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Abstract

Incorporation of hydrogen as OH™ in olivine has been the focus of intense interest in mineral
sciences due to its importance for mantle dynamics. Generally, two hydration mechanisms
associated with the M and Si sites have been identified in olivine. It is thus important to
understand the effects of each of these hydration mechanisms on the high-pressure structural
evolution of olivine. Here, we synthesized hydrous Mg-rich olivine (Foos; 1538 ppm water) at
low Si0O; activity, and identified that the incorporated hydrogens are predominantly associated
with the Si sites. HP single-crystal X-ray diffraction (SCXRD) experiments on this olivine
revealed a hydration-induced compression behavior change at ~20 GPa by softening of the Si-O
bonds. This anomaly in the compression anisotropy could be expected in cold subducting slabs

where a large volume of metastable olivine exists and could contribute to the seismic anisotropy
of the slabs.

1. Introduction

Mg-rich olivine is the dominant mineral of the Earth’s upper mantle and constitutes up to ~60%
of mantle rock by volume, based on a pyrolite model (Ita & Stixrude, 1992). Understanding the
stability and elasticity of olivine at elevated pressure and temperature is important for modeling
the structure of the Earth’s interior. Under normal mantle geotherm, the a—p—y phase
transitions of Mg-rich olivine have been considered to be responsible for the seismic
discontinuities at depths around 410 and 520 km (Ringwood, 1991). In subduction zones, the
internal cold conditions of subducting slabs allow olivine to metastably survive to the transition
zone, and the anticrack faulting associated with the metastable phase transitions has been
proposed as a possible mechanism of deep Earthquake generation (Kirby et al., 1991; Kirby et
al., 1996).

Due to its geological importance, Mg-rich olivine has been extensively studied at high-pressure
conditions (e.g., Hazen, 1976; Kudoh & Takéuchi, 1985; Will et al., 1986; Andrault et al., 1995;
Duffy et al., 1995; Downs et al., 1996; Zha et al., 1996; Zha et al., 1998; Rouquette et al., 2008;
Nestola et al., 2011; Finkelstein et al., 2014; Mao et al., 2015; Santamaria-Perez et al., 2016). At
ambient temperature, Mg-rich olivine metastably retains its structure to ~50 GPa under quasi-
hydrostatic compression (Finkelstein et al., 2014; Santamaria-Perez et al., 2016). HP single-
crystal X-ray diffraction (SCXRD) experiments revealed that Mg-endmember olivine (Fo-
forsterite; Mg>S104) undergoes two HP phase transitions Fo—Foll and Foll-Folll at ~50 and
~58 GPa, respectively (Finkelstein et al., 2014). Utilizing HP Raman spectroscopy (RS), similar
phase transitions have also been confirmed in natural San Carlos olivine (Fogo) at similar
transition pressures (Santamaria-Perez et al., 2016). The compression of olivine is continuous
until the phase transition, as indicated by the variations of its unit cell parameters and frequencies
of Raman vibrational modes with increasing pressure (Hazen, 1976; Downs et al., 1996; Liu &
Li, 2006; Nestola et al., 2011; Finkelstein et al., 2014; Santamaria-Perez et al., 2016).

Another topic that has generated broad interest in geophysics and geochemistry is the
incorporation of hydrogen into olivine. Natural mantle-derived olivine typically contains tens to
hundreds of ppm of water by weight (e.g., Bell & Rossman, 1992; Beran & Libowitzky, 2006),
however, HP experiments have suggested that the water solubility in olivine is controlled by
several parameters including pressure, temperature, oxygen and water fugacity, and silica
activity (e.g., Kohlstedt et al., 1996; Mosenfelder et al., 2006; Smyth et al., 2006) and the
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maximum can be as high as 8900 ppm (Smyth et al., 2006). Generally, there are two different
groups of the mechanism by which hydrogen is incorporated in the olivine structure. Group I is
associated with the Si site, and group II is dominated by the M site (Kohlstedt et al., 1996;
Lemaire et al., 2004; Berry et al., 2005; Berry et al., 2007; Walker et al., 2007). In a Fourier
transform infrared spectroscopy (FTIR) spectrum, absorption bands of group I are located
between 3450 and 3650 cm ™!, while those of group II are at 3200-3450 cm ™' (Kohlstedt et al.,
1996; Berry et al., 2005; Berry et al., 2007). The incorporation of water can have dramatic
effects on the stability and elasticity of minerals (e.g., Litasov et al., 2005; Jacobsen, 2006; Frost
& Dolejs, 2007; Fan et al., 2017). As a result, a number of studies have been conducted on the
effects of water on the phase transition and elasticity of olivine (e.g., Jacobsen et al., 2008; Mao
et al., 2010; Chen et al., 2011; Ghosh et al., 2013; Manghnani et al., 2013).

