the isotropic
vapor far from the surface (denoted by subscript 1), we have

1
2 mv2

a,0 + 3
2 kBTx,0 + kBTy,0 + Ēint (Ty,0)

= 1
2 mv2

a,1 + 3
2 kBT1 + kBT1 + Ēint (T1). (27)

In the isotropic vapor, we only need to assign one temper-
ature, i.e., T1, to the vapor. In Eq. (27), Ēint (Ty,0) − Ēint (T1) =
cV,int (Ty,0 − T1), where cV,int is evaluated at a temperature be-
tween Ty,0 and T1. Therefore, Eq. (27) can be also written as

1
2 mv2

a,0 + 3
2 kBTx,0 + kBTy,0 + cV,intTy,0

= 1
2 mv2

a,1 + 3
2 kBT1 + kBT1 + cV,intT1. (28)

Multiplying both sides of Eq. (28) by Jnet
2 and dividing it by

Mnet
2, we get

v2
a,0

(
1
2 mv2

a,0 + 3
2 kBTx,0 + kBTy,0 + cV,intTy,0

)
(
mv2

a,0 + kBTx,0
)2

= v2
a,1

(
1
2 mv2

a,1 + 3
2 kBT1 + kBT1 + cV,intT1

)
(
mv2

a,1 + kBT1
)2 . (29)

Using the definition vR,0 = va,0/
√

2kBTx,0/m and vR,1 =
va,1/

√
2kBT1/m, Eq. (29) is reduced to the following dimen-

sionless equation:

v2
R,0

[
v2

R,0 + 3
2 + (1 + cV,int/kB)TR,0

]
(
v2

R,0 + 1
2

)2

= v2
R,1

(
v2

R,1 + 5
2 + cV,int/kB

)
(
v2

R,1 + 1
2

)2 , (30)

where TR,0 = Ty,0/Tx,0 = Ty,R/Tx,R. Noting Eqs. (23a) and
(23b) we see that for a given cV,int the left hand side of
Eq. (30) is a function of vR,0 only. To find the maximum vR,0

(i.e., vR,0,max) from Eq. (30), we denote the left hand side of
Eq. (30) as a dimensionless quantity R0 and the right hand
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FIG. 3. R0 vs vR,0 and R1 vs vR,1 when cV,int = 2kB. The solid and
dashed lines are R1 and R0, respectively. The horizontal dash-dot line
shows R0,max is restricted by R1,max.

side as a dimensionless quantity R1. In Fig. 3, we show the
dependence of R0 on vR,0 and the dependence of R1 on vR,1

when cV,int = 2kB. For other cV,int values, the behavior of R0

and R1 is similar to that shown in Fig. 3.
If R0 and R1 are independent, Fig. 3 shows the maximum

value R0 can reach is higher than that R1 can reach. However,
Eq. (30) requires that R0 = R1. Therefore, the maximum R0

value (R0,max) is restricted by the maximum R1 value (R1,max)
as shown in Fig. 3. It can be readily proved that the maximum
value of the expression on right hand side of Eq. (30) is given
by

R1,max =
(

5
2 + cV,int/kB

)2

4 + 2cV,int/kB
, (33)

which is obtained when

v2
R,1,max =

5
2 + cV,int/kB

3 + 2cV,int/kB
. (34)

Since R0 = R1, Eq. (33) also gives R0,max. Figure 3 shows that
R0 is an increasing function of vR,0. Therefore, from R0,max

one can find the corresponding vR,0,max. Substituting vR,0,max

into Eq. (24), we obtain the maximum JR (i.e., JR,max).
The above theoretical analysis is similar to that in Crout’s

[7] and our previous work [11] on the evaporation of
monatomic fluids. In this section, we extend the theoretical
method to study the maximum evaporation flux from a molec-
ular liquid. In the analysis, we assumed that the evaporating
vapor molecules travel through a long distance and become
isotropic before they reach the vacuum boundary. Therefore,
the JR,max predicted by the above-described method corre-
sponds to the JR in the process of evaporation into a vacuum
where the vacuum boundary is many times of molecular mean
free paths (MFPs) from the evaporating surface.

Before we show the calculation results in the next section,
we summarize the key assumptions we made in the aforemen-
tioned KTG-based analysis:

(i) The VDF ( fL) of molecules emitted from the liquid sur-
face satisfies the Maxwellian equilibrium distribution given by
Eq. (3).

(ii) The local distribution function of polyatomic vapor
molecules near the evaporating surface can be approximated
by a shifted anisotropic Maxwellian distribution given by
Eq. (6).

(iii) The reflection of vapor molecules at their own liquid
surface is diffuse.

(iv) Tint ≈ Ty in the evaporating vapor.
(v) The vacuum boundary is many times of molecular

MFPs from the evaporating surface.

2. Calculation results

In Table I, we show vR,0,max and JR,max calculated by the
method described in the last section. Equation (24) indicates
that JR depends on the MAC (α) and vR,0. In the last section,
we showed vR,0,max is determined by R0,max, which equals
R1,max and is a function of cV,int only [see Eq. (33)]. Therefore,
JR,max only depends on two parameters: α and cV,int . The
calculation results show that JR,max is an increasing function
of α and a decreasing function of cV,int . The maximum value
(JR,max = 0.8384) is obtained when α = 1 and cV,int = 0, i.e.,
the case of evaporation of a monatomic liquid with the MAC
equal to 1 into a vacuum. The evaporation of a monatomic
substance into a vacuum has been extensively studied by
theoretical models [6,7,9–12]. The JR,max’s of monatomic sub-
stances reported in these studies are in the range of 0.82–0.85
for α = 1, which is consistent with our result. For the evapo-
ration of molecular fluids, our calculation results show that
JR,max decreases with increasing cV,int , which indicates that
the maximum evaporation flux is affected by the internal heat
capacity of molecules.

Far from the evaporating surface, the evaporating vapor
molecules undergo many collisions with one another and
become isotropic. To have a better understanding of the pro-
cess of evaporation into a vacuum, we further calculate the
dimensionless temperature (TR,1), density (ρR,1), and vapor
flow speed (vR,1) in the isotropic vapor far from the evapo-
rating surface when the maximum evaporation flux occurs.
TR,1, which is defined as T1/TL, and ρR,1, which is defined
as ρv,1/ρg(TL), are calculated using the method described in
the Appendix. It is seen in Table II that TR,1 is more strongly
affected by cV,int than ρR,1. Due to molecular collisions in
the evaporating vapor, Tx and Ty (or Tint since we assume
Ty = Tint) are approaching each other and eventually equili-
brate to T1. As cV,int increases, the T1 will get closer to Ty,0.
In Fig. 2(b), we show that Ty,R = Ty,0/TL is always close to
unity. Hence, it is reasonable to see that T1,R approaches unity
as cV,int increases.

In Table II, vR,1,max is directly calculated from Eq. (34).
Substituting Eq. (34) into the definition vR,1 = va,1/√

2kBT1/m, we obtain the maximum vapor flow speed in the
isotropic vapor far from the evaporating surface is

va,1,max =
√

5
2 kB + cV,int

3
2 kB + cV,int

kBT1

m
. (35)

Assuming the isotropic vapor to be an ideal gas, Eq. (35)
becomes

va,1,max =
√

cP

cV

kBT1

m
, (36)
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TABLE I. The maximum dimensionless vapor flow speed at the evaporating surface vR,0,max and the maximum dimensionless evaporation
flux JR,max as a function of cV,int . The JR,max is obtained in the process of evaporation into a vacuum where the vacuum boundary is far (i.e.,
many times of molecular mean free paths) from the evaporating surface.

