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ABSTRACT: Realization of integrated quantum photonics is a key step toward
scalable quantum applications such as quantum computing, sensing, information
processing, and quantum material metrology. To enable practical quantum photonic
systems, several challenges should be addressed, including (i) the realization of
deterministic, bright, and stable single-photon emission operating at THz rates and
at room temperatures, (ii) on-chip integration of efficient single-photon sources, and
(iii) the development of deterministic and scalable nanoassembly of quantum
circuitry elements. In this Perspective, we focus on the emerging field of physics-
informed machine learning (ML) quantum photonics that is envisioned to play a
decisive role in addressing the above challenges. Specifically, three directions of ML-
assisted quantum research are discussed: (i) rapid preselection of single single-
photon sources via ML-assisted quantum measurements, (ii) hybrid ML-
optimization approach for developing efficient quantum circuits elements, and
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(iii) ML-based frameworks for developing novel deterministic assembly of on-chip quantum emitters.

KEYWORDS: quantum photonics, machine learning, deep neural networks, on-chip quantum optics

B y utilizing quantum entanglement, a tremendous increase
in computational efficiency compared to any classical
algorithm can be achieved for problems like number
factorization (exponential speedup), most optimization, and
inverse design problems (quadratic speedup).”” While many
physical realizations of qubits have been proposed, including
trapped ions and atoms,”* superconducting circuits,” quantum
dots,® solid-state color centers,” and photons,8 the latter offer
some unique features. Photons interact very weakly with
transparent optical media and not at all among themselves,
which renders the information they carry robust against
decoherence. However, the photons’ relatively weak inter-
action with matter brings about two major issues in photonic
quantum technologies. First, nondeterministic logical oper-
ations with photons using linear optical quantum gates put
enormous overheads on the required infrastructure and
severely limit the operation bandwidth of photonic quantum
information processing systems, especially when the gate
success rates are low. Second, single photon sources proposed
so far, which utilize both quantum emitters and nonlinear
media, have not yet provided fast and deterministic streams of
indistinguishable photons at room temperature. The single-
photon rates in quantum emitters are limited by the
spontaneous emission lifetime, while the nonlinear sources
fail to produce the single-photons deterministically. Addressing
these issues is even more challenging when multiphoton states
are required. First, the nondeterministic or slow single-photon
emission limits the speed with which such states can be
prepared. Second, the time required for quantum correlation
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measurements and, in particular, the multiphoton quantum
state tomography scale very unfavorably with the complexity of
the photon state. There is a clear demand for single-photon
emitters (SPEs) capable of producing indistinguishable
photons and entangled photon states at room temperature
and at high emission rates. Most importantly, large-scale
quantum circuitry integration and prototyping requires (i)
novel rapid characterization techniques for the selection of
suitable quantum emitters out of large numbers of potential
candidates and (ii) efficient integration of the SPEs into an on-
chip environment.

Machine learning (ML) algorithms have already shown great
potential for addressing the main bottlenecks in computer
vision,” natural language processing,]0 speech recognition,]1
and other tasks across materials science,'” chemistry,l3 laser
physics,"* and microscopy.”” Recently, ML techniques have
been used for the fine-tuning parameters of the semiconductor
quantum devices,'”'” as well as quantum measurement
optimization.'® Similarly, applying advanced ML algorithms
to conventional methods in quantum photonics could address
the fundamental limitations such as long characterization/read-
out times, inefficient assembly, and quantum emitter perform-
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Quantum measurement and metrology

© Estimation of purity of quantum emission
© Rapid spin state read-out

ML algorithms:
oClassical machine learning classification algorithms
(logistic regression, tree based models, k-NN etc.)

Quantum device design optimization

o Optimization of on-chip and free-space meta-devices for
quantum applications
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Figure 1. Application of ML techniques in quantum photonics. Different quantum measurements and metrology tasks can be formulated as
classification or regression problems. Based on the nature of the problem and available data set properties, different ML- and CNN-based
classification/regression models can be applied. The choice of the model is dictated by the nature of the problem and required accuracy. Yet
another direction where ML techniques can be used is optimization of on-chip and free-space meta-devices for quantum photonic applications. The
discriminative CNN’s and generative networks can be adapted for advanced multiparametric and shape/topology optimization of the meta-device
designs. Active, reinforcement learning, as well as Bayesian inference algorithms, has been shown to be a promising route for automatization of
quantum experiments. Such an approach can be used for the optimization of existing experimental techniques and the development of novel

approaches.

ance, as well as help to unlock new physics and application
spaces. There are different venues within quantum photonics,
where ML techniques have great potential. Figure 1 highlights
some of the potential applications with example problems and
corresponding ML algorithms. In this Perspective, we highlight
some of the key directions of the emerging field of ML assisted
quantum photonics. Specifically, we will cover (i) ML
techniques for quantum characterization and metrology
applications, (ii) ML-assisted quantum photonic device design
development, and (iii) active and reinforcement learning for
novel quantum experiment development.