Water decreases the pressure of the a—f phase transition of olivine (Frost & Dolejs, 2007) and
increases the pressure of the post-spinel transition (Litasov et al., 2005; Ghosh et al., 2013).
Water also significantly decreases the bulk modulus of olivine (e.g., Jacobsen, 2006; Jacobsen et
al., 2008; Manghnani et al., 2013; Mao & Li, 2016). Compared to anhydrous olivine (Mao et al.,
1970; Liu, 1975; Durben et al., 1993; Liu & Mernagh, 1993; Andrault et al., 1995; Downs et al.,
1996; Zhang, 1998; Rouquette et al., 2008; Finkelstein et al., 2014; Zhang, Hu, et al., 2017,
Zhang et al., 2019), HP studies on the metastable phase transitions in hydrous olivine are
relatively limited (Manghnani et al., 2013). At ambient temperature, HP powder X-ray
diffraction (PXRD) experiments revealed that Foo7 containing 4883 ppm water retains its
structure to ~34 GPa without any discontinuity in the compression of unit cell parameters,
however, HP RS detected subtle discontinuous changes around 20 GPa (Manghnani et al., 2013).

HP SCXRD is a powerful tool for investigating the pressure-induced changes in the crystal
structure and provides the most reliable unit cell parameter data to determine the equation of
state (Angel et al., 2000; Dubrovinsky et al., 2010). With HP SCXRD, one can determine the
effects of pressure on the compression of the individual coordination polyhedra, and thus
examine the effects of incorporation of hydrogen associated with cationic vacancies. As a result,
HP SCXRD can help us understand the mechanism of minor hydration in olivine better. Here,
we report results of HP SCXRD experiments with synthetic hydrous Mg-rich olivine (Foos) to
determine the effects of minor hydration associated with the Si sites on the structural evolution
under compression.

2. Materials and Methods

2.1. Synthesis of olivine

The olivine used in this study was synthesized by the method of HP solid-solid reactions using a
multi-anvil pressure apparatus at the Institute of Geochemistry, Chinese Academy of Sciences,
Guiyang, China. The sample assembly was similar to the authors’ previous study (Xu et al.,
2018). In order to obtain hydrous olivine, we used an omphacite + brucite (Mg(OH),) mixture as
the starting material. Several natural omphacite crystals with grain sizes of ~200-400 um, were
selected from a crushed large eclogitic omphacite. The brucite powder was used as the water
source surrounding omphacite crystals in the experimental platinum capsule. We used a Ni foil
as the oxygen buffer in the synthesis (Rauch & Keppler, 2002; Xu et al., 2018). This sample
assembly allowed olivine to grow at low Si0O; activity. The sample was first compressed to 4.0
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GPa over 35 minutes and then heated at 1200 °C for 30 minutes. After a run duration of 24 hours,
the olivine crystals (100-400 um size) were obtained from the quenched run product.

2.2. Chemical Analysis

Selected crystals with sizes larger than ~100 um were used for electron microprobe analysis
(EMPA). Analyses were conducted with a JEOL Hyperprobe JXA-8500F microscope, operating
ata 15 kV accelerating voltage, 20 nA beam current, and the beam size of 10 pm. The empirical
chemical formula was calculated as Mgi.904:9Ni0.089+9F€0.015:3510.9914104 based on the EMPA data
(Table S1). The composition of the sample expressed in end-member molar percentages is
FogsLies, where Lie is liebenbergite (Lie, Ni2SiO4).

Analysis of water in the olivine was conducted by unpolarized FTIR measurements. We obtained
two crystals without any inclusions or fractures from the quenched products for the FTIR
analysis, the grain size was ~400 um. The experimental details can be seen in Xu et al. (2018).
The obtained FTIR spectra (Figure 1) were very similar to previous studies on synthetic olivine
(Lemaire et al., 2004; Smyth et al., 2006) and indicated that the sample has four strong peaks at
3612, 3577, 3565 and 3555 cm™ !, and a weaker peak at 3477 cm™!. These peaks can be
associated with the Si site (Kohlstedt et al., 1996; Lemaire et al., 2004; Berry et al., 2005; Berry
et al., 2007; Walker et al., 2007; Xue et al., 2017). Additionally, a broad peak located between
3100 and 3400 cm ™! confirmed that the 2H* for M?" substitution also takes place in the synthetic
olivine, but its extent is rather insignificant, relative to that at Si sites (Lemaire et al., 2004; Xue
et al., 2017). The water content was estimated from integrated absorbances using the calibration
of Bell et al. (2003), and the result was 1538 ppm.

