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Abstract
We give an exposition of Novodvorskii’s theorem in Banach algebra K -theory,
asserting that the Gelfand transform for a commutative Banach algebra induces an
isomorphism in topological K -theory.

Keywords K -theory · Commutative Banach algebras · Oka principle

Mathematics Subject Classification 46L80 · 46J10

1 Introduction

The purpose of this paper is to give an expository account of the following theorem
of Novodvorskii [18], which was one of the most striking discoveries from the early
days of K -theory for Banach algebras:

Theorem If A is a commutative and unital Banach algebra A with Gelfand spectrum
X, then the Gelfand transform induces an isomorphism

K∗(A)
∼=−−→ K∗(C(X))

in (topological) K -theory.

There are several precursors to Novodvorskii’s theorem. In fact essentially the same
resultwas proved byArens [3], in the sameway, although K -theorywas notmentioned.
We refer the reader to [19,20] for early surveys, as well as to the introduction of [6]
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for further remarks. But the clean and simple statement of Novodvorskii’s theorem
causes it to stand out, especially now that K -theory has become a familiar topic in
Banach algebra theory.

The theorem is a K -theoretic version of the Oka principle from several complex
variables, in the form established by Grauert [11–13], and it may be proved by a
reduction to Grauert’s work. This was Novodvorskii’s approach. In contrast, the proof
we shall present here takes full advantage of the computational framework that K -
theory provides, and minimizes prerequisites from several complex variables.

The K -theory approach makes plain a striking analogy between the proof of the
Oka principle and the proof of a classic result in topology, namely the Jordan–Brouwer
separation theorem:

Theorem The complement of an embedded (n − 1)-sphere in an n-sphere has precisely
two connected components.

The separation theorem quickly reduces to the following assertion, which is the heart
of the matter:

Theorem The complement of an embedded k-cube in an n-sphere has the singular
homology of a point.

This is proved by induction on the dimension of the cube. First, the dimension zero
case is trivial. Next, by writing a k-cube C as a union of two closed half-cubes that
intersect along a midplane, by assuming the result for this midplane, which is a lower-
dimensional cube, and by invoking the Mayer–Vietoris sequence, we find that the
theorem is true for a given embedding of C if and only if it is true for the embeddings
of the two half-cubes.

Each of these half-cubes we may in turn cut in two, along hyperplanes parallel
to the first cut; then we may do the same to the four resulting quarter cubes; and so
on. A simple diagram chase and an application of the continuity property of singular
homology show that the theorem holds for the embedding of C if and only if it holds
for the embeddings of all

⋂
j C j , where C0 = C and where C j is one of the halves

that is obtained by bisecting C j−1, as above. But
⋂

j C j is a cube of lower dimension,
so the induction hypothesis applies, and the proof is complete.

Novodvorskii’s theorem may be proved in essentially the same way, using a com-
bination of Mayer–Vietoris and continuity in K -theory (meaning compatibility with
direct limits).1

To begin, the key instance of the theorem, to which all others may be reduced, is
that of the Banach algebra B(X) that is associated to a polynomially convex compact
set X ⊆ C

n , and is constructed by completing the algebra of polynomial functions on
X in the uniform norm. The Gelfand transform in this case is the inclusion of B(X)

into the algebra C(X) of all continuous functions.

1 See also [9, Section 7.5], where essentially the same point about the role of the Mayer–Vietoris property
in the proof of the Oka principle is made in more categorical language.
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The main task is to establish a K -theory Mayer–Vietoris sequence for the B(X)-
algebras, leading to commuting diagrams of the form

· · · K0(B(X1 ∩ X2)) K1(B(X1 ∪ X2)) K1(B(X1)⊕ B(X2)) · · ·

· · · K0(C(X1 ∩ X2)) K1(C(X1 ∪ X2)) K1(C(X1)⊕C(X2)) · · ·

Complex analysis enters here. Then, with the Mayer–Vietoris sequence in hand, the
proof of Novodvorskii’s theorem is by induction on the dimension of X , using repeated
divisions of X by hyperplanes and an eventual direct limit argument.

More than once the Oka principle has been suggested as a possible starting point
for new approaches to the Baum–Connes conjecture in the K -theory of group C∗-
algebras [5]; see for example [2]. Those ideas have not yet advanced very far, but it
was with possible noncommutative generalizations in mind that we have written this
exposition.

2 TheMayer–Vietoris property

In this section we shall gather some results aboutMayer–Vietoris sequences in Banach
algebra K -theory. Most are easily derived from foundational properties of K -theory
such as the six-term exact sequence, and so on. Generally we shall simply state these
results. An exception is Theorem 2.7, which is more substantial and less well known.

We begin by recalling some facts about mapping cones of Banach algebra mor-
phisms and double mapping cones of pairs of Banach algebra morphisms.

Definition 2.1 Let ϕ : A → B be a morphism of Banach algebras.2 The mapping cone
MC(ϕ) is the Banach algebra

MC(ϕ) = {
(a, f ) ∈ A⊕C([0, 1], B) : ϕ(a) = f (0) and f (1) = 0

}
.

If we define the suspension of the Banach algebra B by

S(B) = { f ∈ C([0, 1], B) : f (0) = 0 = f (1)},

then there are Banach algebra morphisms

S(B)
ι−→ MC(ϕ)

π−→ A

2 Throughout the paper, our morphisms are required to be continuous, but not contractive unless otherwise
advertised. In particular, for us, an isomorphism of Banach algebras is not required to be isometric.
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given by inclusion and projection, and they induce a six-term mapping cone exact
sequence in K -theory

K0(MC(ϕ))
π∗

K0(A)
ϕ∗

K0(B)

ι∗

K1(B)

ι∗

K1(A)
ϕ∗ K1(MC(ϕ)).

π∗

(2.1)

This uses the suspension and periodicity isomorphisms

K0(S(B)) ∼= K1(B) and K1(S(B)) ∼= K0(B).