B QUANTUM MEASUREMENT AND METROLOGY

Due to the statistical complexity of the signal, quantum optical
measurements require a long collection time in order to
acquire complete data and to retrieve accurate results.
Conventionally, statistical methods of data postprocessing
play an important role in the interpretation of the results of
quantum measurements. The statistical methods have a long-
standing focus on inference via creation and fitting problem-
specific probability models. Such approaches allow for
computing a quantitative measure of confidence of the
developed mathematical model based on the acquired noisy
data. In contrast, ML frameworks aim at predicting the
outcome of the experiment by using general-purpose learning
algorithms, which allows one to find correlations between the
features of the data sets and the results of the measurement.
Such data-driven formalism makes ML frameworks applicable
to the quantum photonics problems, where conventional
statistical methods fail due to the sparsity of the collected data.
This makes ML techniques a unique enabler for the realization
of the next-generation, rapid, precise, quantum measurement
techniques.

Several quantum material characterization problems can be
formulated as a binary or multiclass classification, which should
yield a prediction of the predefined categorical variable of the
quantum measurement based on the acquired sparse data sets.
For example, an estimation of the quantum purity of a

quantum emission can be formulated as a binary classification
problem within which the class of the emitter (“good”/“bad”)
is determined based on the sparse autocorrelation measure-
ment. Yet, another example is a spin-state read-out of nitrogen-
vacancy centers (NVs) in nanodiamonds, which can be
formulated as a binary classification (I0) and I1) spin states)
with the goal of minimizing the number of performed read-out
cycles. Such problems can be addressed either by classical
machine learning algorithms (logistics regression, tree-based
models, k-nearest neighbors (kNN),"” random forest,”
support vector machine (SVM)>") or via convolutional neural
network (CNN)-based classifiers. Along with classification
problems, quantum measurement and metrology applications
can be formulated as a regression, which targets retrieving the
exact value of the measurement based on the available sparse
information. The ML regression models can be used to retrieve
the measured property of the quantum system to reduce the
measurement time and to maintain the same level of precision.
Such a class of problems can be addressed via various ML-
based regression algorithms (linear,* 10gistic,23 Bayesian
regression models™* support vector machine regression”') or
CNN-based regression models. The choice of the most
suitable ML algorithm for different problems depends on
many factors, such as the physics involved, final measurement
value/outcome, type of available data sets (complexity,
variance, and size), and available computational resources.
The common requirement for most of the ML techniques is to
gather a sufficient amount of data to get reliable predictions.
However, for quantum measurements, this may be excessively
time-consuming, which leads to the constraints of the acquired
data set, such as reduced variance and the number of the
available training sets. Thus, if the size of the training set is
small or has a low variance, the algorithms with low variance,
for example, linear regression, Naive Bayes, or SVM can work
best for such problems. If the training set is sufficiently large
and with a high number of observations in comparison with
the number of features, algorithms with high variance (k-NN,
tree-based models) might be the best choice. Along with ML
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algorithms, the CNN based classification/regression can be
adapted for both aforementioned cases. Such versatility of the
CNN models is assured by the high flexibility of its structure,
which can be adapted for different complexities and variances
of the data set.

Another important aspect of the method preference is the
accuracy of the model and computational resources required
for the training process. Depending on the problem under
consideration, different levels of accuracy of the model might
be acceptable. In the cases when the accuracy requirement is
not so high, it is possible to significantly reduce the
computation time by choosing the less accurate model. A
qualitative comparison between different ML models appli-
cable for quantum measurements and metrology applications is
shown in Figure 2. In most cases, the accuracy and training
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Figure 2. ML model accuracy (fidelity) as a function of required
training time. The choice of the model applicable for quantum
measurement and metrology application is partially dictated by the
required accuracy of the model. Depending on the model complexity
different ML models and neural networks ensures different accuracy
levels and require different model training time.

speed stand on opposite sides; it is necessary to consider trade-
offs between the two when deciding on the choice of the
algorith'r_n. The algorithms such as linear/logistic regression
and Naive Bayes are less resource-heavy (easier to train and
have fast execution), while the models with high degrees of
freedom (SVM, CNN, random forest) ensure higher accuracy,
but demand much longer time to process and train.