2.3. Single-crystal X-ray diffraction

An olivine crystal with size ca. 40 X 35 X 7 um was selected from the crushed FTIR sample,
which was used for the SCXRD experiments. The sample was loaded into a short symmetric
diamond anvil cell (DAC) with two Type-I diamonds (300 um culets) mounted on Boehler-
Almax-type WC seats, and this sample assembly allowed a £32° opening angle. A rhenium
gasket was indented to a thickness of ~40 um by the diamond anvils, and a 180-pum sample
chamber was cut using a laser drilling following indentation. Gold powder was loaded as
pressure marker (Fei et al., 2007). A small ruby sphere was loaded as the pressure indicator for
the gas-loading with neon (Rivers et al., 2008).

Ambient and HP SCXRD experiments were carried out with a six-circle diffractometer at the
experimental station 13-BM-C of the Advanced Photon Source, Argonne National Laboratory.
The experimental details can be seen in previous studies (Xu, Zhang, Dera, et al., 2017; Zhang,
Dera, et al., 2017). In order to obtain precise and sufficiet data to constrain the unit cell evolution
with pressure, we collected the diffraction data at 40 different pressures over 0-29.9 GPa (Table
S2), and at least 150 reflections (Figure 2) were used to refine the unit cell parameters at each
pressure point. In addition, we collected diffraction data with increased coverage/more
reflections (at least 550) with multiple detector positions at 11 different pressures for full
structure determination (Table S4). The refinement of the unit cell parameters and the data
reduction were completed with the GSE_ ADA/RSV software package (Dera et al., 2013).
Structure refinements at various pressures were carried out with SHELXL, Olex2, and VESTA
software packages (Sheldrick, 2008; Dolomanov et al., 2009; Momma & Izumi, 2011). We



Hydrous Olivine 2019

employed a previously reported olivine structure (Nord et al., 1982) as the initial model of the
structure refinement. In the olivine structure (M1M2TOQs), there are two non-equivalent
octahedral sites M1 and M2. According to the trend established by previous studies regarding the
site preferences of transition metal ions (Burns, 1970; Nord et al., 1982), we set the M1 site as
fully occupied by Mg and Ni, while M2 and T sites were fully occupied by Mg and Fe, and Si,
respectively. Isotropic atomic displacement parameters (ADP) were used for all atoms, and
atoms sharing the same site were assigned the same fractional coordinates and ADPs. Unit cell
parameters, refinement details, atomic coordinates and ADPs, as well as calculated polyhedral
parameters, including bong length and volume are listed in Tables S2-6.

3. Results and discussion

3.1. Equation of state

Upon compression, olivine retained its initial structure to the maximum pressure of 29.9(2) GPa.
The unit-cell volume of olivine decreased continuously with increasing pressure over the
experimental range of 0-29.9 GPa, as shown in Figure 3(a). The pressure-volume (P-V) data
were fit without any constraints, using a third-order Birch-Murnaghan (BM3) equation of state
(EoS) (Birch, 1947) using the program EoSFit7c (Angel et al., 2014). The obtained EoS
parameters, including zero-P unit-cell volume (o), isothermal bulk modulus (K7v), and its
pressure derivative (K'm) were Vo= 290.46(7) A3, Kro=127.0(9) GPa, and K'ro = 4.46(8),
respectively. The results indicate that the P-J data can be well described by the BM3 EoS, as
shown in Figure 3(a) and the F-fz plot (Figure 4(a); (Angel, 2000)).

The unit cell parameters a, b and ¢ were also fit using a parameterized form of the BM3 EoS
(Angel, 2000), the obtained axial moduli and compressibilities are shown in Table S7. From the
fitted curves and F&-f£ plots, we found that a and b can be well described by the BM3 EoS
(Figure3(b-c) and (Figure 4(b-c)). However, the fitting of the lattice parameter ¢ was different.
The compression of ¢ exhibited softening after 20.8(1) GPa (Figure 3(d)), which was particularly
pronounced in the Fe-f¢ plot (Figure 4(d)). This softening phenomenon indicated that there is a
change in the compression mechanism of hydrous olivine at 20.8 GPa.

