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Abstract

Let Q@ c R? be bounded with C! boundary. In this paper we consider
Schrédinger operators —A+W on Q with W(x) ~ dist(x, dQ)~2 as dist(x, dQ) — 0.
Under weak assumptions on W we derive a two-term asymptotic formula for the
sum of the eigenvalues of such operators.
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1 Introduction

In this paper we consider semiclassical asymptotics for a class of Schrodinger operators
on bounded sets Q ¢ R¢ with potentials that are singular at the boundary. Specifically,
for a bounded open set Q ¢ R with C! boundary we consider Schrodinger operators

—A+W(x) with W(x) ~ dist(x, Q)72 as dist(x, Q) — 0 (1.1)

subject to Dirichlet boundary conditions. These operators have purely discrete spectrum
and our main interest is towards the asymptotic behavior of their eigenvalues. Our main
result is a two-term asymptotic formula for the sum of the eigenvalues.

Before we formulate our main result it is necessary to explain more precisely
how (1.1) is to be interpreted. We shall assume that our potential decomposes as one
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part that is in Ly (€2) and has the prescribed singular behavior at the boundary and a
part that, in comparison, is well-behaved. To simplify the exposition we write

1

m+h2‘/()€)—l forh > 0.
1SU X

Hopy(h) = —h2A + h2(b2(x) - -)
Technically, the operator Ho 5 v (h) is defined through the quadratic form

2
uH/ h2|Vu(x)|2+h2(b2( )—1)% +h2\/(x)|u(x)|2—|u(x)|2) dx (1.2)

with form domain {u € Hé (Q) : Vou? € L'(Q)}. Throughout, we shall assume that
Ve LY(Q), V. € L'/2(Q), and that b € L™®(Q) is positive and satisfies

lim sup  b(y)— inf b(y)] dH (x)=0. (1.3)
r=0" Jaal yeB,.(x)nQ YEB, (x)NQ
|x| X

Here and in what follows, we define x,. = and note that with this convention both
x; and x_ are non-negative. As a consequence of Hardy’s inequality, the assumptions
on V and b ensure that the quadratic form (1.2) is bounded from below and closed.
Therefore, it generates a selfadjoint, bounded from below operator Hg 5, v (h) in L?(Q).

We emphasize that by positivity of b, we mean infg » > 0. This assumption can
naturally be relaxed to require positivity only in a neighborhood of the boundary by
adjusting V correspondingly. The regularity assumption (1.3) implies that b|5q can be
made sense of as an element of L*°(dQ); indeed, by (1.3), b has a well-defined limit
H9-1_almost everywhere on dQ, which is finite since » € L*(€). Our main result can
now be stated as follows:

Theorem 1.1. Let Q c R? be open and bounded with C' boundary, V € L'(Q) with
V_ e L™4/2(Q), and let b € L™(Q) be positive and satisfy (1.3). Then, as h — 0%,

Lg

Tr(Ho,p,v(h))- = Lah™|Q| - >

—— ! / b(x) dH (x) + o(h™ "),
oQ

where Ly = (4m)"42T(2 + d/2)7 .
As a corollary of Theorem 1.1 we deduce:

Corollary 1.2. Let Q ¢ R? be open and bounded with C' boundary. Then, with Aq
denoting the Dirichlet Laplace operator in Q, as h — 0% and in the sense of measures
i+ 1(=h*Aq < 1)(x,x)

dist(x, 0Q)?

L,g_
dx — —é LHA |50

Proof. The corollary follows from a standard Feynman-Hellmann argument (cf. [10])
and Theorem 1.1 applied with the potential W(x) = ¢ f(x)/dist(x, 0Q)? for f € c(Q)
and sending first /4 then ¢ to zero. O
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Spectral asymptotics for differential operators that degenerate at the boundary of
the domain are not new. However, the results in the literature mainly concern cases
where the operator degenerates at leading order and how this affects the first term in the
asymptotics, see [1, 2] and references therein. While the class of operators considered
here is significantly less singular, our interest is towards the effect of the degeneracy
on the second term in the asymptotics.

In the special case of the Dirichlet Laplacian, i.e. V = 0 and b = 1/2, Theorem 1.1
was proved in [5, 6]. The strategy of our proof follows closely that developed there, but
several new obstacles need to be circumvented in the presence of the potential that is
singular at the boundary. The idea is to localize the operator in balls whose size varies
depending on the distance to the boundary and 4. In a ball far from the boundary the
influence of the boundary conditions and the potential both have a negligible effect
and precise asymptotics can be obtained through standard methods. In a ball close to
the boundary the regularity of the boundary allows to map the problem to a half-space
where asymptotics are obtained by explicitly diagonalizing an effective operator. The
main new ingredients needed here is to control how the straightening of the boundary
affects the singular part of the potential and to understand how the potential enters in
the resulting half-space problem.

