
Mathematische Annalen (2020) 378:907–950
https://doi.org/10.1007/s00208-020-02064-8 Mathematische Annalen

Rigidity results for von Neumann algebras arising from
mixing extensions of profinite actions of groups on
probability spaces

Ionut Chifan1 · Sayan Das1

Received: 11 June 2019 / Revised: 15 April 2020 / Published online: 11 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Motivated by Popa’s seminalwork Popa (InventMath 165:409-45, 2006), in this paper,
we provide a fairly large class of examples of group actions � � X satisfying the
extended Neshveyev–Størmer rigidity phenomenon Neshveyev and Størmer (J Funct
Anal 195(2):239-261, 2002): whenever � � Y is a free ergodic pmp action and there
is a ∗-isomorphism � : L∞(X) � �→L∞(Y ) � � such that �(L(�)) = L(�) then
the actions � � X and � � Y are conjugate (in a way compatible with �). We
also obtain a complete description of the intermediate subalgebras of all (possibly
non-free) compact extensions of group actions in the same spirit as the recent results
of Suzuki (Complete descriptions of intermediate operator algebras by intermediate
extensions of dynamical systems, To appear in Comm Math Phy. ArXiv Preprint:
arXiv:1805.02077, 2020). This yields new consequences to the study of rigidity for
crossed product von Neumann algebras and to the classification of subfactors of finite
Jones index.

1 Introduction

In the mid thirties Murray and von Neumann found a natural way to associate a von
Neumann algebra to any measure preserving action � � X of a countable group
� on a probability space X . This is called the group measure space von Neumann
algebra, denoted by L∞(X) � �. The most interesting case for study is when the
initial action � � X is free and ergodic, in which case the group measure space
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construction is in fact a type II1 factor. When X is a singleton the group measure space
construction yields just the group von Neumann algebra that will be denoted by L(�).
The latter is a II1 factor specifically when all nontrivial conjugacy classes of � are
infinite (henceforth abbreviated as the icc property).

A problem of central importance in von Neumann algebras is to determine how
much information about the action � � X can be recovered from the isomorphism
class of L∞(X) � �. An unprecedented progress in this direction emerged over the
last decade from Popa’s influential deformation/rigidity theory [68]. A remarkable
achievement of this theory was the discovery of first classes of examples of actions
that are entirely remembered by their von Neumann algebras; for some examples see
[6,11,12,14,17,18,25,29,32,35,37–39,58,68,69,71–73,78]. We refer the reader to the
surveys [41,77] for an overview of the recent developments.

There are two distinguished subalgebras of L∞(X)��: the coefficient (or Cartan)
subalgebra L∞(X) ⊂ L∞(X) � � and the group von Neumann subalgebra L(�) ⊂
L∞(X) � �. The classification of group measure space von Neumann algebra is
closely related to the study of these two inclusions of von Neumann algebras. For
instance, in [74] Singer observed that the study of the inclusion L∞(X) ⊂ L∞(X)��

amounts to the study of the equivalence relation induced by the orbits of� � X . Thus
reconstructing the action � � X from the inclusion L∞(X) ⊂ L∞(X) � � relies
upon the reconstruction from its orbits. This theme in contemporary ergodic theory
is known as orbit equivalence rigidity. The study of orbit equivalence rigidity has
received a lot of attention over the last couple of decades and has major consequences
to the classification of von Neumann algebras in general, and the structure of the
crossed product algebras in particular; for instance see [11,27,30,32,37,49,51].

Deriving information about the action � � X from the other inclusion L(�) ⊂
L∞(X) � � is another topic which is implicit in many core rigidity results in von
Neumann algebras [52,55,66,67]. When � is abelian L∞(X) � � = R is the hyper-
finite II1 factor and each of L∞(X) and L(�) is a maximal abelian subalgebra of
R (henceforth abbreviated as MASA). In their study on structural aspects of these
MASAs in [52] Neshveyev and Størmer discovered that the positions of these two
MASAs insideR completely determines the action. More precisely, they showed the
following: Let � be an infinite abelian group, � � X be a weak mixing action and
� � Y be any action. If there is a ∗-isomorphism � : L∞(X)��→L∞(Y )�� sat-
isfying �(L(�)) = L(�) and �(L∞(X)) is inner conjugate to L∞(Y ) then � � X
is conjugate with � � Y (in a way compatible to �). They also conjectured the same
statement holds without the inner conjugacy of the Cartan subalgebras condition. In
other words the inclusion L(�) ⊂ L∞(X) � � alone completely captures the entire
crossed product structure of L∞(X) � �.

The first examples of actions satisfying the full statement of Neshveyev–Størmer
conjecture emerged from the impressive work of Popa on the classification of von
Neumann algebras associated with Bernoulli actions, [66,67]. Specifically, using his
influential deformation/rigidity theory Popa was able to show that this is the case for
all clustering (e.g. Bernoulli) actions � � X [67, Theorem 0.7]. Remarkably, this
holds even when � is nonabelian. These significant initial advances strongly suggest
that the Neshveyev-Stormer conjecture could hold in a much larger generality that
supersedes the amenable regime (e.g. � is abelian). Motivated by this and the implicit
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relevance to the study of rigidity aspects for crossed products it is natural to investigate
the following extended version of the Neshveyev–Størmer rigidity question:

Question 1.1 (Extended Neshveyev–Stormer rigidity question). Let � and � be icc
countable discrete groups and let � � X and � � Y be free, ergodic, pmp actions.
Assume that there is a ∗-isomorphism � : L∞(X) � � → L∞(Y ) � � such that
�(L(�)) = L(�). Under what conditions on � � X are the actions � � X and
� � Y conjugate?

Besides Popa’s examples at this time there are several other families of specific actions
� � X for which Question 1.1 has a solution. These arise mostly from decade-long
developments in the classification of von Neumann algebras via Popa’s deforma-
tion/rigidity program. For instance, this is the case for all W ∗-superrigid actions (see
[41] for a survey on W ∗ superrigidity and the references therein). Also, using [67,
Theorem 5.2] one can easily see that the rigidity phenomenon in Question 1.1 is also
satisfied by any weak mixing action � � X for which, up to unitary conjugacy,
L∞(X) is the unique group measure space Cartan subalgebra of L∞(X) � �. This
way one can get more examples using the recent results on uniqueness of Cartan sub-
algebras, see [11,12,39,55,72,73] for example. However not much was known beyond
these classes of examples and it remained open to find a more intrinsic approach to
Question 1.1 which does not rely on uniqueness of Cartan subalgebras results from
deformation/rigidity theory.

In this article we develop new technical aspects that enables us to partially answer
Question 1.1. In particular we are able to describe a fairly large family of actions which
covers many new examples beyond all the aforementioned classes, e.g. all nontrivial
mixing extensions of free compact actions, satisfying the extended Neshveyev–
Størmer rigidity phenomenon. More generally, we have the following result.

Theorem 1.2 Let� be an icc group and let� �
σ X be an action whose distal quotient

� � Xd is free and the extension π : X → Xd is (nontrivial) mixing. Let � �
α Y

be any action. Assume that � : L∞(X) � �→L∞(Y ) � � is a ∗-isomorphism such
that �(L(�)) = L(�). Then there exist a unitary x ∈ L(�), a character ω : � → T,
and a group isomorphism δ : � → � such that x�(L∞(X))x∗ = L∞(Y ) and for all
a ∈ L∞(X), γ ∈ � we have

�(auγ ) = ω(γ )�(a)x∗vδ(γ )x .

In particular, we have x�(σγ (a))x∗ = αδ(γ )(x�(a)x∗) and hence � � X and
� � Y are conjugate.

Here {uγ }γ∈� and {vλ}λ∈� are the canonical group unitaries implementing the
actions in L∞(X) � � and L∞(Y ) � �, respectively.

In particular the theorem implies that if � is any icc group then any action � � X
which admits a free profinite quotient � � Xd with (nontrivial) mixing extension π :
X → Xd satisfies the extended Neshveyev-Størmer rigidity question. As a concrete
example let� be any icc residually finite group and let · · ·��n�· · ·��2��1�� be a
resolution of finite index normal subgroups satisfying ∩n�n = 1. Consider the action
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� � (�/�n, cn) by left multiplication of � on the left cosets �/�n seen as a finite
probability space with the counting measure cn and let � � (Z , μ) = lim←−(�/�n, cn)
be the inverse limit of these actions. In addition let π : � � O(H) be any mixing
orthogonal representation and let� � (Y π , νπ )be the correspondingGaussian action.
Then the diagonal action � � (Y π × Z , νπ × μ) is profinite-by-(nontrivial) mixing,
and hence by Theorem 1.2 the rigidity Question 1.1 has a positive solution in this
case.

Theorem 1.2 is obtained by heavily exploiting, at the von Neumann algebraic level,
the natural tension that occurs betweenmixing and compactness properties for actions.
Briefly, let � � X and � � Y be actions as in Theorem 1.2 so that L∞(X) � � =
L∞(Y ) � � with L(�) = L(�). First we use the description of compactness via
quasinormalizers from [15,36] to identify the von Neumann algebras of their distal
parts, i.e. L∞(Xd) � � = L∞(Yd) � �. In turn this is used to show that the mixing
property of the extension L∞(Xd) ⊆ L∞(X) is transferred through von Neumann
equivalence to the extension L∞(Yd) ⊆ L∞(Y ) (Theorem 2.10). Once these are
established, somebasic adaptations of Popa’s intertwining techniques from [66] further
show that the Cartan subalgebras L∞(X) and L∞(Y ) are in fact unitarily conjugate.
Then the desired result is derived from a general principle which states that for any free
ergodic actions � � X , � � Y of icc groups � and �, inner conjugacy of L∞(X)

and L∞(Y ) together with L(�) = L(�) imply conjugacy of � � X and � � Y
(Theorem 4.5). This criterion for conjugacy of group actions generalizes the earlier
works [52,67] and is obtained using the notion of height of elements with respect to
groups from [42]. Specifically, using Dye’s theorem and an averaging argument we
show that � has large height with respect to � inside L(�) (Theorem 4.4). By [42,
Theorem 3.1] this further implies � is unitarily conjugate to �. Further exploiting the
icc condition we deduce conjugacy of the actions (Theorem 4.5).

While Theorem 1.2 settles the extended Neshveyev-Størmer rigidity question for
nontrivial extensions, two natural extreme situations, namely, when � � X is either
mixing or compact (even profinite) remain open.We believe that in both of these cases
one should still get a positive answer and we formulate a few sub problems in this
direction; see for instance Problem 4.12. However, in order to successfully tackle
these questions, significant new technical advancements are needed. Specifically, if
one pursues an approach similar to Theorem 1.2 the key step is to establish the inner
conjugacy of L∞(X) and L∞(Y ). In the presence of mixing this would follow if one
can show there exist free factors � � X0 of � � X and � � Y0 of � � Y whose
von Neumann algebras coincide, i.e. L∞(X0)�� = L∞(Y0)��; see Corollary 4.9.
In turn this highlights the importance of studying intermediate subalgebras in the
inclusion L(�) ⊂ L∞(X) � �. In addition this seems relevant even to the study of
Question 1.1 for profinite actions.

Note that when� is icc, and � � X is free, ergodic and pmp, the inclusion L(�) ⊂
L∞(X) � � is an irreducible inclusion of II1 factors. In his seminal paper [44] Jones
pioneered the study of inclusions of type II1 factors, or subfactors. Subfactor theory
has had a number of striking applications over the years in various diverse branches of
mathematics and mathematical physics, including Knot theory and Conformal Field
theory, [45–47].Amajormotivating question in Subfactor theory is the classification of
all intermediate subalgebras. Pursuing this perspective, we were able to classify all the
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intermediate subalgebras in compact extensions in the same spirit as Suzuki’s recent
results from [75]. To properly introduce our result we briefly recall some terminology.
Given two actions � �

β X0 and � �
α X we say that α is an extension of β if there is

a�-equivariant factor mapπ : X→X0. At the vonNeumann algebra level this induces
an inclusion L∞(X0) ⊆ L∞(X) onwhich� acts naturally viaαγ ( f ) = f ◦αγ −1 when
f ∈ L∞(X). An intermediate extension for π (or between � � X0 and � � X )
is an action � � Z for which there exist �-equivariant factor maps π1 : X→Z
and π2 : Z→X0 such that π2 ◦ π1 = π . Note that the intermediate extensions
of π are in bijective correspondence with the �-invariant intermediate subalgebras
of L∞(X0) ⊆ L∞(X). We show that there is a bijective correspondence between
intermediate von Neumann algebras in crossed products and intermediate extensions
of dynamical systems. More precisely, we have the following

Theorem 1.3 Let � be an icc group and let � �
β X0 be a pmp action. Let � �

X be an ergodic compact extension of β, [28]. Consider the corresponding group
measure space von Neumann algebras and note that we have the following inclusion
L∞(X0) � � ⊆ L∞(X) � �. Then for any intermediate von Neumann subalgebra
L∞(X0) � � ⊆ N ⊆ L∞(X) � � there exists an intermediate extension � � Z
between � � X and � � X0 satisfying N = L∞(Z) � �.

In many respects this theorem complements the results from [75]; for instance, it
covers various examples of non-free extensions, most notably, when X0 is a single-
ton. In this situation our result provides a complete description of all intermediate
von Neumann subalgebras in the inclusion L(�) ⊆ L∞(X) � � for any compact
ergodic action � � X of any icc group �. This in turn yields new interesting conse-
quences towards the classification of finite index subfactors. For example, combining
Theorem 1.3 with the characterization of compactness via quasinormalizers from [36,
Theorem 6.10], for any icc group � and any ergodic action � � X , we are able to
classify all the intermediate subfactors L(�) ⊆ N ⊆ L∞(X) � � with finite Jones
index [N : L(�)] < ∞. Specifically we show that all such N could arise only from
the transitive finite factors of � � X (see part 2. in Corollary 1.4); in particular, this
entails that the Jones index [N : L(�)] is always a positive integer. This should be
comparedwith the similar statement [62, Corollary 2.4] for the intermediate subfactors
of the Cartan inclusion L∞(X) ⊂ N ⊆ L∞(X) � � with [L∞(X) � � : N ] < ∞.

Corollary 1.4 Let � be an icc group and let � � X be an ergodic pmp action. If
M = L∞(X) � � is the corresponding group measure space construction then the
following hold:

1. For any intermediate von Neumann algebra L(�) ⊆ N ⊆ L∞(X) � � satisfying
N ⊆ QN M (L(�))′′ there exists a factor � � X0 of � � X such that N =
L∞(X0) � �.

2. If L(�) ⊆ N ⊆ L∞(X) � � is an intermediate subfactor with [N : L(�)] <

∞ then there is a finite, transitive factor � � X0 of � � X such that N =
L∞(X0) � �; in particular, [N : L(�)] ∈ N. Thus for any subfactors L(�) ⊆
N1 ⊆ N2 ⊆ L∞(X) � �, with either [N1 : L(�)] < ∞ or � � X compact, we
have [N2 : N1] ∈ N ∪ {∞}.
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In particular, part 2. implies that for any icc group � with no proper finite index
subgroups and any free ergodic action � � X there are no nontrivial intermediate
subfactors L(�) ⊆ N ⊆ L∞(X) � � of finite index [N : L(�)] < ∞. For example
this is the case for all � infinite simple groups, e.g. Tarski’s monsters, Burger-Mozes
groups [7], Camm’s groups [8], or Bhattacharjee’s groups [3], just to enumerate a few.

We point out in passing that Theorem 1.3 actually holds in a more general set-
ting, namely, for actions of groups on compact extensions of possibly non-abelian
von Neumann algebras; this notion is highlighted in Definition 3.9. In this generality
our result yields a twisted version of Ge’s splitting theorem for tensor products (see
Corollary 3.13) in the same spirit as [75, Example 4.14].

The classification of the intermediate subalgebras in Theorem 1.3 is achieved
through a new mix of analytic and algebraic techniques that combines factoriality
arguments together with a general algebraic criterion outlined in Theorem 3.2. We
also note the same criterion can be used in conjunction with various soft analytical
arguments to successfully recover, in the finite von Neumann algebra case, several
well-known results such as Ge’s tensor splitting theorem [31, Theorem 3.1] or the
Galois correspondence for group actions [21]. These applications are presented in
Corollary 3.3 and Theorems 3.4 and 3.7.