Definition 2.2 Given a diagram of Banach algebras and Banach algebra morphisms
of the form

B

ϕ

C
ψ

D

(2.2)

we define the double mapping cone DMC(ϕ, ψ) to be the Banach algebra

DMC(ϕ, ψ) = {
(b, f , c) ∈ B ⊕C([0, 1], D)⊕C

: ϕ(b) = f (0) and ψ(c) = f (1)
}
.

There is an obvious surjective morphism from DMC(ϕ, ψ) to B ⊕C , and its kernel is
S(D). Associated to the surjection is therefore a K -theory six-term exact sequence

K0(DMC(ϕ, ψ)) K0(B)⊕ K0(C) K0(D)

K1(D) K1(B)⊕ K1(C) K1(DMC(ϕ, ψ))

(2.3)

that is analogous to (2.1).

Definition 2.3 Suppose the diagram (2.2) is part of a commuting square of Banach
algebras and Banach algebra morphisms

A
β

γ

B

ϕ

C
ψ

D.

(2.4)
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The associated canonical morphism is

A → DMC(ϕ, ψ)

a 
→ (β(a), fa, γ (a)),

where fa : [0, 1] → B is the constant function with value ϕ(β(a)) = ψ(γ (a)). We
shall say that (2.4) has the Mayer–Vietoris property if the canonical morphism induces
an isomorphism in K -theory.

If the diagram (2.4) has the Mayer–Vietoris property, then by substituting K∗(A) for
K∗(DMC(ϕ, ψ)) in the six-term sequence (2.3) we obtain the six-termMayer–Vietoris
exact sequence

K0(A) K0(B)⊕ K0(C) K0(D)

K1(D) K1(B)⊕ K1(C) K1(A).

This explains the terminology in Definition 2.3.
We shall need two simple facts about the Mayer–Vietoris property related to a

commuting cube of Banach algebras and Banach algebra morphisms

A1 B1

A2 B2

C1 D1

C2 D2

(2.5)

Lemma 2.4 If either the front face or the back face in (2.5) has the Mayer–Vietoris
property, and if all the morphisms from the back face to the front face induce isomor-
phisms in K -theory, then the opposite face has the Mayer–Vietoris property, too.

Lemma 2.5 If both the front face and the back face in (2.5) have the Mayer–Vietoris
property, then the square composed of the mapping cone algebras for the morphisms
from the back face to the front face has the Mayer–Vietoris property, too.

Definition 2.6 The diagram (2.4) has the pullback property, or is a pullback square,
if the morphism of Banach algebras

A → {(b, c) ∈ B ⊕C : ϕ(b) = ψ(c)}

defined by the formula a 
→ (β(a), γ (a)) is an isomorphism.
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Ourobjective for the remainder of this section is to prove aMayer–Vietoris theoremdue
to Bost, following Cartan [7] and Douady [8]. The formulation below has not appeared
in print, but compare [6, Section 5.4], where the essential ideas are presented.

It is simple to prove that if the commuting square (2.4) is a pullback square, and
if ϕ[B] = D, or if ψ[C] = D, then the square has the Mayer–Vietoris property (for
instance, the algebraic argument in [17, Sections 1–3] is easily adapted to topological
K -theory). The following theorem is a generalization:

Theorem 2.7 If the commuting square of Banach algebras (2.4) is a pullback square,
if

ϕ[B] + ψ[C] = D,

and if one or both of the morphisms ϕ or ψ has dense image, then the square has the
Mayer–Vietoris property.

The proof of Theorem 2.7 involves the definition of K -theory in terms of homotopy
groups, some elementary ideas from homotopy theory, and an implicit function theo-
rem in the Banach space context.

To begin, recall that the K -theory groups of A may be defined by K j (A) =
lim−→ π j−1(GLn(A)) for j > 0, using the standard embeddings on GLn(A) into

GLn+1(A) [17, Section 3].3

Next, recall that a continuous map f : E → B between two topological spaces is a
(Serre) fibration if f satisfies the homotopy lifting property [21, Chapter 1, Section 7]
for maps from a cube of any finite dimension into B. If we fix a basepoint e ∈ E , set
b = f (e), and form the fiber F = f −1[b], then associated to a Serre fibration there is
an exact sequence of homotopy groups

· · · → π j (F, e) → π j (E, e) → π j (B, b) → π j−1(F, e) → π j−1(E, e) → · · ·

If A → A/J is a surjective morphism of Banach algebras, then the inducedmorphism

GLn(A) → GLn(A/J )

is a Serre fibration for every n, with fiber GLn(J ). The K -theory exact sequence

· · · → K j+1(J ) → K j+1(A) → K j+1(A/J ) → K j (J ) → K j (A) → · · ·

is the associated exact sequence of homotopy groups (or rather the direct limit over n
of these). The sequence is 2-periodic in j , leading to the six-term sequencesmentioned
earlier.

The above leads immediately to the following sufficient condition for a commuting
square (2.4) with the pullback property to have the Mayer–Vietoris property (the
pullback property allows us to identifyGLn(A)with the fiber of themap in the lemma):

3 As usual, when a Banach algebra A does not have a multiplicative identity element, we embed A as an
ideal in any Banach algebra Ã that does have one, and then define GLn(A) to be the kernel of the morphism
GLn( Ã) → GLn( Ã/A).
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Lemma 2.8 Suppose given a commuting square of Banach algebras (2.4) with the
pullback property. If for every n the continuous map

π : GLn(B)×GLn(C) → GLn(D) (2.6)

given by the formula

π(S, T ) 
→ ϕ(S)−1ψ(T )

is a Serre fibration, then the square has the Mayer–Vietoris property.

Thanks to this, to prove Theorem 2.7 it suffices to prove the following result:

Theorem 2.9 Under the hypotheses of Theorem 2.7, the continuous map π in (2.6) is
a Serre fibration.

The main step in the proof of Theorem 2.9 will be as follows:

Lemma 2.10 Under the hypotheses of Theorem 2.7, the continuous map π in (2.6) has
a local right inverse, defined in a neighborhood U of the identity in GLn(D). That is,
there is a continuous map

σ : U → GLn(B)×GLn(C)

for which the composition π ◦σ is the inclusion of U into GLn(D).