The works [5, 6] for domains with C' boundaries were extended to the case of
Lipschitz boundaries in [7], see also [8]. Since the (weak) Hardy constant can be
smaller than 1/4 for Lipschitz domains, it is not clear how to generalize the results of
the present paper to this setting.

The plan for the paper is as follows. In Section 2 we recall a number of results
concerning changes of variables mapping 02 locally to a hyperplane. In particular,
Lemma 2.2 describes how such a mapping affects the singular part of our potential. We
also prove a local Hardy-Lieb—Thirring inequality, which will be crucial in controlling
error terms appearing in our analysis, and which replaces the Lieb—Thirring inequality
in [5] in the absence of a singular potential. In Section 3 we provide local asymptotics,
both in the bulk of our domain and close to the boundary. Finally, in Section 4 we
adapt the localization procedure developed in [5, 6, 7] to our current setting and use it
to piece together the local asymptotics of Section 3, thus proving Theorem 1.1.

The letter C will denote a constant whose value can change at each occurence.

We are deeply grateful to Ari Laptev for sharing his fascination for spectral estimates
and Hardy’s inequality with us and we would like to dedicate this paper to him on the
occasion of his 70th birthday.

2 Preliminaries

2.1 Straightening the boundary

Let R = {y € R? : y; > 0}. Let B ¢ R? be an open ball of radius ¢ centered at
a point x9 € 9Q. By rotating and translating we may assume that xo = 0 and that
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vo = (0,...,0,1) is the inward pointing unit normal to dQ at xg. Since Q is bounded
with C! boundary, there is a non-decreasing modulus of continuity w: R, — [0, 1] such
that, if £ is small enough, there is a function f: R4~! — R satisfying |V f(x")| < w(|x’|)
such that

AQ N Byp(0) = {(x',xg) € RV X R = xg = f(x)} N Bar(0).

Note that, by the choice of coordinates, f(0) = 0 and V f(0) = 0.

Set X = {(x",x4) € R xR : |x’| < 2¢}. We define a diffeomorphism ®: X —
R by ®;(x)=xjforj=1,...,d—1and ®4(x) = xg — f(x’). Note that the Jacobian
determinant of @ equals 1 and that the inverse of ® is well-defined on ®(X) = X. The
inverse is given by d)JTl(y) =yjforj=1,...,d-1and (I);ll(y) =yg+ f(y).

In the following lemma we gather some results whose proofs are standard and can
be found, for instance, in [6, Section 4].

Lemma 2.1 (Straightening of the boundary). Let B, ® be as above and foru: B — R
setii =uo® ' For0 < ¢ < c(w) and with C depending only on d, we have:

‘/Bu(x)dx = /cD(B) i(y)dy.

1. ifu € LY(B) then

2. ifu € L*(0Q N B) then

< C W) ||ul| e .

/ u(x) dHE (x) - a(y) dHO (3)
oQNB ORIND(B)

3. ifu € H)(Q N B) then i € Hj(R¢ N ®(B)) and

/ IVu()P dx - / Vi) dy
QNB RIND(B)

4. ifu e C(l) (R?) is supported in B then, after extension by zero, ii € C(l) (R9) with
suppii C By(0) and ||Vii||p~ < C||Vul|p.

< Cu(0) / Vi) dy .
RIND(B)

In addition to the properties in Lemma 2.1, we will need the following result, which
enables us to control the change under ® of the singular part of our potentials:

Lemma 2.2. Let B,® be as above. There is a constant C depending only on d such
that for any x € BN Q,

0 < 1 1 B w(26)?
~ dist(x,0Q)?  dist(D(x),dRY)? T dist(d(x),dRY)?

2.1)
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Proof. By definition of f, (x/, f(x")) € dQ, thus dist(x,0Q) < |x — (x’, f(x"))| =
|xq — f(x)] = dist(®(x), dRY), which implies the lower bound in (2.1).

To prove the upper bound, let z = (z’, f(z’)) € dQ be such that dist(x,dQ) = |x—z|.
Since 9Q is parametrized by f in the larger ball By(xp), it is clear that such a point
exists and that z € Byg(xp). The point z might not be uniquely determined but that will
not play any role in what follows.

We begin by rewriting the expression we want to bound in terms of z:

1 1 1 1
dist(x,0Q2  dist(®(x),0R2  |x -z |xa - f(x)
_ &) = FEDU ) + f(Z) = 2xa) =[x~ /| '

|x = z?lxa = f(x)]?

Since f is C' and by the definition of z it holds that

VAN
VI V)P

x=z+|x-z

Consequently,

N2 _ |x - Z|2
and |xd - f(Z )| - 1+ |Vf(z/)|2 : (22)

2 IVFE)P

’ 72
X ==k
SR e T

Note also that f(x”) < f(z’) £ x4. From the above identities one finds

1 _ 1 _ 1 lf(x) = f)I?
dist(x,0Q)%  dist(®(x), 0RL)?  |xqg — f(x")|? |x —z]?
Lo WD =fE IVf()I? ‘
Ix—zZWT+ [VF)E 1+IVE)P

2.3)
By the fundamental theorem of calculus and (2.2),

1
lf(x") = f(Z)] =|(x" - z’)/o Vi@x' +(1 -0z dt| < w26)?|x - z].

