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Abstract—In this work, an automatic detection algorithm for hypertrophic cardiomyopathy (HCM) is presented. Of
particular interest is the algorithm’s ability to differentiate HCM subjects and healthy volunteers from a single lead
ECG dataset. Suspected HCM subjects are identified by the primary clinical abnormality associated with HCM, left
ventricular hypertrophy (LVH). In total, »=43 human subjects ECG datasets are investigated: n=21 healthy volunteers
and n=22 left ventricular hypertrophy (LVH) patients. Significant differences of p-value 0.01 and 0.04 were found for
the respective ECG parameters, S-wave amplitude and ST-segment, when differentiating between the LVH patients
and healthy human volunteers.

Index Terms—Electrocardiogram, Hypertrophic Cardiomyopathy, Automatic ECG Feature extraction, Wearable heart
monitor



INTRODUCTION

Hypertrophic cardiomyopathy is the most common condition responsible for sudden cardiac death (SCD) in young
athletes [1-3] with an estimated annual mortality of 1-2 %. In a large case series of SCD in 1,866 young athletes,
HCM was identified in nearly 40 % of these cases [3]. Studies have also revealed a strong preponderance for SCD in
African-American (AA) athletes who compete in sports with sudden movements and adrenergic surges such as football
or basketball [4]. Unfortunately, over 80 % of affected individuals are asymptomatic before SCD, which often occurs
during exercise or in its aftermath. With a heightened awareness of SCD in young athletes, screening methods have
been developed to try and prevent these events from occurring.

Previous studies have attempted to assess the electrophysiological signature of HCM by visually inspecting the
standard 12-lead electrocardiogram (ECG). ECG signal originates from the electrical activity of the heart that
coordinates the contraction and relaxation of the different chambers of the heart. The analysis of ECG signals and
detection of its characteristic points can be used to identify various heart rhythm abnormalities, chest pains and other
diseases. One cardiac cycle of an ECG signal comprises of the P-wave, T-wave, and QRS complex (comprised of Q-
wave, R-wave, and S-wave). ECG signals of HCM have reported abnormal signatures, such as abnormal Q waves,
wide and high amplitude QRS complexes, ST-segment displacement as well as giant inverted T-waves, yet ECG
biomarkers are not used for risk stratification. The American Heart Association currently employs history and physical
examination alone during the pre-participation physical exam (PPE), which clears a young athlete for participation in
sports. In the United States, the American Heart Association (AHA) consensus expert panel does not endorse
mandatory athlete screening with the inclusion of ECG.

In the absence of reliable ECG biomarkers for predicting SCD in HCM from visual inspection, more sophisticated
approaches are required. Real-time automatic ECG detection methods on a wearable mobile heart monitor can provide
automatic detection of ECG features and continuous monitoring for risk-stratifications of HCM. Rahman et al. [5],
presented a patient classifier to automatically detect patients affected by HCM based on the standard 12-lead ECG.
They classified a patient as HCM, if the majority of the beats show HCM beat morphology. Two hundred and sixty-
four standard ECG features, such as time intervals and waveforms amplitude, were extracted by feature selection, and
used to perform machine learning classification reaching a precision of 84% (0.89 sensitivity, 0.93 specificity).

In this paper, we will present an automatic ECG feature detection method on data collected from single lead
wearable heart monitor. The goal is to identify the key ECG parameters differentiating healthy individuals and those
at-risk for HCM outside of a clinical setting.

LEFT VENTRICULAR HYPERTROPHY

The chief abnormality associated with HCM is left ventricular hypertrophy (LVH) [6]. LVH is a left ventricular
diastolic dysfunction resulting from impaired relaxation and filling of the stiff and hypertrophied left ventricle. The
degree and distribution of LVH is variable: mild hypertrophy or extreme myocardial thickening may be seen.

LVH results in the following ECG features: increased R-wave amplitude in the left-sided ECG leads (I, aVL and
V4-6) and increased S-wave depth in the right-sided leads (III, aVR, V1-3)[5, 6]. The thickened left ventricle wall
leads to prolonged depolarization (increased R wave peak time > 50 ms in leads V5 or V6) and delayed repolarization
(ST-segment depression and T-wave inversion) in the lateral leads.

MATERIALS AND METHODS

Data Description

Here, we describe the ECG datasets for healthy human volunteers during physical activity, and LVH patients at rest.
Chest electrocardiography (ECG) datasets of the healthy human volunteers were obtained from two databases. First,
n=9 single lead chest ECG signals of healthy human volunteers were obtained from the PhysioNet database recorded



at a sampling frequency of 256 Hz [7, 8]. The ECG signals were recorded in four different exercise conditions:
e  While walking on a treadmill.

While running on a treadmill.

While using an exercise bike set to a low resistance (giving high cycling speeds).

While using an exercise bike set to a high resistance (giving low cycling speeds).

Second, single lead chest ECG signals of #=12 healthy human volunteers, recorded at a sampling frequency of 125
Hz, were obtained from the 2015 IEEE Signal Processing Cup database [9]. During data recording, each subject ran
on a treadmill with changing speeds of 6-15km/h for one minute.