JR,max

cV,int (kB) vR,0,max α = 1.0 α = 0.9 α = 0.8 α = 0.7 α = 0.6 α = 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

0 0.508 05 0.8384 0.7670 0.6931 0.6168 0.5378 0.4561 0.3714 0.2836 0.1926 0.0981
1 0.457 46 0.8056 0.7394 0.6705 0.5988 0.5241 0.4462 0.3648 0.2797 0.1908 0.0976
2 0.435 31 0.7892 0.7256 0.6592 0.5897 0.5171 0.4411 0.3614 0.2777 0.1899 0.0974
3 0.422 81 0.7794 0.7173 0.6523 0.5842 0.5129 0.4380 0.3593 0.2765 0.1893 0.0972
4 0.414 75 0.7729 0.7117 0.6477 0.5806 0.5101 0.4359 0.3579 0.2757 0.1889 0.0971
5 0.409 13 0.7682 0.7078 0.6444 0.5779 0.5080 0.4344 0.3569 0.2751 0.1886 0.0971
6 0.404 98 0.7647 0.7048 0.6419 0.5759 0.5065 0.4333 0.3562 0.2746 0.1884 0.0970
7 0.401 79 0.7619 0.7024 0.6400 0.5744 0.5053 0.4324 0.3556 0.2743 0.1882 0.0970
8 0.399 27 0.7597 0.7006 0.6385 0.5731 0.5043 0.4317 0.3551 0.2740 0.1881 0.0969
9 0.397 21 0.7579 0.6991 0.6372 0.5721 0.5035 0.4311 0.3547 0.2738 0.1880 0.0969
10 0.395 51 0.7564 0.6978 0.6361 0.5712 0.5029 0.4307 0.3544 0.2736 0.1879 0.0969
12 0.392 86 0.7541 0.6958 0.6345 0.5699 0.5018 0.4299 0.3538 0.2733 0.1878 0.0968
14 0.390 88 0.7523 0.6943 0.6332 0.5689 0.5010 0.4293 0.3535 0.2730 0.1876 0.0968
16 0.389 36 0.7509 0.6931 0.6323 0.5681 0.5004 0.4289 0.3532 0.2729 0.1876 0.0968
18 0.388 14 0.7498 0.6922 0.6315 0.5675 0.4999 0.4285 0.3529 0.2727 0.1875 0.0968
20 0.387 15 0.7489 0.6914 0.6308 0.5670 0.4995 0.4282 0.3527 0.2726 0.1874 0.0968
24 0.385 62 0.7476 0.6902 0.6298 0.5662 0.4989 0.4278 0.3524 0.2724 0.1873 0.0967
28 0.384 51 0.7465 0.6894 0.6291 0.5656 0.4985 0.4274 0.3522 0.2723 0.1873 0.0967
32 0.383 67 0.7458 0.6887 0.6286 0.5651 0.4981 0.4272 0.3520 0.2722 0.1872 0.0967

where cP and cV are the specific heat at constant pressure
and constant volume, respectively. The right-hand side of
Eq. (36) is the speed of sound of the isotropic vapor. There-
fore, Eq. (36) indicates that the maximum evaporation flux
occurs when the isotropic vapor far from the evaporating
surface moves at its speed of sound. The same result was
found for the evaporation of monatomic fluids into a vac-

uum [7]. Our result shows that it is also true for polyatomic
fluids.

The experimental verification of the above theoretical pre-
dictions requires a local measurement of fluid properties near
the evaporating surface with sufficient accuracy. Our theo-
retical model predicts that JR,max depends on the MAC and
the specific heat. Although specific heat can be accurately

TABLE II. The dimensionless temperature TR,1, vapor flow speed vR,1, and density ρR,1 in the isotropic vapor far from the evaporating
surface as a function of cV,int in the process of evaporation into a vacuum where the vacuum boundary is far from the evaporating surface.

ρR,1

cV,int (kB) TR,1 vR,1.max α = 1.0 α = 0.9 α = 0.8 α = 0.7 α = 0.6 α = 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

0 0.633 0.913 0.326 0.298 0.269 0.240 0.209 0.177 0.144 0.110 0.0748 0.0381
1 0.745 0.837 0.315 0.289 0.262 0.234 0.205 0.174 0.143 0.109 0.0745 0.0381
2 0.805 0.802 0.310 0.285 0.259 0.231 0.203 0.173 0.142 0.109 0.0745 0.0382
3 0.842 0.782 0.307 0.282 0.257 0.230 0.202 0.172 0.141 0.109 0.0745 0.0383
4 0.867 0.769 0.305 0.281 0.255 0.229 0.201 0.172 0.141 0.109 0.0745 0.0383
5 0.885 0.760 0.303 0.279 0.254 0.228 0.201 0.171 0.141 0.109 0.0745 0.0383
6 0.899 0.753 0.302 0.279 0.254 0.228 0.200 0.171 0.141 0.109 0.0745 0.0383
7 0.910 0.748 0.301 0.278 0.253 0.227 0.200 0.171 0.141 0.109 0.0745 0.0384
8 0.919 0.743 0.301 0.277 0.253 0.227 0.200 0.171 0.141 0.108 0.0745 0.0384
9 0.926 0.740 0.300 0.277 0.252 0.227 0.199 0.171 0.141 0.108 0.0745 0.0384
10 0.932 0.737 0.300 0.277 0.252 0.226 0.199 0.171 0.140 0.108 0.0745 0.0384
12 0.942 0.733 0.299 0.276 0.252 0.226 0.199 0.171 0.140 0.108 0.0745 0.0384
14 0.949 0.730 0.299 0.276 0.251 0.226 0.199 0.170 0.140 0.108 0.0745 0.0384
16 0.954 0.727 0.298 0.275 0.251 0.226 0.199 0.170 0.140 0.108 0.0745 0.0384
18 0.959 0.725 0.298 0.275 0.251 0.225 0.199 0.170 0.140 0.108 0.0745 0.0385
20 0.963 0.723 0.298 0.275 0.251 0.225 0.199 0.170 0.140 0.108 0.0745 0.0385
24 0.968 0.721 0.297 0.275 0.250 0.225 0.198 0.170 0.140 0.108 0.0745 0.0385
28 0.972 0.719 0.297 0.274 0.250 0.225 0.198 0.170 0.140 0.108 0.0745 0.0385
32 0.976 0.718 0.297 0.274 0.250 0.225 0.198 0.170 0.140 0.108 0.0745 0.0385
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FIG. 4. Top panel: A snapshot of the model system at the end of
the MD simulation of evaporation into a vacuum. The temperature
of the Au plate is fixed at 480 K. The yellow, red, and green dots
in the snapshot represent Au atom and CH3 and CH2 pseudoatoms,
respectively. Bottom panels: Steady-state (a) temperature (Tx , Ty, and
Tint), and (b) density profiles. The inset in (b) shows the density
profile in the vapor region.

measured in experiment, accurate measurement of the MAC
remains challenging in experiment [5]. Without the accurate
values of MAC, it is difficult to test the accuracy of our
theoretical predictions by experiment. One way to mitigate
the experimental challenges is to use MD simulations. MD
simulations can determine the microscopic details of fluid
molecules near the evaporating surface and evaluate fluid
properties including the MAC with a high accuracy. In the
following sections, we will use MD simulations to validate
the key assumptions in the theoretical model and verify our
theoretical predictions.

