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Abstract—In this work, an automatic detection algorithm for hypertrophic cardiomyopathy (HCM) is presented. Of 
particular interest is the algorithm’s ability to differentiate HCM subjects and healthy volunteers from a single lead 
ECG dataset. Suspected HCM subjects are identified by the primary clinical abnormality associated with HCM, left 
ventricular hypertrophy (LVH). In total, n=43 human subjects ECG datasets are investigated: n=21 healthy volunteers 
and n=22 left ventricular hypertrophy (LVH) patients. Significant differences of p-value 0.01 and 0.04 were found for 
the respective ECG parameters, S-wave amplitude and ST-segment, when differentiating between the LVH patients 
and healthy human volunteers. 

 
Index Terms—Electrocardiogram, Hypertrophic Cardiomyopathy, Automatic ECG Feature extraction, Wearable heart 
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 INTRODUCTION 

Hypertrophic cardiomyopathy is the most common condition responsible for sudden cardiac death (SCD) in young 
athletes [1-3] with an estimated annual mortality of 1-2 %.  In a large case series of SCD in 1,866 young athletes, 
HCM was identified in nearly 40 % of these cases [3]. Studies have also revealed a strong preponderance for SCD in 
African-American (AA) athletes who compete in sports with sudden movements and adrenergic surges such as football 
or basketball [4]. Unfortunately, over 80 % of affected individuals are asymptomatic before SCD, which often occurs 
during exercise or in its aftermath. With a heightened awareness of SCD in young athletes, screening methods have 
been developed to try and prevent these events from occurring.  

Previous studies have attempted to assess the electrophysiological signature of HCM by visually inspecting the 
standard 12-lead electrocardiogram (ECG). ECG signal originates from the electrical activity of the heart that 
coordinates the contraction and relaxation of the different chambers of the heart. The analysis of ECG signals and 
detection of its characteristic points can be used to identify various heart rhythm abnormalities, chest pains and other 
diseases. One cardiac cycle of an ECG signal comprises of the P-wave, T-wave, and QRS complex (comprised of Q-
wave, R-wave, and S-wave). ECG signals of HCM have reported abnormal signatures, such as abnormal Q waves, 
wide and high amplitude QRS complexes, ST-segment displacement as well as giant inverted T-waves, yet ECG 
biomarkers are not used for risk stratification. The American Heart Association currently employs history and physical 
examination alone during the pre-participation physical exam (PPE), which clears a young athlete for participation in 
sports. In the United States, the American Heart Association (AHA) consensus expert panel does not endorse 
mandatory athlete screening with the inclusion of ECG. 

In the absence of reliable ECG biomarkers for predicting SCD in HCM from visual inspection, more sophisticated 
approaches are required. Real-time automatic ECG detection methods on a wearable mobile heart monitor can provide 
automatic detection of ECG features and continuous monitoring for risk-stratifications of HCM. Rahman et al. [5], 
presented a patient classifier to automatically detect patients affected by HCM based on the standard 12-lead ECG. 
They classified a patient as HCM, if the majority of the beats show HCM beat morphology. Two hundred and sixty-
four standard ECG features, such as time intervals and waveforms amplitude, were extracted by feature selection, and 
used to perform machine learning classification reaching a precision of 84% (0.89 sensitivity, 0.93 specificity).  

In this paper, we will present an automatic ECG feature detection method on data collected from single lead 
wearable heart monitor. The goal is to identify the key ECG parameters differentiating healthy individuals and those 
at-risk for HCM outside of a clinical setting. 

 

LEFT VENTRICULAR HYPERTROPHY 

The chief abnormality associated with HCM is left ventricular hypertrophy (LVH) [6]. LVH is a left ventricular 
diastolic dysfunction resulting from impaired relaxation and filling of the stiff and hypertrophied left ventricle. The 
degree and distribution of LVH is variable: mild hypertrophy or extreme myocardial thickening may be seen.  