Finally, Theorem 1.3 in combination with methods from Popa’s deforma-
tion/rigidity theory and Jones’ finite index subfactor theory provide new insight
towards rigidity aspects for II1 factors arising from profinite actions � � X of icc
property (T) groups �. While Ioana has already established in [37] that such actions
are completely reconstructible from their orbits, significantly less is known about their
rigid behavior at the von Neumann algebraic level. When � is in addition properly
proximal, Boutonnet, Ioana and Peterson showed in [5] using boundary techniques
[4] that all compact Cartan subalgebras in L∞(X) � � are unitarily conjugate to
L∞(X). (For � direct products of nonamenable biexact groups this already follows
from the earlier works [17,18].) Consequently, this combined with [37] yields that
for any non-commensurable groups � and � and any free ergodic profinite actions
� � X and � � Y the von Neumann algebras L∞(X) � � and L∞(Y ) � � are not
isomorphic; remarkably, this is the case for lattices � = PSLn(Z) and � = PSLm(Z)

for all n 
= m. However, without these additional assumption on �, the study of von
Neumann algebraic rigidity aspects for profinite (or compact) actions � � X remains
an wide open problem. For example, even establishing strong rigidity results similar to
the ones obtained in [67] by Popa for Bernoulli actions of rigid groups seems elusive
at this time. While it is very plausible that such results should hold true, we only have
the following partial result at this time in this direction.

Theorem 1.5 Let � and � be icc property (T) groups. Let � � X = lim←− Xn be a free
ergodic profinite action and let � � Y be a free ergodic compact action. Assume that
� : L∞(X) � �→L∞(Y ) � � is a ∗-isomorphism. Then � � Y = lim←−Yn is also a
profinite action. Moreover, there exist l ∈ N and a unitary w ∈ L∞(Y ) � � such that
�(L∞(Xk+l) � �) = w(L∞(Yk+1) � �)w∗ for every integer k ≥ 0.

This should be compared with Popa’s work on inductive limits of II1 factors [70].
Finally, the same strategy used in the proof of Theorem 1.2 can be successfully used
in combinationwith Theorem1.5 to provide a purely vonNeumann algebraic approach
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to a version of Ioana’s orbit equivalence superrigidity theorem from [37]; see the proof
of Theorem 5.3.

2 Some preliminaries and technical results

2.1 Popa’s intertwining techniques

Over a decade ago, Popa introduced in [66, Theorem 2.1 and Corollary 2.3] a pow-
erful analytic criterion for identifying intertwiners between arbitrary subalgebras of
tracial von Neumann algebras. This is now termed Popa’s intertwining-by-bimodules
technique.

Theorem 2.1 [66] Let (M, τ ) be a separable tracial von Neumann algebra and let
P, Q ⊆ M be (not necessarily unital) von Neumann subalgebras. Then the following
are equivalent:

1. There exist p ∈ P(P), q ∈ P(Q), a ∗-homomorphism θ : pPp → qQq and a
partial isometry 0 
= v ∈ qMp such that θ(x)v = vx, for all x ∈ pPp.

2. For any group G ⊂ U(P) such that G′′ = P there is no sequence (un)n ⊂ G
satisfying ‖EQ(xun y)‖2 → 0, for all x, y ∈ M.

If one of the two equivalent conditions from Theorem 2.1 holds then we say that a
corner of P embeds into Q inside M , and write P ≺M Q.

For further use, we record a result which states that whenever an irreducible sub-
factor P ⊆ M intertwines into a II1 subfactor N ⊆ M , then we can choose the image
of the intertwining to be an irreducible subfactor itself inside a corner of N . Notice
that our theorem is inspired by a similar result in the context of maximal abelian
subalgebras [40, Lemma 1.5].

Theorem 2.2 Let P, N ⊆ M be II1 factors such that P ′ ∩ M = C. If P ≺M N, then
one can find nonzero projections p ∈ P(P), q0 ∈ P(N ), a nonzero partial isometry
w0 ∈ q0Mp, and a ∗-isomorphism on its image ψ0 : pPp → q0Nq0 such that

i) ψ0(x)w0 = w0x for all x ∈ pPp, and
ii) ψ0(pPp)′ ∩ q0Nq0 = Cq0.

Proof Since P ≺M N , there exist nonzero projections p ∈ P(P), q ∈ P(N ), a
nonzero partial isometry v ∈ qMp, and a ∗-isomorphism on its image ψ : pPp →
qNq such that

ψ(x)v = vx for all x ∈ pPp. (2.1.1)

Since P ′ ∩ M = C, equation (2.1.1) implies that v∗v = p. Also, we get that
q ′ := vv∗ ∈ ψ(pPp)′ ∩ qMq. Using the Borel functional calculus, after replacing q
with a nonzero subprojection if necessary, we may assume that

q = support(EN (q ′)) and c0q ≤ EN (q ′) ≤ c1q for some scalars c1 ≥ c0 > 0.
(2.1.2)
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Claim 2.3 The von Neumann algebra ψ(pPp)′ ∩ qNq is completely atomic.

Proof of Claim 2.3. Notice that Eq. (2.1.1) yieldsψ(pPp)q ′ = vpPpv∗. Since P ⊆ M
is irreducible, we have

q ′(ψ(pPp)′ ∩ qMq)q ′ = Cq ′. (2.1.3)

By construction we have that

ψ(pPp)′ ∩ qNq ⊆ ψ(pPp)′ ∩ qMq. (2.1.4)

Fix 0 
= e ∈ P(ψ(pPp)′ ∩ qNq). Using Eqs. (2.1.3)–(2.1.4), we have q ′eq ′ =
τq ′(e)q ′, where τq ′(e) = τ(q ′eq ′)

τ (q ′) . Therefore, using equation (2.1.2) in the one hand
we get

‖eq ′e‖2 ≥ ‖EN (eq ′e)‖2 = ‖eEN (q ′)e‖2 ≥ c0‖e‖2. (2.1.5)

On the other hand, we have ‖eq ′e‖22 = τ(eq ′eq ′e) = τq ′(e)τ (eq ′e) = τ 2q ′(e)τ (q ′).
Hence,

‖eq ′e‖2 = τq ′(e)‖q ′‖2. (2.1.6)

Combining (2.1.5), (2.1.6) and (2.1.2) we see that

c0‖e‖2 ≤ τq ′(e)‖q ′‖2 = τ(q ′eq ′)
τ (q ′)

‖q ′‖2 = τ(eq ′)
τ (q ′)

‖q ′‖2 = τ(eEN (q ′))
τ (q ′)

‖q ′‖2

≤ c1τ(e)

τ (q ′)
‖q ′‖2 = c1‖e‖22

‖q ′‖2

Thus, ‖e‖2 ≥ c0‖q ′‖2
c1

and hence τ(e) ≥ c20τ(q ′)
c21

. Since this holds for all 0 
= e ∈
P(ψ(pPp)′ ∩qNq), we conclude thatψ(pPp)′ ∩qNq is completely atomic, thereby
establishing the claim. ��

The Claim 2.3 implies that there is 0 
= q0 ∈ ψ(pPp)′ ∩ qNq such that
(ψ(pPp)q0)′ ∩ q0Nq0 = Cq0. Let w = q0v and note that w 
= 0. Indeed,
otherwise 0 = w = q0v and hence 0 = q0vv∗. This would further imply that
0 = q0EN (vv∗) and hence 0 = q0support(EN (vv∗)). Using relation (2.1.2) it would
give 0 = q0q = q0, which is a contradiction. Moreover, if we let ψ0(x) = ψ(x)q0,
then we see that ψ0(x)w = wx for all x ∈ pPp. In particular, this equation entails
that w∗w ∈ pPp′ ∩ pMp = Cp and hence w∗w = dp, for a scalar d > 0. Therefore
w0 = d−1/2w is a partial isometry satisfying ψ0(x)w0 = w0x , for all x ∈ pPp.

In conclusion,ψ0 : pPp → ψ0(pPp) = ψ(pPp)q0 ⊆ q0Nq0 is a ∗-isomorphism
onto its image, satisfying ψ0(pPp)′ ∩ q0Nq0 = Cq0. ��

2.2 Quasinormalizers of von Neumann subalgebras

Given an inclusion N ⊆ M , the quasi-normalizerQN M (N ) is the ∗-subalgebra of M
consisting of all elements x ∈ M such that there exist x1, x2, ..., xk ∈ M satisfying
Nx ⊆ ∑

i xi N and xN ⊆ ∑
i N xi , [63]. The von Neumann algebra QN M (N )′′ is
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called the quasi-normalizing algebra of N inside M . This is an extension of normal-
ization and it is precisely the von Neumann algebraic counterpart of the notion of
commensurator in group theory. As usual, NM (N ) = {u ∈ U(M) : uNu∗ = N }
denotes the normalizing group andNM (N )′′ denotes the normalizing algebra of N in
M . We obviously have N ⊆ N ∨N ′ ∩M ⊆ NM (N )′′ ⊆ QN M (N )′′ ⊆ M . In general
the quasinormalizing algebra is (much) larger than the normalizer but there are natural
instances when they coincide; e.g. when N ⊆ M is a MASA it was shown in [64] that
QN M (A)′′ = NM (A)′′. Quasinormalizers play an important role in the classification
of von Neumann algebras and over the last decade there have been a sustained effort
towards computing these algebras in various situations [64].

In this subsection we highlight some new computations of quasinormalizers of
subalgebras in crossed products from [15] that are essential to deriving our main
results from Sect. 4. If � �

σ X is a free ergodic action and M = L∞(X) � � then
QN M (L(�))′′ was computed in the following situations. When � is infinite abelian
and σ is weak mixing Nielsen observed that L(�) is a singular MASA in M [53].
Later Packer was able to show that the normalizer (and hence the quasinormalizer)
depends only on the discrete spectrum of σ ; more precisely one hasQN M (L(�))′′ =
L∞(Xc) � �, where � � Xc is the maximal compact factor of � � X [57]. More
recently Ioana obtained a far-reaching generalization of Packer’s result by showing
that the same holds for every � and any ergodic action σ , [36, Sect. 6]. In [15] this
analysis was completed at the entire level of the distal tower of � � X using iterated
quasinormalizers.

An action � � X is called distal if it is the last element of an increasing finite
or transfinite sequence � � Xβ of factors β ≤ α, such that � � Xo is the trivial
factor, each extension π : Xβ+1→Xβ is maximal compact, and for every limit ordinal
β ≤ α the action � � Xβ is the inverse limit of the preceding factors. The sequence
{� � Xβ}β≤α of factors is also called the Furstenberg-Zimmer tower of � � X .
Furstenberg [28] and Zimmer [79] independently obtained the following structure
theorem

Theorem 2.4 Let � � X be any action. Then there exists an ordinal α and a unique
distal tower {� � Xβ}β≤α such that the extension π : X→Xα is weak mixing.

In [15] Peterson and the first author obtained a purely von Neumann algebraic way of
describing Furstenberg-Zimmer distal tower of factors for an action, namely as towers
of quasinormalizers.

Theorem 2.5 Let � �
σ X be an ergodic action and let {� � Xβ}β≤α be the cor-

responding Furstenberg-Zimmer tower. Let M = L∞(X) � � and for all β ≤ α let
Mβ = L∞(Xβ) � � be the corresponding cross-products von Neumann algebras.
Then the following hold:

1. for all β ≤ β ′ ≤ α we have the following inclusions of von Neumann algebras
L(�) = Mo ⊆ Mβ ⊆ Mβ ′ ⊆ Mα ⊆ M;

2. for all β ≤ α we have QN M (Mβ)′′ = Mβ+1;

3. for every limit ordinal β ≤ α we have ∪γ<βL∞(Xγ )
WOT = L∞(Xβ) and also

∪γ<βMγ
WOT = Mβ ;
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916 I. Chifan, S. Das

4. There exists an infinite sequence (γn)n ⊂ � such that for every x, y ∈ L∞(X) �
L∞(Xα) we have that limn→∞ ‖EL∞(Xα)(xσγn (y))‖2 = 0.

2.3 Finite index inclusions of II1 factors

A trace-preserving action � � A on a finite von Neumann algebra is called transitive
if A is abelian and there exist finitely many minimal projections F ⊂ P(A) such that
spanF = A and for every p, q ∈ F there is γ ∈ � such that σγ (p) = q. Throughout
the paper the set F will be denoted by At(A) and will be called the atoms of A. In
particular all atoms of A have same trace, i.e. dim(A)−1.

Lemma 2.6 Let A be an abelian von Neumann algebra and let � �
σ A be a trace

preserving action. Assume that the inclusion L(�) ⊆ A � � admits a finite Pimsner-
Popa basis. Then A is completely atomic. Moreover, if � � A is ergodic then � � A
is transitive.

Proof By assumption there exist m1, ...,mk ∈ A � � = M , with EL(�)(mim∗
j ) =

δi, j pi where pi ∈ P(M), such that for all x ∈ M we have x = ∑k
i=1 EL(�)(xm∗

i )mi .

Thus, for all x ∈ M we have ‖x‖22 = ∑k
i=1 ‖EL(�)(xm∗

i )‖22. Approximating mi ∈ M
using their Fourier decompositions and doing some basic calculations this further
implies the following: for every ε > 0 one can find a j ∈ A with 1 ≤ j ≤ l and c > 0
so that for all x ∈ (M)1 we have

‖x‖22 ≤ ε + c
l∑

i=1

‖EL(�)(xai )‖22. (2.3.1)

Assume for the sake of contradiction that A has a diffuse corner, i.e. there is
0 
= p ∈ A so that Ap is diffuse. Hence one can find a sequence of unitaries
un ∈ U(Ap) so that for all x ∈ Ap we have τ(unx)→0, as n→∞. Since ai ∈ A
we have EL(�)(unai ) = τ(unai ) = τ(unai p). Thus using (2.3.1) we get that
τ(p) = ‖un‖22 ≤ ε + c

∑l
i=1 ‖EL(�)(unai )‖22 = ε + c

∑l
i=1 |τ(unai p)|2 and since

limn→∞
∑l

i=1 |τ(unai p)|2 = 0 we get that τ(p) ≤ ε. Letting ε ↘ 0 we get p = 0,
a contradiction.

To see the moreover part let 0 
= q ∈ A be a minimal projection of maximal trace.
Thus for all γ ∈ � either qσγ (q) = 0 or q = σγ (q). Thus the orbit F = {σγ (q) | γ ∈
�} is necessarily a finite set of (orthogonal) minimal projections of A. Let t = ∑

q∈F q
and notice that 0 
= t ∈ A is a projection satisfying σγ (t) = t for all γ ∈ �. Since
� � A is ergodic it follows that t = 1. Since A is completely atomic this entails that
A = spanF . Thus � � A is transitive. ��
Proposition 2.7 Let�,� be icc groups and let� � A,� � B be transitive actions so
that A�� and B�� are II1 factors. Assume that θ : A��→B�� is a∗-isomorphism
such that θ(L(�)) = L(�). Then dim(A) = dim(B) and for every a ∈ At(A),
b ∈ At(b) there is a unitary u ∈ L(�) so that θ(L(Stab�(a)) = u∗L(Stab�(b))u.
In addition, if there exists a ∈ At(A) such that Stab�(a) is normal in � then for
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Rigidity results for von Neumann algebras arising frommixing… 917

every b ∈ At(B) then Stab�(b) is also normal in �; moreover, �/Stab�(a) ∼=
�/Stab�(b).