Proof of Theorem 2.9, assuming Lemma 2.10 The group

G = GLn(B)×GLn(C)

acts on itself by right multiplication, and on GLn(D) by the formula

R ·(S, T ) = ϕ(S)−1Rψ(T ).

The map π in (2.6) is G-equivariant, so its image is a union of G-orbits. This, together
with the assumption that one or both ofϕ orψ has dense image and a computation using
the exponential map, shows that each G-orbit in GLn(D) is dense in each component
of GLn(D) that it intersects.

The existence of the local section σ implies that the image of π is open. Now, the
complement of the image is also a union of G-orbits, and so from the above it follows
that the image is a union of components in GLn(D).

The fiber of π over the identity element of GLn(D) is

GLn(A) ∼= {
(β(Q), γ (Q)) ∈ GLn(B)×GLn(C) : Q ∈ GLn(A)

}
.

If U ⊆ GLn(D) is the open set on which the section σ is defined, and if for (S, T ) ∈
π−1[U ] we set

θ(S, T ) = σ(π(S, T )) · (S−1, T −1),
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using multiplication in GLn(B)×GLn(C), then in fact θ(S, T ) ∈ GLn(A) and the
formula

(S, T ) 
→ (θ(S, T ), π(S, T ))

defines a GLn(A)-equivariant homeomorphism from π−1[U ] to GLn(A)×U (for the
obvious left GLn(A)-actions). So π−1[U ] is a trivial principal GLn(A)-bundle over
U . Using right G-equivariance, we find that the map

π : GLn(B)×GLn(C) → GLn(D)

is a principal GLn(A)-bundle over its image, an open and closed subset of GLn(D).
Since principal bundles are fibrations the proof is complete. �

We shall construct the local right inverse in Lemma 2.10 using a version of the implicit
function theorem, the essential part of which is the following simple nonlinear version
of the openmapping theorem (wehave simplified the original statement by specializing
it).

Theorem 2.11 ([14, Theorem 1]) Let X and Y be Banach spaces and let F be a
continuous function from a neighborhood of 0 ∈ X into Y such that F(0) = 0. If there
exists a surjective continuous linear operator L : X → Y such that

∥
∥F(x1) − F(x2) − L(x1 − x2)

∥
∥ = O

(
(‖x1‖+‖x2‖)‖x1 − x2‖

)
,

then the element 0 ∈ Y lies in the interior of the image of F.

In order to construct a local section from this result we use the well-known Bartle–
Graves theorem:

Theorem 2.12 (See [4, Theorem 4]) Every continuous and surjective linear operator
between Banach spaces has a continuous (but not necessarily linear) right inverse,
which may be chosen so that it maps bounded subsets of Y to bounded subsets of X.

Corollary 2.13 Let X and Y be Banach spaces and let F be a continuous function
from a neighborhood of 0 ∈ X into Y such that F(0) = 0. If there exists a surjective
continuous linear operator L : X → Y such that

∥
∥F(x1) − F(x2) − L(x1 − x2)

∥
∥ = O

(
(‖x1‖+‖x2‖)‖x1 − x2‖

)
,

then F has a continuous local right-inverse, defined on some neighborhood of 0 ∈ Y.

Proof Denote by Cb(Y,X) the Banach space of bounded, continuous functions from
Y to X (the norm is the supremum norm associated to the norm on X) and define
Cb(Y,Y) similarly. Apply Theorem 2.11 to the continuous map

F : Cb(Y,X) → Cb(Y,Y)
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given by composition with F (it is defined on the open subset of Cb(Y,X) consisting
of functions from Y to the open subset ofX on which F is defined) and the continuous
linear operator

L : Cb(Y,X) → Cb(Y,Y)

given by composition with L (it follows from the Bartle–Graves theorem that L is
surjective). �

Proof of Lemma 2.10 Define a continuous map from a neighborhood of zero in the
Banach space Mn(B)⊕ Mn(C) into the Banach space Mn(D) by the formula

F(S, T ) = log
(
exp(−ϕ(S)) exp(ψ(T ))

)
.

Define a bounded linear map from Mn(B)⊕ Mn(C) into Mn(D) by

L(S, T ) = ψ(T ) − ϕ(S).

It is surjective, thanks to the hypotheses of Theorem 2.7. Now apply Corollary 2.13.
Compose the local right inverse that it provides with the logarithm and exponential
maps on GLn(D) and Mn(B)⊕ Mn(C) respectively, to obtain a local right inverse to
the map (2.6). �


3 The Gelfand theorem and continuity

A famous theorem ofGelfand asserts that an element of a commutative Banach algebra
with unit is invertible if and only if its Gelfand transform is invertible [10, Chapter
I, Section 4]. This has the following consequence for K -theory, which we shall use
several times:

Theorem 3.1 If a morphism α : A → B of commutative unital Banach algebras has
dense image and induces a homeomorphism

α∗ : Spec(B)
∼=−−→ Spec(A),

then it induces an isomorphism on K -theory.

Of course this is an immediate consequence of Novodvorskii’s theorem, but the dense
image assumption allows for a simple, direct proof, based on the followingwell-known
result:

Theorem 3.2 (Karoubi density [16, Exercise II.6.15]) Let α : A → B be an injective
morphism of Banach algebras whose image is dense in B. If for every n

α[GLn(A)] = Mn(α[A]) ∩ GLn(B),
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then the group homomorphism α : GLn(A) → GLn(B) induces isomorphisms
π j (GLn(A)) → π j (GLn(B)) for every j and every n, and so in particular α induces
an isomorphism in K -theory.

Proof of Theorem 3.1 By adjoining units, if necessary, wemay assume that A and B are
unital. The hypothesis in the theorem implies that everymultiplicative linear functional
on A vanishes on kernel(α), since it factors (uniquely) through α. It follows that the
induced morphism

ᾱ : A/kernel(α) → B

also satisfies the hypothesis of the theorem.
If f ∈ A/kernel(α) and if the element ᾱ( f ) ∈ B is invertible, then by this hypoth-

esis and by Gelfand’s theorem, f is invertible in A/kernel(α). Using determinants,
we find that if [ fi j ] is an n×n matrix over A/kernel(α), and if for which [ᾱ( fi j )] is an
invertible matrix over B, then [ fi j ] is itself invertible. So the Karoubi density theorem
applies to ᾱ.