Recently, various ML algorithms have been adapted for
quantum optical measurements and metrology problems.*>~°
It has been demonstrated that a combination of the Bayesian
and Hamiltonian learning techniques allows the realization of
magnetic field sensing with extreme sensitivity at room
temperature using nitrogen-vacancy (NV) centers in bulk
diamond®' (Figure 3ab). Specifically, Bayesian-learning-
assisted spin readout can be used for processing a noisy signal
of a single NV center at room temperature and requires on
average only one photon per iteration to detect the magnetic
field. The developed approach ensures sensitivity values of 60
nTs"?, including initialization, readout, and computational
overheads that are comparable to those reported for cryogenic
experiments. Additionally, it has been shown that dephasing
times can be simultaneously estimated and that time-
dependent fields can be dynamically tracked at room

temperature. The Hamiltonian learning technique has also
been applied for the characterization of electron spin states of
NV centers in diamond.** In addition, ML algorithms have
been used for the development of autonomous adaptive
feedback schemes for the quantum measurements.’”*

ML algorithms have recently been applied to address the
issue of reconstruction of quantum states via quantum
tomography”® (Figure 3c,d) where a deep neural network
(DNN) was used to filter noisy experimental data and
reconstruct the original states. Particularly, DNNs can address
the state-preparation-and-measurement mitigation (SPAM)
problem and enhance the fidelity of quantum state
reconstruction by 10% and 27% in comparison with a protocol
that treats the SPAM errors by process tomography and a
SPAM-agnostic protocol, respectively.

The classification of classical and quantum emitters utilizing
ML techniques has also attracted significant attention. For
example, the adaptive linear element (ADALINE) model was
used for the classification of thermal light from coherent light
at the single-photon level (Figure 3e,f).”” The proposed Bayes
classifier reduces the number of measurement runs by several
orders of magnitude in comparison with conventional schemes.

ML algorithms can also dramatically speed up the
characterization of quantum defects and quantum emission
and rapidly classify the quality of the emitters as either “good”
or “bad”.”> They can also determine the exact value of the
quantum emitter specs based on sparse measurements, which
require substantially less integration time (Figure 3g). ML
methods could potentially transform the area of quantum
materials metrology where measuring impurities in high-purity
quantum materials has remained a daunting task that requires
complex techniques. Certain types of fluorescent defects can be
detected using photon autocorrelation experiments. This
technique estimates the number of defects in the focus volume
of the collection optics by assessing the value of the so-called
autocorrelation at zero delay, g (0). This quantity is obtained
by fitting an autocorrelation histogram, which represents the
number of coincidental detection events on two separate
detectors as a function of the delay between the detection
times. A scanning autocorrelation procedure provides a local
defect density map with the precision down to a single
fluorescent object, well above the resolution of the optical
setup. However, for small defect concentrations that are typical
for quantum materials, the data collection is very slow (tens of
minutes) as the speed is proportional to the square of the
emission intensity, which is very weak. Recently, it has been
demonstrated that supervised ML, as well as DNNs, can be
applied to the rapid characterization of quantum emission”
(Figure 3h). Specifically, both the ML models have been
trained to predict the quantum emission purity based on the
sparse 1 s autocorrelation measurement. The conventional
method (Levenberg—Marquardt fitting) requires a complete
data set collected within tens of minutes. The proposed
approach allows determining the class of the NV center in a
nanodiamond (“single”/“not-single”) with more than 95%
accuracy and a 100X speed-up of the measurement time.
Moreover, the classification criteria between “single” and “not-
single” classes can be adjusted without losing any accuracy.

The developed approach can be directly extended to other
types of quantum optical measurements that require multiclass
classification, thus addressing the problem of long collection
time due to the extremely low codetection event probability.
By reshaping the binary classification scheme into the
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Figure 3. (3, b) ML-assisted magnetic field sensing.31 (a) Three-step Bayesian inference based magnetic field learning algorithm: (left) the phase
accumulation time 7; of the current iteration is determined based on the electric field measurement done during the previous iteration; (center)
measurement of the electric field; (right) measured electric field is used to update the prior distribution using Bayesian inference and determine the
phase accumulation time 7;,; for the next iteration. (b) The scaling of the magnetic field sensing precision as a function of the total measurement
time. The density plot and blue dashed line show the precision data of the ML-assisted approach and corresponding fitting. For the comparison, the
scaling of the precision of conventionally used Fast Fourier Transform (FFT) protocol is shown with gray dashed curve. (¢, d) ML-assisted
quantum tomography.” (c) Experimental setup for preparation and measurement of spatial qudit states. In the generation part, single photons
from a heralded source are beam-shaped by a single mode fiber and then transformed by a hologram displayed on a spatial light modulator.
Analogously, the detection part consists of a hologram corresponding to the chosen detection mode, followed by a single mode fiber and a single
photon counter. (d) Results of the experimental state reconstruction with phase-only holograms. State reconstruction uses maximum likelihood
estimation for both raw experimental data (orange) and DNN processed data (blue). (e, f) Coherent vs thermal light classification.®® (e) In the
experiment, a laser beam is divided by a beam splitter (BS) and the two replicas of the beam are used to generate light with Poissonian (coherent)
and super-Poissonian (thermal) statistics. The thermal beam is generated by a rotating ground glass. Neutral density (ND) filters are utilized to
attenuate light to the single-photon level. Coherent and thermal light beams are measured by superconducting nanowire single-photon detectors
(SNSPDs). (f) Flow diagram of the ADALINE neuron used for demonstration of light source identification. (g—i) ML-assisted autocorrelation
function measurement. (g) The florescence from an NV center in an nanodimond is passed through the beam splitter and coupled to the
correlation card (start—stop scheme). The 1 s autocorrelation histograms are passed through CNN for (h) classification of the quantum emitters
(“good”/”bad”) or (i) prediction of the exact value of the g*(0) (regression). (i) The regression scheme can be directly used for rapid super-
resolution imaging utilizing autocorrelation g?(0) map.*® (a, b) Adapted with permission from ref 31. Copyright 2019 American Physical Society.
(¢, d) Adapted with permission from ref 29. Copyright 2020 Nature Research. (e, f) Adapted with permission from ref 30. Copyright 2020
American Institute of Physics. (i) Adapted with permission from ref 36. Copyright 2014 American Physical Society.