III. MD SIMULATION OF EVAPORATION
INTO A VACUUM

A. MD model

Using MD simulations, we study the evaporation of a
model n-dodecane into a vacuum. As depicted in Fig. 4, the
typical model system consists of a liquid n-dodecane thin
film on a solid Au slab. The Au slab is formed by three fcc
(100) oriented Au atomic layers with a cross section area
of 31.0 nm by 31.0 nm. The initial thickness of the liquid
layer on the Au surface is approximately 10 nm. The vac-
uum boundary is 100 nm from the Au surface. The region
from x = 10–100 nm is defined as the vapor region as shown

in Fig. 4. In MD simulations, periodic boundary conditions
(PBCs) are applied in the y and z directions, and atoms in the
leftmost Au layers are fixed to prevent drifting of the model
system.

The united-atom (UA) model is used to model the intra-
and intermolecular interactions of n-dodecane molecules [24].
For bonded interactions within a n-dodecane molecule, we
use the Khare et al. potential [25,26] to model the two-body
bond stretching, the van der Ploeg and Berendsen potential
[27] to model the three-body bond bending, and the Jorgensen
potential [28] to model the four-body torsion. The nonbonded
interactions between any two pseudoatoms that belong to the
same molecule but are separated by more than three bonds
are modelled by Lennard-Jones (LJ) potential with parame-
ters proposed by Smit et al. [29]. Smit et al.’s LJ potential
is also used to model the interactions between pseudoatoms
belonging to different molecules. The Lorentz-Berthelot (LB)
mixing rule [30] is employed to determine the LJ param-
eters for interactions between CH3 and CH2 pseudoatoms.
The cutoff distance for all LJ interactions is 13.8 Å [24,29].
For Au-Au interactions, we use the embedded-atom-method
(EAM) potential [31]. The nonbonded interactions between
Au and pseudoatoms in n-dodecane are also described by
the LJ potential with parameters taken from universal force
field (UFF) [32] and calculated by the LB mixing rule. The
same cutoff distance of 13.8 Å is used for the LJ interactions
between Au and n-dodecane.

The above-described MD model has been successfully
used to study thermal transport across the liquid-vapor
interface of n-dodecane in our previous work [23]. The
temperature-dependent saturated vapor density ρg(TL ) and the
MAC α(TL ) of the model n-dodecane have been determined
by MD simulations in our previous work [23]. In this work,
we will use the ρg(TL ) and α(TL ) obtained from previous
work in the calculation. For the UA model used in this work,
each n-dodecane molecule contains 12 pseudoatoms. Since
the classical MD simulation does not take into account the
quantum effects in molecular vibrations, cV,int of the model
n-dodecane molecule is equal to 31.5kB in this work.

B. MD simulation details

In all MD simulations, we use a velocity Verlet algorithm
with multiple time steps [28] to integrate the equations of
motions. A time step size of 1 fs is used for bond stretching;
2 fs is used for bond bending and torsion; 4 fs is used for all
other interactions.

To study the steady-state evaporation of the model n-
dodecane into a vacuum, we maintain the Au plate at Th =
480 K by velocity rescaling at each time step, and remove
n-dodecane molecules from the model system once the center
of mass of the molecule is out of the vacuum boundary. Such
a nonequilibrium MD simulation is first carried for 4 ns to
allow the system to reach quasi-steady-state evaporation, and
then, for additional 2.5 ns for data collection and averaging.
We consider the simulated process as a quasi-steady-state
evaporation process since the liquid-vapor interface moves
at a speed more than 150 times lower than the bulk veloc-
ity of vapor. In the course of the evaporation process, the
thickness of liquid film is large enough to avoid effects of
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disjoining pressure on the equilibrium properties of the model
n-dodecane [23].

To calculate the steady-state temperature and density pro-
files, we evenly divide the fluid region less than 10 nm from
the Au surface into ten bins. In the 90-nm-long vapor region,
we evenly divide the region into nine bins. The 10-nm bin
width in the vapor region allows us to obtain a good statistics
of vapor properties. The steady-state evaporation molar flux is
determined by JMD = �vi,x/(V NA), where NA is the Avogadro
constant, V and vi,x are the volume and the x-component
velocity of n-dodecane molecules in the vapor region, respec-
tively. Tx, Ty, and Tint in each bin are determined from the
average kinetic energy of the molecular translational motions
along the vapor flow direction, perpendicular to the vapor flow
direction, and the internal motions of molecules in each bin,
respectively. The contribution from the macroscopic velocity
is subtracted in the calculation of Tx in each bin. To further
improve the accuracy of the simulation results, four inde-
pendent runs are performed in each case of MD simulations.
The uncertainties of the simulation results are determined by
analyses of these independent runs.

C. MD simulation results

1. Validation of the assumptions in the KTG-based model

We first use the MD simulation results to validate the key
assumptions made in the KTG-based analysis. In Sec. II,
we assigned three temperatures, i.e., Tx, Ty, and Tint, to the
evaporating vapor and assumed Ty ≈ Tint. It is shown in
Fig. 4(a) that Tx in the evaporating vapor is significantly
(100–150 K) lower than Ty and Tint. The lower Tx can be
understood as the result of energy conversion from the mi-
croscopic kinetic energy in the vapor flow direction to the
macroscopic kinetic energy in the evaporating vapor flow dur-
ing the evaporation process. By contrast, Fig. 4(a) shows that
the average difference between Ty and Tint in the vapor region
is only ∼11 K, which is ∼2.5% of the average Tint in the
vapor region. Therefore, our MD simulation results validate
that the assumption of Ty ≈ Tint in our kinetic theory based
analysis.

In Sec. II, we assumed that the velocity distribution of
evaporating vapor molecules satisfies the Maxwell velocity
distribution (MVD) for molecular velocities perpendicular to
the vapor flow direction, and satisfies the shifted Maxwell ve-
locity distribution (SMVD) for molecular velocities along the
vapor flow direction [see Eq. (6)]. To validate this assumption,
we calculate Tx, Ty, and the average vapor flow speed (va)
in each bin of the vapor region from MD simulations. Using
the Tx, Ty, and va in each bin, we obtain the corresponding
MVD and SMVD, and compare them to the VDFs obtained
directly from MD simulations. In Fig. 5, we show that the
VDFs obtained directly from MD simulations are in good
agreement with the assumed VDFs in bin 1 (i.e., the bin
closest to the evaporating surface) and bin 9 (i.e., the bin
closest to the vacuum boundary) of the vapor region. The good
agreement is also found in all other bins in the vapor region.
Therefore, the MD simulation results validate that the VDF
of evaporating vapor molecules can be well approximated
by Eq. (6).

FIG. 5. The VDF of vapor molecules in (a) bin 1 and (b) bin
9 of the vapor region. The red circles and blue diamonds are MD
simulation results for the molecular velocity components along and
perpendicular to the flow direction, respectively. The solid line is the
Maxwell velocity distribution (MVD) of n-dodecane molecules at
(a) Ty = 456 K and (b) Ty = 444 K. The dashed line is the shifted
MVD (SMVD) of n-dodecane molecules at (a) Tx = 327 K and va =
90 m/s, and (b) Tx = 289 K and va = 180 m/s.