Proof To simplify the presentation, we assume that A � � = B � � and L(�) =
L(�). Let n = dim(A) and fix a ∈ At(A). Notice τ(a) = 1/n and hence
EL(�)(a) = τ(a)1 = 1/n. Also for each x ∈ L(�), using its Fourier decom-
position, we have axa = ∑

γ∈� τ(xu−1
γ )auγ a = ∑

γ∈� τ(xu−1
γ )aσγ (a)uγ =∑

γ∈Stab�(a) τ (xuγ −1)uγ a = EL(Stab�(a))(x)a. Since clearly∗-alg{a, L(�)} = A��

then, altogether, the above relations show that A � � is the basic construction of the
inclusion L(Stab�(a)) ⊆ L(�) and also [� : Stab�(a)] = [A � � : L(�)] = n. A
similar statement holds for L(�) ⊆ B � �. Since by assumption [A � � : L(�)] =
[B �� : L(�)] it follows that dim(A) = dim(B) = n. To show the remaining part of
the statement fix b ∈ At(B). By the factoriality assumption, since τ(a) = τ(b) = 1/n,
there is a unitary u ∈ A � � so that

b = uau∗. (2.3.2)

Since a ∈ A � � is the Jones projection for inclusion L(Stab�(a)) ⊆ L(�), by pull-
down lemma there existsm ∈ L(�) such that b = uau∗ = mam∗. Thus one can check
that 1/n = τ(b) = EL(�)(b) = EL(�)(b) = EL(�)(mam∗) = mEL(�)(a)m∗ =
τ(a)mm∗ = (1/n)mm∗. Hence mm∗ = 1 which implies that m ∈ L(�) is a unitary.
Thus in equation (2.3.2) we can assumewlog that the unitary u belongs to L(�). Hence
using (2.3.2) we further have that L(Stab�(b)) = {b}′ ∩ L(�) = {uau∗}′ ∩ L(�) =
{uau∗}′ ∩ uL(�)u∗ = uL(Stab�(a))u∗, as desired. Since Stab�(a) is normal in � it
follows from the above relation that uuγ u∗ ∈ NL(�)(L(Stab�(b))) for every γ ∈ �.
Since � is icc and [� : Stab�(b)] < ∞ then L(Stab�(b)) ⊆ L(�) is a irreducible
inclusion of II1 factors. Thus using [76, Corollary 5.3] we have that for every γ ∈ �

there exist a unitary x ∈ L(Stabγ (b)) and λ ∈ � such that uuγ u∗ = xvλ. In particular
this implies that Stab�(b) is normal in � and also �/Stab�(a) ∼= �/Stab�(b). ��

2.4 Mixing extensions

Let B ⊆ A be an inclusion of von Neumann algebras and assume that � �
σ A is

an action that leaves the subalgebra B invariant. Throughout the paper we call such a
system an extension and we denote it by � � (B ⊆ A). When A is endowed with a
state φ preserved by σ the extension is said to be φ-preserving and will be denoted by
� � (B ⊂ A, φ). When A is a finite von Neumann algebra and φ is a faithful normal
trace then � � (B ⊂ A, φ) is called a trace-preserving extension.

Definition 2.8 A trace-preserving extension � � (B ⊆ A, τ ) is called mixing if for
every t, z ∈ A � B we have limγ→∞ ‖EB(tσγ (z))‖2 = 0.

Lemma 2.9 Let � � (B ⊆ A, τ ) be a trace-preserving mixing extension. Then for
every t, z ∈ (A � �) � (B � �) and every sequence (xn)n ⊂ (L(�))1 that converges
to 0 weakly, we have limn→∞ ‖EB��(t xnz)‖2 = 0.
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918 I. Chifan, S. Das

Proof Fix t, z ∈ (A � �) � (B � �). Consider the Fourier decompositions t =∑
γ EA(tuγ −1)uγ and z = ∑

γ uγ −1EA(uγ z) and notice that EB(tuγ ) = EB(uγ z) =
0 for all γ ∈ �. Fix ε > 0. Using these decompositions and basic ‖ · ‖2-estimates one
can find finite subsets F,G ⊂ � such that

‖EB��(t xnz)‖2 ≤ ε

2
+

∑

δ∈F,λ∈G
‖EB��(EA(tuδ−1)uδxnuλ−1EA(uλz))‖2. (2.4.1)

Also fix a, b ∈ A and x ∈ L(�). Using the Fourier decomposition of x ∈ L(�) we
see that EB��(axb) = ∑

γ τ (xuγ −1)EB��(auγ b) = ∑
γ τ (xuγ −1)EB(aσγ (b))uγ .

Thus we have the formula

‖EB��(axb)‖22 =
∑

γ

|τ(xuγ −1)|2‖EB(aσγ (b))‖22. (2.4.2)

Since � � (B ⊆ A, τ ) is mixing and F,G are finite one can find a finite subset
H ⊂ � so that ‖EB(EA(tuδ−1)σγ (EA(uλz))))‖2 ≤ ε/(

√
8|F ||G|) for all γ ∈ � \ H ,

δ ∈ F and λ ∈ G. Also since xn→0 weakly, and F,G, H are finite there is an integer
n0 such that |τ(xnuγ −1)| ≤ ε/(

√
8|H ||G||F |‖t‖∞‖z‖∞) for all γ ∈ G−1H−1F and

n ≥ n0. Using these basic estimates in combination with formula (2.4.2) we see that
for all n ≥ n0 we have

∑

δ∈F,λ∈G
‖EB��(EA(tuδ−1)uδxnuλ−1EA(uλz))‖2

=
∑

δ∈F,λ∈G

⎛

⎝
∑

γ∈H
|τ(xnuλ−1γ −1δ)|2‖EB(EA(tuδ−1)σγ (EA(uλz)))

⎞

⎠ ‖22

+
∑

γ∈�\H
|τ(xnuλ−1γ −1δ)|2‖EB(EA(tuδ−1)σγ (EA(uλz))))‖22)

1
2

≤
∑

δ∈F,λ∈G

⎛

⎝
∑

γ∈H

ε2

8|F |2|G|2|H |‖t‖2∞‖z‖2∞
‖EB(tσγ (z))‖22 + ε2

8|F |2|G|2 ‖xn‖22
⎞

⎠

1
2

≤
(

ε2

8
+ ε2

8

) 1
2

= ε

2
.

This combined with (2.4.1) show that for every ε > 0 there exits n0 such that for all
n ≥ n0 we have ‖EB(t xnz)‖2 ≤ ε, as desired. ��
Theorem 2.10 Let � � (B ⊆ A, τ ) be a trace-preserving mixing extension. Also
let � �

α (D ⊆ C, τ ) be a trace-preserving extension for which there exists a ∗-
isomorphism θ : A��→C �� satisfying θ(B��) = D�� and θ(L(�)) = L(�).
Then � � (D ⊆ C, τ ) is a mixing extension.
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Rigidity results for von Neumann algebras arising frommixing… 919

Proof Suppressing θ from the notationwe assume that A�� = C��, B�� = D��

and L(�) = L(�). Fix t, z ∈ C � D. We now show that for any infinite sequence
(λn)n ⊆ � we have that

lim
n→∞ ‖ED(tαλn (z))‖2 = 0. (2.4.3)

Since B � � = D � � we note that

EB��(z) = ED��(z) =
∑

λ∈�

ED(zvλ−1)vλ =
∑

λ∈�

ED(EC (zvλ−1))vλ

=
∑

λ∈�

ED(zEC (vλ−1))vλ = ED(z) = 0.

Similarly we have EB��(t) = 0. Since t, z ∈ C and D � � = B � � we see that

‖ED(tαλn (z))‖2 = ‖ED��(tαλn (z))‖2 = ‖ED��(tvλn z)vλ−1
n

‖2
= ‖ED��(tvλn z)‖2 = ‖EB��(tvλn z)‖2. (2.4.4)

Since (λn)n is infinite the sequence (vλn )n ⊂ L(�) = L(�) converges weakly to 0.
Thus applying Lemma 2.9 we get limn→∞ ‖EB��(tvλn z)‖2 = 0 and hence (2.4.3)
follows from (2.4.4). ��
For further use we recall the following technical variation of [66, Theorem 3.1]. The
proof is essentially the same with the one presented in [66] and will be left to the
reader.

Theorem 2.11 Let Let � � (B ⊆ A, τ ) be a trace-preserving mixing extension.
Denote by M = A�� ⊃ B �� = N the corresponding inclusion of crossed product
von Neumann algebras. Then for every von Neumann subalgebra C ⊆ N satisfying
C ⊀N B we have QN M (C)′′ ⊆ N.

3 Extensions satisfying the intermediate subalgebra property

Let � � (P0 ⊆ P) be an extension of tracial von Neumann algebras and consider
the corresponding inclusion P0 � � ⊆ P � � of von Neumann algebras. Suzuki
discovered in [75] that if P0, P are abelian and � � P0 is free then the extension
� � (P0 ⊆ P) satisfies the intermediate subalgebra property, i.e. every intermediate
subalgebra P0 � � ⊆ N ⊆ P � � arises as N = Q � � for some �-invariant
intermediate subalgebra P0 ⊆ Q ⊆ P . In this section we establish the intermediate
subalgebra property for new classes of extensions (e.g. compact) for icc groups �

(see Theorem 3.10). In many respects these results complement Suzuki’s as they
cover several examples of non free extensions, for instance when P0 = C1. As a
consequence, for all free ergodic pmp actions on probability spaces � � X of icc
groups �, we are able to completely describe all intermediate subfactors L(�) ⊆ N ⊆
L∞(X) � � with finite index [N : L(�)] < ∞ (see Theorem 3.14). Our strategy also
enables us to recover some well-known older results on intermediate subalgebras (see
Corollary 3.3 and Theorems 3.4, 3.7).
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We briefly introduce a few preliminaries. The first result describes the algebraic
structure of fixed point subspaces associated with u.c.p. maps and it is essentially [2,
Lemma 3.4]. For reader’s convenience we also include a short proof.

Lemma 3.1 Let M be a von Neumann algebra, and let ϕ be a faithful, normal state
on M. Let � : M → M be a normal, u.c.p. map. Define Har(�) = {m ∈ M :
�(m) = m} to be the fixed points of �. If ϕ ◦� = ϕ then Har(�) is a von Neumann
subalgebra of M .

Proof From the definition it is clear that Har(�) is closed under sum and taking
adjoint. Also since � is normal, Har(�) is closed in the weak-operator topology.
Thus, to finish the proof we only need to show that Har(�) is closed under product.
Using the polarization identity, it suffices to show that whenever x ∈ Har(�) we
have that x∗x ∈ Har(�) as well. By Kadison–Schwarz inequality we have that
�(x∗x) ≥ �(x)∗�(x) = x∗x , where the last equality follows because x ∈ Har(�);
thus �(x∗x)− x∗x ≥ 0. Since ϕ ◦� = ϕ we also have ϕ(�(x∗x)− x∗x) = 0. Since
ϕ is faithful, we get that �(x∗x) = x∗x , thereby proving that Har(�) is an algebra.

��
Theorem 3.2 Let � � (P, τ ) be a trace preserving action on a finite von Neumann
algebra P and consider the corresponding crossed product von Neumann algebra
P � �. Let P0 ⊆ P be a �-invariant subalgebra. Assume that P0 � � ⊆ N ⊆ P � �

is an intermediate von Neumann subalgebra. Then there is a �-invariant subalgebra
P0 ⊆ Q ⊆ P so that N = Q � � if and only if EN (P) ⊆ P.

Proof Denote by M = P � � and let EP : M→P and EN : M→N be the canonical
conditional expectations onto P and N , respectively. To see the direct implication, fix
a ∈ P . Since N = Q � � and L(�) ⊆ N we have

EN (a) =
∑

γ

EQ(EN (a)uγ −1)uγ =
∑

γ

EQ(EN (auγ −1))uγ

=
∑

γ

EQ(auγ −1)uγ =
∑

γ

EQ(EP (auγ −1))uγ

=
∑

γ

EQ(aEP (uγ −1))uγ = EQ(a) ∈ P.

Next we show the reverse implication. Let eP : L2(M)→L2(P) and eN :
L2(M)→L2(N ) be the canonical orthogonal projections. Since EN (P) ⊆ P then
EP (EN (a)) = EN (a) for all a ∈ P . Therefore EP ◦ EN ◦ EP = EN ◦ EP and hence
ePeNeP = eN eP . Taking adjoints we obtain eN eP = ePeN and since (ePeNeP )n

converges to eN ∧ eP in the strong-operator topology, as n tends to infty, we conclude
that ePeN = eN eP = eN ∧ eP . This also entails that eN ∧ eP = eN∩P and thus

EN ◦ EP = EP ◦ EN = EN∩P . (3.0.5)

Alternatively, one can show (3.0.5) just by usingLemma3.1. Indeed since EN (P) ⊆ P
then from assumptions EN |P : P → P is a u.c.p. map which preserves τ , a normal,
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faithful, tracial state. Letting � = EN |P we can easily see that N ∩ P ⊆ Har(�) ⊆
EN (P). Since we canonically have EN (P) ⊆ N ∩ P we conclude that Har(�) =
EN (P) = P ∩ N . The last equality gives (3.0.5).

Notice that from assumptions Q := N ∩ P ⊆ P is a �-invariant von Neumann
subalgebra of P containing P0. So to finish the proof of our implication we only need
to show that N = Q � �. Since Q � � ⊆ N canonically, we will only argue for the
reverse inclusion. To see this fix x ∈ N and consider its Fourier decomposition (in M)
x = ∑

γ xγ uγ where xγ ∈ P . Since L(�) ⊆ N we have
∑

γ xγ uγ = x = EN (x) =
EN (

∑
γ xγ uγ ) = ∑

γ EN (xγ )uγ . By (3.0.5) we have EN (xγ ) = EQ(xγ ) ∈ Q and
hence xγ = EQ(xγ ) ∈ Q for all γ ∈ �. Thus x = ∑

γ EQ(xγ )uγ ∈ Q � �, as
desired. ��
The conditional expectation property presented in the previous theorem can be used
effectively to describe all the intermediate subalgebras for many inclusions arising
from canonical constructions in von Neumann algebras. In the remaining part of the
section we highlight several situations when this is indeed the case. For instance
it provides a very fast approach to Ge’s well known tensor-splitting theorem [31,
Theorem 3.1] for finite von Neumann algebras.

Corollary 3.3 ([Ge, Theorem 3.1]) Let P1 be a factor and let P2, N be von Neumann
algebras such that P1⊗1 ⊆ N ⊆ P1⊗̄P2. Assume there exist faithful normal states ϕ1
on P1 and ϕ2 on P2, and a faithful, normal conditional expectation EN : P1⊗̄P2 → N
preserving ϕ := ϕ1 ⊗ ϕ2. Then N = P1⊗̄Q for some (von Neumann) subalgebra
Q ⊆ P2.

Proof We first claim that EN (1⊗ P2) ⊆ 1⊗ P2. To see this fix p2 ∈ P2 and p1 ∈ P1.
Since N ⊃ P1⊗1we have (p1⊗1)EN (1⊗ p2) = EN (p1⊗ p2) = EN ((1⊗ p2)(p1⊗
1)) = EN (1⊗ p2)(p1 ⊗ 1). This implies that EN (1⊗ p2) ∈ (P1 ⊗ 1)′ ∩ (P1⊗̄P2) =
1 ⊗ P2, thereby proving the claim. So we have that EN : 1 ⊗ P2 → 1 ⊗ P2 is a
u.c.p. map, preserving ϕ, a faithful, normal state. So by Lemma 3.1, EN (1⊗ P2) is a
subalgebra of 1 ⊗ P2, which we can identify as a von Neumann subalgebra Q ⊆ P2.
Under this identification we have that 1⊗ Q = EN (1⊗ P2) = N ∩ (1⊗ P2). Hence
P1⊗̄Q ⊆ N .

To show the reverse containment, we first claim that (P1 ⊗alg P2) ∩ N is WOT-
dense in N . Let n ∈ N . By Kaplansky’s density theorem, we can find a bounded
net (xλ) ⊂ P1 ⊗alg P2 such that xλ → n in WOT. Since EN is normal, we get
that EN (xλ) → n. If xλ = ∑

i pi ⊗ qi , with pi ∈ P1 and qi ∈ P2 then EN (xλ) =
EN (

∑
i pi ⊗qi ) = ∑

i (pi ⊗1)EN ((1⊗qi )) ∈ (P1⊗alg P2)∩N , thereby establishing
the claim. Now fix n ∈ (P1 ⊗alg P2) ∩ N . Then, there exist p1, ..., pk ∈ P1 and
q1, ..., qk ∈ P2 so that n = ∑

i pi ⊗ qi . Now, since n ∈ N and P1 ⊗ 1 ⊆ N we have

n = EN (n) = EN

(
k∑

i=1

pi ⊗ qi

)

=
k∑

i=1

EN (pi ⊗ qi ) =
k∑

i=1

(pi ⊗ 1)EN (1 ⊗ qi ).