Therefore, we also performed BM3 EoS fitting of data between 0 and 20.8 GPa. The results
showed that the fitting of @ and b within the data range of 0-20.8 GPa is highly consistent with
that of fitting the whole range data (Figure 3(b-c) and (Figure 4(b-c)). The obtained axial moduli
and compressibilities were also in good agreement with those derived from the whole data fitting
(Table S7). However, the obtained P-c curve from fitting of the 0-20.8 GPa data significantly
deviated the data above 20.8 GPa (Figure 4(d)), and the axial moduli and compressibility were
drastically different from that derived from the whole data fitting (Table S7). From the
perspective of unit-cell volume, the change of compression mechanism did not significantly
affect the compression of olivine, as shown in Figures 3(a) and 4(a), and Table S7.

We compared our EoS results to previous HP SCXRD studies on Fo, Fa (fayalite; Fe2Si0O4) and
Lie olivine. Previous studies reported K70 = 123-132 GPa, and K'70= 3.8-4.9 for anhydrous
forsterite (Hazen, 1976; Kudoh & Takéuchi, 1985; Downs et al., 1996; Zha et al., 1998; Zhang,
1998; Finkelstein et al., 2014); K7o= 163(3) GPa, and K'ro = 4.5(3) for liebenbergite (Zhang et
al., 2019); Kro=113-136 GPa, and K'ro= 4.0-4.9 for fayalite (Hazen, 1977; Zhang, 1998;
Speziale et al., 2004; Zhang, Hu, et al., 2017). Our results (K7o= 127.0(9) GPa, and K'r =
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4.46(8)) were generally consistent with those for forsterite, which may imply that such minor
water content and Ni have negligible effects on the bulk modulus. Additionally, previous studies
on anhydrous Fo-Fa-Lie olivine did not report any changes in the compression mechanism.
However, HP RS on hydrous olivine (Hushur et al., 2009; Manghnani et al., 2013) detected
subtle discontinuous changes around 20 GPa, which is very close to the pressure (20.8 GPa)
where we detected the softening in this study. Therefore, we attributed the c-axis softening after
20.8 GPa to the incorporation of water. It should be noted that the previous HP PXD study on
hydrous olivine (Manghnani et al., 2013) did not observe the softening, which may indicate that
HP PXD is not sufficiently sensitive to detect such a minor change in the compression
mechanism.

3.1. Compressional evolution of coordination polyhedra geometry

To better understand the reasons for the change of the compression mechanism, we analyzed
polyhedral evolution with pressure using the structural refinements at HP. As in previous HP
studies on olivine and other mantle major minerals such as pyroxene (Zhang et al., 1997; Periotto
et al., 2012; Xu, Zhang, Fan, et al., 2017), in hydrous olivine the SiO4 tetrahedron was much
more incompressible than the M10s and M20Os octahedra (Figure 5). As shown in Figure 5,
polyhedral volumes of M10s and M2Og underwent nearly linear compression, accompanying
the decrease of the unit-cell volume. However, the SiO4 tetrahedron shrank nonlinearly and
exhibited softening, particularly after 20 GPa. This softening was also indicated by the evolution
of polyhedral bond lengths with pressure (Figure 6). As shown in Figure 6, the M-O bonds (M1-
O and M2-0) shortened normally, just like those in anhydrous olivine and other mantle silicates
like pyroxene (Zhang et al., 1997; Nestola et al., 2006; McCarthy et al., 2008; Posner et al.,
2014; Zhang et al., 2016; Zhang, Hu, et al., 2017; Zhang et al., 2019). However, in the SiO4
tetrahedron, the Si-O1 and Si-O3 bonds exhibited different degree of softening with increasing
pressure, while the Si-O2 shrank normally as the M-O bonds did. The softening of the SiO4
tetrahedron has not been reported by previous HP SCXRD studies on anhydrous olivine (Zhang,
Hu, et al., 2017; Zhang et al., 2019). Posner et al. (2014) observed an increase of tetrahedral
compression in pyroxene (kosmochlor) at 31 GPa, which was attributed to the stagnant kinking
of the tetrahedral chain. However, this study represents a different case, as the SiO4 tetrahedra in
olivine structure are isolated and do not form any SiO4 chains as in pyroxene minerals.
Therefore, other reasons have to be responsible for the softening of the SiO4 tetrahedron in
olivine. Here, we attributed the softening to the hydration, as a reconfiguration of hydrogen sites
among the Si vacancies could be induced at high pressure (Yang et al., 2019). Additionally,
water has significant effects on the compression of minerals (e.g., Jacobsen, 2006) and the
Si*"«»4H" substitution has been considered as a major mechanism by which the hydrogen can be
incorporated in olivine (Kohlstedt et al., 1996; Lemaire et al., 2004; Berry et al., 2005; Berry et
al., 2007; Walker et al., 2007; Balan et al., 2017; Xue et al., 2017).