LVH results in the following ECG features: increased R-wave amplitude in the left-sided ECG leads (I, aVL and 
V4-6) and increased S-wave depth in the right-sided leads (III, aVR, V1-3)[5, 6]. The thickened left ventricle wall 
leads to prolonged depolarization (increased R wave peak time > 50 ms in leads V5 or V6) and delayed repolarization 
(ST-segment depression and T-wave inversion) in the lateral leads.  
 

MATERIALS AND METHODS 

Data Description 

Here, we describe the ECG datasets for healthy human volunteers during physical activity, and LVH patients at rest. 
Chest electrocardiography (ECG) datasets of the healthy human volunteers were obtained from two databases. First, 
n=9 single lead chest ECG signals of healthy human volunteers were obtained from the PhysioNet database recorded 
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at a sampling frequency of 256 Hz [7, 8]. The ECG signals were recorded in four different exercise conditions: 
• While walking on a treadmill. 
• While running on a treadmill. 
• While using an exercise bike set to a low resistance (giving high cycling speeds). 
• While using an exercise bike set to a high resistance (giving low cycling speeds). 

Second, single lead chest ECG signals of n=12 healthy human volunteers, recorded at a sampling frequency of 125 
Hz, were obtained from the 2015 IEEE Signal Processing Cup database [9]. During data recording, each subject ran 
on a treadmill with changing speeds of 6-15km/h for one minute.  

The LVH patient ECG dataset is a subset of The Massachusetts General Hospital/Marquette Foundation (MGH/MF) 
Waveform Database [10]. The MGH/MF database is a comprehensive collection of electronic recordings of 
hemodynamic and electrocardiographic waveforms of stable and unstable patients in critical care units, operating 
rooms, and cardiac catheterization laboratories. In total, n=22 LVH three lead ECG recordings, with a sampling 
frequency of 360Hz. 

In normal healthy people, the expected ECG changes from at rest to during exercise are the following: RR interval 
decreases, QRS complex experiences minimal shortening, ST segment becomes upsloping, and QT interval 
experiences a rate-related shortening [11]. Meanwhile, LVH patients’ measured ECGs at rest, relative to normal ECGs, 
display the following characteristics: 1) a high R-wave peak time (> 50 ms) which is associated with the widening of 
the QRS complex, and is the opposite effect when normal healthy people exercise; and 2) ST segment depression 
occurs, which is opposite to the observed ST upsloping when normal healthy people exercise. Therefore, we expect 
the ECG parameters of the two cohorts to be different due to the contrasting effects on the heart during exercise and 
having LVH at rest. 

Proposed Detection Algorithm 

The basic strategy behind the ECG feature detection algorithm is to first detect the heartbeat, namely the R-to-R 
wave interval. Furthermore, calculate the QRS complex using a template with the detected ECG R-wave peak 
positions, thereafter detect the P and T waves. Prior to the R-wave detection the ECG signals are preprocessed. Fig. 1 
shows the ECG preprocessing procedure. To remove the 50 Hz interference, a notch filter (at 50 Hz) is used. To 
suppress the baseline wander, a two-order smooth filter (0.6 second window) is applied to ECG. Finally, a bandpass 
FIR filter between 0.5–80 Hz is used to further suppress the noise of the ECG. 

ECG signal can be intermixed with many kinds of unwanted noises including body motion. The quality of the ECG 
signal has been associated with the problem of false alarms. Automatic quality detection assessment and classification 
of ECG signals can play a vital role in the development of real-time ECG diagnosis. Li et al. [12] proposed the signal 
quality index “bSQI” makes a comparison of two beat detectors on a single ECG lead. The two detectors where 
‘ep_limited’ [13] and ‘wqrs’ [14] The bSQI ranges between 0 and 1 for the kth beat is defined as: 

 
_ ( , )( )

_ _ ( , ) _ ( , ) _ ( , )
N matched k wbSQI k

N ep limited k w N wqrs k w N matched k w
=

+ −                                                            (1) 
 

where _ ( , )N matched k w  is the beat number agreed upon (within 150msγ = ), _ _ ( , )N ep limited k w  is the beat number 
detected by ‘ep_limited’ and N wqrst(k, w) is the beat number detected by ‘wqrs’. 