(3.0.6)
Since EN (1 ⊗ qi ) ∈ Q then (3.0.6) implies that (P1 ⊗alg P2) ∩ N ⊆ P1 ⊗alg Q. As
(P1 ⊗alg P2) ∩ N is WOT-dense in N we get N = P1⊗̄Q. ��
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We also record a twisted version of the above theorem.

Theorem 3.4 Let P be a II1 factor and let Q be a finite separable von Neumann
algebra, equippedwith a trace preserving action of�. Assume that� �

σ P is an outer
action. Then for any intermediate vonNeumann subalgebra P�� ⊆ N ⊆ (P⊗̄Q)��

there is a von Neumann subalgebra Q0 ⊆ Q such that N = (P⊗̄Q0) � �.

Proof Using Theorem 3.2 we only need to show that EN (Q) ⊆ Q. Naturally, we have
that EN (Q) ⊆ P ′∩(P⊗Q)��.We shall nowbriefly argue that P ′∩(P⊗̄Q)�� ⊆ Q,

which will prove our claim. To see this fix
∑

γ aγ uγ ∈ P ′ ∩ (P⊗̄Q) � �, where
aγ ∈ P⊗̄Q. Thus for every γ ∈ � and p ∈ P we have that paγ = aγ σγ (p). Fix
e 
= γ ∈ �. Let aγ = ∑

i pi ⊗ qi , with pi ∈ P and qi ∈ Q. We may assume
that qi are orthogonal with respect to τQ (by using the Gram-Schimdt process, and
using the separability of Q). Thus we have

∑
i (ppi ) ⊗ qi = p(

∑
i pi ⊗ qi ) =

(
∑

i pi ⊗ qi )σγ (p) = ∑
i (piσγ (p)) ⊗ qi . As qi ’s are orthogonal we further get

ppi = piσγ (p) for all i and p ∈ P . Since � � P is outer, this implies pi = 0
for all i and hence aγ = 0. Thus, P ′ ∩ (P⊗̄Q) � � ⊆ P ′ ∩ (P⊗̄Q) = Q. Hence
N = (P⊗̄Q0) � � where Q0 = EN (Q). ��
If P is a II1 factor then an action � � P is called centrally free if the induced
action � � P ′ ∩ Pω is properly outer (see [75, Definition 4.3]). Theorem 3.4 was
first obtained by Y. Suzuki under the assumption that the � � P is centrally free,
[75, Example 4.14]. In general the centrally freeness assumption introduces certain
limitations. For instance, if P = L(F2) then P ′ ∩ Pω = C and hence no nontrivial
group admits a centrally free action on P . However, when P is the hyperfinite II1
factor, then requiring the � � P to be outer is the same as requiring the � � P
to be centrally free. This surprising result is a consequence of Ocneanu’s central
freedom lemma ([26, Lemma 15.25]). The reader may also consult [9] for another
recent application of the central freedom lemma.

Theorem 3.5 LetR denote the hyperfinite type II1 factor and let � be a discrete group
acting on R. Then � �

σ R is outer if and only if � �
σ R is centrally free.

Proof Let � �
σ R be an outer action. Let a ∈ R′ ∩ Rω and γ ∈ � be such that

σg−1(x)a = ax for all x ∈ R′∩Rω. This clearly implies that uγ a ∈ (R′∩Rω)′∩(R�

�)ω. Now, by Ocneanu’s central freedom lemmawe get that (R′ ∩Rω)′ ∩(R��)ω =
R ∨ (R′ ∩ R � �)ω = R (where the last equality holds because � � R is outer).
Thus uγ ∈ R which implies that γ = e. Hence � �

σ R′ ∩ Rω is outer.
Conversely, assume that� �

σ R′∩Rω is outer.Wewill show thatR′∩R�� = C,
which shall establish that� �

σ R is outer. Let x ∈ R′∩R��, and consider its Fourier
decomposition x = ∑

γ xγ uγ , where xγ ∈ R. Now x ∈ R′ ∩ R � � implies that
xγ uγ ∈ R′ ∩R�� for all γ ∈ �. Hence xγ uγ ∈ R∨ (R′ ∩R��)ω = (R′ ∩Rω)′ ∩
(R � �)ω (where the last equality follows from Ocneanu’s central freedom lemma).
Thus we get xγ uγ x = xxγ uγ for all x ∈ R′ ∩ Rω which gives that xγ σγ (x) = xxγ ,
implying σγ (x)xγ x∗

γ = xγ x∗
γ x , which implies ER′∩Rω(xγ x∗

γ )x = xER′∩Rω(xγ x∗
γ ),

for all x ∈ R′ ∩ Rω.
Since � � R′ ∩Rω is outer, we get that ER′∩Rω(xγ x∗

γ ) = 0 for all γ 
= e. Since
ER′∩Rω is faithful, this further implies that xγ = 0 for all γ 
= e. This implies that
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x ∈ R′ ∩ R = C, thereby establishing that R′ ∩ R � � = C, which implies that
� �

σ R is outer. ��
Theorem 3.4 leads to new examples of subalgebras in (P⊗̄Q) � � that are amenable
relative to P � �, [55, Definition 2.2]. Note that for von Neumann algebra inclusions
N ⊆ M , the existence of a maximal amenable subalgebra P in M relative to N
follows from [24, Lemma 2.7]. We remark that very similar methods were used in [48,
Theorem 3.4] to provide examples of maximal Haagerup subalgebras arising from
extremely rigid actions of an icc group.

Corollary 3.6 Let P be a type II1 factor, let Q be a finite von Neumann algebra, and let
� be an amenable group acting outerly on P, Q (the actions are assumed to be trace
preserving). Let Q0 ⊆ Q be a maximal amenable subalgebra. Then (P⊗̄Q0) � � is
a maximal amenable subalgebra in (P⊗̄Q) � � relative to P � �. In particular, if
R is the hyperfinite II1 factor, and � � R is an outer trace preserving action, then
(R⊗̄Q0) � � is maximal amenable in (R⊗̄Q) � �.

Proof Let (P⊗̄Q0)�� ⊆ N ⊆ (P⊗̄Q)��. Then byTheorem3.4 N = (P⊗̄Q1)��,
with Q0 ⊆ Q1 ⊆ Q. If N is amenable relative to P � �, then Q1 is amenable. By
maximal amenability of Q0 we obtain that Q1 = Q0 thereby establishing the result.

��
Thenext theorem re-establishes awell knownGalois correspondence for group actions.

Theorem 3.7 Let � be a group, let � � � be a normal subgroup, and let (P, τ )

be a tracial von Neumann algebra. Assume that � acts on P via trace preserving
automorphisms such that (P � �)′ ∩ (P � �) = C. Then for any intermediate
subfactor P � � ⊆ N ⊆ P � � there exists an intermediate subgroup � ≤ K ≤ �

such that N = P � K.

Proof Let K = {γ ∈ � : uγ ∈ N }. Clearly, K is a group satisfying� ≤ K ≤ �. Also
P ⊆ P � � ⊆ N and hence P � K ⊆ N ⊆ P � �. Next we show that N ⊆ P � K .

First we claim for every γ ∈ � there is cγ ∈ C so that EN (uγ ) = cγ uγ . Fix γ ∈ �

and let ψ(x) = uγ xu∗
γ , for all x ∈ L(�). Since � is normal in �, ψ restricts to an

automorphism of P � �. Thus for all x ∈ P � � we have ψ(x)uγ = uγ x and hence
ψ(x)EN (uγ ) = EN (uγ )x . This implies that EN (uγ )∗ψ(x) = xEN (uγ )∗ and hence
EN (uγ )EN (uγ )∗ ∈ (P � �)′ ∩ (P � �) = C. Let d = EN (uγ )EN (uγ )∗. Note that
0 ≤ d ≤ 1. If d 
= 0, we get that (d−1/2EN (uγ ))(d−1/2EN (uγ ))∗ = 1, implying
that d−1/2EN (uγ ) ∈ U(N ). Next consider u = u∗

γ EN (d−1/2uγ ) ∈ U(M). For every
x ∈ P � � we can check that

uxu∗ = d−1u∗
γ EN (uγ )xEN (uγ )∗uγ = d−1u∗

γ EN (uγ )EN (uγ )∗ψ(x)uγ = u∗
γ ψ(x)uγ = x .

Hence d−1/2u∗
γ EN (uγ ) = u ∈ (P � �)′ ∩ (P � �) = C. Thus EN (uγ ) = cγ uγ for

some cγ ∈ C.
The claim shows that for any γ ∈ �, either EN (uγ ) = 0 or uγ ∈ N . Finally, if

N � n = ∑
γ∈� nγ uγ is its Fourier decomposition in P � �, then applying EN , we

see that n = ∑
γ∈� nγ EN (uγ ) ∈ P � K , as desired. ��
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Below we highlight a few special cases of the above theorem, which are well known
in the literature.

Corollary 3.8 1. ([21], [43, Theorem 3.13]) Let M be a II1 factor, and let � be a
discrete group with an outer action on M. Let N be an intermediate subalgebra,
i.e. M ⊆ N ⊆ M��. Then there exists a subgroup K of� such that N = M�K.

2. Let � be an icc group, and let � � � be a normal subgroup such that L(�)′ ∩
L(�) = C. Then for any intermediate subfactor L(�) ⊆ N ⊆ L(�) there exists
an intermediate subgroup � ≤ K ≤ � such that N = L(K ).

Proof Since � � M is outer, M ′ ∩ M � � = C. Taking � = {e}, and appealing to
Theorem 3.7 yields the first statement.

Taking P = C in Theorem 3.7 yields the second statement. ��
In the remaining part of the section we show that the strategy presented in Theorem 3.2
can be successfully used to classify all intermediate subalgebras for inclusion of von
Neumann algebras arising from compact extensions. This covers a new situationwhich
complements the case of free extensions discovered in [75, Main Theorem]. To be
able to properly introduce our result we first recall the following notion of compact
extension of actions on von Neumann algebras:

Definition 3.9 Let � � (P0 ⊆ P) be an extension of tracial von Neumann algebras.
One says that � � (P0 ⊆ P) is a compact extension if there exists F ⊆ P satisfying
the following properties:

1. spanF‖·‖2 = L2(P);
2. for every f ∈ F and ε > 0 there exist ξ1, ξ2, ..., ξn ∈ L2(P) such that

for every γ ∈ � one can find κi (γ ) ∈ P0, with i = 1, n satisfying
sup1≤i≤n,γ∈� ‖κi (γ )‖∞ < ∞ and

‖σγ ( f ) −
n∑

i=1

κi (γ )ξi‖2 ≤ ε.

When P0 = C1 we simply say that the action � � P is compact.

Examples Assume that � � X is an ergodic pmp action on a probability space X
and let � � X0 be a factor such that the extension π : X→X0 is compact in the
usual sense [28,79]. Then it is a routine exercise to show that the corresponding von
Neumann algebraic extension � � (L∞(X0) ⊆ L∞(X)) automatically satisfies the
definition above. In particular whenever � � X is an ergodic compact pmp action
then � � L∞(X) is compact in the above sense.

With this definition at hand we can now introduce the main result of this section.

Theorem 3.10 Let � be an icc group and let � � (P0 ⊆ P) be a compact exten-
sion of tracial von Neumann algebras as in Definition 3.9. Let P0 � � ⊆ P � �

be the corresponding inclusion of crossed product von Neumann algebras. Then for
any intermediate von Neumann subalgebra P0 � � ⊆ N ⊆ P � � there exists an
intermediate von Neumann subalgebra P0 ⊆ Q ⊆ P such that N = Q � �.
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Proof Let M = P � �. Denote by EN : M → N the canonical trace preserving
conditional expectation and note that it extends to a map from L2(M) → L2(M) by
EN (m̂) = ÊN (m). Similarly, let E : M → P be the trace preserving conditional
expectation. E also extends to a map E : L2(M) → L2(M). For every ξ ∈ L2(M) let
ξ̃ = EN (ξ) − E ◦ EN (ξ). With these notations at hand we prove the following

Claim 3.11 for every ξ ∈ F and every ε > 0 there exists a finite set K ⊂ � \ {e}
and η1, η2, ..., ηn ∈ spanPK such that for every γ ∈ � there exist κi (γ ) ∈ P0 with
supγ∈� ‖κi (γ )‖∞ < ∞ such that

‖σγ (ξ̃ ) −
∑

i

κi (γ )ηi‖2 ≤ ε. (3.0.7)

Proof of Claim 3.11. First notice that since L(�) ⊆ N and P is �-invariant then for all
ξ ∈ L2(M) and γ ∈ � we have

EN (uγ ξu∗
γ ) = uγ EN (ξ)u∗

γ , and E(uγ ξu∗
γ ) = uγ E(ξ)u∗

γ . (3.0.8)

Fix ξ ∈ F and ε > 0. Since � �
σ P0 ⊆ P is a compact extension there is a finite

set ξ1, ξ2, ..., ξn ∈ L2(P) such that for every γ ∈ � there exist κi (γ ) ∈ P0 with
supγ∈� ‖κi (γ )‖∞ < ∞ so that

‖σγ (ξ) −
∑

i

κi (γ )ξi‖2 ≤ ε

3
. (3.0.9)

Using (3.0.8) in combination with (3.0.9) and the basic inequalities ‖EN (m)‖2, ‖E ◦
EN (m)‖2 ≤ ‖m‖2, for all m ∈ L2(M) we get that

‖σγ (EN (ξ)) −
∑

i

κi (γ )EN (ξi )‖2 ≤ ε

3
, and ‖σγ (E ◦ EN (ξ)) −

∑

i

κi (γ )E ◦ EN (ξi )‖2

≤ ε

3

Subtracting these relations and using the triangle inequality we conclude that

‖σγ (ξ̃ )) −
∑

i

κi (γ )ξ̃i )‖2 ≤ 2ε

3
. (3.0.10)

Approximating the ξi ’s one can find a finite set F ⊂ � \ {e} so that ‖ξ̃i − ηi‖2 ≤
ε/(3n supγ∈� ‖κi (γ )‖∞) for all 1 ≤ i ≤ n. Thus ‖∑

i κi (γ )ξ̃i − κi (γ )ηi‖2 ≤ ε/3
and combining it with (3.0.10) we get the desired conclusion. ��
Next we prove the following

Claim 3.12 For every ξ ∈ F we have ξ̃ = 0.
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Proof of the Claim 3.12. Fix ε > 0 and ξ ∈ F . Approximating ξ̃ there exists a finite
set K ⊆ � \ {e} and r ∈ spanPK such that

‖ξ̃ − r‖2 ≤ ε. (3.0.11)

Also by Claim 3.11 there exists a finite set G ⊂ � \ {e} and η1, η2, ..., ηn ∈ spanPG
such that for every γ ∈ � there exist κi (γ ) ∈ P0 with supγ∈� ‖κi (γ )‖∞ < ∞ such
that

‖σγ (ξ̃ ) −
∑

i

κi (γ )ηi‖2 ≤ ε. (3.0.12)

Since � is icc and G, K ⊂ � \{e} are finite by [19, Proposition 3.4] there exists λ ∈ �

such that λKλ−1 ∩ G = ∅; in particular, we have

〈uλruλ−1,
∑

i

κi (λ)ηi 〉 = 0. (3.0.13)

Using (3.0.11) in combinationwith Cauchy–Schwarz inequality, (3.0.12), and (3.0.13)
we see that

‖ξ̃‖22 = ‖uλξ̃u
∗
λ‖22 = |〈uλξ̃uλ−1 , uλξ̃uλ−1〉|

≤ ε‖ξ̃‖2 + 〈uλruλ−1 , uλξ̃uλ−1〉| ≤ ε‖ξ̃‖2 + ε‖r‖2 +
∣
∣
∣
∣
∣

〈

uλruλ−1,
∑

i

κi (λ)ηi

〉∣
∣
∣
∣
∣

≤ ε‖ξ̃‖2 + ε(‖ξ̃‖2 + ε).

Letting ε ↘ 0 we get ξ̃ = 0, as desired. ��
Claim 3.12 implies that EN (ξ) = E ◦EN (ξ) for all ξ ∈ F . Since spanF is dense in

L2(P), these two maps agree on L2(P) ⊇ P . Appealing to Theorem 3.2 we conclude
that N = Q � �, for some subalgebra P0 ⊆ Q ⊆ P . ��
Remarks After the first draft of the paper appeared on the ArXiv, we were kindly
informed by Y. Jiang and A. Skalski that they had subsequently obtained a charac-
terization of intermediate subfactors N satisfying L(�) ⊆ N ⊆ L∞(X) � �, with
� � X a profinite action, in an independent manner (see [48, Cor 3.11]).