4. Implications
4.1. The consequences of hydrogen incorporation on compressional behavior of olivine
The incorporation of hydrogen in olivine and its effects on the various physical and chemical

properties have long been investigated (e.g., Jacobsen et al., 2008; Mao et al., 2010; Chen et al.,
2011; Ghosh et al., 2013; Manghnani et al., 2013). Vibrational spectroscopy (such as infrared
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spectroscopy) has been mostly employed to qualitatively and quantitatively determine the extent
of incorporation of hydrogen, and the O-H vibrational bands are within the region of 3000-3700
cm'. However, the mechanisms of hydrogen incorporation, as constrained by the locations of
these vibrational bands, have long been controversial. The most significant controversy has been
on which mechanism accounts for the high-frequency O-H bands above 3450 cm™!. Some
previous studies have interpreted these bands in terms of the 2H" for M?* substitution associated
with the M vacancies, based on the cation site occupancies and polyhedral O-O edge lengths
(Kudoh et al., 2006; Smyth et al., 2006; Hushur et al., 2009; Manghnani et al., 2013). However,
other studies have attributed these bands to the 4H" for Si*' substitution associated with the Si
vacancies, on the basis of the compositional effects on the incorporation of water (Matveev et al.,
2001; Berry et al., 2005; Berry et al., 2007; Kovacs et al., 2010).

Recently, combined nuclear magnetic resonance (NMR) and vibrational spectroscopy and first-
principles calculation studies have led to a conclusion that the high-frequency O-H bands above
3450 cm ! in olivine are due to the 4H" for Si*' substitution associated with the Si vacancies,
which is the dominant hydration mechanism in olivine, and the 2H* for M* substitution
associated with the M vacancies is responsible for the low-frequency (< 3400 cm™!) O-H bands
(e.g., Balan et al., 2011; Umemoto et al., 2011; Balan et al., 2017; Xue et al., 2017). In this study,
we synthesized hydrous olivine at low SiO: activity. In our samples, a high possibility of Si-
dominant cationic vacancies could be expected, as indicated by the results of the chemical
analysis (Table S1). Our FTIR spectrum of olivine (Figure 1) had the high-frequency O-H bands
much more pronounced than the low-frequency bands. Therefore, the FTIR results in this study
were consistent with the hydration mechanism associated with the Si.

Our HP SCXRD provide new insights into the consequences of hydrogen incorporation
mechanisms in olivine at high pressure. As presented in the previous section, the polyhedral
compressions of M10s and M20g behave in much the same way as normal in anhydrous olivine,
while the SiOg4 tetrahedron displayed abnormal behavior, associated with softening of Si-O bonds
under compression, as compared to those of anhydrous olivine (Figures 5 and 6). This softening
can be explained by a reconfiguration of hydrogen sites among the Si vacancies, as indicated by
the HP FTIR experiments (Yang et al., 2019). Therefore, the change in the compression
mechanism of hydrous olivine at HP should be taken into account, when considering the physical
properties of olivine in the mantle.