regression model, it should be possible to predict the exact
values of the autocorrelation function at zeroth time delays.
This could be used for the realization of rapid super-resolution
microscopy based on autocorrelation measurements®®’’
(Figure 3i). Recently, different variations of super-resolution
techniques based on the photon antibunching effect have been
developed.**™* It has been shown that the resolution of such
methods scales as 1 /\/ n, where n is the order of the
autocorrelation function of the photoluminescence signal.
These techniques have thus far been limited by long image
acquisition times.

ML techniques could also be adapted for rapid measure-
ments of other properties of single-photon emitters. One
direction could be the realization of RT single-shot spin read-
out of solid-state quantum defects. Due to the small magnetic
moments of the spin states, it remains challenging to realize
single-shot readout of individual nuclear spins with high fidelity

at ambient environment. The aforementioned supervised ML
algorithms can be applied for the classification of different spin
states based on the sparse single-shot measurement data.

B QUANTUM META-DEVICE DESIGN OPTIMIZATION

Yet another important application of the ML algorithms in
quantum optics is a ML-assisted optimization of the on-chip
and free-space meta-structures for quantum applications.
Recent progress in the fields of material platforms and
nanofabrication techniques has led to dramatic progress in
communication, computing, biosensing, a field of renewable
energy, and quantum information technologies. Specifically,
artificially engineered materials, like photonic crystals,”
metamaterials,”’ and metasurfaces"*> have been reviled as a
promising route for achieving unparalleled control over the
nm-scale light—matter interaction, which led to the realization
of a wide range of conceptually new applications. Recently
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Figure 4. (a) Plasmonic speed-up.’® The enhancement of the light—matter interaction in plasmonic cavities can shorten emitter’s spontaneous
emission time f,, to beat the dephasing time fg.y, (b, c) Room-T, ultrafast quantum emitter.”* (b) In an all-silver nanopatch antenna (NPA)
structure, a silver nanocube is deposited on a silver substrate, with a nanodiamond, containing an NV center placed in between. (c) Fluorescence
decay curves indicate nanodiamond on a coverslip glass substrate (NV-G) (blue), the NV coupled to a nanopatch antenna (NV-NPA) (red), and
the instrument response function (IRF) (black). (d—f) AAE-assisted optimization framework.®® For quantum device design optimization, the AAE
network is trained on topology optimized designs. The encoder is mapping geometrical features into the compressed design space, while decoder/
generator learns to generate design shapes based on the compressed space coordinates during the training phase. Discriminator forces encoder and
decoder to form the compressed space with a predefined distribution. (e) Dependence of the computational time of the direct TO (black), AAE
+TO-based optimization (blue), and AAE+VGGnet (cyan) on the number of the optimized high-efficiency resonant patterns. For the generation of
100s of designs, direct TO requires 164 h, the AAE+TO refinement approach needs 54 h, while the AAE+VGGnet approach requires only 2 min
for the generation of highly efficient (>80%) 100 designs. The AAE+VGGnet-based approach is 1620X faster than the AAE+TO approach and
more than 4900X faster than direct TO. (f) Comparison of the efficiencies of the obtained best designs for all used optimization methods within
this work. The AAE optimization followed by additional TO refinement ensures the best solution and almost maximum possible result of the
problem under consideration. While the AAE+VGGnet approach ensures tremendous speedup of the optimization search and relatively high
overall device efficiency. Insets show the best antenna designs in the sets for different optimization frameworks. (g, h) Inverse design of diamond
photonics.'** SEM images of the optimized (g) photonic crystal cavity with inverse-designed vertical couplers placed on both ends of the structure
and (h) diamond photonic circuit, which could be used to entangle two emitters inside the two cavities. The circuit consists of a grating coupler,
followed by a waveguide-splitter, and two resonators, the outputs of which are then recombined in a waveguide-splitter and coupled off-chip
through a grating coupler. (a) Adapted with permission from ref 53. Copyright 2019 AAAS. (b, c) Adapted with permission from ref S4. Copyright
2018 ACS. (d—f) Adapted with permission from ref 66. Copyright 2020 AIP Publishing. (g, h) Adapted with permission from ref 111. Copyright
2019 Nature Research.