Corollary 3.13 Let � be an icc group and let � � A and � � B be trace preserving
actions with � � B compact, and where A is a II1 factor. Consider the diagonal
action � � A⊗̄B and let (A⊗̄B) � � be the corresponding crossed product von
Neumann algebra. Then for any von Neumann subalgebra A�� ⊆ N ⊆ (A⊗̄B)��

one can find a �-invariant von Neumann subalgebra C ⊆ B so that N = (A⊗̄C)��.

Proof Since � � B is compact one can see that � � (A ⊆ A � B) is a compact
extension and hence the conclusion follows from Theorem 3.10. ��

We end this section with an immediate application of Theorem 3.10 to the study
of finite index subfactors. More specifically, we show that Theorem 3.10 can be used
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effectively to completely describe all intermediate subfactors L(�) ⊆ N ⊆ L∞(X)�

� with [N : L(�)] < ∞ for any ergodic action � � X of any icc group �.

Corollary 3.14 Let � be an icc group and let � � X be an ergodic action. Let
M = L∞(X) � � denote the corresponding group measure space von Neumann
algebra. Then the following hold:

1. Suppose L(�) ⊆ N ⊆ L∞(X) � � is an intermediate von Neumann subalgebra
so that N ⊆ QN M (L(�))′′. Then there exists a factor � � X0 of � � X such
that N = L∞(X0) � �

2. For any intermediate subfactor L(�) ⊆ N ⊆ L∞(X) � � with [N : L(�)] < ∞
there is a finite, transitive factor � � X0 of � � X such that N = L∞(X0) � �;
in particular [N : L(�)] ∈ N. Thus for any subfactors L(�) ⊆ N1 ⊆ N2 ⊆
L∞(X) � �, with either [N1 : L(�)] < ∞ or � � X compact, we have [N2 :
N1] ∈ N ∪ {∞}.

3. If � has no proper finite index subgroups (e.g. � is simple) then there are no
nontrivial intermediate subfactors L(�) ⊆ N ⊆ L∞(X) � � with [N : L(�)] <

∞.

Proof 1. Let � � Xc be a maximal compact factor of � � X and using [36,
Theorem 6.9] we have thatQN M (L(�))′′ = L∞(Xc)��. Altogether these show
that L(�) ⊆ N ⊆ L∞(Xc) � �. Then the desired conclusion follows directly
from Theorem 3.10.

2. Since [N : L(�)] < ∞ then N admits a finite left (and also a finite right) Pimsner-
Popa basis over L(�) and hence N ⊆ QN M (L(�))′′. By part 1. there is a factor
� � X0 of � � X such that N = L∞(X0) � �. As � is icc and N is a factor
we also have that � � L∞(X0) is ergodic. Since N admits a finite Pimsner-
Popa basis over L(�) then by Proposition 2.6 it follows that � � L∞(X0) is
a transitive action. In particular X0 is a finite probability space and � � X0
is transitive. If �x ≤ � is the stabilizer of an x ∈ X0 one can also check that
[N : L(�)] = |X0| = |�/�x | ∈ N. The rest of the statement follows easily.

3. Assume that [N : L(�)] < ∞. From the proof of part 2.we have N = L∞(X0)��

where� � X0 is an actionon afinite set X0 and also [N : L(�)] = |X0| = |�/�x |
where �x is the stabilizer of x ∈ X0. Since � has no nontrivial finite index
subgroups then � = �x and hence N = L(�).

��
Final remarks. The previous corollary also holds for intermediate subalgebras

L∞(X) � � ⊆ N ⊂ L∞(Y ) � � with [N : L∞(X) � �] < ∞ for von Neumann
algebras arising from extensions � � L∞(X) ⊆ L∞(Y ) of icc groups �. The proof
is essentially the same as the one presented in Corollary 3.14 with the only difference
that we use Theorem 2.5 instead of [36, Theorem 6.9]. Also, parts 1. and 2. hold for
any von Neumann algebra N which admits a finite Pimsner-Popa basis over L(�), if
we use the Pimsner-Popa index [61] instead of Jones index [44].

In connection with the previous problems one may attempt to describe the sub-
factors of group von Neumann algebras N ⊆ L(�) that are normalized by the �

itself, i.e. � ⊂ NL(�)(N ). Very recently this problem was considered in [1] where a
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complete description was obtained for � lattices in higher rank simple Lie groups via
a noncommutative version of Margulis’ normal subgroup theorem; in turn this was
obtained using character rigidity techniques introduced [20,59]. In this work we make
further progress on this question for many new families of groups � complementary
to the ones from [1]. In particular, we show that under additional conditions on the
relative commutant N ′ ∩ L(�) (e.g. finite dimensional) these subfactors are always
“commensurable” with von Neumann algebras arising from the normal subgroups of
� (Theorem 3.15). Moreover, in the case of all exact acylindrically hyperbolic groups
[23,54], all nonamenable groups with positive first L2-Betti number, and all lattices
in product of trees the same holds without any a priori assumptions on N ′ ∩ L(�) (see
Theorem 3.16, Corollary 3.17, and part 3 in Theorem 3.15).

Theorem 3.15 Let � be a countable discrete group and let N ⊂ L(�) be a subfactor
such that � ⊂ NL(�)(N ). Then there exists a normal subgroup � � � such that
N ⊆ L(�) ⊆ N ∨ (N ′ ∩ L(�)). Moreover, we have the following

1) If N ′ ∩L(�) is finite dimensional then the inclusions N ⊆ L(�) ⊆ N ∨N ′ ∩L(�)

have finite index; in particular, when N ′ ∩ L(�) = C1 then N = L(�).
2) If L(�) is solid1 then either N is an amenable factor or the inclusions N ⊆

L(�) ⊆ N ∨ N ′ ∩ L(�) have finite index. Moreover if L(�) is strongly solid2

then either N is finite dimensional or the inclusions N ⊆ L(�) ⊆ N ∨ N ′ ∩ L(�)

have finite index.
3) � be a simple group such that L(�) is a prime factor, e.g. Burger-Mozes group

[7], Camm’s group [8] or Bhattacharjee’s group [3] (see [10]). Then N is either
finite dimensional or [L(�) : N ] < ∞.

Proof Denote by � the set of all γ ∈ � for which there is y ∈ U(N ) such that
τ(yuγ ) 
= 0. Note that � coincides with the set of all γ ∈ � such that EN (uγ ) 
= 0.

Fix γ ∈ � and denote by φγ : N→N the automorphism given by φγ (x) =
uγ xuγ −1 for all x ∈ N . Thus φγ (x)uγ = uγ x and applying the expectation EN

we also have φγ (x)EN (uγ ) = EN (uγ )x for all x ∈ N . These two relations give
that φγ (x)EN (uγ )uγ −1 = EN (uγ )xuγ −1 = EN (uγ )uγ −1φγ (x) for all x ∈ N ; in
particular, aγ := EN (uγ )uγ −1 ∈ N ′ ∩ L(�). Thus

EN (uγ ) = aγ uγ . (3.0.14)

Thus EN (uγ )EN (uγ −1) = aγ a∗
γ . Applying the expectation EN and using EN ◦

EN ′∩L(�) = τ (since N is a factor) we get EN (uγ )EN (uγ −1) = τ(aγ a∗
γ )1. As

aγ 
= 0 one can find a unitary bγ ∈ N so that EN (uγ ) = ‖aγ ‖2bγ . Combining with
(3.0.14) we get ‖aγ ‖2bγ = aγ uγ and hence uγ = ‖aγ ‖2a∗

γ bg . In particular we have
‖aγ ‖2a∗

γ ∈ U(N ′ ∩ L(�)) and hence uγ ∈ U(N )U(N ′ ∩ L(�)) ⊆ N ∨ (N ′ ∩ L(�)).
Let � be the set of all γ ∈ � such that uγ = xγ yγ , where xγ ∈ U(N ) and
yγ ∈ U(N ′ ∩ L(�)). Observe that � � � is in fact a normal subgroup. The pre-
vious relations show that � ⊆ � and by the definition of � we have that N ⊆ L(�).
Since L(�) ⊆ N ∨ (N ′ ∩ L(�)) canonically, the first part of the conclusion follows.

1 For every diffuse A ⊆ L(�) the relative commutant A′ ∩ L(�) is amenable
2 For every diffuse amenable A ⊆ L(�) the normalizer NL(�)(A)′′ is amenable
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Since N ′ ∩ L(�) is finite dimensional then N ∨ N ′ ∩ L(�) admits left (and right)
finite Pimsner-Popa basis over N and 1) follows.

If N is nonamenable, then N ′ ∩ L(�) is finite dimensional, as L(�) is solid. The
rest of 2) follows easily from 1).

If� is simple, then� = �, as� is a normal subgroup of�; hence, N∨N ′∩L(�) =
L(�). Since L(�) is prime, this further implies that either N or N ′ ∩ L(�) is finite
dimensional, and thus 3) follows from 1). ��
Next we show that whenever � is a “negatively curved” group then all subfactors N ⊆
L(�) normalized by � are commensurable to subalgebras L(�) arising from normal
subgroups � � �. Our proof relies heavily on the deformation/rigidity techniques for
array/quasi-cocycles on groups that were introduced and studied in [13,17–19]. We
advise the reader to consult these references beforehand.

Let π : �→O(H) be an orthogonal representation. Let QH1
as(�, π) be the set of

all unbounded quasicocycles into π , i.e. unbounded maps q : �→H so that d(q) :=
supγ,λ∈� ‖q(γ λ) − q(γ ) − πγ (q(λ))‖ < ∞. When the defect d(q) = 0 the set

QH1
as(�, π) is nothing but the first cohomology group H1(�, π).

Theorem 3.16 Let π : � → O(H) be an orthogonal mixing representation that is
weakly contained in the left regular representation of �. Assume one of the following
holds: a) � is exact and QH1

as(�, π) 
= ∅, or b) H1(�, π) 
= 0. Let N ⊆ L(�) be a
subfactor satisfying � ⊂ NL(�)(N ). Then there is a normal subgroup � � � so that
N ⊆ L(�) ⊆ N ∨ N ′ ∩ L(�) and one of the following holds:

1. N is finite dimensional, or
2. � is infinite amenable, or
3. [L(�) : N ] < ∞.

Proof Let M = L(�). By Theorem 3.15 there is � � �, such that N ⊆ L(�) ⊆
N ∨ (N ′ ∩ M) and moreover from its proof it follows that for every γ ∈ � there are
unitaries aγ ∈ N and bγ ∈ N ′ ∩ L(�) so that

uγ = aγ bγ . (3.0.15)

Also since N is a factor, using Ge’s tensor splitting result (Theorem 3.3) we also get
that

L(�) = N ∨ (N ′ ∩ L(�)). (3.0.16)

Assume that� is nonamenable. Let q ∈ QH1
as(�, π) and consider the restriction q|�.

One can easily see that the representation π⊕∞
|� is still mixing and is weakly contained

in �2(�). Moreover since � � � is normal and the representation is mixing it follows
that q|� is unbounded and hence q|� ∈ QH1

as(�, π |⊕∞
� ). Thus by [13, Corollary 7.2]

it follows that the finite conjugacy radical FC(�) of � is finite and hence Z(L(�))

is finite dimensional.
Assume that N ′ ∩L(�) is amenable. If it is finite dimensional then (3.0.16) already

implies 3. If not then there is a projection 0 
= z ∈ Z(N ′ ∩ L(�)) = Z(�) such
that (N ′ ∩ L(�))z is isomorphic to the hyperfinite factor. Since � is nonamenable N
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is also nonamenable. Thus L(�)z has property (Gamma) and there is a sequence of
(un)n of unitaries in (N ′ ∩ L(�))z such that uω := (un)n ∈ (L(�)′ ∩ L(�)ω)z and
uω ⊥ L(�); hereω is a free ultrafilter onN. On the other hand using [19, Theorem 4.1]
we get that L(�)′ ∩ L(�)ω ⊆ L(�). Thus u ⊥ u, which is a contradiction.

Now assume that N ′ ∩ L(�) is nonamenable. If N is amenable then a similar
argument as before shows that N is finite dimensional leading to 1. Thus for the rest
of the proof we assume that N and N ′ ∩ L(�) are nonamenable and we will show this
leads to a contradiction.

Let P = L(�). Following [17, Sect. 2.3] consider Vt : L2(P̃) → L2(P̃) be
the Gaussian deformation corresponding to the quasicocycle q|� ∈ QH1

as(�, π⊕∞
|� )

where the supralgebra P ⊂ P̃ is the Gaussian dilation. Let eP : P̃ → P denote
the orthogonal projection. Since N ′ ∩ L(�) is nonamenable there exists a nonzero
projection 0 
= p ∈ N ′ ∩ L(�) such that (N ′ ∩ L(�))p has no amenable direct
summand. Thus applying a spectral gap argument a la Popa (see for instance [17,
Theorem 3.2]), we obtain that

lim
t→0

(

sup
x∈(N )1 p

‖e⊥PVt (x)‖2
)

= 0, and lim
t→0

(

sup
x∈(N ′∩L(�)1

‖e⊥PVt (x)‖2
)

= 0.

(3.0.17)
Fix ε > 0. Thus, using the transversality property from [17, Lemma 2.8], relations
(3.0.17) and a simple calculation show that there exist C, D > 0 satisfying

‖PBC (x)−x‖2 < ε for all x ∈ U(N )p, ‖PBD (y)−y‖2 < ε for all y ∈ U(N ′∩P).

(3.0.18)
Here for every constant C ≥ 0 we denoted by BC = {λ ∈ � : ‖q(λ)‖H ≤ C} and
by PBC the orthogonal projection onto the Hilbert subspace of L2(�) spanned by BC .
Since by (3.0.15) we have uγ = aγ bγ then (3.0.18) imply

‖PBC (uγ b
∗
γ p) − uγ b

∗
γ p‖2 < ε and ‖PBD (b∗

γ p) − b∗
γ p‖2 < ε for allγ ∈ �.

(3.0.19)
Thus using triangle inequality, for all γ ∈ �, we also have

‖PBC (uγ b
∗
γ p) − uγ PBD (b∗

γ p)‖2 ≤ ‖PBC (uγ pb
∗
γ ) − uγ pbγ ‖2 + ‖PBD (b∗

γ p) − b∗
γ p‖2 < 2ε.