2. Verification of the KTG prediction

To validate the KTG prediction of JR,max, we first evaluate
the liquid surface temperature (TL) in the MD model. To find
the position of the liquid surface and TL with a high accuracy,
we show in Fig. 6 the high spatial-resolution distributions
of temperature, density, and molar flux near the evaporating
surface obtained from the MD simulation. The MD simulation
results show that there is a nanoscopic liquid-vapor interphase
layer where the fluid density drops dramatically from the liq-
uid density to the vapor density, and the isotropic temperature
profile in the liquid phase splits rapidly into the anisotropic
temperature profiles in the vapor flow direction. In Sec. II, we
assumed that the temperature at the liquid surface is isotropic
[see Eq. (3)]. Accordingly, we define that the liquid surface
is located at the rightmost bin where the fluid temperature
has not started to diverge. It is shown in Fig. 6 that the
liquid surface is located at x ≈ 6.0 nm and TL = 463 K. For
the model n-dodecane at TL = 463 K, our previous work [23]
shows ρg = 0.0386 mol/L and α = 0.85. Using α = 0.85 and
cV,int = 31.5 kB in our theoretical model described in Sec. II,
we find the KTG prediction JR,max = 0.659.

To compare the KTG prediction with the MD simulation
result, we substitute TL = 463 K and ρg(TL ) = 0.0386 mol/L
into Eq. (5a) and obtain JL

+ = 0.2315 mol/cm2 s. It is shown
in Fig. 6(b) that the molar flux (JMD) increases from 0 in the
liquid phase to 0.172 ± 0.04 mol/cm2 s in the vapor phase
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FIG. 6. Steady-state (a) temperature (Tx , Ty, and Tint), and (b)
density and molar flux profiles near the evaporating surface. The
width of each bin is 0.341 nm. The solid line and the dashed line in
(b) are used to guide the eye. The vertical dash-dot line indicates the
location where the temperature in different directions start to split.

across the interphase layer. The left boundary of the vapor
region defined in our MD model is at x = 10 nm, which is out
of the interphase layer. In the vapor region, JMD is essentially
a constant as was to be expected in the course of steady-state
evaporation process. Using the definition JR,MD = JMD/JL

+,
we obtain JR,MD = 0.74 ± 0.02, which is ∼12% higher than
the KTG prediction JR,max = 0.659. The deviation between
the MD simulation result and the KTG prediction is mainly
due to the short distance between the vacuum boundary and
the evaporating surface in the MD simulation. In the KTG-
based analysis, we assumed that the vacuum boundary is far
from the evaporating surface such that the evaporating vapor
molecules have sufficient time to collide with one another
and become isotropic before they reach the vacuum boundary.
However, the MD simulation results in Fig. 4(a) show that
even the minimum difference between Tx and Ty in the vapor
region is more than 90 K. Therefore, it is inappropriate to use
this MD result to directly verify or deny the accuracy of the
KTG predictions.

For the model fluid in this study, we will show in the
following sections that the vacuum boundary must be several
micrometers from the evaporating surface to be considered as
sufficiently far. The computational cost for the MD simula-
tion of such a large system is very high. Instead of directly
carrying out MD simulation in a very large system, we will
vary the distance (Lvac) between the vacuum boundary and the
evaporating surface from 19 to 194 nm in the MD model and
determine JR,MD for each Lvac. Understanding the dependence
of JR,MD on Lvac and the transport phenomena in the highly
nonequilibrium evaporating vapor requires the treatment from
the BTE. Based on the understanding from the BTE, we
will extrapolate JR,MD at the limit of Lvac → ∞ and compare
asymptotic value at infinity to the KTG prediction.

IV. BTE SOLUTION TO EVAPORATION INTO A VACUUM

A. BTE

We consider steady-state evaporation of a polyatomic va-
por from a planar surface of its own condensed phase. In a
steady vapor flow without external forces, the BTE can be
written as

vx
∂ f

∂x
= Qcoll( f ), (37a)

where f is the distribution function of vapor molecules, and
Qcoll( f ) is the collision term accounting for the effect of
collisions between vapor molecules. To obtain the form of the
collision term, Qcoll( f ), we use the well-known approximation
made by Bhatnagar, Gross, and Krook (BGK) [33]. The BGK
approximation assumes that the molecular collisions force a
nonequilibrium distribution function f back to a Maxwellian
equilibrium distribution function fe at a rate proportional to
the molecular collision frequency. Using the BGK approxi-
mation, the BTE is modified to

vx
∂ f

∂x
= ( fe − f )

τ
, (37b)

where 1/τ is the molecular collision frequency. Using MD
simulation results shown in Sec. III, we validated that f of
evaporating vapor molecules can be well approximated by
Eq. (6). In Sec. V, we will use MD simulations to validate
the BGK assumption in the model vapor flow. Since mass,
momentum, and energy are conserved during molecular col-
lisions, the local equilibrium distribution function fe should
have the form

fe(vx, vy, vz, {vint}, x)

= ρv (x)

(
m

2πkBTe(x)

)3/2

× e−m{[vx−va (x)]2+v2
y +v2

z }/2kBTe(x) fint@Te(x)({vint}), (38)

where Te = [Tx/2 + (1 + cV,int/kB)Ty]/(1.5 + cV,int/kB) is ob-
tained based on energy conservation during the molecular
collisions in a dilute gas and the assumption of Ty = Tint.

The distribution function [i.e., Eq. (6)] of the nonequilib-
rium evaporating vapor contains four unknown parameters,
namely ρv , Tx, Ty, and va. To understand the variation of these
four parameters in the vapor flow direction observed in the
MD simulation in Sec. III, we solve the BTE by applying a
four-moment method:∫ ∫∫∫

φvx
∂ f

∂x
dvxdvydvzd ({vint})

=
∫ ∫∫∫

φ
( fe − f )

τ
dvxdvydvzd ({vint}), (39)

where we substitute the function φ with four functions,

namely 1, m
⇀

v, 1/2m
⇀

v
2 + Eint , and v2

x , and obtain differential
Eqs. (40a)–(40d), respectively,

∂

∂x
(ρvva) = 0, (40a)

∂

∂x

[
ρv

(
kBTx + mv2

a

)] = 0, (40b)
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∂

∂x

{
ρvva

[1

2
mv2

a + 3

2
kBTx + kBTy + Ēint (Ty)

]}
= 0, (40c)

∂

∂x

[
ρvva

(
v2

a + 3kBTx

m

)]
= ρv

kB

m

Te − Tx

τ
. (40d)

In Eq. (40c), we used the assumption of Tint = Ty. Noting
Eqs. (25a)–(25c) we see Eqs. (40a)–(40c) indicate that Jnet,
Mnet, and Enet remain constant in the vapor flow direction,
which is a direct result of mass, momentum, and energy
conservation in a steady flow. Rearranging Eqs. (40a)–(40d),
we obtain the following four equations which can be used to
determine the variation of ρv , va, Tx, and Ty in the vapor flow
direction:

∂ρv

∂x
= Te − Tx

τ

ρv

vaTx
(
2v2

R − 3
) , (41a)

∂va

∂x
= −Te − Tx

τ

1

Tx

1

2v2
R − 3

, (41b)

∂Tx

∂x
= Te − Tx

τ

1

va

2v2
R − 1

2v2
R − 3

, (41c)

∂Ty

∂x
= −Te − Tx

τ

1

2va(cV,int/kB + 1)
. (41d)

Four BCs are required to solve the above four coupled dif-
ferential equations. In Sec. II, we have derived three BCs [i.e.,
Eqs. (23a)–(23c)] for Tx, Ty, and ρv at the evaporating surface.
The fourth BC will be specified at the vacuum boundary.