different aspects of artificially engineered materials have been in quantum photonic integrated circuits is their high optical
adapted for quantum applications. Plasmonics, or metal nano- losses. It has recently been shown that it is possible to
optics, promises to bring new functionalities and interaction circumvent these losses by designing nanostructures where the
regimes to quantum photonics. In particular, nonlinearities at outcoupling of light into a lossless dielectric environment
the single-photon level”™ and ultrabright single-photon happens at the same time scale or faster than the photon
emission” " have been theoretically predicted. Recent experi- absorption®® (Figure 4a). Incorporating plasmonic structures
ments demonstrate that gap-plasmon nanoantennas are prime into quantum photonic systems offers both ultrafast operation
candidates for plasmon-enhanced single-photon emission. "™’ speed (~THz) and room temperature (room-T) performance.
Extremely tight mode confinement in single nm-size cavities A record-high single-photon intensity from room-T single
can even lead to strong interaction with single dipoles at room nitrogen-vacancy (NV) centers in diamond, at 35 million
temperature.”” The challenge of utilizing plasmonic elements photons per second,”® demonstrates the promise of on-
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demand single-photon production in plasmonic nanostructures
(Figure 4b,c). Specifically, a nanopatch antenna, consisting of
an all-crystalline-silver nanocube coupled with an NV center in
a nanodiamond (Figure 4b), has been used for showcasing a
two-orders of magnitude average fluorescence lifetime short-
ening and a ~90-fold increase in the average detected saturated
intensity of the quantum emission (Figure 4c).

In all of the cases of artificially engineered materials, the
structural design plays a central role within the device
development cycle. Incorporating advanced optimization
techniques into the meta-device(nanoantennas, cavities, on-
chip components) will significantly increase the efficiency and
will open the way for the realization of highly multifunctional
quantum photonic meta-structures (Figure 4d). Advanced
optimization could, for example, be used to achieve
deterministic control over the single-photon emission, such
as the emission directionality and rate. This would require
solving a multiconstrained problem by developing approaches
that go well beyond conventional optimization techniques.

Conventionally, there are two major design development
approaches (i) intuition-based, which relies on the prior
knowledge and scientific intuition; (ii) advanced optimization
frameworks, which solve inverse-design problems and lead to
nonintuitive solutions. The first approach typically yields meta-
structures with somewhat simplified geometrical shapes (e.g.,
spheres, cylinders, and core—shell particles) and, hence,
limited performance. Such performance limitations are a
consequence of the reduced number of available degrees of
freedom in the optical response due to the simplistic topology
of the device unit cell. The advanced optimization techniques
ensure much higher efficiency due to the complex shape/
topologies of the optimized structures.While evolutional and
adjoint optimization methods have been widely used in
photonics,”> >’ conventional frameworks are limited by the
computational power requirement, which scales up with the
increasing dimension of the parametric space. Recently,
different ML algorithms have been proposed and applied to
photonic and plasmonic problems.”* " Along with pure
discriminative schemes, in which the DNNs are used to predict
the parameters and optical response of nanoantenna designs
with simplistic §eometries, several hybrid approaches have
been proposed.”””® Specifically, various generative networks
(such as generative adversarial networks (GANs)®* and
autoencoders) have been coupled with a topology optimization
framework and applied for nanophotonic design optimization.
For example, integrating an adjoint topology optimization
method with adversarial autoencoder (AAE), consisting of
three neural networks (encoder, decoder, and discriminator)
allows one to perform optimization of a device with complex
topologies much faster than a conventional adjoint formalism®®
(Figure 4d). In particular, the authors coupled an AAE
network with (i) topology optimization based refinement
(AAE+TO) and (ii) pretrained VGGnet neural network for
generated designs postselection process (AAE+VGGnet). The
performance of the developed optimization frameworks was
benchmarked by optimizing a thermally emitting metasurface
for thermophotovoltaics. The comparison of the developed
frameworks vs the conventional optimization approaches is
shown in Figure 4e,f. Figure 4e shows the computational costs
of direct topology optimization (black), AAE+TO refinement
(blue), and AAE+VGGnet (red) approaches. Direct TO
requires 164 h for the generation of 100 designs, the AAE
+TO refinement approach needs 54 h, while the AAE