The LVH patient ECG dataset is a subset of The Massachusetts General Hospital/Marquette Foundation (MGH/MF)
Waveform Database [10]. The MGH/MF database is a comprehensive collection of electronic recordings of
hemodynamic and electrocardiographic waveforms of stable and unstable patients in critical care units, operating
rooms, and cardiac catheterization laboratories. In total, »=22 LVH three lead ECG recordings, with a sampling
frequency of 360Hz.

In normal healthy people, the expected ECG changes from at rest to during exercise are the following: RR interval
decreases, QRS complex experiences minimal shortening, ST segment becomes upsloping, and QT interval
experiences a rate-related shortening [11]. Meanwhile, LVH patients’ measured ECGs at rest, relative to normal ECGs,
display the following characteristics: 1) a high R-wave peak time (> 50 ms) which is associated with the widening of
the QRS complex, and is the opposite effect when normal healthy people exercise; and 2) ST segment depression
occurs, which is opposite to the observed ST upsloping when normal healthy people exercise. Therefore, we expect
the ECG parameters of the two cohorts to be different due to the contrasting effects on the heart during exercise and
having LVH at rest.

Proposed Detection Algorithm

The basic strategy behind the ECG feature detection algorithm is to first detect the heartbeat, namely the R-to-R
wave interval. Furthermore, calculate the QRS complex using a template with the detected ECG R-wave peak
positions, thereafter detect the P and T waves. Prior to the R-wave detection the ECG signals are preprocessed. Fig. 1
shows the ECG preprocessing procedure. To remove the 50 Hz interference, a notch filter (at 50 Hz) is used. To
suppress the baseline wander, a two-order smooth filter (0.6 second window) is applied to ECG. Finally, a bandpass
FIR filter between 0.5-80 Hz is used to further suppress the noise of the ECG.

Raw ECG Remove 50Hz Remc?ve . Preprocessed ECG
Remove Mean — | Baseline — Bandpass Filter
Interference
Wander

Fig. 1. ECG preprocessing procedure (preprocessing-ECG).

ECG signal can be intermixed with many kinds of unwanted noises including body motion. The quality of the ECG
signal has been associated with the problem of false alarms. Automatic quality detection assessment and classification
of ECG signals can play a vital role in the development of real-time ECG diagnosis. Li et al. [12] proposed the signal
quality index “bSQI” makes a comparison of two beat detectors on a single ECG lead. The two detectors where
‘ep_limited’ [13] and ‘wqrs’ [14] The bSQI ranges between 0 and 1 for the kth beat is defined as:

N _matched(k,w)

bSQI(k) = —
N _ep_limited(k,w)+ N _wgqrs(k,w)—N _matched (k,w) )

where N _matched(k,w) is the beat number agreed upon (within y =150ms), N _ep limited(k,w) is the beat number
detected by ‘ep_limited’ and N wqrst(k, w) is the beat number detected by ‘wgrs’.

The ECGPUWAVE algorithm is used to detect the QRS complexes and locating the beginning, peak, and end of
the P, QRS, and ST-T waveforms [8]. The QRS detector is based on the algorithm of Pan and Tompkins using the
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slope information [15, 16]. The signal slope in the decision rule any possible detection should have a maximum slope
within of that of the previous QRS complexes. To detect the T wave, a search window is defined as a function of the
heart rate. The algorithm determines the type of T wave (regular, inverted, biphasic +-, or biphasic -+). ECGPUWAVE
classifies each T-wave as type 0 (normal), 1 (inverted), 2 (positive monophasic), 3 (negative monophasic), 4 (biphasic
negative-positive), or 5 (biphasic positive-negative).

Data Analysis

Test for significant differences in the ECG parameters (QtT interval, ST-segment, S-wave amplitude, and R wave
peak time) between healthy volunteers and LVH patients. Significant tests were conducted with Tukey's HSD post-
hoc tests, p-values < 0.05 were considered to indicate statistical significance. To assess the statistical performance of
the ECG parameters that best delineates healthy human subjects and LVH patients a receiver operating characteristic
(ROC) analysis is performed. An optimal cutoff value, which maximizes the sensitivity and specificity of the ROC
curve, was established.

TP

e= x100% (2a)
TP+FN

Sp=— N 100% (2b)
TN+ FP

where Se is sensitivity, Sp is specificity, TP is true positive, TN is true negative, FP is false positive, and FN is false
negative. Statistical analyses were performed using MATLAB software (The MathWorks, Natick, MA, USA).