The ECGPUWAVE algorithm is used to detect the QRS complexes and locating the beginning, peak, and end of 
the P, QRS, and ST-T waveforms [8]. The QRS detector is based on the algorithm of Pan and Tompkins  using the 

Fig. 1. ECG preprocessing procedure (preprocessing-ECG). 
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slope information [15, 16]. The signal slope in the decision rule any possible detection should have a maximum slope 
within of that of the previous QRS complexes. To detect the T wave, a search window is defined as a function of the 
heart rate. The algorithm determines the type of T wave (regular, inverted, biphasic +-, or biphasic -+). ECGPUWAVE 
classifies each T-wave as type 0 (normal), 1 (inverted), 2 (positive monophasic), 3 (negative monophasic), 4 (biphasic 
negative-positive), or 5 (biphasic positive-negative). 

Data Analysis 

Test for significant differences in the ECG parameters (QtT interval, ST-segment, S-wave amplitude, and R wave 
peak time) between healthy volunteers and LVH patients. Significant tests were conducted with Tukey's HSD post-
hoc tests, p-values < 0.05 were considered to indicate statistical significance. To assess the statistical performance of 
the ECG parameters that best delineates healthy human subjects and LVH patients a receiver operating characteristic 
(ROC) analysis is performed. An optimal cutoff value, which maximizes the sensitivity and specificity of the ROC 
curve, was established.  

  TPSe 100%
TP+FN

= ×                                         (2a) 

      TNSp 100%
TN+ FP

= ×                            (2b) 

where Se is sensitivity, Sp is specificity, TP is true positive, TN is true negative, FP is false positive, and FN is false 
negative. Statistical analyses were performed using MATLAB software (The MathWorks, Natick, MA, USA). 
 

RESULTS 

Fig. 2 demonstrates the utility of the automatic detection algorithm of a 10 second ECG for a heathy subject and 
LVH patients. Fig. 2a is an ECG of healthy subject running on a treadmill. Fig. 2b demonstrates the automatic 
detection results of the ECGPUWAVE for the QRS complex, TOnset (beginning of the T-wave), TPeak (peak amplitude 
of the T-wave), and TOffset (end of the T-wave) features of the ECG signal in Fig. 2a. 

 

 
Fig. 2. LVH patient processed ECG signal with automatically detected ECG features: QRS complex, TOnset, TPeak, and 
TOffset.” 

Fig. 3 shows the comparative boxplots of the ECG parameters (QT interval, ST-segment, T-wave inversion, and R 
peak time) for the healthy subjects and the LVH patients. Fig. 3a illustrates that the median QT interval (red line 
through the box) for the LVH patients (QT interval= 0.44s) is similar to the healthy subjects (QT interval= 0.48s). Fig. 
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3b shows a significant separation between the median ST-segment values for the LVH patients (ST-segment= -0.0011) 
than healthy human subjects (ST-segment= 0.47s). Similarly, Fig. 3(c-d) shows significant separation between LVH 
patients and healthy volunteers in the median values of the S-wave amplitude and R-wave to peak time. 

 

 
Fig. 3. Boxplot: (a) QT interval (b) ST segment, (c) S-wave amplitude, and (d) R-wave peak. 

The post hoc test results are summarized in Table 1. The results reveal significant differences between healthy 
subjects walking or running on a treadmill and LVH patients using ST segment, with p values less than 0.04. Other 
notable results from Table 1, is the p-value of 0.01 for significant differences in S-wave amplitude for LVH patients 
and healthy subjects on the treadmill. 