+VGGnet approach requires only 2 min. Thus, the developed
AAE+VGGnet approach ensures 1620X speed-up in compar-
ison with the AAE+TO approach and it is more than 4900
times faster than direct TO. The efficiencies of best designs
obtained by optimization of cylindrical design (simple
topology), direct TO, AAE+VGGnet, and AAE+TO are
shown in Figure 4f. The efficiencies are normalized to the
fundamental limit of the TiN thermal emitter. The developed
AAE frameworks ensure almost perfect performance with 98%
(AAE+TO) and 96% (AAE+VGGnet) efficiency, while
conventional frameworks ensure only 92% (direct TO) and
83% (simple design). Such a hybrid scheme opens up a
possibility to perform a physics-driven global optimization
scheme directly inside the compressed design space formed by
the AAE.°” Thus, the resulting optimization targets not only
the complex topology of the antenna but also the best material
composition as well as fabrication parameters. Hybrid ML-
optimization approaches could provide the best-performing
quantum photonic devices in terms of single-photon emission
as well as compatibility with quantum photonic circuitry.
Recently, the fundamental limits for the quantum emission
enhancement in the plasmonic cavity-based SPEs have been
studied.”® It has been shown that by appropriately predesign-
ing the cavity and antenna modes of the gap-plasmon based
SPEs, it is possible to achieve quantum emission rates up to
hundreds of THz and the far-field radiation efficiency close to
unity. This analysis clearly shows that by applying advanced
ML-assisted optimization to the cavity design optimization it is
possible to substantially enhance the room-T quantum
emission.

ML-assisted optimization could also enable on-demand
entangled state generation utilizing spontaneous parametric
down-conversion processes (SPDC) in nonlinear dielectric
structures. Recently, AlGaAs nanoantennas have been used for
the generation of the two-photon quantum states at tele-
communication wavelengths.”” Using the Mie resonances in
nanocylindrical antennas, photon pairs were generated at a rate
of 35 Hz. However, the efficiency of photon pair generation is
low due to nonoptimal resonance mode coupling at the pump,
idler, and signal frequencies. Here, ML-assisted topology
optimization could lead to substantially increased emission
rates by using more complex resonant mode coupling as well as
coherent generation of multiphoton quantum states via
multiplexing several antennas within one metasurface.

The proposed optimization techniques open the way for
novel applications in free-space quantum communication and
sensing protocols, and can also be applied to develop a family
of highly eflicient, multifunctional elements of quantum
photonic circuits and on-chip structures (Figure 4d). Recently,
it has been shown that topology optimization can be efficiently
applied to the development of diamond-based quantum
photonic circuits such as free-space couplers integrated with
photonic crystal cavities and inverse-designed waveguide-
splitters (Figure 4gh).

Yet another important optimization challenge that can be
addressed via ML assisted optimization frameworks is efficient,
on-demand on-chip integration of quantum emitter. The
realization of scalable quantum photonics demands determin-
istic and efficient on-chip integration of an array of quantum
emitters via passive optical elements, such as cavities or
couplers.”””! The choice of a suitable material platform is
another important factor since commonly used silicon is
optically lossy at shorter wavelength range (<1.1 ym), within
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Figure 5. (a—c) Active learning for quantum experiment optimization.'” (a) Working principle of the algorithm. The experiment is initiated via a
random selection of the elements from a basic toolbox. After each iteration, the performance of the developed setup is assessed via calculating the
quantum state and analyzing its properties. The efficiency of the performance is calculated through the comparison with the user defined criteria. If
these criteria are not satisfied, the algorithm starts over again, otherwise. the experiment is simplified and reported, together with all relevant
information for the user. (b) The experimental implementation for a 3-dimensional 3-partite GHZ-state. (c) Comparison of performance with and
without the ability to learn (log-scale). Green shows the average time required in the case where the algorithm can learn useful transformations (the
algorithm was executed 10 times with the same initial conditions). Black shows the time it requires without the ability to learn. The experiments for
3-cyclic and 8-cyclic transformations were not found (within 250 h) without learning, while experiments for 4-cyclic and 6-cyclic rotation were
found three and four times in 250 h, respectively. (d, e) Reinforcement learning for novel quantum experiment designing,zs (e) The reinforcement
algorithm for quantum experiment development is realized via the agent placing the elements from the basic toolbox into the experimental table.
The decision on the next iteration is decided via the rewarding agent if the figure of merit(difference between produced and goal quantum states’
properties) met. (e) Results of learning new experiments. Average length of experiment and success probability in each of the 6 X 10* experiments.
The maximal length of an experiment is L = 8. During the first 5 X 10* experiments an agent is rewarded for obtaining a (3, 3, 2) state, and during
the last 10* experiments, the same agent is rewarded when finding a (3, 3, 3) state. The average success probability shows how probable it is for the
PS agent to find a rewarded state in a given experiment. Solid/dashed lines show simulations of the PS agent that learns how to generate a (3, 3, 3)
state from the beginning with/without prior learning of setups that produce a (3, 3, 2) state. (a—c) Adapted with permission from ref 100.
Copyright 2016 American Physical Society. (d, e) Adapted with permission from ref 26. Copyright 2018 National Academy of Sciences.

which most of the single-photon sources are emitting. Further optimization would maximize the coupling efficiency
Recently, various on-chip coupling methods for single-photon while maintaining the high emission rate by providing optimal
sources have been proposed, including tapered optical design that adiabatically converts the SPP waves into the
fibers”™"° in situ direct laser written’® or electron beam fundamental mode of the waveguide.”*”’