Therefore,

FACH R (€0 P VAC O A Y] VI _ coaer.

|x - z]? Ix—zWT+[Vf)PE  1+IVAE)P

Combined with (2.3) this completes the proof of Lemma 2.2. O
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2.2 A local Hardy-Lieb-Thirring inequality

The aim of this subsection is to prove a bound for localized traces of our operator.
Before stating the result we recall the following Hardy inequality due to Davies [3]
(obtained by combining his Theorems 2.3 and 2.4).

Lemma 2.3. Let Q c R? be open and bounded with C'-boundary. Then for any & > 0
there is a cy(e,Q) > 0 such that for all u € Hé (Q),

2 1 |u(x)|? 2
/Q|Vu(x)| dx+(g—Z)/dexz—c,,(g,g)/g|u(x)| dx .

Remark. Lemma 2.3 can be proved in a direct manner by using a partition of unity
and appealing to Lemmas 2.1 and 2.2. In particular, this allows one to quantify the best
constant ¢ in terms of the C'-regularity of 9Q. Indeed, such a proof yields the bound

ca(e,Q) < w—lL(g)Z for a constant C depending only on the dimension and w™! is the
inverse of the C'-modulus of continuity of Q.

With Lemma 2.3 in hand we move on to the main result of this subsection. Specif-
ically, the following local Hardy-Lieb—Thirring type inequality for Hq 3 v (cf. [9]):

Lemma 2.4. Let Q,b,V be as in Theorem 1.1. Let ¢ € C(]) (R4) be supported in a ball
B of radius € and set b = infonp b. If0 < h < K min{¢,cy(b*/2,Q)7/?}, then

Tr(¢Ho,p,v (@)~ < Cmin{b, 1} en= (14 V- )

where the constant C depends only on d, K, and ||@||r~.

Proof. By assumption, b > 0. By the variational principle and for any ¢ € (0, 1/2], we
find

¢Hopv (W) > ¢(—h25A RV (x) -1

+ 1231 - 6)(—A +(1-0)"! (122 - %)W))q&.

Since 6 € (0,1/2] we have

(1-5)*(@2—%) z(1+25)(1f—%) >g2—g—%.

Thus, setting 6 = min{gz, 1/2} < 1/2, Lemma 2.3 implies with ¢y = cH(l_)z/Z, Q) that
¢Hap.v(h)¢ > ¢(—h*6A — coh® — h*V_(x) - 1)¢ . (2.4)
Consequently, for any O < p < 1, the variational principle and (2.4) yields

Tr(¢pHo,p,v (D)$)- < Tr(¢(—h*6(1 — p)A — coh® — 1))-
+ Tr(¢(—h>6pA — h*V_)g)_ .
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Using the Berezin—Li—Yau inequality
Tr(p(=h*5(1 = p)A = coh® = 1)9)-
< C(l + Coh2)1+d/2(l _ p)—d/z(s—d/zh—dfd ,

with C > 0 depending on d and ||@||~. For the remaining term the Lieb-Thirring
inequality implies
—d/2 - 1+d/2
TH((~h*5pA ~ WPV)p)- < Ch?6~Pp R IV_| 1505

for some C > 0 depending only on d. Gathering the estimates and setting p =
h?/(2K?€%) < 1 completes the proof. O

3 Local asymptotics
3.1 Local asymptotics in the bulk
Lemma 3.1. Ler ¢ € Cé (R4) be supported in a ball B of radius € > 0 and satisfy
IVl oga) < ME 3.1
IfV € L\(B) is such that V_ = Vo + Vy with 0 < Vo € L®(B) and Vi € L'*4/2(B) then,
for 0 < h < K min{&, |[VolIZ/*},
Te(d(=12A + K2V = 1)) — Lyh™@ / #2(x) dx’
B

— — 1+d/2
< 2[4 4 Vol gy + VIR )+ IVl |

where the constant C depends only on d, M, K.

Proof. Throughout the proof, we set Hy = Hga oy = —h?A + h?V — 1 in L2(R9).
To prove the lower bound, consider the operator y with integral kernel

_ 1 i£Gy) g
y(x,y) (2ﬂ)d)((x) /|§|<h_1€ Ex(y),

where y € C(‘)"’(Rd) with 0 < y < 1 and y = 1 on B. The operator v is trace class and
satisfies 0 < y < 1. Therefore, the variational principle implies that

Tr(¢pHy ¢)- > Tr(¢pHy, ¢)-
> _Tr(Y¢HV+¢)

1 £
= /m (T Gy + NV i) = 191 )
> < B

(2nyd

= Lah™ /B #2() dx = Ch 2 (IVI gy + Vel ey ) -
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Since, by (3.1), ||¢||L> < M and ||V¢||i2(Rd) < Ct92 this proves the lower bound.