Table 1. Statistical difference (p-value) for levels of activity. 
ECG Parameters QT ST S Amp. R Peak 

LVH Biking 0.69 0.04 0.08 0.26 

Treadmill 

/Walking 

0.92 0.03 0.01 0.11 

Biking Treadmill 

/Walking 

0.45 0.55 0.69 0.77 

LVH 0.69 0.04 0.08 0.26 

Treadmill 

/Walking 

Biking 0.45 0.55 0.69 0.77 

LVH 0.92 0.03 0.01 0.11 

QT: QT interval, ST: ST segment, S Amp.: S-wave Amplitude, and R Peak: R-wave peak time. 

Fig. 4 shows the ROC curve between LVH patients and healthy subjects for QT, ST-segment, S-wave amplitude and 
R-wave time to peak. From observation, ST-segment and S-wave amplitude demonstrating high sensitivity for a range 
of specificities.  
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According to the ROC analysis, the optimal cut-off values for the ECG parameters QT interval, ST-segment, S-wave 
amplitude, and R-wave peak time are 0.45s, 0.51s, 19 a.u., and 0.51s, respectively.  
 

The sensitivity (Se), specificity (Sp) and area under the curve (AUC) results after applying the cut-off values are 
summarized in Table 2. The ST-segment and S-wave amplitude demonstrate the best results.  

Table 2. ROC analysis of ECG parameters. 

ECG Parameters Se (%) Sp (%) AUC (%) 
QT Interval 
Cutoff ≤ 0.45s 

63 79 67 

ST Segment  
Cutoff ≤ 0.51s 

100 90 89 

S-wave Amplitude  
Cutoff ≤ 19 a.u. 

100 100 100 

R-wave Peak Time Cutoff ≤ 0.51s 75 84 84 
 

DISCUSSION 

The 12-lead ECG is a fundamental initial diagnostic modality for the early evaluation of a patient suspected of 
having HCM. Previous studies [17-19] of patients with mutations in cardiac myofilaments, ECG had an accuracy of 
sensitivity ~60% and specificity~98% in the diagnosis of HCM as echocardiography (left ventricular wall thickness: 
13 mm). These results are similar to our QT and R-wave time to peak analysis. However, access to 12-lead ECGs is 
not always readily available away from a clinical setting. Thus, wearable heart monitors, with automatic ECG feature 
detection algorithms, have been utilized for remotely monitor suspected patients with heart ailments. Additionally, 
these heart monitors have been integrated into commercial mobile personal devices, making their availability 
ubiquitous. 

The principal finding of the current study is the following: abnormal ST-segment, and S-wave amplitude were the 
best predictors for differentiating healthy subjects and LVH patients, specifically for ST-segment < 0.51 seconds and 
S-wave amplitude < 19 a.u. Other observations include the overlap in boxplot analysis of QT interval and R-wave 
time-to-peak. This may be evidence of a HCM phenotype, where LVH patients with HCM have a normal ECG. 
McLeod et al. [20] compared HCM patients with normal and abnormal ECGs, and found that those with a normal 

Fig. 4. ROC curve 
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ECG presented at an older age and with less severe disease expression. However, our study is limited in the small 
number of healthy subjects and LVH patient datasets, as well as their asynchronous comparison of ECG measurements 
during physical activity and at rest, respectively. Additionally, only 4 ECG parameters were presented. Future works 
will include larger datasets and additional ECG parameters. 
 

CONCLUSION 

The utility of wearable ECG monitors for heart diagnosis was presented. The results of this study demonstrate the 
feasibility of a single lead wearable heart monitor to automatically detect ECG features from datasets of healthy 
subjects and LVH patients. Additionally, ECG parameters ST segment and S-wave amplitude successfully 
differentiated LVH patients and healthy subjects. These results parallel the ECG characteristics of HCM including the 
presence of LVH ECG features and ST segment abnormalities. However, due to our study limitations further 
investigation is needed. 
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