Iith0§raphed,77 diamond,”®*®° 2D material-based,®' ~** dielec-
84l o1

tric or plasmonic structures.”” "* Along with efficient B AUTOMATIZATION OF THE QUANTUM

coupling, the strong enhancement of the spontaneous emission EXPERIMENTS
of quantum emitters should be achieved by these coupling The true limits of the machines in the context of quantum
methods. Recently, it has been shown that a “quantum photonics are much broader than advanced data postprocess-
plasmonic launcher” which consists of nanodiamonds with ing and lies in the domains of active and reinforcement
single NV centers sandwiched between two epitaxial silver learning. Recently, several efforts have been made in the field
films, can dramatically decrease the lifetime of the NV center of designing complex experiments based on the autonomous
(~10 ps) and a couple more than half of the emission into in- learning models. The modern quantum mechanical experi-
plane propagating surface plasmon polaritons (SPPs).”> The ments are used to probe the basic concepts of quantum
proposed architecture offers record-high fluorescence lifetime theories. However, to be able to probe more sophisticated
shortening (~7000%), which is higher than those obtained theoretical concepts, it is necessary to develop much more
previously for dielectric-loaded waveguides,”””* the V-groove complex experimental machinery and measurement techni-
system,”® and metal nanowires.”’ The plasmonic launcher ques. The designing of such complex experiments based on
could pave the way to on-chip integration of single-photon human perception and intuition might be a difficult task.
sources with extreme emission rates and THz operation rates. Recently, it is demonstrated that active learning can be adapted
G https://dx.doi.org/10.1021/acsphotonics.0c00960
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for the development of a quantum experiment with the goal of
creation and manipulation of complex quantum states.'”’
Within develo(?ed frameworks, the quantum phenomena as
teleportation,1 1102 quantum interference,103 quantum era-
sure,'’* and entanglement are considered as the main building
block, and the algorithm has learned to find the best
combination of them for achieving predefined quantum states.
The general flow of the developed framework is shown in
Figure Sa. The machine uses the optical elements from the
toolbox and randomly assembles new experiment setups. The
performance of the developed experimental setup is assessed at
each iteration via calculation of the resulted quantum state, the
transformation, and its properties. The algorithm stops upon
meeting the user-defined criteria. During the search process,
the machine can learn from the experience and can extend the
basic toolbox by including information on the already
developed experimental schemes. Such learning process leads
to significantly speed-up in subsequent discoveries. Developed
framework has been used for (1) realization of high-
dimensional multipartite entanglement, so-called the Green-
berger-Horne-Zeilinger (GHZ) state, and (2) realization of
high-dimensional cyclic rotations of quantum states. Within
example 1, the algorithm has been able to find 51 experiments
in ~150 h, which can be used for the realization of the
quantum states that are entangled differently, including the first
experimentally realizable scheme of a high-dimensional GHZ
state (Figure Sb). Notably, the developed experimental
schemes contain interesting novel “tricks”, which are counter-
intuitive for human perception. For example, one of the four
paths that come directly from the nonlinear crystals has not
been mixed with any other arm (arm D in Figure Sb). Such

asymmetry in the experimental scheme is the result of the fact
that for double SPDC events the two photon pairs may come
from the same crystal. Leaving one path unmixed leads to the
erasure of such double-pair emission events in 4-fold
coincidence detection. Within example 2, authors have applied
a developed framework to the realization of high-dimensional
cyclic rotations, which are special cases of high-dimensional
unitary transformations of quantum states. Such trans-
formations are necessary for the realization of a novel, high-
dimensional quantum information protocols,"’g’39 as well as in
the creation of high-dimensional Bell-states. The basic toolbox
for such problems has been set to polarizing and nonpolarizing
beam splitters, dove prisms, mirrors, holograms, and halfwave
plates. Within this showcase example, authors have demon-
strated the advantages of the algorithm with the learning of the
novel toolbox elements versus the approach without such
ability. The quantities comparison of the required time for
different cases of the cyclic operations is shown in Figure Sc.
Specifically, it has been demonstrated that an approach without
the learning procedure requires up to 250 h of search for
identification of only 3 and 4 experimental schemes for 4-cyclic
and 6-cyclic rotations, while such an approach failed to find
any experimental schemes for 3-cyclic and an 8-cyclic rotation.
For the case of an algorithm with learning ability, it required
<3.5 h to find experimental realization for all of the cyclic
rotation experiments. As a result of the developed machine-
driven framework, several of these experimental proposals have
been implemented successfully in the laboratory'>*~'*” and
have led to the discovery of new quantum techniques.'**'*’
Along with an active learning algorithm, reinforcement
learning has been applied for the development of quantum
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experiments.”® It has been demonstrated that the developed
approach can be used not only for complex experimental
schemes development but also ensures the discovery of
nontrivial experimental techniques. The scheme of the
developed ML algorithm is shown in Figure 5d. As in the
previous approach, the agent has an access to a set of optical
elements (toolbox), with which it generates experiments: It
sequentially places the chosen elements on the (simulated)
table; following the placement of an element, the quantum
state generated by the corresponding setup, i.e., configuration
of optical elements, is analyzed. Depending on the state
estimation the agent receives a reward. Then the agent
proceeds with another iteration by placing additional elements
into the table. Due to the different sources of noise, which
resulted due to imperfection in the alignment of the optical
elements, the total number of elements in the experiment is
limited to a finite number. Along with the efficient
experimental scheme discovery, the agent can extend the
basic toolbox by the learning process and its memory. Such
knowledge helps him to perform more efficient experiment
scheme reconstruction. Within this work, the authors consider
two types of problems: (i) minimization of the elements of the
existing experiments and (ii) development of novel exper-
imental schemes. The first example targeted the development
of the experimental scheme for the creation of a quantum state
with (3,3,2) Schmidt—Rank vector (SRV). To emphasize the
importance of the learning process, the same agent has been
used for the development of the experiment for (3,3,3) SRV
quantum state generation. Here authors probed whether the
agent can leverage on the acquired knowledge during the first
part of the reinforcement learning process and develop a more
complex experimental setup efficiently. Figure Se shows the
main result of the first example. The agent has been able to
minimize the number of used elements to 4 (the smallest
number of the elements for (3,3,2) SRV case) within 3 X 10*
experiments. After the S X 10* experiments, the agent has been
rewarded for the (3,3,3) SRV state generation. As a result, the
experimental schemes with the smallest possible length of the
experiment have been obtained within additional ~3 X 10°
runs. This clearly shows the agent can leverage on the acquired
knowledge during the previous optimization runs.