Now if a ∈ kernel(α), then Gelfand’s theorem implies that 1+ a is invertible in A.
Using

(1 + a)(1 + a′) = 1 + a + a′ + aa′

we find that the inverse has the form 1+ a′ with a′ ∈ kernel(α). Using determinants,
again, we find that

GLn(kernel(α)) = I + Mn(kernel(α)).

So GLn(kernel(α)) is contractible for all n, and hence

K∗(kernel(α)) = 0.

The theorem follows from this, the six-term exact sequence in K -theory, and the fact
that ᾱ induces an isomorphism in K -theory. �

Next, suppose given a diagram of Banach algebras and Banach algebra morphisms

A1
α1−−→ A2

α2−−→ A3
α3−−→ · · ·

in which the the norm of each morphism αr is 1, or less. The algebraic vector space
direct limit is in fact an associative algebra, and the formula

‖a‖ = lim
s→∞ ‖αs+r ,r (a)‖As+r ,

where a ∈ Ar and where αs+r ,r is the composition of the morphisms in the diagram
from Ar to As+r , defines a submultiplicative seminorm. Forming the quotient by the
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ideal of elementswith seminorm0, and then completing,we obtain theBanach algebra
direct limit, which we shall write as lim−→ Ar .

There are canonical morphisms from each Ar into the direct limit. We shall make
frequent use of the following well-known continuity property of K -theory, which may
be proved using a variation of the Karoubi density theorem.

Theorem 3.3 The induced morphism

lim−→ K∗(Ar ) → K∗(lim−→ Ar )

is an isomorphism of abelian groups.

A modest first application is the reduction of Novodvorskii’s theorem to the case of
(topologically) finitely generated Banach algebras.

Corollary 3.4 If the Gelfand transform induces an isomorphism in K -theory for every
unital and finitely generated commutative Banach algebra, then it induces an iso-
morphism in K -theory for every separable (in the sense of general topology) unital
commutative Banach algebra.

Proof A general unital commutative Banach algebra is the direct limit of its finitely
generated subalgebras, and the Gelfand spectrum is the inverse limit of the Gelfand
spectra of those subalgebras. Since the canonical morphism

lim−→ C(Xα) → C(lim←− Xα)

is an isomorphism of Banach algebras, the continuity property of K -theory completes
the proof. �

The obvious modification of the results of this section to handle general directed sys-
tems reduces Novodvorskii’s theorem for not-necessarily-separable Banach algebras
to the finitely generated case, too.

Finally, we shall take advantage of the compatibility of theMayer–Vietoris property
with direct limits.

Lemma 3.5 Suppose given a sequence of commuting cubes

An Bn

An+1 Bn+1

Cn Dn

Cn+1 Dn+1
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with the morphisms from the back to front faces of norm 1 or less, giving rise to a
commuting square

lim−→ An lim−→ Bn

lim−→ Cn lim−→ Dn .

If all the back faces of the cubes have the Mayer–Vietoris property, then so does the
direct limit square.

4 The Banach algebra of a polynomially convex compact set

Definition 4.1 A compact subset X of Cn is polynomially convex if it includes all
points w ∈ C

n with the property that

|p(w)| � max{|p(z)| : z ∈ X}

for every complex (holomorphic) polynomial function p on Cn .

See for example Hormander’s monograph [15]. Every compact convex set is poly-
nomially convex. The polynomially convex compact subsets of C are the compact
subsets with connected complements, but in higher dimensions there is a much richer
set of possibilities. For instance every compact subset of Rn is polynomially convex
in Cn .

Definition 4.2 Let X be a compact subset ofCn . We shall denote by B(X) the closure
in the supremum norm on X of the algebra of complex polynomial functions on X .

Obviously B(X) is a commutative Banach algebra under pointwise multiplication.
Each point z ∈ X determines a multiplicative linear functional εz : B(X) → C by
evaluation at z, and it is easily checked that if X is polynomially convex, then these
are the only multiplicative linear functionals. Hence:

Lemma 4.3 Let X be a polynomially convex compact subset of Cn. The map z 
→ εz

is a homeomorphism from X onto the Gelfand spectrum of B(X).

Remark 4.4 In general, the Gelfand spectrum of B(X) is the polynomial convex hull
of X—the smallest polynomially convex set containing X .

Thanks to Lemma 4.3, if X is polynomially convex, then the Gelfand transform for
B(X) may be identified with the inclusion of B(X) into the algebra C(X) of all
continuous complex-valued functions on X , and hence the Novodvorskii theorem for
B(X) states the following:

Theorem 4.5 Let X be a polynomially convex compact subset of Cn. The inclusion of
B(X) into C(X) induces an isomorphism in K -theory.
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We shall prove this result in the next two sections. Actually the full Novodvorskii
theorem follows easily from Theorem 4.5:

Theorem 4.6 If the Gelfand transform for B(X) induces an isomorphism in K -theory
for every compact and polynomially convex subset X ⊆ C

n and every n, then the
Gelfand transform induces an isomorphism in K -theory for every commutative unital
Banach algebra.

Proof If A is finitely generated by a1, . . . , an , so that the polynomials in these elements
are dense in A, then themorphismϕ 
→ (ϕ(a1), . . . , ϕ(an)) is a homeomorphism from
the Gelfand spectrum of A onto a polynomially convex compact subset X of Cn .

The Gelfand transform maps A to a dense subalgebra of B(X), and it follows from
Theorem 3.1 that the induced map on K -theory is an isomorphism. So assuming that
the Gelfand transform induces an isomorphism in K -theory for B(X), it does so for
A as well. The result now follows from Theorem 3.4. �

Remark 4.7 Novodvorskii actually formulated his theorem in [18] only for semi-
simple algebras—those for which the Gelfand transform is injective. Theorem 4.6
shows that the more general result that we stated in Sect. 1 easily reduces to this case.