To specify the fourth BC, we analyze the variation of vapor
density across the vacuum boundary. On the right side of the
vacuum boundary, the vapor density must be zero. However,
the vapor density on the left side of the vacuum boundary
must be greater than zero. Otherwise, the macroscopic vapor
velocity will be infinite according to mass conservation at
steady state, which is impossible. The MD simulation result
shown in Fig. 4(b) also confirms that the vapor density does
not approach zero at the vacuum boundary. This implies that
the density gradient at the vacuum boundary becomes infi-
nite. According to Eq. (41a), the infinite density gradient is
obtained when vR = √

1.5. Therefore, the BC we can apply
at the vacuum boundary is vR = √

1.5. In our previous study
on the evaporation of monatomic fluids [11], we showed that
vR always reaches the maximum value of

√
1.5 at the vacuum

boundary. We will verify in Sec. V that such a vacuum BC is
also valid for polyatomic fluids.

B. General features of the BTE solution

In our previous work on the evaporation of monatomic
fluids [11], we speculated on the general features of the BTE
solutions for the evaporating vapor properties. Using a similar
analysis, we speculate from Eq. (41) on the general features of
the variation of vapor properties along the vapor flow direction
in the course of steady-state evaporation of molecular fluids
into a vacuum.

(i) From both the KTG model and the MD simulation,
we showed that Te − Tx is always positive in the evaporating
vapor. Accordingly, we speculate from Eq. (41d) that Ty will
decrease monotonically in the vapor flow direction. Further-
more, Eq. (41d) also indicates that a higher cV,int value will

result in a slower decrease of Ty in the vapor flow direction,
which will indirectly affect the variation of other fluid proper-
ties in the vapor flow direction.

(ii) In Sec. IV A, we speculated that vR will reach
√

1.5 at
the vacuum boundary. The evaporating vapor will accelerate
towards the vacuum boundary. Hence, we speculate that vR

will increase in the vapor flow direction, but will always be
less than

√
1.5 before the vapor reaches the vacuum boundary.

Otherwise, the BTE solution will be divergent at a position
before the vacuum boundary, which is impossible. Since vR <√

1.5, 2vR
2–3 in Eq. (41) is always negative. Accordingly,

we speculate from Eqs. (41a) and (41b) that ρv will decrease
monotonically, and va will increase monotonically in the flow
direction.

(iii) Equation (41c) contains the term (2vR
2–1)/(2vR

2–3).
Since 2vR

2–3 is always negative, we speculate from Eq. (41c)
that Tx will increase in the flow direction if vR

2 is less than 0.5,
and decrease in the flow direction if vR

2 is greater than 0.5.
If vR at the evaporating surface, i.e., vR,0 is less than

√
0.5,

one will see that Tx first increases in the vapor flow direction,
reaches the maximum value at the position where vR = √

0.5,
and then decreases in the vapor flow direction until it reaches
the vacuum boundary where vR = √

1.5.
In the next section, we will use MD simulations to validate

the BGK approximation used in the BTE equation, and verify
the aforementioned speculations from the BTE solution.

V. VERIFICATION OF THE BTE SOLUTION

A. Validation of the BGK approximation

To test the accuracy of the BGK approximation for the
collision term in the BTE, we carry out an MD simula-
tion to evaluate at which rate molecular collisions will force
the nonequilibrium distribution in the model fluid back to a
Maxwellian equilibrium distribution. The molecular collision
frequency depends on both the temperature and density. In
Sec. III, we obtained temperatures (Tx and Ty) and density (ρv)
in each bin of the vapor region from the MD simulation. To
investigate how fast the nonequilibrium vapor will be forced
back to equilibrium by molecular collisions, we carry out a
separate MD simulation in a cubic simulation box containing
64 800 model n-dodecane molecules. The box size is fixed at
a value such that the density of n-dodecane equals ρv . The
PBCs are applied in all three directions. We first equilibrate
the n-dodecane vapor at a temperature of Ty for 1.5 ns such
that Tx = Ty = Tint. After thermal equilibrium, we multiply
the vx of each n-dodecane molecule by

√
Tx/Ty to create a

nonequilibrium velocity distribution:

fne(vx, vy, vz, {vint}, t )

= ρv

√
m

2πkBTx(t )
e−mv2

x /2kBTx (t )

(
m

2πkBTy(t )

)

× e−m(v2
y +v2

z )/2kBTy (t ) fint@Ty (t )({vint}). (42)

Subsequently, we carry out an NVE simulation to determine
how Tx and Ty vary with time, t , and compare the MD sim-
ulation results with the prediction from the BTE solution.
Since the PBCs are applied in all three directions in the MD
simulation, fne is spatially independent. In this case, the BTE
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becomes
∂ fne

∂t
= ( feq − fne)

τ
, (43)

where the equilibrium distribution function in Eq. (43) is
given by

feq(vx, vy, vz, {vint}) = ρv

(
m

2πkBTe

)3/2

e−m(v2
x +v2

y +v2
z )/2kBTe

× fint@Te ({vint}). (44)

In Eq. (44), Te = [Tx/2 + (1 + cV,int/kB)Ty]/(1.5 + cV,int/kB)
according to energy conservation during the molecular col-
lisions in a dilute gas. To solve Eq. (43), we use the same
moments method described in Sec. IV A and set φ = v2

x . Ac-
cordingly, we obtain

∂Tx

∂t
= Te − Tx

τ
. (45)

Applying the initial condition Tx(t = 0) = Tx,i, the solution to
Eq. (45) is

ln
Tx(t ) − Te

Tx,i − Te
= − t

τ
. (46)

According to the KTG, the molecular collision frequency 1/τ
can be estimated by [34]

1

τ
= 4ρvπd2

√
kBTtr,avg

πm
, (47)

where d is the kinetic diameter of vapor molecules, and
Ttr,avg = (Tx + 2Ty)/3 is the average translational temperature
since the collision frequency is mainly affected by the trans-
lational motions rather than internal motions of molecules.
If the BGK approximation is accurate, we should be able to
use Eq. (46) to evaluate the molecular collision frequency 1/τ
from the MD simulation results. The calculated 1/τ should be
proportional to ρv

√
Ttr,avg according to the KTG prediction,

i.e., Eq. (47).
In Fig. 7(a), we show the variation of Tx, Ty, and Tint with t

obtained from MD simulation of the model vapor n-dodecane
whose density is ρv = 0.0194 mol/L and initial temperatures
are Tx,i = 327 K and Ty,i = 455 K. The density and temper-
ature are taken from the vapor property in bin 1 (i.e., the
leftmost bin) of the vapor region in Fig. 4. It is seen from
Fig. 7(a) that Ty is always close to Tint during the molecular
collision process in the nonequilibrium vapor. This result fur-
ther validates our assumption of Ty = Tint in the theoretical
analysis. The inset of Fig. 7(a) shows ln{[Tx(t )–Te]/(Tx,i–Te )}
is proportional to t , which is consistent with the predic-
tion from Eq. (46). The slope of the linear fit gives 1/τ =
0.0062 ps−1 for the model fluid with the density and tem-
perature in bin 1. The molecular collision frequency can
be also determined from the Einstein-Smoluchowski (ES)
equation [35] which relates 1/τ to the self-diffusion coef-
ficient D. To verify the 1/τ value found in Fig. 7(a), we
carry out a separate equilibrium MD simulation in a vapor
with ρv = 0.0194 mol/L and T = 412.3 K (Ttr,avg in bin 1) to
calculate the velocity autocorrelation function and find D =
4.2 × 10−6 m2/s from the Green-Kubo formula [36]. Accord-
ingly, the ES equation predicts 1/τ = 0.0061 ps−1 which is
consistent with that found in Fig. 7(a). Using the same method

FIG. 7. (a) Variation of Tx , Ty, and Tint with t obtained from MD
simulation of the model n-dodecane vapor with a density of ρv =
0.0194 mol/L and an initial temperature of Tx,i = 327 K and Ty,i =
455 K. The inset shows a linear fit of ln{[Tx (t )–Te]/(Tx,i–Te )} vs t . (b)
The dependence of molecular collision frequency, 1/τ , on ρv

√
Ttr,avg

obtained from MD simulations. The dashed line is the linear fit of
1/τ vs ρv

√
Ttr,avg.