It remains to prove the upper bound. For any 0 < p < 1/2

Tr(¢Hy ¢)- < Tr(¢Hy_¢)-
< Tr(¢p(—h*(1 = p)A — B*V — @) + h*Tr(¢(—pA — V1)@)- .

To bound the second term we apply the Lieb—Thirring inequality to conclude that

R*Tr(¢(—pA — Vi)¢)— < h*Tr(¢p(—pA — Vi15)_¢) < Ch*p~/? /B Vi (x)| 972 dx,

where we again used ||¢||~ < M. Since Vy € L*(B), we can bound
Tr(¢(=h*(1 = p)A = h*Vo — 1)¢)- < Tr(¢(=h*(1 — p)A — h* sup Vp — 1))
B

=(1+h? sup Vo) Tr(¢(—h*A — 1)¢)—
with 2 = h(1 — p)'/2(1 + h? supg Vy)~!/2. By the Berezin—Li—Yau inequality,
Tr(¢(-h*A - 1)¢)_ < Lgh™ /B ¢*(x) dx .
Combining the above we have arrived at
Tr(¢Hy ¢)- < Lgh™ /B ¢*(x) dx + Ch*>p~4/? /B Vi ()| "4/2 dx
+ Lgh™@ [(1 —p) 1 + 2 sup Vo) /% - 1] /B ¢*(x) dx
< Lgh™@ /B ¢*(x) dx + Ch>p~4/? /B Vi ()| +9/? dx
+Ch™¢ [p +h? Sl;p Vo] /B ¢*(x) dx,

where C depend only on d, K, M. Setting p = h*/(2K?*¢?) < 1/2 and using f¢2 < ct
completes the proof. O

3.2 Local asymptotics near the boundary

In this section we prove the following local asymptotic expansion close to the boundary.

Theorem 3.2. Let Q,b,V be as in Theorem 1.1. Let ¢ € Cé (RY) be supported in a ball
B of radius € and satisfy
IVl oy < ME".
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Assume that dist(B,0Q) < 2¢, and set b = infgnob. For 0 < € < ¢(Q,b) and
0< h <Kt

Tr(¢pHo,p,v (1)¢)- = Lah™ /Q ¢*(x) dx + %wﬂ /6 . ¢ (X)b(x) dH (x)

sup b(y)— inf b(y) dH (x)
YE€B2¢(x)

< U op (1) + O(h4*) / #()
oQ YEB(x)

+ 00 ) (e 2 tog(e /1) + Vil + C VI o)

Moreover, the error terms and the implicit constants can be quantified in terms of the
C'-regularity of dQ and M, K, 16|z~ @nB), b-

The proof of Theorem 3.2 will be split into several lemmas, the first of which
reduces our problem to the corresponding one in a half-space.

Lemma 3.3. Let Q,b,V be as in Theorem 1.1. Let ¢ € Cé (R4) be supported in a ball

B of radius € such that dist(B,dQ) < 2¢, and infgnq b = b>0.For0<{<c(b)
and0 < h < KCwithg =¢po®d ' ,V=Vod

TH(@Hg 5o (D)~ oro (1 + RV )
< Tr(¢Ho,p,v (h)$)-

< Tr(@Hg g (D) + € h oo (D(1+ RIV-IAE )

A%

LHd/Z(QﬂB)

where b = SUpP,.cpna b(X). Moreover, the error terms and the implicit constants can be
quantified in terms of the C'-regularity of 6Q and K, b, b, ||$|| L.

Proof. Provided ¢ is small enough there is a ball B > B with center on Q and radius
4¢ that satisfies the assumptions in Section 2.1. Let @ be the associated diffeomorphism.

We split the proof into two parts, in the first part we prove the upper bound and in
the second we prove the lower bound.

Part 1: (Proof of the upper bound) By the variational principle

Tr(¢Ha,p,v(h)¢)- < Tr(¢Ha,p,v (h)@)- .

Moreover, by Lemma 2.1 there is Cy > 0, depending only on d, such that
b -1/4

dist(@~1(-),0Q)?

Te(@Ho,bv (9)- < Te(G(~H2(1-Cowd0)Agg +1? +27-1)4) .