5 TheMayer–Vietoris property for polynomially convex compact sets

The purpose of this section is to prove the following result:

Theorem 5.1 Let X ⊆ C
n be a polynomially convex compact set. Let α be an R-linear

functional on C
n and let c ∈ R. If

X ′ = {z ∈ X : α(z) � c} and X ′′ = {z ∈ X : α(z) � c},

then the commuting square

B(X) B(X ′)

B(X ′′) B(X ′ ∩ X ′′)

of restriction morphisms has the Mayer–Vietoris property.

We shall prove the theorem through a sequence of reductions and approximations,
most of them involving the following concept:

Definition 5.2 A compact set X ⊆ C
n is a polynomial polyhedron if there are complex

polynomial functions p1, . . . , pk on C
n such that

X = {z ∈ C
n : |p1(z)|, . . . , |pk(z)| � 1}.
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Lemma 5.3 (See for example [15, Lemma 2.7.4]) Let X ⊆ C
n be a polynomially

convex compact set and let U ⊆ C
n be an open set containing X. There is a compact

polynomial polyhedron L such that X ⊆ L ⊆ U.

Corollary 5.4 Every polynomially convex compact set is the intersection of a nested
sequence of compact polynomial polyhedra.

It follows from the corollary and from Lemma 3.5 that the special case of Theorem 5.1
in which X is a compact polynomial polyhedron implies the general case. So from now
on we shall assume that X is a compact polynomial polyhedron, as in Definition 5.2.

Choose a positive number R so that

(z1, . . . , zn) ∈ X �⇒ |z1|, . . . , |zn| � R

and form the compact polydisk

W = {
(z, w) ∈ C

n+k : |z1|, . . . , |zn| � R and |w1|, . . . , |wk | � 1
}
.

Let

Z = {
(z, w) ∈ W : p1(z) = w1, . . . , pk(z) = wk

}

and define a polynomial map μ : Cn → C
n+k by

μ(z) = (z, p1(z), . . . , pk(z)).

Observe that μ restricts to a homeomorphism from X to Z . The inverse of this home-
omorphism is given by the coordinate projection from C

n+k to C
n . Since μ and this

inverse are both polynomial maps, it is evident that composition with μ gives an
isomorphism of Banach algebras

μ∗ : B(Z)
∼=−−→ B(X).

As we shall see, the advantage of doing so is that Z is defined, as a subset of the
polydisk W , by polynomial equations, namely the equations q j (z, w) = 0, where

q j (z, w) = p j (z) − w j , j = 1, . . . , k.

We shall need sets Wm , Xm and Zm , m = 1, 2, . . . , that approximate W , X and Z
from the outside. For m � 1 we define

Wm = {
(z, w) ∈ C

n+k : |z1|, . . . , |zn| � R + 1/m and |w1|, . . . , |wk | � 1+ 1/m
}

and then define

Zm = {
(z, w) ∈ Wm : q1(z, w) = · · · = qk(z, w) = 0

}
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and

Xm = {z ∈ C
n : μ(z) ∈ Zm}.

Each Xm+1 lies in the interior of Xm , and X is the intersection of all Xm . Similarly
for Wm and Zm . We also define

X ′
m = {z ∈ Xm : α(z) � c + 1/m}

and

X ′′
m = {z ∈ Xm : α(z) � c − 1/m},

and similarly for W ′
m , W ′′

m , Z ′
m and Z ′′

m , using the same bounds on α(z). Once more
we obtain nested decreasing sequences of compact sets, with each set contained in the
interior of its predecessor.

The following result is relevant to the Mayer–Vietoris property in view of Theo-
rem 2.7.

Proposition 5.5 For every m,

Image
[
B(W ′

m) →, B(W ′
m ∩ W ′′

m)
]

+ Image
[
B(W ′′

m)→ B(W ′
m ∩ W ′′

m)
] = B(W ′

m ∩ W ′′
m),

where the morphisms are restrictions.

In the proofwe shall use the fact that B(W ′
m ∩ W ′′

m) includes a dense family of functions
that extend holomorphically to a neighborhood of W ′

m ∩ W ′′
m (namely the polynomial

functions, for instance), and that every function that is holomorphic in a neighborhood
of W ′

m or W ′′
m restricts to a function in B(W ′

m) or B(W ′′
m), respectively. The latter is a

general fact about polynomially compact convex sets (the Oka–Weil theorem) but it
may be proved directly in the present simple case.

Proof It suffices to prove the following approximation result. There is a constantC > 0
such that if f is holomorphic in a neighborhood of W ′

m ∩ W ′′
m , then there are functions

f ′ ∈ B(W ′
m) and f ′′ ∈ B(W ′′

m) such that

f |W ′
m∩W ′′

m
= f ′|W ′

m∩W ′′
m

+ f ′′|W ′
m∩W ′′

m
(5.1)

and

‖ f ′‖W ′
m
, ‖ f ′′‖W ′′

m
� C‖ f ‖W ′

m∩W ′′
m
. (5.2)

Let σ : R → R be a smooth function such that ϕ ≡ 0 in a neighborhood
of (−∞, c − 1/m] and ϕ ≡ 1 in a neighborhood of [c + 1/m,∞). Then define
ϕ : Cn+k → R by ϕ(z) = σ(α(z)).
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Choose linear coordinates v1, . . . , vn+k on C
n+k with α(z) = Re(v1), and given

f as above, let V be a compact polydisk that includes Wm within its interior,
that is small enough that f is defined in a neighborhood of V ′ ∩ V ′′ = V ∩
{c − 1/m � α(z) � c + 1/m}, and that is small enough that

∥
∥
∥
∥

∂ϕ

∂v̄1
· f

∥
∥
∥
∥

V
� 2

∥
∥
∥
∥

∂ϕ

∂v̄1
· f

∥
∥
∥
∥

Wm

. (5.3)