RESULTS

Fig. 2 demonstrates the utility of the automatic detection algorithm of a 10 second ECG for a heathy subject and
LVH patients. Fig. 2a is an ECG of healthy subject running on a treadmill. Fig. 2b demonstrates the automatic
detection results of the ECGPUWAVE for the QRS complex, Tonset (beginning of the T-wave), Treak (peak amplitude
of the T-wave), and Tosre (end of the T-wave) features of the ECG signal in Fig. 2a.
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Fig. 2. LVH patient processed ECG signal with automatically detected ECG features: QRS complex, Tonset, Tpeak, and
TOffset-”

Fig. 3 shows the comparative boxplots of the ECG parameters (QT interval, ST-segment, T-wave inversion, and R
peak time) for the healthy subjects and the LVH patients. Fig. 3a illustrates that the median QT interval (red line
through the box) for the LVH patients (QT interval= 0.44s) is similar to the healthy subjects (QT interval= 0.48s). Fig.



3b shows a significant separation between the median ST-segment values for the LVH patients (ST-segment=-0.0011)
than healthy human subjects (ST-segment= 0.47s). Similarly, Fig. 3(c-d) shows significant separation between LVH
patients and healthy volunteers in the median values of the S-wave amplitude and R-wave to peak time.
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Fig. 3. Boxplot: (a) QT interval (b) ST segment, (c) S-wave amplitude, and (d) R-wave peak.

The post hoc test results are summarized in Table 1. The results reveal significant differences between healthy
subjects walking or running on a treadmill and LVH patients using ST segment, with p values less than 0.04. Other
notable results from Table 1, is the p-value of 0.01 for significant differences in S-wave amplitude for LVH patients

and healthy subjects on the treadmill.

Table 1. Statistical difference (p-value) for levels of activity.

ECG Parameters QT ST S Amp. R Peak
LVH Biking 0.69 0.04 0.08 0.26
Treadmill 0.92 0.03 0.01 0.11
/Walking
Biking Treadmill 0.45 0.55 0.69 0.77
/Walking
LVH 0.69 0.04 0.08 0.26
Treadmill Biking 0.45 0.55 0.69 0.77
/Walking LVH 0.92 0.03 0.01 0.11

QT: QT interval, ST: ST segment, S Amp.: S-wave Amplitude, and R Peak: R-wave peak time.

Fig. 4 shows the ROC curve between LVH patients and healthy subjects for QT, ST-segment, S-wave amplitude and
R-wave time to peak. From observation, ST-segment and S-wave amplitude demonstrating high sensitivity for a range

of specificities.



According to the ROC analysis, the optimal cut-off values for the ECG parameters QT interval, ST-segment, S-wave
amplitude, and R-wave peak time are 0.45s, 0.51s, 19 a.u., and 0.51s, respectively.
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Fig. 4. ROC curve

The sensitivity (Se), specificity (Sp) and area under the curve (AUC) results after applying the cut-off values are
summarized in Table 2. The ST-segment and S-wave amplitude demonstrate the best results.

Table 2. ROC analysis of ECG parameters.

ECG Parameters Se (%) Sp (%) AUC (%)

QT Interval 63 79 67

Cutoff < 0.45s

ST Segment 100 90 89

Cutoff <0.51s

S-wave Amplitude 100 100 100

Cutoff < 19 a.u.

R-wave Peak Time Cutoff <0.51s 75 84 84
DISCUSSION

The 12-lead ECG is a fundamental initial diagnostic modality for the early evaluation of a patient suspected of
having HCM. Previous studies [17-19] of patients with mutations in cardiac myofilaments, ECG had an accuracy of
sensitivity ~60% and specificity~98% in the diagnosis of HCM as echocardiography (left ventricular wall thickness:
13 mm). These results are similar to our QT and R-wave time to peak analysis. However, access to 12-lead ECGs is
not always readily available away from a clinical setting. Thus, wearable heart monitors, with automatic ECG feature
detection algorithms, have been utilized for remotely monitor suspected patients with heart ailments. Additionally,
these heart monitors have been integrated into commercial mobile personal devices, making their availability
ubiquitous.

The principal finding of the current study is the following: abnormal ST-segment, and S-wave amplitude were the
best predictors for differentiating healthy subjects and LVH patients, specifically for ST-segment < 0.51 seconds and
S-wave amplitude < 19 a.u. Other observations include the overlap in boxplot analysis of QT interval and R-wave
time-to-peak. This may be evidence of a HCM phenotype, where LVH patients with HCM have a normal ECG.
McLeod et al. [20] compared HCM patients with normal and abnormal ECGs, and found that those with a normal



ECG presented at an older age and with less severe disease expression. However, our study is limited in the small
number of healthy subjects and LVH patient datasets, as well as their asynchronous comparison of ECG measurements
during physical activity and at rest, respectively. Additionally, only 4 ECG parameters were presented. Future works
will include larger datasets and additional ECG parameters.

CONCLUSION

The utility of wearable ECG monitors for heart diagnosis was presented. The results of this study demonstrate the
feasibility of a single lead wearable heart monitor to automatically detect ECG features from datasets of healthy
subjects and LVH patients. Additionally, ECG parameters ST segment and S-wave amplitude successfully
differentiated LVH patients and healthy subjects. These results parallel the ECG characteristics of HCM including the
presence of LVH ECG features and ST segment abnormalities. However, due to our study limitations further
investigation is needed.
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