We claim that
b —1/4 . s
= + RV -1
dist(@1(-), 0Q) )9)
b? — 1/4 — Cw(8¢)? N

- Jb . )
< Tr(¢(—h (1 - Cow(d)Aga + BT WV - 1)¢)_

Tr(qi(—fﬁu ~ Cow(d0)Agy +
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for a constant C depending only on d. Indeed, if b > 1/2 Lemma 2.2 and the variational
principle implies

b —1/4

Tr(qg(—h2(1 — Cow(40))Aga + hzd S(D1(- ), 0Q)2 +1V )q?)
< Tr( ( W (1 = Cow(46))Aga + hzd[Z;_—ale)z ) )

—1/4 - Cw(80)? .
+

< Te(§(-12(1 - Cood0)A RELs
(1~ Cow(d£)Aga G oRd)y
Similarly, if 0 < b < 1/2 Lemma 2.2 and the variational principle implies

b —1/4 - .
dis(@1(-),00) w7 -1)9)

Tr(gs(—hza ~ Cow(d)Aga + 1

5 , (B = 1/H)(1 + Cw(860)?) s
< Tr( ( B3(1 ~ Cow(d0)Aga + h TRy W2V 1)¢)_
2 ,UP = 1/4-Cuw(80? s
< Tr( ( (1= Cow(d0)Aga + = BT W2V - 1)¢)_
For any 2Cyw(4¢) < p < 1/2 we estimate
5 S0P = 1/4-Cw(80? .
( ( B3 (1 — Cow(40) A + h S WV - 1)¢)7
< Tr($Hga ), y(h)§)-
5 ,p(b* = 1/4) - Cw(80)> , _ .
+ Tr( ( 12 (p — Cow(40)Aga + h O + 12pV - p)qﬁ)i
Provided
p(b? —1/4) - Cw(80)* ( , 1 w(80)? 1
o — Cow(4f) a ( - 1/4) 1 - Cow(dt)p~! _Cp — Cow(40) e (3.2)

we can apply the local Hardy—Lieb—Thirring inequality of Lemma 2.4 in Rf to bound

o p(b* = 1/4) — Cw(8¢)?
dist(-,0R?)?

< CpM e (p - Cow(d0) 2 (1 + W2 p(p - CowdO) IV )

Tr(gﬁ(—hz(p — Cow(40))Aga + oV —p )‘5)_

- 1+d/2
< Cpt?h "(1 + thIV—||LT+d//2<QOB))'
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Set p = \Jw(4€) + w(8¢). Then p > 2Cyw(4¢) and (3.2) are valid provided ¢ is small
enough. Therefore, upon collecting the estimates above we arrive at the bound

Tr(¢pHo,p,v(h)¢)- < Tr($Hza 5, v (h)P)-
+ceind (\/w(4€) + w(8€)) (1 A (m3>) :

thus completing the proof of the upper bound.

Part 2: (Proof of the lower bound) The proof of the lower bound proceeds as the upper
bound but with the roles of Q and R¢ exchanged.
By Lemma 2.1,

)
- ~ b —1/4
Tr(¢HRf,E,V(h)¢)_ < Tr<¢<—h2(1+C0a)(4€))_1AQ+h2W)(/ﬂw+h2V—l)gb)_.

If ¢ is sufficiently small so that Cow(4€) < 1/2then (1+Cow(4€))™! > 1-Cow(4€) > 0,
and hence

)
~ - b —-1/4
Tr((f)HRf,E’V(h)qS)_ < Tr(¢(—h2(l —C()(U(4€))Ag+hzm+h2v— 1)¢)_ .

-2
By splitting into cases depending on the sign of b — 1/4 as in the proof of the upper
bound one finds

B -1/4
dist(®( - ), IRY)?

—1/4 - Cw(8¢)?
dist(-,0Q)2

Tr(¢<_h2(1 — Cow(40))Aq + h* +HV — 1)¢)_

< Tr(¢(-h2(1 - Co(d0)Aq + ok 1V = 1))

for a constant C depending on d, b.
For any 2Cyw(4€) < p < 1/2 we estimate

—1/4 - Cw(8¢)?
dist( -, dQ)2

-2
Tr(¢(—h2(l ~ Cow(d0)Aq + 122

< Tr(¢HQ,E’V(h)¢)_

+ 12V - 1)¢)

—1/4) — Cw(80)?
dist( -, 0Q)?

+Tr(¢(—h2(p—C0w(45))AQ+h2p(l_72 +h2pV—p)¢)

< Tr(¢pHa,p,v (h)p)-

L P = 1/4) - Coe?

2
+ Tr<¢<—h (p — Cow(40))Aa T

+ thV - p)¢)_ .
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Provided the analogue of (3.2) with b instead of b holds we can apply the local
Hardy-Lieb-Thirring inequality of Lemma 2.4 to bound

-2
b —1/4) — Cw(80)?
Te( (=12 (p — Cow(d€))Aq + 122 +IpV —
r(¢( (p = Cow(40)Aq dist( -, 9Q)2 g p)¢)‘
d1—d 2 1+d/2
< Cpf h (1 +h ||V—||L1+d/2(gng)) :

Again we can set p = \/w(4€) + w(8¢) and combine the above estimates to arrive at
Tf(‘IBHRg,g,V(h)Qs)— < Tr(¢Ha,p,v (h)¢)-
+ Cfdh‘d(\/w(M) + w(8€)) (1 RV (mB)) .