Note that even though f is only defined near V ′ ∩ V ′′, its product with ∂ϕ/∂v̄1 extends
by zero to a smooth function in a neighborhood of V . Next, let D be the projection of
V onto the first complex coordinate (it is a compact disk in C). Then define

g(v1, . . . , vn+k) = 1

π

∫

D

(
∂ϕ

∂v̄1
· f

)

(v, v2, . . . , vn+k)(v − v1)
−1 dλ(v),

where the integration is with respect to the Lebesguemeasure on the disk. The function
g is defined and smooth on the interior of V , it is holomorphic there in the variables
v2, . . . , vn+k , and

∂g

∂v̄1
= ∂ϕ

∂v̄1
· f

(see for example [15, Theorem 1.2.2]). Moreover since (v − v1)
−1 is uniformly inte-

grable as a function of v ∈ D as v1 ranges over D,

‖g‖Wm � constant1 ·
∥
∥
∥

∂ϕ

∂v̄1
· f

∥
∥
∥

V
� constant2 ·

∥
∥
∥
∥

∂ϕ

∂v̄1

∥
∥
∥
∥

V
· ‖ f ‖W ′

m∩W ′′
m
,

where the second inequality uses (5.3) and both constants are independent of f .
Now set

f ′ = ϕ f − g and f ′′ = (1− ϕ) f + g.

These are holomorphic in neighborhoods of W ′
m and W ′′

m respectively (here the func-
tions ϕ f and (1− ϕ) f are extended by zero to W ′

m and W ′′
m , respectively) and they

satisfy (5.1) and (5.2), so the proof is complete. �

Unfortunately it is not easy to prove the counterpart of Proposition 5.5 for the spaces
Xm or Zm . Instead we shall replace the Banach algebras B(Xm), etc, with others that
are easier to handle.

Definition 5.6 Let V be a polynomially convex compact subset of Cn+k , and let Y be
the subset of V on which all the polynomials q1, . . . qk vanish. We shall write

I (V , Y ) = { f ∈ B(V ) : f |Y = 0}
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and

A(V , Y ) = B(V )/I (V , Y ).

The ideal I (V , Y ) in B(V ) is the kernel of the obvious restriction morphism
res : B(V )→ B(Y ).

Lemma 5.7 The associated morphism of Banach algebras

res : A(V , Y ) → B(Y )

induces an isomorphism in K -theory.

Proof The Gelfand spectrum of A(V , Y ) is mapped to the Gelfand spectrum of B(V )

by composition with the quotient morphism

B(V ) → A(V , Y ).

This map of spectra is injective and continuous, and so it is a homeomorphism onto
its image.

Now the image of the spectrum of A(V , Y ) in the spectrum of B(V ) is precisely the
set of multiplicative linear functionals on B(V ) that vanish on I (V , Y ). The evaluation
functionals εy : B(V ) → C associated to points y ∈ Y obviously vanish on I (V , Y ).
On the other hand, the evaluations at points v ∈ V \Y do not vanish on I (V , Y ), since
for every such, at least one of the polynomials q j vanishes on Y but not on v. It follows
that the image in V of the Gelfand spectrum of A(V , Y ) is Y .

The morphism res : A(V , Y ) → B(Y ) is therefore spectrum-preserving. Since it
also has dense range (consider polynomials), Theorem 3.1 applies. �

This leads us to analyze the commuting the square

A(Wm, Zm) A(W ′
m, Z ′

m)

A(W ′′
m, Z ′′

m) A(W ′
m ∩ W ′′

m, Z ′
m ∩ Z ′′

m).

Since the notation used above is a bit cumbersome, we shall simplify it and write the
square as

A(Zm) A(Z ′
m)

A(Z ′′
m) A(Z ′

m ∩ Z ′′
m),

which should not cause any confusion.
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Lemma 5.8

Image
[
A(Z ′

m)→ A(Z ′
m ∩ Z ′′

m)
]

+ Image
[
A(Z ′′

m)→ A(Z ′
m ∩ Z ′′

m)
] = A(Z ′

m ∩ Z ′′
m).

Proof This is an immediate consequence of Proposition 5.5, since the A-algebras are
quotients of their B-algebra counterparts. �

Now form the Banach algebra

A(Z ′
m, Z ′′

m) = {
( f ′, f ′′) ∈ A(Z ′

m)×A(Z ′′
m) : f ′|Z ′

m∩Z ′′
m

= f ′′
Z ′

m∩Z ′′
m

}
.

Proposition 5.9 The commuting square

A(Z ′
m, Z ′′

m) A(Z ′
m)

A(Z ′′
m) A(Z ′

m ∩ Z ′′
m)

has the Mayer–Vietoris property.

Proof By construction, this is a pullback square. So the result follows fromLemma 5.8
and Theorem 2.7. �

To move from this to a proof of Theorem 5.1, we shall need to address the difference
between A(Z ′

m, Z ′′
m) and A(Zm), and for this purpose we shall use the following fact.

The proof will be evident to those familiar with coherent sheaves; we shall give an
alternative proof from [1, Lemma 2] in an appendix.

Lemma 5.10 Let Y be the interior of a compact polynomial polyhedron in C
n and let

V = {
(z, w) ∈ Y ×C

k : |w1|, . . . , |wk | � 1
}

Let p1, . . . , pk be polynomial functions on C
n, and define polynomial functions

q1, . . . , qk on C
n+k by q j (z, w) = p j (z)−w j . If f is a holomorphic function defined

in a neighborhood of V , and if f vanishes on the common zero set of q1, . . . , qk in
that neighborhood, then there are holomorphic functions h1, . . . , hk defined near V
such that

f = q1h1 + · · · + qkhk .

There is a natural morphism from A(Zm) to A(Z ′
m, Z ′′

m), induced from restriction of
functions on Wm to W ′

m and W ′′
m . The following proposition supplies a near-inverse.
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Lemma 5.11 For each m there is a Banach algebra morphism

ϕm : A(Z ′
m, Z ′′

m) → A(Zm+1)

for which the diagram

A(Z ′
m, Z ′′

m)

ϕm

A(Zm)

A(Z ′
m+1, Z ′′

m+1) A(Zm+1)

is commutative (the unlabeled morphisms are all induced from restriction of functions).