(3.0.20)
Since q|� is unbounded, there exists γ0 /∈ BC+D+3d(q|�). Also the quasicocycle

relation and the triangle inequality show that BC B
−1
D ⊆ BC+D+3d(q|�) and thus

γ0 /∈ BC B
−1
D . Hence 〈PBC (ξ), uγ0 PBD (η)〉 = 0 for all ξ, η ∈ L2(�). Thus using

inequalities 3.0.20 for γ = γ0 and (3.0.19) we see that 4ε2 ≥ ‖PBC (uγ0b
∗
γ0
p) −

uγ0 PBD (b∗
γ p)‖22 = ‖PBC (uγ0b

∗
γ0
p)‖22+‖uγ0 PBD (pb∗

γ0
)‖22 ≥ ‖uγ0b

∗
γ0
p‖22+‖b∗

γ0
p‖22−

2ε2 = 2‖p‖22 − 2ε. Thus ‖p‖22 ≤ 3ε2, which contradicts p 
= 0 when ε→0. This
completes the proof of the first part of the theorem in the the case when q is a qua-
sicocycle with d(q) 
= 0. When d(q) = 0 i.e. q is a cocycle the same proof works
with the only difference that to derive the convergence 3.0.18, instead of using [17,
Theorem 3.2] (which requires exactness of �) one can use the spectral gap arguments
as in [58] or [78]. ��
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When combined with results in geometric group theory the previous result leads to
the following

Corollary 3.17 Let � be a nonamenable group that is either exact and acylindrically
hyperbolic or has positive first L2-Betti number. Let N ⊆ L(�) be a subfactor such
that � ⊂ NL(�)(N ). Then there is a nonamenable normal subgroup � � � so that
N ⊆ L(�) ⊆ N ∨ N ′ ∩ L(�) and one of the following holds:

1. N is finite dimensional, or
2. [L(�) : N ] < ∞.

Proof From [60] and [34] it follows that these families always haveQH1
as(�, �2(�)) 
=

∅. Hence the result follows directly from the previous theorem as both classes of
nonamenable acylindrically hyperbolic groups and nonamenable groups with positive
first L2-Betti number have finite amenable radical. ��

4 Actions that satisfy Neshveyev–Størmer rigidity

If �,� are abelian (or more generally amenable) groups, and � � X , � � Y are
free, ergodic, pmp actions, then L∞(X) � � and L∞(Y ) � � are isomorphic to the
hyperfinite II1 factor R. However, Neshveyev and Størmer proved that if we assume
that � : L∞(X) � � → L∞(Y ) � � is an ∗-isomorphism such that �(L∞(X)) is
unitarily conjugate to L∞(Y ) and �(L(�)) = L(�) then the actions � � X and
� � Y are conjugate [52, Theorem 4.1]. Motivated by this group action conjugacy
criterion, they further conjectured the following: if �,� are abelian groups, � �

X ,� � Y are free, weak mixing, pmp actions and � : L∞(X) � � → L∞(Y ) � �

is a ∗-isomorphism satisfying �(L(�)) = L(�) then � � X is conjugate to � � Y
[52, Conjecture]. Shortly after, using his influential deformation/rigidity theory Popa
was able to prove the following striking result: if �,� are any countable groups,
� �

σ X ,� �
ρ Y are free, ergodic actions, with σ Bernoulli (or more generally

clustering), and � : L∞(X) � � → L∞(Y ) � � is an ∗-isomorphism such that
�(L(�)) = L(�) then � � X is conjugate to � � Y , [67, Theorem 5.2]. In
particular, this settled Neshveyev-Størmer conjecture for Bernoulli actions. Popa also
showed that the study of the Neshveyev-Størmer rigidity question in the context of
icc property (T) groups eventually leads to his remarkable proof of the group measure
space version of Connes’ rigidity conjecture, [67, Theorem 0.1]. All these results
motivate the study of the following generalized Neshveyev-Størmer rigidity question.

Question 4.1 Let � and � be icc countable discrete groups and let � � X and
� � Y be free, ergodic, pmp actions. Assume that there is a ∗-isomorphism � :
L∞(X) � � → L∞(Y ) � � so that �(L(�)) = L(�). Under what conditions on
� � X can we conclude that � � X and � � Y are conjugate?

Informally, the generalizedNeshveyev-Størmer rigidity question asks, underwhat con-
ditions can � � X be completely recovered from the irreducible subfactor inclusion
L(�) ⊂ L∞(X) � �.

123



932 I. Chifan, S. Das

Using existing literature, one can see that the generalizedNeshveyev-Størmer rigid-
ity phenomenon holds for the following classes of actions: all Bernoulli actions of icc
groups, [67]; allW ∗-superrigid actions, [6,11,12,14,17,18,25,35,38,58,71–73,78]; all
weak mixing Cgms-superrigid actions, [67, Theorem 5.1]; and all mixing Gaussian
actions [6, Corollary 3.9].

In this section we provide new classes of actions satisfying the generalized
Neshveyev–Størmer question, most notably, all actions that appear as (nontrivial)
mixing extension of free distal actions (see Theorem 4.8).

4.1 A criterion for conjugacy of group actions

Within the class of icc groups, we further generalize Neshveyev–Størmer’s aforemen-
tioned criterion for conjugacy of group actions on probability spaces by completely
removing the weak mixing assumption of � � X (see Theorem 4.5). In this context
our result also generalizes [67, Theorem 0.7] as it covers many new actions (e.g. com-
pact) that were not previously analyzed in this context. Our proof relies on the usage of
the notion of height of elements in group von Neumann algebras introduced in [42]. In
order to prove our result we need to establish first a few preliminary technical results
on height of elements in group von Neumann algebras, [42, Definition 3.1].

Definition 4.2 A trace preserving action � �
σ A on a finite von Neumann algebra

A is called properly outer over the the center of A if for every γ 
= 1 and every
0 
= z ∈ Z(A) such that σγ (z) = z the automorphism σγ : Az→Az is not inner.
When A is abelian this amounts to the usual freeness of the action � � A.

The following lemma is a basic generalization of Dye’s famous result in the case of
group measure space von Neumann algebras. For readers’ convenience we include a
short proof.

Lemma 4.3 Let � �
σ A and � �

α B be properly outer actions. Also let � :
A � �→B � � be a ∗-isomorphism such that �(A) = B. Fix γ ∈ � and let
�(uγ ) = ∑

λ∈� aλvλ be the Fourier decomposition of �(ug) in B � �. Then there
are mutually orthogonal projections {eλ}λ∈� ⊂ Z(B) and unitaries {xλ}λ∈� ⊂ B so
that aλ = eλxλ for all λ ∈ �. Also,

∑
λ∈� eλ = 1.

Proof To ease our presentation we assume that A = B. Thus, M := A� � = A� �.
Fix γ ∈ � and let uγ = ∑

λ∈� aλvλ. Since σγ (a)uγ = uγ a for all a ∈ A then
σγ (a)

∑
λ∈� aλvλ = ∑

λ∈� aλvλa = ∑
λ∈� aλαλ(a)vλ. Thus σγ (a)aλ = aλαλ(a)

for all a ∈ A and λ ∈ �. If aλ = wλ|aλ| is the polar decomposition of aλ this further
implies that for all a ∈ A and λ ∈ � we have

σγ (a)wλ = wλαλ(a). (4.1.1)

Hence eλ = wλw
∗
λ ∈ Z(B). Let xλ ∈ U(A) such that wλ = xλeλ. Fix λ 
= μ ∈

�. Using (4.1.1), for all a ∈ A we have σγ (a)eλ = xλαλ(a)x∗
λeλ and σγ (a)eμ =

xμαμ(a)x∗
μeμ. Thus σγ (a)eλeμ = xλαλ(a)x∗

λeλeμ = xμαμ(a)x∗
μeλeμ. Letting a =

αμ−1(b) we get αλμ−1(b)eλeμ = x∗
λxμbeλeμx∗

μxλ for all b ∈ A. Also one can easily
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check that αλμ−1(eλeμ) = eλeμ. Since � �
α A is properly outer and λμ−1 
= 1, we

get eλeμ = 0; thus for all λ 
= μ we have eλeμ = 0.
As uγ ∈ U(M) we have 1 = ∑

λ a
∗
λaλ = |aλ|2 ≤ ∑

λ eλ ≤ 1. Thus |aλ|2 = eλ

and hence |aλ| = eλ for all λ ∈ �; moreover
∑

λ eλ = 1. ��

With this result at hand we are now ready to prove the first technical result needed
in the proof of Theorem 4.5.

Theorem 4.4 Let � �
σ A and � �

α B be properly outer actions. Assume that
� : A � �→B � � is a ∗-isomorphism satisfying the following conditions:

i) �(A) = B, and
ii) there exist 1 > ε > 0 and a finite subset K ⊆ B � � such that for every γ ∈ �

we have
‖�(uγ ) −

∑

a,b,c,d∈K
aEL(�)(b(�(uγ ))c)d‖2 ≤ ε. (4.1.2)

Then one can find D > 0 and finite subset F ⊆ B such that for every γ ∈ � there
exists λ ∈ � satisfying maxb,c∈F |τ(b∗�(uγ )cvλ)| ≥ D > 0.

Proof As before assume that A = B and notice that M = A � � = A � �. Let
1 > ε > 0 and K ⊆ M a finite subset such that for all g ∈ � we have

‖uγ −
∑

z,t,w,r∈K
zEL(�)(tuγ w)r‖2 ≤ ε. (4.1.3)

Approximating the elements of K via Kaplansky’s density theorem we can assume
there are finite subsets F ⊆ A, G ⊆ � (some elements could be repeated finitely
many times!) so that for all γ ∈ � we have

ε ≥ ‖uγ −
∑

a,b,c,d∈F
λ1,λ2,λ3,λ4∈G

avλ1EL(�)(vλ−1
2
b∗uγ cvλ3)vλ−1

4
d∗‖22.

For the simplicity of writing we convene for the rest of the proof that
∑

a,b,c,d∈F
λ1,λ2,λ3,λ4∈G

=
∑

F,G . Thus for all γ ∈ � we have

ε ≥ ‖uγ −
∑

λ∈�

∑

F,G

aτ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)vλd

∗‖22

≥
∑

λ∈�

(‖EA(uγ vλ−1) −
∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)‖22). (4.1.4)

By the previous lemma 4.3 we have that EA(uγ vλ) = eλxλ with xλ ∈ U(A) and
eλ ∈ Z(A). Then using ‖| f | − |g|‖2 ≤ ‖ f − g‖2 for f , g ∈ A we see that the last
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quantity in (4.1.4) is larger than

≥
∑

λ∈�

⎛

⎜
⎝

∥
∥
∥
∥
∥
∥
eλ −

∣
∣
∣
∣
∣
∣

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

2

2

⎞

⎟
⎠

=
∑

λ∈�

⎛

⎜
⎝‖eλ‖22 +

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

2

2

−2Reτ

⎛

⎝eλ

∣
∣
∣
∣
∣
∣

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∣
∣
∣
∣
∣
∣

⎞

⎠

⎞

⎠ . (4.1.5)

From Lemma 4.3 we also have that
∑

λ∈� eλ = 1 and hence
∑

λ∈� ‖eλ‖22 = 1.
Combining this with (4.1.4) and (4.1.5) we get

∑

λ∈�

ε‖eλ‖22 ≥
∑

λ

‖eλ‖22 +
∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

2

2

−2Reτ

⎛

⎝eλ

∣
∣
∣
∣
∣
∣

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∣
∣
∣
∣
∣
∣

⎞

⎠

⎞

⎠ .

Hence, for every γ ∈ � there exists λ ∈ � such that eλ 
= 0 satisfies

ε‖eλ‖22 ≥ ‖eλ‖22 +
∥
∥
∥
∥
∥
∥

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∥
∥
∥
∥
∥
∥

2

2

− 2Reτ

⎛

⎝eλ

∣
∣
∣
∣
∣
∣

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∣
∣
∣
∣
∣
∣

⎞

⎠ . (4.1.6)

Using (4.1.6) and the operatorial inequality (
∑n

i=1 xi )
∗(

∑n
i=1 xi ) ≤ 2n−1 ∑n

i=1 x
∗
i xi

we get

(2 − 2
√

ε)‖eλ‖22

≤ (1 − ε)‖eλ‖22 +
∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
∣

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

2

2

≤ 2Reτ

⎛

⎝eλ

∣
∣
∣
∣
∣
∣

∑

F,G

τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)aαλ(d

∗)

∣
∣
∣
∣
∣
∣

⎞

⎠
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≤ 2|F |4|G|4+1Reτ

⎛

⎜
⎝eλ

⎛

⎝
∑

F,G

|τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)|2|aαλ(d

∗)|2
⎞

⎠

1/2
⎞

⎟
⎠

≤ 2|F |4|G|4+1Reτ

⎛

⎜
⎝

⎛

⎝
∑

F,G

|τ(v
λ1λ

−1
2
b∗uγ cvλ3λ

−1
4 λ−1)|2‖a‖2∞‖d‖2∞

⎞

⎠

1/2

eλ

⎞

⎟
⎠

≤ 2|F |4|G|4+1
(

max
a∈F ‖a‖∞

)2

|G|4|F |4 max
μ∈GG−1λ−1GG−1,b,c∈F

|τ(b∗uγ cvμ)|‖eλ‖22.
(4.1.7)

Letting 0 < D0 := 2|F |4|G|4+1(maxa∈F ‖a‖∞)2|G|4|F |4 and using that ‖eλ‖2 
=
0, the previous equation gives that maxμ∈GG−1λ−1GG−1,b,c∈F |τ(b∗uγ cvμ)| ≥
1 − √

ε

D0
> 0, which finishes the proof. ��

The previous technical result on height can be successfully exploited in combination
with some soft analysis arising from icc property for groups in order to derive the
conjugacy criterion for actions.

Theorem 4.5 Let � � X and � � Y be free ergodic actions where � is icc. Assume
that� : L∞(X)��→L∞(Y )�� is a∗-isomorphism such that�(L∞(X)) = L∞(Y )

and there exists a unitary u ∈ L∞(Y ) � � such that �(L(�)) = uL(�)u∗. Then one
can find x ∈ NL∞(Y )��(L∞(Y )), a character η : �→T, and a group isomorphism
δ : �→� such that xu ∈ U(L(�)) and for all a ∈ L∞(X), γ ∈ � we have

�(auγ ) = η(γ )�(a)x∗vδ(γ )x . (4.1.8)

Here {uγ }γ∈� and {vλ}λ∈� are the canonical group unitaries implementing the actions
in L∞(X) � � and L∞(Y ) � �, respectively.

In particular, it follows that � � X is conjugate to � � Y .

Proof For the ease of presentationwe first introduce some notations. After suppressing
� from the notationwe assume that A = L∞(X) = L∞(Y ) and henceM = A�σ � =
A �α �. Also letting C = uAu∗ and �1 = u�u∗ we also have M = C �α′ �1 and
L(�) = L(�1). Throughout the proof we denote by tλ = uvλu∗ and α′

λ(c) = tλctλ−1

for all c ∈ C . Note that the condition ii) in Theorem 4.4 is automatically satisfied
and hence by the conclusion of Theorem 4.4 there exists a D > 0 and a finite subset
F ⊂ A so that for every γ ∈ �, there is λ ∈ � such that

D ≤ max
b,c∈F |τ(b∗uγ cvλ)| = max

b,c∈F |τ((ub∗)uγ (cu∗)uvλu
∗)| = max

b,c∈F |τ((ub∗)uγ (cu∗)tλ)|.
(4.1.9)

Approximating b∗u, u∗c in (4.1.9) viaKaplansky’s theoremwith elements inC�alg�1
and then diminishing D if necessary, we can in fact assume the following: there exists
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D > 0 and K ⊂ C finite, such that for every γ ∈ �, there exists λ ∈ �1 satisfying

max
d,e∈K |τ(duγ etλ)| ≥ D. (4.1.10)

On the other hand since EC (x) = τ(x)1 for all x ∈ L(�1) we can see that

max
d,e∈K |τ(duγ etλ)| = max

d,e∈K |τ(duγ tλα
′
λ−1(e))| = max

d,e∈K |τ(EC (duγ tλα
′
λ−1(e)))|

= max
d,e∈K |τ(dEC (uγ tλ)α

′
λ−1(e))| = max

d,e∈K |τ(uγ vλ)||τ(dα′
λ−1(e))|

≤ max
d∈K ‖d‖2∞|τ(uγ tλ)|.

Combining this with (4.1.10), for every γ ∈ � there exists λ1 ∈ �1 such that

|τ(uγ tλ1)| ≥ D

maxd∈K ‖d‖2∞
> 0. Since L(�) = L(�1), in the notation of [42] this

implies h�1(�) > 0. Then by [42, Theorem 3.1] there is w ∈ U(L(�1)), a character
η : �→T, and a group isomorphism δ1 : �→�1 satisfying wuγ w∗ = η(γ )tδ1(γ ).
Since tλ = uvλu∗, letting x = u∗w, we further get that there is a group isomorphism
δ : �→� satisfying

xuγ x
∗ = η(γ )vδ(γ ), for all γ ∈ �. (4.1.11)

As vλAvλ−1 = A, using (4.1.11) we get xuhx∗Axuh−1x∗ = A for all h ∈ �. Fix arbi-
trary a ∈ Awith ||a|| ≤ 1, and note uhx∗axuh−1 = x∗EA(xuhx∗axuh−1x∗)x . Apply-
ing the expectation we also have uh EA(x∗ax)uh−1 = EA(x∗EA(xuhx∗axuh−1x∗)x).
Subtracting these relations, for every h ∈ � we have

uh(x
∗ax − EA(x∗ax))uh−1 = x∗EA(xuhx

∗axuh−1 x∗)x − EA(x∗EA(xuhx
∗axuh−1 x∗)x).