This completes the proof of the lower bound and hence the proof of Lemma 3.3. O

The proof of Theorem 3.2 has been reduced to understanding the asymptotics of
Tr(¢HRf,b,V(h)¢)— with b(x) = b > 0.

Lemma 3.4. Let Q,V be as in Theorem 1.1. Let ¢ € Cé (R?) be supported in a ball B
of radius € and satisfy
IVl < ME™". (3.3)

With b(x) = b > 0 we have, for 0 < h < K¢,

bL,_
Tr(¢Hga 5, (h)$)- — th_d/ ¢*(y)dy + ¢h_dH/ () dﬂd_l()’)‘
* RY 2 oRY

—d d— d 1+d/2
< CH (e log(¢/ ) + Vel iy + CNV- R )
where C depends only on d, M,K,b and can be uniformly bounded for b in compact
subsets of [0, ).

Proof. Our proof proceeds by diagonalizing the operator HRf, ».0(h). For the general
background on what follows, see [4, Chapter XIII].

For f € C*(R,) define the differential expression
1) J(x)

x2

Lyf(x) = () = (07 =

The operator Hya ».0(h) can then be decomposed as
Hga p, o(h) = =h*A" = Ly,

d-1

where A" = %7

2 . .
aa_yz and L, acts in the y;-coordinate.
j
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For b > 0, u > 0 the ODE
—Lpu(x) = puu(x)
has two linearly independent solutions

Wb u(x) = x2Up(xy) and  np (%) = x' 2V, (xvR) -

If b > 1/2 only  vanishes at x = 0 while for b € (0,1/2) both solutions vanish,
indeed ¥ ~ x!/2*? and n ~ x'/> as x — 0*. However, for any b # 1 only the first
solution ;, , is in H! around zero. In particular, our effective operator Hga p o(h) is
diagonalized through a Fourier transform with respect to y” and a Hankel transform D
with respect to y4. Recall that the Hankel transform 9, : L*(R,) — L*(R.) is initially
defined by

8u09) = [ elstNsTdr forg € L'(R.)
0
and extended to LZ(R+) in a similar manner as the Fourier transform. Moreover, $,, is

unitary, is its own inverse $2 = 1. Moreover, for G € L®(R,) with compact support
and f € Hy(Ry) N H*(Ry)

FoG-Ly) Pz, = /0 ()9S ds

By a similar argument as in the proof of Lemma 2.4 the upper bound can be reduced
to the case V = 0. Indeed, for any 0 < p < 1/2,

Tr(d’HRf,b,V(h)‘ﬁ)—

b —1/4
< Tr(¢Hga 4, o(A(1 = p))¢)- + Tf(¢(hZPARg + thm - th) ¢)_

1+d/2

< Tr($Hy p o(h(1 = pDB)- + CH o™ PV L Loy -

Set p = h%/(2K%?) so that h2p~4/2 = O(t?h=4*%) and (h(1 — p))* = K P(1 +
O(£72h?)). The claimed upper bound now follows from the case V = 0.

Using the inequality Tr(¢H¢)- < Tr(¢pH_¢), applying the Fourier transform with
respect to y’ and the Hankel transform in the y,-direction yields

Tr(¢Hjo bolh)e)- < TI“((/)(HRf b.oM)-9)

1
T 2n)dl //Rd Rd &R |E? = V)-Eayadp(Eaya)* dédy .

(3.4)
For the lower bound define the operator y with integral kernel

1 &t ’ ’
V) = ot [ € \Exady EaxaNEayals(Eava) dE x(3).
(2m) RINB,  (0)
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where y € Cg"(Rd) issuch that 0 < y < 1 and y = 1 on supp ¢. The operator vy is
trace class, satisfies 0 < y < 1, and its range is contained in the domain of HRf, bV
Thus, by the variational principle,

_Tr(¢HRf,b,v(h)¢)—
< Tr(?"bHRf,b,m (h)o)

— 1 2112 _ 2 2
T (2n)d! -//foRf(h 1§17 = D-¢"(x)éaxap(Eaxa)” dédx
1
+ A / (Vi (x)¢*(x) + [Vo(x)%) / (eath™)Jp(xgth™)? dtdx (35
R 0
1
= (2r)d-1 //MXMUFEF — D)_¢*(x)éaxap(Eaxa) dédx

#0172 [ .08+ Vo) dr.

with C uniformly bounded for b in compact subsets of [0, o), since ||/ Jp[|L=®,) <
uniformly for b in compact subsets of [0, o) (see [12, Chapter 7]). By (3.3) we can
estimate ||¢||L~ < M and /Rd |Vo(x)|? dx < C472.