Proof Let ([ f ′], [ f ′′]) be an element of A(Z ′
m, Z ′′

m), where the square brackets denote
equivalence classes of functions on W ′

m and W ′′
m . It follows from the definitions that

the difference f ′ − f ′′, which is defined on W ′
m ∩ W ′′

m , vanishes on the mutual zero-set
of the polynomials q1, . . . , qk .

Let us apply Lemma 5.10. By fitting a suitable compact polynomial polyhedron
into the interior of W ′

m ∩ W ′′
m whose interior, in turn, includes W ′

m+1 ∩ W ′′
m+1, we

find that there are holomorphic functions h1, . . . , hk defined on a neighborhood of
W ′

m+1 ∩ W ′′
m+1 such that

f ′ − f ′′ = q1h1 + · · · + qkhk

on this neighborhood. In particular, the identity holds on W ′
m+1 ∩ W ′′

m+1.
By applying Proposition 5.5, to a polydisk that is slightly larger than Wm+1, we find

that for each j there are functions h′
j ∈ B(W ′

m+1) and h′′
j ∈ B(W ′′

m+1), holomorphic
in neighborhoods of W ′

m+1 and W ′′
m+1, respectively, such that

h j = h′
j − h′′

j

in a neighborhood of W ′
m+1 ∩ W ′′

m+1.
Now define functions g′ ∈ B(W ′

m+1) and g′′ ∈ B(W ′′
m+1) by

g′ = f ′ − (q1h′
1 + · · · + qkh′

k) and g′′ = f ′′ − (q1h′′
1 + · · · + qkh′′

k ).

These are actually defined and holomorphic in neighborhoods of W ′
m+1 and W ′′

m+1,
respectively, and they agree on a neighborhood of the intersection. So they determine
a function g that is holomorphic in a neighborhood of Wm+1, and hence a function g
in B(Wm+1).

The associated element [g] ∈ A(Zm+1) is characterized by the fact that g is equal
to f ′ on Z ′

m+1, and is equal to the f ′′ on Z ′′
m+1. This is because the morphism from

A(Zm+1) into B(Zm+1) is injective. So [g] depends only on ([ f ′], [ f ′′]).
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To complete the proof, the formula

ϕm : ([ f ′], [ f ′′]) 
−→ [g]

defines an algebra homomorphism from A(Z ′
m, Z ′′

m) to A(Zm+1) that fits into the com-
muting diagram in the statement of the proposition. It follows from the closed graph
theorem that ϕm is in addition continuous, and hence is a Banach algebra morphism,
as required. �

Proof of Theorem 5.1 Form the commuting cube

lim−→ A(Zm)
ρ

lim−→ A(Z ′
m)

lim−→ A(Z ′
m, Z ′′

m) lim−→ A(Z ′
m)

lim−→ A(Z ′′
m) lim−→ A(Z ′

m ∩ Z ′′
m)

lim−→ A(Z ′′
m) lim−→ A(Z ′

m ∩ Z ′′
m)

with allmorphisms identities or induced from restrictions. It follows fromTheorem3.3
and Lemma 5.11 that the morphism labelled ρ induces an isomorphism in K -theory.
In addition, it follows from Lemma 3.5 and Proposition 5.9 that the front face has
the Mayer–Vietoris property. Therefore it follows from Lemma 2.4 that the back face
does too.

Now consider a second commuting cube:

lim−→ A(Zm) lim−→ A(Z ′
m)

lim−→ B(Zm) lim−→ B(Z ′
m)

lim−→ A(Z ′′
m) lim−→ A(Z ′

m ∩ Z ′′
m)

lim−→ B(Z ′′
m) lim−→ B(Z ′

m ∩ Z ′′
m)

It follows from Theorem 3.3 and Lemma 5.7 that the morphisms from the back face to
the front induce isomorphisms in K -theory. So the front face has the Mayer–Vietoris
property. But the front face is isomorphic to the commuting square in Theorem 5.1.�


6 Proof of the Novodvorskii theorem for B(X)

In this section we shall prove Theorem 4.5, that if X is a compact and polynomially
convex subset ofCn , then the inclusion of B(X) into C(X) induces an isomorphism in
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K -theory. As we already observed, this leads to a complete proof of the Novodvorskii
theorem.

Definition 6.1 If X is a polynomially convex compact subset of Cn , then we shall
denote by D(X) the mapping cone from Definition 2.1 for the inclusion of B(X) into
C(X).

We shall prove Theorem 4.5 by showing that K∗(D(X)) = 0.

Lemma 6.2 Let X ⊆ C
n be a polynomially convex compact set. Let α be an R-linear

functional on C
n and let c ∈ R. If

X ′ = {z ∈ X : α(z) � c} and X ′′ = {z ∈ X : α(z) � c},

then the commuting square

D(X) D(X ′)

D(X ′′) D(X ′ ∩ X ′′)

of restriction morphisms has the Mayer–Vietoris property.

Proof The same diagram with either B(X)-type algebras or C(X)-type algebras has
the Mayer–Vietoris property. So the lemma follows immediately from Lemma 2.5. �

Corollary 6.3 Let X = X ′ ∪ X ′′, as above. If K∗(D(X ′ ∩ X ′′)) = 0, then the morphism

K∗(D(X)) → K∗(D(X ′))⊕ K∗(D(X ′′))

induced from restriction is injective.

Lemma 6.4 If {Xr : r = 1, 2, . . . } is a decreasing sequence of polynomially convex
compact subsets of Cn, then the morphism

lim−→ K∗(D(Xr )) → K∗
(
D

(⋂
r Xr

))

induced from restriction to the intersection is an isomorphism.

Proof This follows from themapping cone six-term exact sequence, the same property
for the B(X)-algebras and the C(X)-algebras, and the five lemma. �

Theorem 6.5 If X is any compact and polynomially convex subset of C

n, then
K∗(D(X)) = 0.