[i.e., Eq. (46)], we find 1/τ for vapor properties in all other
bins in the vapor region. The MD data in Fig. 7(b) show
that 1/τ is proportional to ρv

√
Ttr,avg as was predicted by the

KTG. Therefore, the MD simulation results indicate the BGK
approximation accurately describes the collision term in the
BTE for the model fluid.

If ρv and T are in unit of mol/L and K, respectively, we
find from Fig. 7(b) that 1/τMD = 0.0166ρv

√
Ttr,avg ps−1. Us-

ing this MD simulation result in Eq. (47), we evaluate that
the kinetic diameter of the model n-dodecane vapor molecule
is 0.74 nm. With the kinetic diameter determined from the
MD simulation, we estimate the mean free path of vapor
molecules in the vapor region using λ = 1/(

√
2πρvd2) [34].

Figure 4(b) shows that ρv reduces from 0.0194 to 0.0098
mol/L in the vapor region. Accordingly, the mean free path of
vapor molecules increases from 35 nm at the position near the
evaporating surface to 70 nm at the position close to the vac-
uum boundary. Since the vacuum boundary shown in Fig. 4 is
less than 100 nm from the evaporating surface, it is reasonable
to see in Fig. 4(a) that the evaporating vapor molecules do
not have sufficient time to collide with one another to become
isotropic before they reach the vacuum boundary.

B. BTE solution to evaporation of n-dodecane

In this section, we solve the BTE by numerical integration
of Eq. (41) to study the evaporation of the model n-dodecane
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FIG. 8. Top panel: A snapshot of the MD model system for the
study of evaporation of n-dodecane at TL = 463 K into a vacuum.
The vacuum boundary is ∼94 nm from the evaporating surface.
Bottom panels: The (a) temperature, (b) density, and (c) dimension-
less macroscopic velocity in the vapor region. The scatters are MD
simulation results. The lines are predictions from the BTE.

into a vacuum. An important parameter in Eq. (41) is the
molecular collision frequency, 1/τ , which depends on the
local density and temperature of the evaporating vapor. We
will use the relation 1/τ = 0.0166ρv

√
Ttr,avg ps−1, found in

the last section in the calculation. From the MD simulation
results shown in Fig. 6, we found the evaporating surface
is located at x ≈ 6.0 nm and the liquid surface temperature
TL = 463 K. Accordingly, the distance between the vacuum
boundary and the evaporation surface is Lvac ≈ 94 nm, and
the properties of the model n-dodecane that will be used in
the BTE solution are ρg(TL) = 0.0386 mol/L, α(TL) = 0.85
[23], and cV,int = 31.5 kB.

As discussed in Sec. IV A, the four-moment solution to the
BTE requires four BCs. Three of them, i.e., Tx,R, Ty,R, and ρR,
are formulated at the evaporating surface, and the fourth one,
i.e., vR = √

1.5, is at the vacuum boundary. To impose the
BC at the vacuum boundary, we set x = 0 at the evaporating
surface and apply a shooting method in which we gradually
increase the vR,0 value until the BTE solution becomes diver-
gent at the vacuum boundary. As shown in Fig. 8(c), when
vR,0 = 0.482, vR keeps increasing in the vapor flow direction
and approaches 1.224 (i.e., ∼ √

1.5) at x = 94 nm (i.e., the
position of the vacuum boundary in the MD model). A slight
increase in vR,0 will make the BTE solution divergent at a
position before x = 94 nm. With vR,0 = 0.482, therefore, we
imposed the four BCs and obtain the corresponding solu-
tion to the BTE. Substituting vR,0 = 0.482 obtained from the
BTE solution into Eq. (24), we obtain the BTE prediction

JR,BTE = 0.72 in the case of Lvac ≈ 94 nm. This value agrees
with the MD result JR,MD = 0.74 ± 0.02, which implies that
the deviation between JR,MD and JR,max predicted by the KTG
is mainly caused by the short distance between the vacuum
boundary and the vacuum surface.

As shown in Fig. 8, the Tx, Ty, ρv , and vR profiles predicted
by the BTE are all in good agreement with the MD simulation
results. In particular, the MD simulation results show that
vR indeed approaches 1.224 near the vacuum boundary, and
Tx reaches the maximum value at a position between bin 4
(x = 39 nm) and bin 5 (x = 49 nm) in the evaporating vapor.
The vR value in bins 4 and 5 are 0.68–0.71, respectively.
Hence, the MD simulation results indicate the maximum Tx in
the evaporating vapor is obtained when vR falls between 0.68
and 0.71. This verifies the speculation from our BTE solution
that the maximum Tx is reached at vR = √

0.5 (i.e., ∼0.707).
The good agreement between the BTE speculations and the

MD simulation results was also found in our previous study
on the evaporation of monatomic vapor into a vacuum [11].
Moreover, the speculations from the BTE are also consistent
with the experimental data on the evaporation of iodine into
a vacuum [8]. The experimental data also show that the di-
mensionless vapor flow speed vR of iodine approaches

√
1.5

at a condensing surface cooled by liquid nitrogen, which is
equivalent to the vacuum boundary [11], and the maximum
Tx is obtained at vR ≈ √

0.5 [8]. These results suggest that
the BTE speculations described in Sec. IV B are universal,
and can be applied to various evaporating vapors regardless
of their molecular structures.

C. Dependence of JR,max on Lvac

To verify JR,max predicted by the KTG in Sec. II, we vary
the distance, Lvac, between the evaporating surface to the
vacuum boundary from 5 to 2000 nm and use the shooting
method described in Sec. V B to solve the BTE to find vR,0 and
JR,BTE for each Lvac. If Lvac is less than 200 nm, we verify the
BTE solution by directly comparing to MD simulation results.
In Fig. 9, we show the MD simulation results and the BTE so-
lution in the case of evaporation of n-dodecane at TL = 463 K
into a vacuum with Lvac = 194 nm. Similar to the Lvac = 94
nm case, the MD simulation results shown in Fig. 9 agree
with all of the BTE speculations very well. In particular, the
MD simulation results show vR approaches 1.224 (i.e.,

√
1.5)

near the vacuum boundary, and the maximum Tx = 387 K is
obtained in bin 10 (located at x = 99 nm) where vR = 0.72
(close to

√
0.5). Since Lvac in Fig. 9 is much longer than that

in Fig. 8, the evaporating vapor molecules have more time
to collide with one another before they reach the vacuum
boundary. As a result, the minimum difference between Ty

and Tx is reduced from 93 K for Lvac = 94 nm to 52 K for
Lvac = 194 nm. When Lvac = 194 nm, the BTE solution shows
vR,0 = 0.436 and JR,BTE = 0.69. JR,BTE is again consistent
with the MD result JR,MD = 0.72 ± 0.02. Both vR,0 and JR,BTE

values in the Lvac = 194 nm case are lower than those in the
Lvac = 94 nm case. This implies both vR,0 and JR,BTE are Lvac

dependent.
As Lvac increases, the outgoing vapor molecules from the

evaporating surface will travel a longer distance before they
reach the vacuum boundary. As a result, they have a higher
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FIG. 9. The same as Fig. 8 except that the distance from the
evaporating surface to the vacuum boundary is increased to 194 nm.

possibility to collide with other vapor molecules, change the
moving direction, and return to liquid surface. Hence, it is rea-
sonable to see in Fig. 10 that the BTE predictions of vR,0 and
JR,BTE are both decreasing functions of Lvac. For Lvac below
200 nm, we verify the BTE prediction by directly comparing
to MD simulation results. In the limit of Lvac → ∞, our KTG-
based analysis predicts vR,0 = 0.384 and JR,max = 0.659 for
the model n-dodecane with α = 0.85 and cV,int = 31.5 kB. It
is seen in Fig. 10 that the asymptotic value of BTE predictions
at infinity agrees with the KTG predictions very well.