What remains is to understand the common integral in (3.4) and (3.5). We begin
by extracting the desired leading term:

1
oot [ FONRIER = 1)-eava(Eava® deay
(2m) RIxRY
= Lgh™ / [ #*(y)dy (3.6)
RS
oo 1 1
Lo [ @Oy [Ca- @0 - i) deadr.
0 JRd-1 0 T
Define, for b > 0 and ¢ > 0,
! 1
Pot) = [ (1= AR coater?) e
0 T
In Lemmas A.1 and A.2 we shall prove that
(o] b -
Py(t)dt = 3 and Pp(t) =O0(t ") ast — oo, (3.7
0

with the implicit constant uniformly bounded for » in compact subsets of [0, c0).
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Using (3.7) we can estimate

/ ) / Gy, ht) dy’ Py(1)dt
0 JRa-!

2/h
- [, o0y e

/ #(.0)dy’ / / &(y'.0) dy' Py(1)dt
26/h JRA-1

2¢/h
+ 2/ ht/ / (', hts)dy, ¢(y’, hts) ds dy' Pp(t)dt
0 R4-1 Jo
b ’ ’ —
=2 [, #0700y + 0heto(e ).
Rd-1
Combined with (3.6), (3.4), and (3.5) this completes the proof of Lemma 3.4. ]
We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. By combining Lemma 3.3 and Lemma 3.4 the claimed estimate
follows from

/6 R

b(x) - inf b(y)] dH*(x)

<[ ¢2<x)[ sup ()= inf b dH ),
o0Q

yeQnB

and the corresponding inequality for the sup and the fact that supp ¢ C B C Bo¢(x) for
any x € supp ¢. O

4 From local to global asymptotics

In this section we prove our main result by piecing together the local asymptotics ob-
tained above. The key ingredient is the following construction of a continuum partition
of unity due to Solovej and Spitzer [11].

Let

(u) = lmax{dlst(u Q°), 26}

with a small parameter 0 < ¢y to be determined. Note that 0 < £ < max{r""T(Q),&)},
where r;,(Q) denotes the inradius, and, since |Vdist(u, Q)| = 1 a.e., ||[V€]|L~ < %
Note also that dist(Bg(,), Q) < 2{(u) if and only if dist(u, dQ) < 2y, in which case

€(u) = £o. In particular, if dist(u, Q) > €y, then By, (u) N Q = 0.



16 Rupert L. Frank, Simon Larson

Fix a function ¢ € C(‘)"’(Rd) with supp¢ C B1(0) and ||¢]|;2 = 1. By [11, Theo-
rem 22] (see also [7, Lemma 2.5]) the functions

u d d
Pu(x) = (f())\/+V€(u) f() xeRY ueR?,

belong to C° (RY) with supp ¢, € By (1), satisfy

/ Gu (X)) 4 du=1  forall x e RY 4.1
Rd

and, with a constant C depending only on d,
Igulle < V2li¢lle and [|Vgulls < CLu) ™ Vol forall u € RY.
The application to our problem here is summarized in the following lemma.

Lemma 4.1. Let Q, b,V be as in Theorem 1.1 and define €,{¢, }, cga as above. Then,
for0 < £y < c(Q,b) and 0 < h < K¢y,

T () = [ Te@uHoupy (000 du

< Ch—d+2/ (1+h2 V. 1+d/2 )f _2d ’
dist(u,Q) <£o I llL'*‘”z(mBr(m(u)) ()™ du

where the constant C depends only on Q,b,K, ||¢||Le.

For the sake of brevity, we omit the proof of Lemma 4.1 and instead refer the reader
to the proof of [7, Lemma 2.8]. Lemma 4.1 can be proved in the same manner but
replacing the use of a local Berezin—Li—Yau inequality by an application of Lemma 2.4.

With the above results in hand we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Set £y = h/eg with 0 < h < gori(Q)/2 for a parameter gy €
(0, 1], which will eventually tend to zero.
We divide the set of u € R? such that By, (1) N Q # 0 into two disjoint parts:

Q. ={ueR?:20 <6qu)} and Q ={uecR?: - <au) <26}, (4.2)

where dq denotes the signed distance function to the boundary, dq(y) = dist(u, Q) —
dist(u, Q). Note that for all u € Q* we have £(u) = £y.

By Lemma 4.1 we need to understand the integral with respect to u of the local
traces Tr(¢, Ha,p,v(h)¢u)-. Breaking the integral according to the partition (4.2) we
have

[, 0oy .-t du = [ T Hob v (1)6,)-C du

ok

; /Q Te(guHopy ()65 du
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F . _ (b(x)*=1/4)- _ .
or the first term Lemma 3.1 with Vp(x) = F TR Vi = V_(x) yields

[ 1o v h168,)- iy d
Q.
= Lah™? / / ¢* (X))~ dxdu
Q. JQ
+ O *?) /Q |2 (0 NBIE) + VAR g,y COO Vel 00

< Cl(u)™ and POV < C1p|2  b(u) 2.

where we used || Vp|| dist(x,0Q)2 =

< @, aQ) —tw)? =
For the integral over the boundary region Q* Theorem 3.2, for &y, £y, i sufficiently
small, implies