4.2. Hydration effects on the compression behavior of olivine and its HP polymorphs

This study revealed a hydration-induced compression behavior anomaly in olivine. The Si-O
bonds exhibited softening with increasing pressure, which had no significant effects on the bulk
compression of olivine, but caused the significant softening of the c-axis around 20 GPa (Figures
3-4 and 6). Recent studies on the hydration-reduced lattice thermal conductivity of olivine have
suggested that under hydrous conditions, the center of a subducting slab at the transition zone
would be much colder than previously expected (Chang et al., 2017). Therefore, the change in
the compression behavior of hydrous olivine observed in our study may take place in a cold
subducting slab, where a large volume of metastable olivine exists (e.g., Kawakatsu & Yoshioka,
2011). In such cases, the hydration-induced change in the compression anisotropy at ~20 GPa
(Figure 6) could contribute to the seismic anisotropy of the slabs other than the lattice preferred
orientation of olivine (e.g., Jung & Karato, 2001).
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Under warm mantle conditions, olivine transforms to its HP polymorphs wadsleyite and
ringwoodite at the transition zone, which can hold as much as 3 wt.% water (e.g., Kohlstedt et
al., 1996). Therefore, a lot of studies have been conducted on the compression behavior of
wadsleyite and ringwoodite (e.g., Manghnani et al., 2005; Ye et al., 2010; Ye et al., 2012; Chang
et al., 2015). These studies have not reported any changes in the compression behavior of
wadsleyite and ringwoodite. In wadsleyite, the H' is exclusively associated with its octahedral
sites (e.g., Purevjav et al., 2016). However, the incorporation of hydrogen in ringwoodite is
similar to that in olivine, which includes a large portion of hydrogen associated with the Si site
(e.g., Yeetal., 2012; Purevjav et al., 2014). Therefore, a similar softening of the Si-O bonds and
change in the compression anisotropy could be expected, as in the hydrous olivine here. Previous
HP SCXRD/PXRD studies have not detected such changes (e.g., Yusa et al., 2000; Smyth et al.,
2004; Manghnani et al., 2005; Ye et al., 2010; Ye et al., 2012; Chang et al., 2015), which
suggests that the hydrogen incorporation mechanisms of wadsleyite and ringwoodite do not
significantly change with pressure (Yang et al., 2014).

5. Conclusions

With high-quality HP SCXRD data, this study revealed a hydration-induced change in the
compressional behavior of olivine at ~20 GPa, which was caused by the unusual softening of the
Si-O bonds due to the reconfiguration of the hydrogen sites. Combining the FTIR and EMPA
and HP SCXRD data, this study confirmed that the incorporation of hydrogen in olivine at low
Si0; activity condition would be predominantly associated with the Si sites rather than the M
sites. The softening of the Si-O bonds indicates a change in the hydrogen incorporation
mechanism in olivine, which should be taken into account when interpreting hydration effects on
the physical properties of olivine in the mantle. Wadsleyite and ringwoodite, however, do not
show any softening at HP because no significant change in their hydrogen incorporation
mechanism exists with pressure. The hydration-induced compression behavior change of olivine
could exist in a cold subducting slab where a large volume of metastable olivine exists, and
contribute to the seismic anisotropy of the slabs.
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Figure 1. Selected unpolarized FTIR spectra of hydrous olivine synthesized at 4 GPa and 1250
°C. Integration of the spectrum indicates an H>O content of 1538 ppm.
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Figure 2. Single crystal X-ray diffraction patterns of hydrous olivine at (a). P =1.2(1) GPa and
(b) P=29.9(2) GPa.
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Figure 3. Evolution of the lattice parameters as a function of pressure: (a) V, (b) a, (¢) b, and (d)
c. The solid line represents the BM3 EoS fitting based on all data of this study, and the dashed
line is the BM3 EoS-fitting curve based on data of 0-20.8 GPa. The error bars are smaller than
the symbols in this study.

17



~
N

150

Hydrous Olivine 2019

140 |

110

Normalized pressure, /7, (GPa)

100

(b)
280
o v O «a
——0-20.8 GPa | 0} — 0-20.8 GPa
——0-29.9 GPa —— 0-29.9 GPa
20.8-29.9 S0l —20.8-29.9

220

200

0.00

~
(¢}
~

120

110

100

80

Normalized pressure, I, (GPa)

it

60

180 F
0.62 0‘;)4 0.;)6 168.00 O.IOI 0.;)2 0.;)3 0.04
(d)
O b O ¢
— (0-20.8 GPa 140 - — (0-20.8 GPa
— 0-29.9 GPa — (0-29.9 GPa
—20.8-29.9 —20.8-29.9

120

130

0.00

0.02 0.04 0.06

Eulerian strain, f,

110
0.08 0.00

0.02 0.04 0.06

Eulerian strain, f,

Figure 4. Eulerian strain-normalized pressure (Fz-fr) plot (Angel, 2000) of the V' (a) a (b), b (¢),
and ¢ (d) of hydrous olivine. The green solid straight line represents a linear fit of all the Fg-f¢
data, and the red straight line represents a linear fit of the Fz-fr data of 0-20.8 GPa.
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different pressures. The black dotted line represents the y = x line. The error bars were calculated
using the method described by Zhang et al. (2019).
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The solid line represents a BM3 fitting of the whole range data.
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Figure 7. Pressure dependences of axial compressibility (f., f», and f.), and the insert figure shows
the data of the bulk compressibility (fy). The dashed lines represent the anhydrous
forsterite (Finkelstein et al., 2014), and the solid lines show the hydrous olivine data in this
study.
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