To manifest the effects of the internal heat capacity of
molecules on the maximum evaporation flux, we also include
in Fig. 10 the MD, BTE, and KTG results for the case of
evaporation of LJ model Ar (cV,int = 0) at TL = 82.8 K into
a vacuum. The fluid properties of the model Ar including the
saturated density (ρg = 0.142 mol/L), the MAC (α = 0.92),
and the molecular collision frequency (1/τ ) are all taken
from our previous MD studies [11,37]. For Lvac below 203
nm, the evaporation flux of the model Ar obtained directly
from MD simulations [11] verifies the BTE prediction as
shown in Fig. 10(b). With α = 0.92 and cV,int = 0, our KTG-
based analysis predicts vR,0 = 0.508 and JR,max = 0.782 in
the limit of Lvac → ∞. These two values are considerably
higher than those for the fluid with cV,int = 31.5 kB. In Fig. 10,
we show that the KTG predictions of vR,0 and JR,max for
the monatomic fluid are also in good agreement with the
asymptotic value of BTE predictions at infinity. Therefore, our
modeling results clearly show that the dimensionless maxi-
mum evaporation flux JR,max is affected by the internal heat
capacity of molecules.

FIG. 10. The BTE predictions of (a) dimensionless vapor flow
speed vR,0 and (b) dimensionless evaporation flux JR as functions
of Lvac. The scatters in (b) are MD simulation results. The dash-dot
horizontal lines are the KTG predictions of vR,0 and JR,max in the limit
of Lvac → ∞.

D. Properties of the isotropic vapor

To further verify the KTG predictions about the properties
of the isotropic vapor far from the evaporating surface (see
Table II), we set Lvac = 2000 nm and solve the BTE for
the dimensionless vapor temperature and density, i.e., Tx/TL,
Ty/TL, ρv/ρg(TL ), and the dimensionless vapor flow speed vR

along the evaporating vapor as shown in Fig. 11. We first
use the temperature profiles in Fig. 11(a) to identify the re-
gion where the vapor can be considered isotropic. Near the
evaporating surface, the vapor is highly anisotropic, and Tx

and Ty approach each other in the vapor flow direction due to
molecular collisions. Since the calculated mean free path of
the Ar vapor molecules [11] are shorter than that of the model
n-dodecane molecules, it is seen in Fig. 11(a) that Tx and Ty

of the model Ar approach each other faster than n-dodecane.
However, Tx of vapor is never exactly the same as Ty in
Fig. 11(a), which means we still do not have an exact isotropic
vapor region due to the finite Lvac in the model. To have an
exact isotropic vapor, one needs to set Lvac = ∞. Hence, in
Fig. 11(a) we consider the vapor region where Tx and Ty have
the smallest difference as the approximate isotropic vapor.
For the model n-dodecane and Ar, the minimum temperature
difference is found at x ≈ 1030 nm and x ≈ 1100 nm, respec-
tively. After the minimum temperature difference is reached,
the temperature profiles split again and the vapor becomes
more anisotropic as it approaches the vacuum boundary.

In Fig. 11(a), we show that the dimensionless tempera-
ture of the approximate isotropic vapor n-dodecane and the
approximate isotropic vapor Ar is 0.971 ± 0.005 and 0.633
± 0.001, respectively. These BTE predictions are in good
agreement with TR,1 = 0.975 (cV,int = 31.5 kB) and TR,1 =
0.633 (cV,int = 0) predicted by the KTG model (see Table II).
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FIG. 11. The BTE predictions of (a) Tx,R, Ty,R, (b) ρR, and (c) vR

profiles in the evaporating vapor. The solid lines are results for the
model n-dodecane. The dashed lines are results for the model Ar.
The two vertical dash-dot lines indicate the position of approximate
isotropic vapor for the model n-dodecane and the model Ar.

Similarly, we find from Fig. 11(b) that the dimensionless
density of the approximate isotropic vapor n-dodecane and
the approximate isotropic vapor Ar is 0.264 and 0.304, re-
spectively. These values are consistent with ρR,1 = 0.262
(cV,int = 31.5 kB, α = 0.85) and ρR,1 = 0.304 (cV,int = 0, α =
0.92) predicted by the KTG model. Using the KTG-based
analysis, we show in Sec. II C 2 that the isotropic vapor far
from the evaporating surface moves at its speed of sound.
Accordingly, the KTG prediction of the dimensionless flow
speed in the isotropic vapor is vR,1 = 0.718 for the model
n-dodecane (cV,int = 31.5 kB) and vR,1 = 0.913 for the model
Ar (cV,int = 0). These values agree with vR,1 = 0.717 for the
model n-dodecane and vR,1 = 0.913 for the model Ar shown
in Fig. 11(c), which also verifies that the isotropic vapor
moves at its speed of sound. All of the above results verify
that the internal heat capacity of molecules will affect the
properties of the isotropic vapor far from the evaporating
surface when the maximum evaporation flux is reached.

E. Why does JR,max decrease with increasing cV,int?

The BTE solution shown in Fig. 11 also provide insights
into why JR,max is dependent on cV,int . After the emitted
molecules leave the evaporating surface, a portion of them will
return to the surface and condense due to the molecular col-
lisions in vapor as they travel towards the vacuum boundary.
The percentage of the outgoing molecules that return to liquid
surface is related to the distribution of vx of vapor molecules
(see, e.g., Fig. 5). As the portion of vapor molecules with

vx < 0 increases, a higher percentage of vapor molecules tend
to return to the surface, and thus the JR,max becomes smaller.
Figure 11(a) shows that the molecular collisions bring Tx and
Ty (or Tint since Ty ≈ Tint) closer to each other in the vapor
flow direction. For vapors with a higher cV,int such as the
model n-dodecane, the increase in Tx/TL due to molecular
collisions is more significant than that in vapors with a lower
cV,int such as Ar [see Fig. 11(a)]. A higher Tx in the evaporat-
ing vapor means a broader distribution of vx. As the shifted
Maxwell distribution becomes broader, the portion of vapor
molecules with vx < 0 increases and a higher percentage of
vapor molecules will return to the surface and condense,
which results in a smaller JR,max. Moreover, as Tx increases,
the normal pressure in the vapor near the evaporating surface
will also increase and become closer to the saturated pressure.
The smaller pressure difference between the saturated pres-
sure and the pressure in vapor also leads to a smaller JR,max.

VI. CONCLUSIONS

Using the combination of KTG-based analysis, the BTE,
and the MD simulation, we study the process of evaporation
of molecular fluids from a planar liquid surface into a vac-
uum. The MD simulation results validate the following key
assumptions in the theoretical analysis:

(1) The VDF of evaporating vapor molecules can be well
approximated by the shifted anisotropic Maxwell distribution
given by Eq. (6).

(2) The temperature of molecular internal motions (Tint) is
approximately equal to that of molecular translational motions
perpendicular to vapor flow direction (Ty) in the nonequilib-
rium evaporating vapor.