B DISCUSSION AND CONCLUSION

ML-assisted quantum photonics is an emerging field that offers
a great potential for transforming the field of integrated
quantum photonics. Various machine and deep learning
techniques have been adapted for several important quantum
photonics problems, including efficient data postprocessing,
which allowed for a significant speed-up of quantum optical
measurements and the development of novel quantum
experiments for the realization of complex quantum states
based on the reinforcement learning. While the first
demonstrations of ML-assisted quantum measurement speed-
ups and eflicient device design are very encouraging, the
fundamental limits of ML techniques and artificial intelligence,
in general, are yet to be explored. We envision that ML-assisted
quantum photonics will become crucial for the realization of
scalable integrated quantum circuits, for example, choosing the
right SPEs for the task, design of efficient photonic devices,
deterministic assembly of the quantum circuit elements, and
conducting resource-optimized data analysis. Figure 6a
represents the authors’ vision for machine-driven techniques
in the field of quantum photonics. ML techniques have already

demonstrated their efficiency in predicting the quality of the
quantum emission based on sparse autocorrelation data. We
believe that ML algorithms can be adapted to perform similar
predictions for several key properties of quantum emitters at
once (quantum purity, lifetime, stability, and indistinguish-
ability) based on extremely sparse measurements, which will
significantly speed-up the quantum emitter characterization
and preselection process (Figure 6b). As shown above, the
advanced optimization techniques can be significantly
enhanced via coupling with generative networks. ML-assisted
optimization could play a critical role in the development of
quantum circuits elements, such as efficient couplers and on-
chip devices for efficient quantum states transduction and
transformations (Figure 6c). Neural networks can also enable a
key step in realizing large-scale quantum photonic systems,
namely, in enabling the deterministic assembly of quantum
sources and quantum devices with the nanometer scale
precision (Figure 6d). Recently, it has been shown that an
atomic force microscope (AFM) tip can be used for the
deterministic assembly of plasmonic nanopatch antennas (e.g.,
plasmonic cubes coupled to nanodiamonds) with gap sizes
below 20 nm."'® While the current techniques typically require
manual manipulation, the coupling of the AFM-based
deterministic assembly with a pretrained CNN can uniquely
enable rapid, automated nanoassembly via all-neural-network-
driven AFM machinery (Figure 6d). The CNN can also be
trained to take the AFM scan data or a microscope image as an
input and return the displacement vector needed to operate
(move, pick or place nanoparticle), as an output, such that it
can be used to automatically drive the AFM tip. This approach
will open up entirely new ways for the realization of
automated, large-scale, precise, and rapid deterministic nano-
assembly of quantum sources as well as other on-chip quantum
devices.

We highlighted several promising directions for ML-assisted
quantum photonics that can be adapted for many other
quantum applications. ML-assisted rapid characterization of
quantum emitters could lead to the large-scale integrated
quantum circuits prototyping by speeding up conventional
measurement techniques and offering novel measurement
frameworks. Also, ML-assisted nanodevice optimization
techniques might be adapted to solve the inverse-problems
of quantum device design to develop new types of plasmonic-
assisted SPEs or SPDC based sources of complex entangled
photonic states. Moreover, rapid CNN-based data processing
can help to realize high-precision deterministic assembly of
quantum circuitry elements.
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