(4.1.12)
Fix ε > 0. By Kaplansky Density Theorem there exist finite subsets K ⊂ � \ {1},
L ⊂ � and elements yK ∈ spanAK and xL ∈ spanAL such that

‖yK ‖∞ ≤ 2, ‖xL‖∞ ≤ 1

‖x∗ax − EA(x∗ax) − yK ‖2 ≤ ε, ‖x − xL‖2 ≤ ε (4.1.13)

Using (4.1.12) and (4.1.13) together with basic calculations we see that for every
h ∈ � we have

‖x∗ax − EA(x∗ax)‖22 = ‖uh(x∗ax − EA(x∗ax))uh−1‖22
= |〈uh(x∗ax − EA(x∗ax))uh−1 , x∗EA(xuhx

∗axuh−1x∗)x
− EA(x∗EA(xuhx

∗axuh−1x∗)x)〉|
≤ 2ε + |〈uh yK uh−1 , x∗EA(xuhx

∗axuh−1x∗)x − EA(x∗EA(xuhx
∗axuh−1x∗)x)〉|

≤ 2ε + |〈uh yK uh−1 , x∗EA(xuhx
∗axuh−1x∗)x〉|

≤ 6ε + |〈uh yK uh−1, xL
∗EA(xuhx

∗axuh−1x∗)xL 〉| (4.1.14)
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Since � is icc and K ⊂ � \ {1}, L ⊂ � are finite then by [19, Proposition 2.4] there is
h ∈ � so thathKh−1∩L−1L = ∅.Hence 〈uh yK uh−1 , xL∗EA(xuhx∗axuh−1x∗)xL〉 =
0 and using (4.1.14) we conclude that ‖x∗ax − EA(x∗ax)‖2 ≤ 4ε. Since this holds
for all ε > 0 then x∗ax = EA(x∗ax) for all a ∈ A. Therefore x∗Ax ⊆ A and since A
is a MASA we obtain x∗Ax = A; thus x ∈ NM (A). This together with (4.1.11) give
(4.1.8). In addition, for every a ∈ A and γ ∈ � we have xσγ (a)x∗ = xuγ auγ −1x∗ =
vδ(γ )xax∗vδ(γ )−1 = αδ(γ )(xax∗); in particular � � X and � � Y are conjugate. ��
Remarks TheTheorem4.5 actually holds in a greater generality, namely, for all actions
� � A, � � B that are properly outer over the center. The proof is essentially the
same with the one presented above. We highlighted only the more particular case of
free ergodic actions solely because this is what we will mainly use to derive the main
results of this section.

4.2 Applications to the generalized Neshveyev–Størmer rigidity question

In this subsection we show that large families of group actions verify the conju-
gacy criterion presented in Theorem 4.5 and therefore will satisfy the generalized
Neshveyev–Størmer rigidity question. Our examples appear as mixing extensions of
free distal actions. Our method of proof rely on combining the persistence of mixing
through von Neumann equivalence from Sect. 2.4 and the von Neumann algebraic
description of compactness using quasinormalizers from [15,36,52,53,57].

Theorem 4.6 Let � � X be a ergodic pmp action whose distal quotient � � Xd

is free and the extension π : X → Xd is nontrivial and mixing. Let � � Y be
an ergodic pmp action whose distal quotient � � Yd is also free. Assume that � :
L∞(X) � �→L∞(Y ) � � is a ∗-isomorphism such that �(L(�)) = L(�). Then
there exists a unitary u ∈ L∞(Yd) � � such that �(L∞(Xd)) = uL∞(Yd)u∗ and
�(L∞(X)) = uL∞(Y )u∗.

Proof To ease our presentation we assume that M := L∞(X) � � = L∞(Y ) � �

with P = L(�) = L(�). Using Theorem 2.5 it follows that N := L∞(Xd) �

� = L∞(Yd) � �. Next we argue that L∞(Yd) ≺N L∞(Xd). Indeed, if we
assume L∞(Yd) ⊀N L∞(Xd), since the extension π : X→Xd is assumed to be
mixing, by Theorem 2.11 we have that QN M (L∞(Yd))′′ ⊆ N . However since
QN M (L∞(Yd))′′ = M it would imply that M ⊆ N which is a contradiction.

Since � � Xd and � � Yd are free and L∞(Yd) ≺N L∞(Xd) then by [64,
Appendix A] one can find a unitary u ∈ N so that L∞(Xd) = uL∞(Yd)u∗. Passing
to relative commutants and using freeness of � � Xd , � � Yd again we also get
L∞(X) = uL∞(Y )u∗, as desired. ��
Theorem 4.7 Let � be an icc group and let � � X be an ergodic pmp action whose
distal quotient� � Xd is free and the extensionπ : X → Xd is nontrivial andmixing.
Let� � Y be any free ergodic pmp action. Assume that� : L∞(X)��→L∞(Y )��

is a ∗-isomorphism such that �(L(�)) = L(�). Then there exists a unitary u ∈
L∞(Yd) � � such that �(L∞(Xd)) = uL∞(Yd)u∗ and �(L∞(X)) = uL∞(Y )u∗.
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Proof As beforewe assume thatM := L∞(X)�� = L∞(Y )��with L(�) = L(�).
Using Theorem 2.5 it follows that N := L∞(Xd) � � = L∞(Yd) � �. Next we
argue that L∞(Xd) ≺N L∞(Yd). First notice since π : X→Xd is mixing it follows
from Theorem 2.10 that π : Y→Yd is also mixing. If we would have L∞(Yd) ⊀N

L∞(Xd), since the extension π : Y→Yd is mixing, then Theorem 2.11 would imply
that QN M (L∞(Xd))

′′ ⊆ N . However since QN M (L∞(Xd))
′′ = M it would imply

that M ⊆ N which is a contradiction.
Notice that since � is icc and L(�) = L(�) it follows that � is icc as well. Also

since L∞(Xd) ≺N L∞(Yd) and L∞(Xd) is a Cartan subalgebra in N it follows from
[55, Lemma 4.1] that � � Yd is free and then the desired conclusion follows from
Theorem 4.6. ��
Remarks 1) If in the statements of Theorems 4.6 and 4.7 one only requires that the

distal factor� � Xd is actually compact, then in the proof ofTheorem4.6wedon’t
need to use Theorem 2.5. Instead one can just directly apply [36, Proposition 6.10].

2) If in the statement of Theorem 4.7 one requires that the first element � � X0 of
the distal tower � � Xd is free profinite then one can show the action � � Yd
is free without appealing to [55, Lemma 4.1]. Briefly, using the mixing we have
L∞(X0) ≺M L∞(Y ) and employing some basic intertwining properties one can
further show that L∞(X0) ≺L∞(X0)�� L∞(Y0) and hence L∞(Y0)′ ∩ (L∞(Y0)�

�) ≺L∞(Y0)�� L∞(X0) (∗). However using the same calculations from the proof
of part 2. in Theorem 4.12 we have L∞(Y0)′ ∩ (L∞(Y0)��) = L∞(Y0)�� for
some normal subgroup � � �. However since L(�) ⊆ L(�) the the intertwining
(∗) implies that� is finite and since� is icc we further have� = 1; hence� � Y0
must be free.

Combining the previous theorems with Theorem 4.5 we obtain the following

Theorem 4.8 Let � be an icc group and let � � X be a free, ergodic pmp action
whose distal quotient � � Xd is free and the extension π : X → Xd is nontrivial
and mixing. Let � � Y be any free ergodic pmp action. Assume that � : L∞(X) �

�→L∞(Y ) � � is a ∗-isomorphism such that �(L(�)) = L(�). Then there exists
y ∈ U(L(�), ω : � → T a character, and δ : � → � a group isomorphism such that
y�(L∞(X))y∗ = L∞(Y ), and for all a ∈ L∞(X), γ ∈ �, we have

�(auγ ) = ω(γ )�(a)y∗vδ(γ )y.

In particular, we have y�(σγ (a))y∗ = αδ(γ )(y�(a)y∗) and hence � � X and
� � Y are conjugate.

Here {uγ }γ∈� and {vλ}λ∈� are the canonical group unitaries implementing the
actions in L∞(X) � � and L∞(Y ) � �, respectively.

Proof To ease our presentation, we assume, as before, that L∞(X)�� = L∞(Y )��,
and L(�) = L(�). Theorem4.7 yields that there is a unitaryu ∈ L∞(Yd)�� such that
L∞(X) = uL∞(Y )u∗. This is equivalent to assuming that L∞(X)�� = L∞(Y )��,
L(�) = uL(�)u∗ and L∞(X) = L∞(Y ). We are now exactly in the set up of
Theorem 4.5, which yields the desired conclusions. ��
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Examples Theorem4.8 implies that if� be an icc group and� � X is any ergodic pmp
action that admits a free profinite quotient � � Xd and the extension π : X → Xd

is nontrivial and mixing then � � X satisfies Neshveyev–Størmer rigidity question.
For instance if � is icc residually finite then this is the case for any diagonal action
� � Z × T where � � Z is a Gaussian action associated to a mixing orthogonal
representation of � and � � T is any free ergodic profinite action.

Corollary 4.9 Let � be an icc group, let � � X be a free, mixing pmp action and let
� � Y be any free ergodic pmp action. Also let � � X0 be a free factor of � � X
and � � Y0 be a factor of � � Y . Assume that � : L∞(X) � �→L∞(Y ) � � is
a ∗-isomorphism such that �(L(�)) = L(�) and �(L∞(X0) � �) = L∞(Y0) � �.
Then there exists y ∈ U(L(�), ω : � → T a character, and δ : � → � a group
isomorphism such that y�(L∞(X))y∗ = L∞(Y ), and for all a ∈ L∞(X), γ ∈ �, we
have

�(auγ ) = ω(γ )�(a)y∗vδ(γ )y.

In particular, we have y�(σγ (a))y∗ = αδ(γ )(y�(a)y∗) and hence � � X and
� � Y are conjugate.

Here {uγ }γ∈� and {vλ}λ∈� are the canonical group unitaries implementing the
actions in L∞(X) � � and L∞(Y ) � �, respectively.

Proof Since � � X is mixing then by Theorem 2.10so is � � Y . In particular
the extensions � � (L∞(X0) ⊂ L∞(X)) and � � (L∞(X0) ⊂ L∞(X)) are
mixing. Since �(L∞(X0) � �) = L∞(Y0) � � the conclusion follows using the
same arguments as in the proof of Theorem 4.8. ��

Following the terminology from [71] a free ergodic action � � X is called Cgms-
superrigid if up to unitary conjugacy L∞(X) ⊂ L∞(X) � � = M is the only
group measure space Cartan subalgebra of M . Over the last decade many classes of
examples of such actions have been discovered via deformation/rigidity theory. For
some concrete examples the reader is referred to [12,17,18,39,55,72,73] and the survey
[41]. An immediate consequence of [67, Theorem 5.1] is that all weakly mixing Cgms-
superrigid actions satisfy the statement of Theorem 4.8. Using our Theorem 4.5 we
obtain the following generalization

Corollary 4.10 Any Cgms-superrigid action � � X of any icc group � satisfies the
statement of Theorem 4.8.

In particular the generalizedNeshveyev-Størmer rigidity holds for all action� � X
of icc groups � that are: hyperbolic groups, [73], free products [39] or finite step
extensions of such groups [12].

At this point it is increasingly evident that all the above Neshveyev–Størmer type
rigidity results were achieved by heavily exploiting, at the von Neumann algebra level,
the natural tension between mixing and compactness properties for action. It would
be interesting to understand whether such results could still be obtained only in the
compact regime. Specifically, we would like to propose for study the following

Problem 4.11 If � is icc does every free ergodic profinite action � � X satisfy the
statement of Theorem 4.8?
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While providing a complete answer to this question seems hard at the moment, one
can show there are many aspects of � � X that are shared by � � Y through this
equivalence (e.g. compactness, profiniteness, etc). In fact we have the following result.

Theorem 4.12 Let � � X be a free ergodic action and let � � Y be any action.
Let � : L∞(X) � �→L∞(Y ) � � be a ∗-isomorphism such that �(L(�)) = L(�).
Then the following hold

1. If � � X is (weakly) compact then � � Y is also (weakly) compact.
2. If � is icc and � � X is profinite then � � Y is also ergodic and profinite.

Specifically, if � � X is the inverse limit of � � Xn with Xn finite then � �

Y is the inverse limit of � � Yn with Yn finite so that for every n we have
�(L∞(Xn) � �) = L∞(Yn) � �. In addition, the stabilizer Stab�(Yn) � � is
normal and we have that �/Stab�(Xn) ∼= �/Stab�(Yn) for all n. Finally, there
exists a normal subgroup � � � so that L∞(Y )′ ∩ L∞(Y ) � � = L∞(Y ) � �.

Proof 1.Asbeforeweassume that L∞(X)�� = L∞(Y )�� = M and L(�) = L(�).
Since� � X is compact, [36, Theorem 6.10] implies that the quasinormalizer algebra
satisfies QN M (L(�))′′ = M . Since canonically QN M (L(�))′′ = QN M (L(�))′′
then QN M (L(�))′′ = M which by [36, Theorem 6.10] again implies that � � Y is
also compact. The statement on weak compactness follows from [55, Proposition 3.2].

2. Since � is icc then � is also icc. Hence � � Y is ergodic (otherwise M will not
be a factor). Next we show that � � Y is profinite. As � � X is profinite, it is the
inverse limit of ergodic actions � � Xn on finite spaces. Thus An = L∞(Xn) form a
tower of finite dimensional abelian�-invariant subalgebras A0 ⊂ ... ⊂ An ⊂ An+1 ⊂
... ⊂ L∞(X) such that∪n An

SOT = L∞(X). Moreover� � An is transitive for every
n. Since L∞(X)�� = L∞(Y )�� and L(�) = L(�) using Theorem 3.10 for every
n one can find a �-invariant subalgebra Bn ⊂ L∞(Y ) such that An � � = Bn � �.
Factoriality of An � � and � being icc imply that the action � � Bn is ergodic.
Since L(�) ⊆ An � � is a finite index inclusion of II1 factors so is L(�) ⊆ Bn � �.
Using Lemma 2.6 we get that Bn is finite dimensional and the action � � Bn is
transitive. One can easily check that B0 ⊂ ... ⊂ Bn ⊂ Bn+1 ⊂ ... ⊂ L∞(Y ) and also

∪n Bn
SOT = L∞(Y ). Thus there exist factors � � Yn of � � Y with Yn finite such

that � � Y is the inverse limit of � � Yn .
Denote by {pni | 1 ≤ i ≤ kn} = At(Bn). Since Stab�(q) is assumed normal in �

for every q ∈ At(An) it follows from Proposition 2.7 that Stab�(pni ) is normal in �

for every i . Moreover, since the action� � Bn is transitive one can easily see that we
actually have Stab�(pni ) = Stab�(Bn) for all 1 ≤ i ≤ kn . Finally, by Proposition 2.7
we also have that �/Stab�(Xn) ∼= �/Stab�(Yn) for all n.

In the remaining part we describe the relative commutant L∞(Y )′ ∩ M . So fix
b ∈ L∞(Y )′ ∩ M and consider its Fourier decomposition b = ∑

λ∈� bλvλ. Since b
commutes with L∞(Y ) we get that ybλ = αλ(y)bλ for all λ ∈ � and y ∈ L∞(Y ).
Letting eλ be the support projection of bλb∗

λ this further implies that for all y ∈ L∞(Y )

and λ ∈ � we have
yeλ = αλ(y)eλ. (4.2.1)
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Fix λ such that bλ 
= 0 (and hence eλ 
= 0). Denote by enλ := EBn (eλ) and applying
the conditional expectation EBn in (4.2.1), for all y ∈ Bn we have

yenλ = αλ(y)e
n
λ. (4.2.2)

Since eλ 
= 0 then enλ 
= 0 and hence there is pni ∈ At(Bn) satisfying enλ p
n
i = cpni

for some scalar c > 0. Multiplying (4.2.2) by c−1 pni we get ypni = αλ(y)pni for all
y ∈ Bn . This entails that αλ(pni ) = pni and hence λ ∈ Stab�(pni ) = Stab�(Bn).
Altogether, we have shown that for every λ with bλ 
= 0 we have λ ∈ Stab�(Bn).
Applying this for every n we conclude that λ ∈ ∩n Stab�(Bn) =: �. In particular
b ∈ L∞(Y )�� and hence L∞(Y )′∩M ⊆ L∞(Y )��. Since the reverse containment
canonically holds we get L∞(Y )′ ∩ M = L∞(Y ) � �. As Stab�(Bn)’s are normal
in � then � is also normal in �. ��
These results can be used to produce additional examples of actions satisfying the
statement of Theorem 4.8. For example part 1. of the previous theorem in combination
withTheorem4.5 and [5, Theorem4.16], [16, Theorem5.1] shows that any free ergodic
weakly compact action � � X satisfies the generalized Neshveyev-Størmer rigidity
whenever � is an icc group in one of the following classes

1. � is any properly proximal group [5, Definition 4.1], in particular when � =
PSLn(Z), n ≥ 2 or any � that admits a proper array into a nonamenable represen-
tation (see [17, Definition 2.1]). In fact the latter also follows by using the results
in [17,18];

2. � = H %G is a wreath product where H is nontrivial abelian and G nonamenable
[16].