(3) The collision term in the BTE can be well ap-
proximated by the BGK approximation for nonequilibrium
evaporating vapor molecules.

With these assumptions, we study the effects of molecular
internal motions (cV,int), the MAC (α), and the distance be-
tween evaporating surface and vacuum boundary (Lvac) on the
transport phenomena in the evaporating vapor.

While our modeling results show that the dimensionless
maximum evaporation flux JR,max depends on cV,int , α, and
Lvac, there are several universal features of the evaporating
vapor which are independent of cV,int , α, and Lvac. These
features include the following:

(1) Ty and ρv will decrease monotonically in the evaporat-
ing vapor flow direction, and the vapor flow speed (va) will
increase monotonically in the vapor flow direction.

(2) Tx of the evaporating vapor will reach the maximum
value at the position where vR = √

0.5. If vR is less than
√

0.5,
Tx will increase in the vapor flow direction. If vR is greater than√

0.5, Tx will decrease in the vapor flow direction.
(3) vR of the evaporating vapor will reach the maximum

value
√

1.5 at the vacuum boundary.
(4) If the vacuum boundary is far from the evaporating

surface, the evaporating molecules will have sufficient time
to collide with one another such that the vapor becomes
isotropic before it reaches the vacuum boundary. In this case,
the isotropic vapor moves at its speed of sound regardless of
whether it is a monatomic vapor or polyatomic vapor.
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These features are all verified by our MD simulation results
and the BTE solutions. They also agree with the existing
experimental results. In the limit of Lvac → ∞, the dimension-
less maximum evaporation flux (JR,max) and the properties of
isotropic vapor far from the evaporating surface are predicted
by the KTG-based analysis. The KTG predictions shown in
Tables I and II are partially validated by the combination of
MD simulation and the BTE solution on the evaporation of
the model Ar and the model n-dodecane into a vacuum.

Finally, we want to point out that all theoretical predictions
from this work are based on the several assumptions made
in the theoretical model. If the key assumptions such as the
shifted Maxwellian VDFs and the BKG approximation of the

collision term are found inexact for other model fluids or real
fluid systems, the speculations from our theoretical model
could be inaccurate. Therefore, it is imperative in the future
to further verify these assumptions and theoretical predictions
with other fluids in experiment or by MD simulations.
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APPENDIX: DERIVATIONS OF EQS. (23) AND (24), AND THE CALCULATION OF TR,1 AND ρR,1

1. Derivation of Eq. (23)

Dividing Eq. (16) by Eq. (21), we directly obtain Eq. (23a). Substituting Eq. (23a) into Eq. (16), we obtain Eq. (23c).
Substituting Eq. (23a) and (23c) into Eq. (22), we have

α = α/2

�(vR,0) − (1 − α)�(−vR,0)

[
Tx,RE(vR,0)

/(
1 + Ēint (TL )

2kBTL

)
− 2(1 − α)�(−vR,0)

]
. (A1)

Rearranging Eq. (A1), we obtain

2

(
1 + Ēint (TL )

2kBTL

)
�(vR,0) = Tx,RE(vR,0). (A2)

Substituting the expression of E (vR,0) [i.e., Eq. (9c)] into Eq. (A2), we obtain(
2 + Ēint (TL )

kBTL

)
�(vR,0) = Tx,R

√
πvR,0�(vR,0) +

(
Tx,R + Ty,R + Ēint (Tint,0)

kBTL

)
�(vR,0). (A3)

Using the assumption of Tint,0 = Ty,0 and rearranging Eq. (A3), we obtain(
2 + Ēint (TL ) − Ēint (Ty,0)

kBTL
− Tx,R − Ty,R

)
�(vR,0) = Tx,R

√
πvR,0�(vR,0). (A4)

In Eq. (A4), Ēint (TL ) − Ēint (Ty,0) = cV,int (TL − Ty,0) where cV,int is evaluated at a temperature between Ty,0 and TL. Therefore, we
have [

2 + cV,int

kB
− Tx,R −

(cV,int

kB
+ 1

)
Ty,R

]
�(vR,0) = Tx,R

√
πvR,0�(vR,0). (A5)

From Eq. (A5), we obtain the expression for Ty,R:

Ty,R =
(

2 + cV,int

kB
− Tx,R − Tx,R

√
πvR,0�(vR,0)

�(vR,0)

)/(
cV,int

kB
+ 1

)
. (A6)

Substituting the expression for Tx,R [i.e., Eq. (23a)] into Eq. (A6), we finally obtain

Ty,R = 1 +
(

1 −
[

�(vR,0)

2�(vR,0)

]2

− �(vR,0)
√

πvR,0

4�(vR,0)

)/(
cV,int

kB
+ 1

)
. (A7)

2. Derivation of Eq. (24)

The net molar flux from the evaporating surface can be calculated by Jnet,x=0 = ρv,0va,0, where ρv,0 and va,0 are the density
and macroscopic speed of vapor at the vapor side of the liquid-vapor interface. Accordingly, the dimensionless evaporation molar
flux is defined as (JR), which is defined as the ratio of Jnet,x=0 to JL

+, given by

JR = ρv,0va,0

ρg(TL )
√

kBTL
2πm

= 2ρR

√
Tx,R

√
πvR,0. (A8)

Substituting the expression for ρR [i.e., Eq. (23c)] and the expression for Tx,R [i.e., Eq. (23a)] into Eq. (A8), we obtain

JR = 2
√

παvR,0

�(vR,0) − (1 − α)�(−vR,0)
. (A9)
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3. Calculation of TR,1 and ρR,1

To find TR,1 (TR,1 = T1/TL), we apply Eq. (28) in the maximum evaporation case:
1
2 mv2

a,0,max + 3
2 kBTx,0 + kBTy,0 + cV,intTy,0 = 1

2 mv2
a,1,max + 5

2 kBT1 + cV,intT1. (A10)

Using the definition vR,0 = va,0/
√

2kBTx,0/m and vR,1 = va,1/
√

2kBT1/m, Eq. (A10) becomes

kBTx,0

[
v2

R,0,max + 3

2
+

(
1 + cV,int

kB

)
TR,0

]
= kBT1

(
v2

R,1,max + 5

2
+ cV,int

kB

)
, (A11)

where TR,0 = Ty,0/Tx,0. Dividing both sides of Eq. (A11) by kBTL, we obtain

Tx,R

[
v2

R,0,max + 3

2
+

(
1 + cV,int

kB

)
TR,0

]
= TR,1

(
v2

R,1,max + 5

2
+ cV,int

kB

)
. (A12)

Rearranging Eq. (A12), we get

TR,1 = Tx,R
(
v2

R,0,max + 3
2

) + (
1 + cV,int

kB

)
Ty,R

v2
R,1,max + 5

2 + cV,int

kB

. (A13)

In Eq. (A13), vR,0,max is given in Table I, and vR,1,max is given by Eq. (34). Plugging the vR,0,max value into Eqs. (23a) and (23b),
we obtain Tx,R and Ty,R in Eq. (A13). We thus obtain TR,1.

To find ρR,1[ρR,1 = ρv,1/ρg(TL)], we use the definition of JR,max:

JR,max = ρv,1va,1,max

ρg(TL )
√

kBTL
2πm

. (A14)

Rearranging Eq. (A14), we obtain

JR,max = 2ρR,1

√
πTR,1vR,1,max. (A15)

Hence,

ρR,1 = JR,max

2
√

πTR,1vR,1,max
. (A16)

Using the values of TR,1, vR,1,max, and JR,max found in the previous calculations, we will find ρR,1.
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