[ 6oy h16,)-G
= Lyh™¢ / / P ()5 dxdu— & 2 =dl pmd+l / / ¢ ()b(x)€y ! dH (x)du

+ O )19 (00 (1) + £Zllog(e0)]) + 5~ 0y 0+ (1)
_ 1+d/2
£ 00717) [ IV o+ G IVeliis |

Here we used the fact that b satisfies (1.3).
Combining the estimates for the contribution from the bulk and boundary region,
using (4.1), and estimating the integrals of the norms of V_, V, , we find

[, T Ho b 0000

= Lyh™ |0 - Lot y-an / b(x) dH (x)
2 40 (4.3)

+ O )IQ"|(06,-0+ (1) + g5 llog(0)]) + h~* og, 0+ (1)

+ O (1 +|1bl7) /Q €607 du+ O )| IV o) + Vel |-

By [7, eq.’s (4.6)—(4.8)], fg €)™ du < C;" and |Q*| < Cf with C depending
only on Q. Thus, by Lemma 4.1, (4.3), and since hz/é’(u)2 < sé we conclude that

h4 M Tr(Ha .y (h)- — Lah™?|Q| + =L p=d+1 /6 . b(x) dH (x)

< &5 0n g0+ (1) + 0(80|10g(80)|) + 0n /ey 0+ (1)

+0(z0) 1+ 1B13) + O [IV-ITAR o) + Vel |-

Letting first 4 and then &y tend to O completes the proof of Theorem 1.1. O
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A Properties of P,

Our aim is to prove the following two lemmas.

Lemma A.1. Forv > 0 it holds that

P(t) = / (1- )<d+1>/2( §tJV(§t)2)d§ 02 ast— oo,

Moreover, the implicit constant is uniformly bounded for v in compact subsets of [0, o).

Lemma A.2. For any v > 0 we have the identity

/OOOP,,(t)dt:/ /(1 ()(d”)/z( — 1), (a)z) dgdz—

We shall need the following asymptotic expansion for the Bessel function

I(t) = (%)]/2 [cos(l - % - %) - 4V28—t_1 sin(t - % - %) + O(t‘z)] . (AD

where the implicit constant is uniformly bounded for v in compact subsets of [0, co)
(see [12, Chapter 7]). We shall also make use of the following identity

2 2
h = SR S b k(A )], (A2

which is easily deduced from J;(x) = %(J,,_l (x) — Jy+1(x)) and the recursion formula
Jv—l(x) + Jv+1(x) = 2X_VJV(X)

Proof of Lemma A.1. By an integration by parts, (A.2), and since |J,.(x)| < 1,
P =@ [0 -l - o
+ v (G (¢D)| dE + 018" +6%)

for any 0 < ¢ < 1. Provided 6¢ > 1, (A.1) implies

2 3 3
& @R - o ha €0 + v (@1) = 5 o520t~ 7) + 06 7).

with the implicit constant uniformly bounded for v in compact subsets of [0, o). Thus,
we have arrived at

1
P,(1) = dz—;tl /5 (1 =) d=DR2g cos(2et — nv)de + 072 + 16* + 6%)

1
_d+1 / (1= 2Hd=D27 cos(2¢t — nv)de + O(t72),
0

2nt
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where we chose 6 = O(¢~!). An integration by parts yields

1 1
/0 1=V cos(22t—nv)dl = % /0 (1=2H)93I2(qr2 1) sin(2¢t —nv) di .

Since the integral on the right is bounded uniformly in v, this completes the proof. O

Proof of Lemma A.2. For any T > 0, by (A.2), Fubini’s theorem, and a change of
variables

T 1 T 1
= _ /@2 - 2
[ P = [a=gyervn [2(2 - ) anie
T T
= SR+ PO 4y [0 =TV L) ds.

By Lemma A.1 only the remaining integral contributes as T — oo. By [12, p. 406] and
for v > —1, in the sense of an improper Riemann integral

°° 1
[ s =3,
0
The proof is completed by appealing to a simple Abelian theorem in Lemma A.3. O

Lemma A.3. If f € L*(R,) and limy fOT f@)dt = A, then forall a > 0

lim T(l - ;—Z)af(r)dt _A.

T—oo Jo

Proof. By integration by parts and a change of variables,

[ -5) swa= [ (-4(-5)) [ s6)asa
= 2&/01(1 — o)l OUT f(s)dsdo .

By our assumptions there is a Sy < oo so that for § > S

‘/OS f(s)ds

S
‘/ f(s)ds
0
oT

f(s)ds

<|Al+1.

Since f is bounded,

< Sl flleo -

Thus, for all o, T,

< max{|A| + 1,80 fle} -

0
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Since a > 0, the function o +— (1 — 02)®~!o is integrable and by dominated conver-
gence,

T—

1 oT 1
lim 2a/ (1- 0'2)"_10'/ f(s)dsdo = 2aA/ 1-0)lodo=A.
0 0 0

This completes the proof of Lemma A.3. O
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