Proof First, the case when X is a point is trivial. Starting from this, we prove the
theorem by induction, as follows. Suppose that K∗(D(X)) = 0 for all compact poly-
nomially convex sets X ⊆ C

n that may be included within anR-affine subspace ofCn

123



J. Bradd, N. Higson

of dimension at most k − 1, where k > 0. Now suppose that X may be included in an
R-affine subspace S ⊆ C

n of dimension k, and suppose for the sake of a contradiction
that K∗(D(X)) �= 0.

Choose an R-linear functional α on Cn that is non-constant on S, let a and b be the
minimal andmaximal values of α on X , and let c = (a+b)/2. Form the corresponding
decomposition X = X ′ ∪ X ′′ as in the statement of Lemma 6.2 above.

Let x ∈ K∗(D(X)) be a nonzero element. By Corollary 6.3, we may choose one
of X ′ or X ′′, call it X1, so that the image of x in K∗(D(X1)) is nonzero.

Note that the difference between the maximum and minimum values of α on X1
is (b − a)/2. By repeating the argument starting from X1, we obtain X2 ⊆ X1 such
that the image of x in K∗(D(X2)) is nonzero, and such that the difference between
the maximum and minimum values of α on X2 is (b − a)/4.

Continuing, there is a decreasing sequence {Xr } of compact polynomially convex
subsets of X such that the image of x in K∗(D(Xr )) is nonzero and such that the
difference between the maximum and minimum values of α on Xr is (b − a)/2r .

But now let Y be the intersection of the Xr . Then α is constant on Y , so that Y
may be included in anR-affine subspace of dimension k − 1, while by Lemma 6.4 the
image of x in K∗(D(Y )) is nonzero. A contradiction. �


7 Appendix: A proof of Lemma 5.10

We start from the following result of Oka. The proof may be found in many texts; see
for instance [15, Section 2.7].

Theorem 7.1 Let p be a polynomial function on C
n, and define

μ : Cn → C
n+1

by μ(z) = (z, p(z)). Let Y be a compact polynomial polyhedron in C
n, let

V = {(z, w) ∈ Y×C : |w| � 1},

and let

X = {z ∈ Y : |p(z)| � 1}.

Each function that is holomorphic in a neighborhood of X may be written in the form

f (z) = h(μ(z))

near X, where h is a function that is holomorphic in a neighborhood of V .

Proof of Lemma 5.10 Suppose first that k = 1. The function q = q1 has nowhere
vanishing gradient. So in a neighborhood of any point it may be chosen as the first
coordinate in a local coordinate system. In that neighborhood there certainly exists a
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holomorphic solution to the equation f = qh. These local solutions patch together to
define a solution throughout a neighborhood of V .

Now suppose that the k −1 case of the lemma has been proved (for all Y ). Let f be
a holomorphic function near V that vanishes on the common zero set of q1, . . . , qk ,
as in the statement of the lemma. Define

V ′ = {
(z, w) ∈ Y ′×C

k−1 : |w1|, . . . , |wk−1| � 1
}
,

where

Y ′ = {z ∈ Y : |pk(z)| � 1},

and define f ′ in a neighborhood of V ′ ⊆ C
n+k−1 by

f ′(z, w1, . . . , wk−1) = f (z, w1, . . . , wk−1, pk(z)).

It vanishes on the common zero set of the polynomials

q ′
j (z, w1, . . . , wk−1) = p j (z) − w j , j = 1, . . . , k − 1.

So by the k − 1 case of the lemma it may be written as

f ′ = q ′
1h′

1 + · · · + q ′
k−1h′

k−1,

for some h′
1, . . . h′

k−1 that are holomorphic near V ′. By Oka’s theorem there are
h1, . . . , hk−1 holomorphic near V such that

h j (z, w1, . . . , wk−1, pk(z)) = h′
j (z, w1, . . . , wk−1)

for j = 1, . . . , k − 1 and for (z, w1, . . . , wk−1) near V ′. But then the function

f − (q1h1 + · · · + qk−1hk−1)

is holomorphic in a neighborhood of V and vanishes on the zero set of qk . So by the
k = 1 case of the lemma, there is a function hk that is holomorphic in a neighborhood
of V such that

f − (q1h1 + · · · + qk−1hk−1) = qkhk,

near V , as required. �

Acknowledgements It is a pleasure to thank Jonathan Block and Jean-Benoît Bost for valuable discussions
on the topic of this paper.

123



J. Bradd, N. Higson

References

1. Allan, G.R.: A note on the holomorphic functional calculus in a Banach algebra. Proc. Amer. Math.
Soc. 22(1), 77–81 (1969)

2. Aparicio,M.P.G., Julg, P., Valette, A.: TheBaum–Connes conjecture: an extended survey. In: Chamsed-
dine, A., et al. (eds.) Advances in Noncommutative Geometry, pp. 127–244. Springer, Cham (2020)

3. Arens, R.: To what extent does the space of maximal ideals determine the algebras? In: Function
Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), pp. 164–168. Scott-
Foresman, Chicago (1966)

4. Bartle, R.G., Graves, L.M.: Mappings between function spaces. Trans. Amer. Math. Soc. 72(3), 400–
413 (1952)

5. Baum, P., Connes, A., Higson, N.: Classifying space for proper actions and K -theory of group C∗-
algebras. In: Doran, R.S. (ed.) C∗-Algebras: 1943–1993. Contemporary Mathematics, vol. 167, pp.
240–291. American Mathematical Society, Providence (1994)

6. Bost, J.-B.: Principe d’Oka, K -théorie et systèmes dynamiques non commutatifs. Invent.Math. 101(2),
261–333 (1990)

7. Cartan, H.: Sur les matrices holomorphes de n variables complexes. J. Math. Pures Appl. 19, 1–26
(1940)

8. Douady, A.: Le problème des modules pour les sous-espaces analytiques compacts d’un espace ana-
lytique donné. Ann. Inst. Fourier (Grenoble) 16(fasc. 1), 1–95 (1966)
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