5 Some applications to strong rigidity results in von Neumann
algebras and orbit equivalence

Theorem 5.1 Let � and � be icc property (T) groups. Let � � X = lim Xn be a free
ergodic profinite action and let � � Y be a free ergodic compact action. Assume
that � : L∞(X) � �→L∞(Y ) � � is a ∗-isomorphism. Then � � Y = lim Yn is
a profinite action. Moreover there exists l ∈ N and a unitary w ∈ L∞(Y ) � � such
that �(L∞(Xk+l) � �) = w(L∞(Yk+1) � �)w∗ for every positive integer k.

Proof To simplify the notations let A = L∞(X), B = L∞(Y ) and notice that M =
A � � = B � �. Moreover if L∞(Xn) = An . then An ⊆ An+1 and A = ∪n An

SOT
.

Also if Mn = An � � then Mn ⊆ Mn+1 and M = ∪nMn
SOT

. Note that by [36,
Theorem 6.9(b)], L∞(X) � � has Haagerup’s property relative to L(�). Since L(�)

has property (T), the same arguments as in the proof of [64, 5.4(2◦)] (see also [64,
Remarks 6.3.1◦]) and [66, Theorem 2.1] implies that L(�) ≺M L(�). Hence one can
find nonzero projections p ∈ L(�), q ∈ L(�) a nonzero partial isometry v ∈ M and
an injective ∗-homomorphism φ : pL(�)p→qL(�)q satisfying φ(x)v = vx for all
x ∈ pL(�)p. Since L(�) ⊂ M is a irreducible subfactor by Theorem 2.2, we may
assume that φ(pL(�)p)′ ∩ qL(�)q = Cq. Also, since L(�)′ ∩ M = C we have that
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v∗v = p. Denoting by Q = φ(pL(�)p) we also have that r = vv∗ ∈ Q′ ∩ qMq.
Letting u ∈ M a unitary such that uv∗v = v we have that

upL(�)pu∗ = Qr . (5.0.3)

Next we prove the following

Claim 5.2 Q ⊆ qL(�)q is a finite index subfactor.

Proof of Claim 5.2. Since L(�) ⊂ M is a rigid subalgebra and M has Haagerup’s
property relative to L(�), by the same arguments as in the second paragraph of this
proof, we also have that L(�) ≺M L(�). Since L(�) is a factor this further entails
that L(�) ≺M upL(�)pu∗ = Qr . Hence by Popa’s intertwining techniques there
exist finitely many x j , y j ∈ M and c > 0 such that

∑
j ‖EQr (x j uy j )‖22 ≥ c for all

u ∈ U(L(�)). Since EQ(r) = τq(r)q then we have EQr (x) = EQ(r)−1EQ(qxq)r =
τq(r)−1EQ(qxq)r for all x ∈ L(�). Using this formula in the previous inequality we
further get that

∑
j ‖EQ(qx juy jq)‖22 ≥ cτq(r) > 0. Approximating x j and y j with

their Fourier decompositions one can find finitely many ai , bi ∈ A and γi , δi ∈ �

such that for all u ∈ U(L(�)) we have
∑

i ‖EQ(quγi ai ubiuδi q)‖22 ≥ cτq (r)
2 . Using

this together with EQ = EQ ◦ EqL(�)q we see that for all γ ∈ � we have

cτq(r)

2
≤

s∑

i=1

‖EQ(quγi ai uγ biuδi q)‖22 =
s∑

i=1

‖EQ(quγi aiσγ (bi )uγ δi q)‖22

=
s∑

i=1

‖EQ(qEL(�)(uγi aiσγ (bi )uγ δi )q)‖22

=
s∑

i=1

|τ(aiσγ (bi ))|2‖EQ(quγiγ δi q)‖22

≤
(

max
i=1,s

‖ai‖2∞‖bi‖2∞
) (

∑

i

‖EQ(quγiγ δi q)‖22
)

.

Thus letting d = cτq (r)
2maxi=1,s ‖ai‖2∞‖bi‖2∞ we have that

∑
i ‖EQ(quγiγ δi q)‖22 ≥ d > 0

for all γ ∈ G. Hence by Theorem 2.1 we get L(�) ≺L(�) Q and since L(�) is a
II1 factor we actually have qL(�)q ≺L(�) Q and hence qL(�)q ≺qL(�)q Q. Since
Q′ ∩ qL(�)q = Cq, this entails [qL(�)q : Q] < ∞ by [9, Proposition 2.3], and the
claim follows. ��

Combining the Claim 5.2 with [65, Lemma 3.1] it follows the inclusion qL(�)q ′ ∩
qMq ⊆ Q′∩qMq has finite Pimsner-Popa probabilistic index. Since� is icc and� �

X is free it follows that L(�)′ ∩ M = C and thus qL(�)q ′ ∩ qMq = Cq. Combining
with the above we conclude that Q′ ∩ qMq is a finite dimensional von Neumann
algebra. Since Q ⊆ qL(�)q ⊂ qM1q ⊂ ... ⊂ qMnq ⊂ qMn+1q ⊂ ... ⊂ qMq and

qMq = ∪nqMnq
SOT

one can check that Q′ ∩ qM1q ⊂ ... ⊂ Q′ ∩ qMnq ⊂ Q′ ∩
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qMn+1q ⊂ ... ⊂ Q′∩qMq and alsoQ′∩qMq = ∪nQ′ ∩ qMnq
SOT

. SinceQ′∩qMq
is finite dimensional there must be aminimal integer l so that Q′ ∩qMlq = Q′ ∩qMq.
In particular, we have r ∈ qMnq and by (5.0.3) we obtain upL(�)pu∗ ⊆ Ml . As Ml

is a factor one can find w ∈ U(M) so that wL(�)w∗ ⊆ Ml .
Since the action � � B is compact the using Theorem 3.10 there is a �-invariant

von Neumann subalgebra B1 ⊂ B satisfying w(B1 � �)w∗ = Al � � = Ml . Since
L(�) has property (T) and [Ml : L(�)] < ∞ it follows that Ml has property (T). Thus
B1 � � is a factor with property (T) and as B1 � � has Haagerup property relative to
L(�) we conclude that B1 � � ≺ L(�) and hence by [9, Proposition 2.3] we have
[B1 � � : L(�)] < ∞. Hence by Lemma 2.6 B1 is finite dimensional and the action
� � B1 is transitive. Finally, using Theorem 3.10 successively there exist a tower of
�-invariant finite dimensional abelian von Neumann subalgebras B1 ⊂ ... ⊂ Bn ⊂
Bn+1 ⊂ ... ⊂ B such that ∪n≥1Bn

SOT = B and also w(Bk+1 � �)w∗ = Ak+l � �

for all k ≥ 0. Thus there exists a sequence of factors � � Yn of � � Y into
finite probability spaces Yn such that L∞(Yn) = Bn for all n ≥ 1. From the previous
relations one can check� � Y is the inverse limit of� � Yn which gives the desired
statement. ��
The von Neumann algebraic methods developed in the previous sections can be used
effectively to derive the following version of Ioana’s OE-superrigidity theorem [37,
Theorem A] for profinite actions of icc groups.

Theorem 5.3 Let � � X be a profinite free ergodic action of an icc property (T)
group � and let� � Y be an arbitrary free ergodic action of an icc group�. Assume
that � : L∞(X) � �→L∞(Y ) � � is a ∗-isomorphism such that �(L∞(X)) =
L∞(Y ). Then there exist projections p ∈ L∞(X) and q ∈ L∞(Y ), a unitary u ∈
NL∞(Y )��(L∞(Y )) with u�(p)u∗ = q, normal subgroups �′ � �, �′ � � with
[� : �′] = [� : �′] < ∞, a character η : �′→T and a group isomorphism
δ : �′→�′ such that for all γ ∈ �′ and a ∈ A we have

�(apuγ ) = η(γ )�(ap)u∗vδ(γ )u.

In particular the actions � � X and � � Y are virtually conjugate.

Proof Suppressing � we can assume L∞(X) = L∞(Y ) = A and A� � = A� � =
M . Since property (T) is an OE-invariant [27, Corollary 1.4] it follows that � is
also a property (T) icc group. Since � � A is profinite then it is weakly compact
in the sense of Ozawa-Popa and by [55, Proposition 3.4] it follows that � � B
is also weakly compact. Since � has property (T) then [37, Remark 6.4] implies
that � � B is compact. Thus using Theorem 5.1 there exist increasing towers
of �-invariant, finite dimensional algebras (An)n ⊆ A and (Bn)n ⊆ A such that

∪n An
SOT = A = ∪n Bn

SOT
. Also there is a unitary w ∈ M and an integer s such

that for all k we have
w(As+k � �)w∗ = Bk � �. (5.0.4)

Since As�� ⊆ As+k�� is a finite index inclusion of II1 factors then so is B0�� ⊆
Bk � �. Thus by Proposition 2.7 it follows that Bk is finite dimensional. Since
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�k := Stab�(As+k)�� is a finite index normal subgroup so is�k := Stab�(Bk)��.

Since w ∈ M = ∪k Ak � �
SOT

is a unitary there exists a sequence wk ∈ U(Ak � �)

such that ‖w − wk‖2→0 as k→∞.
For the remaining part of the proof for every m ≥ k we will keep in mind the

following diagram of inclusions

ww∗
k (As+m � �)wkw

∗ = Bm � �

∪ ∪
ww∗

k (As+k � �)wkw
∗ = Bk � �

∪ ∪
w(As � �)w∗ = B0 � �

(5.0.5)

Pick k large enough such that ‖1 − ww∗
k‖2 ≤ 10−9. Denote by At(As+l) = {ail :

1 ≤ i ≤ rl} and At(Bl) = {b j
l : 1 ≤ i ≤ tl}. Also we can assume without any

loss of generality that dim B0 ≤ dim As (hence dim Bk ≤ dim As+k for all k); in
particular we have τ(b j

l ) ≥ τ(ail ). Fix 1 ≤ i ≤ rk such that ‖aik(1− ww∗
k )‖2 +‖(1−

ww∗
k )a

i
k‖2 ≤ 2‖aik‖‖1 − ww∗

k‖2. Hence if we denote by δik = ‖aik(1 − ww∗
k )‖2 +

‖(1 − ww∗
k )a

i
k‖2‖aik‖−1

2 then we have that

δik ≤ 2‖1 − ww∗
k‖2 < 10−8. (5.0.6)

With this notations at hand we show that

Claim 5.4 There is a unique 1 ≤ j ≤ tk such that for every γ ∈ �k one can find
λ, λ′ ∈ � such that

(1 − 2δik)‖b j
k‖22 ≤ |τ(aikuγ vλb

j
k )|, and (5.0.7)

(1 − 3δik)‖b j
k‖22 ≤ |τ(ww∗

k a
i
kuγ wkw

∗vλ′b j
k )|. (5.0.8)

Proof of Claim 5.4. Fix γ ∈ �k . By triangle inequality we have ‖aikuγ − ww∗
k

aikuγ wkw
∗‖2 ≤ δik‖aik‖2. Applying the conditional expectation and using (5.0.5) we

also have ‖EBk��(aikuγ )−ww∗
k a

i
kuγ wkw

∗‖2 ≤ δik‖aik‖2. Then the triangle inequality
further gives

‖aikuγ − EBk��(aikuγ )‖2 ≤ 2δik‖aik‖2 (5.0.9)

‖aikuγ − EBk��(ww∗
k a

i
kuγ wkw

∗)‖2 ≤ 3δik‖aik‖2. (5.0.10)

By Lemma 4.3 there exist orthogonal projections eλ ∈ A so that
∑

λ eλ = 1 and
unitaries xλ ∈ A so that uγ = ∑

λ∈� eλxλvλ. This combined with (5.0.9) yield

∑

λ∈�

‖aikeλxλ − EBk (a
i
kuγ vλ−1)‖22 = ‖aikuγ − EBk��(aikuγ )‖22 ≤ 4(δik)

2‖aik‖22

=
∑

λ∈�

4(δik)
2‖aikeλxλ‖22.
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Thus one can find λ ∈ � so that aikeλxλ 
= 0 and ‖aikeλxλ − EBk (a
i
kuγ vλ−1)‖2 ≤

2δik‖aikeλxλ‖2. This inequality and basic calculations show that

(2 − 4δik)‖aikeλxλ‖22 ≤ (1 − 4(δik)
2)‖aikeλxλ‖22 + ‖EBk (a

i
kuγ vλ−1)‖22

≤ 2Reτ(aikeλx
∗
λEBk (a

i
kuγ vλ−1)). (5.0.11)

Using the formulas
∑

j b
j
k = 1 and EBk (x) = ∑

j τ(xb j
k )τ (b j

k )
−1b j

k , relation (5.0.11)

implies that (1−2δik)
∑

j ‖aikeλxλb
j
k‖22 ≤ ∑

j |τ(aikeλxλb
j
k )||τ(aikuγ vλ−1b

j
k )|τ(b j

k )
−1.

Hence there is j (which at this point may depend on γ !) so that aikeλxλb
j
k 
= 0 and

(1−2δik)‖aikeλxλb
j
k‖22 ≤ |τ(aikeλxλb

j
k )||τ(aikuγ vλ−1b

j
k )|τ(b j

k )
−1. Using ‖aikeλb

j
k‖22 ≥

|τ(aikeλxλb
j
k )| 
= 0 this further gives

(1 − 2δik)‖b j
k‖22 ≤ |τ(aikuγ v−1

λ b j
k )|. (5.0.12)

Proceeding in a similar manner inequality (5.0.10) implies there exist λ′ ∈ � and
1 ≤ j ′ ≤ rk such that

(1 − 3δik)‖b j ′
k ‖22 ≤ |τ(ww∗

k a
i
kuγ wkw

∗vλ′b j ′
k )|. (5.0.13)

To finish the proof it suffices to argue that j = j ′ and j is unique (hence does
not depend on γ ). Since τ(aikuγ vλ−1b

j
k ) = τ(aik EA(uγ vλ−1)b

j
k ) = τ(aikeλxλb

j
k ) then

(5.0.12) implies ‖b j
k−aik‖22 = τ(b j

k+aik−2b j
k a

i
k) ≤ τ(b j

k )+τ(aik)−2|τ(b j
k eλxλaik)| ≤

4δikτ(b j
k ) and hence

‖b j
k − aik‖2 ≤ 2(δik)

1
2 ‖b j

k‖2. (5.0.14)

By triangle inequality this also yields

‖b j
k − ww∗

k a
i
kwkw

∗‖2 ≤ (2(δik)
1
2 + δik)‖b j

k‖2. (5.0.15)

Then Cauchy–Schwarz inequality in combination with (5.0.13) and (5.0.15) show that

‖b j ′
k b

j
k‖2 ≥ |τ(b j

kww∗
k uγ wkw

∗vλ′b j ′
k )|

≥ |τ(ww∗
k a

i
kuγ wkw

∗vλ′b j ′
k )| − ‖b j

k − ww∗
k a

i
kwkw

∗‖2‖b j ′
k ‖2

≥ (1 − 4δik − 2(δik)
1
2 )‖b j

k‖22.

As b j
k ’s are orthogonal this forces that j = j ′. Uniqueness of j (hence independence

of γ ) follows from (5.0.14). ��
Next we show the following
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Claim 5.5 There exist 1 ≤ j ≤ tk and a unitary s jk ∈ Bk � � such that

s jk ww∗
k a

i
kwkw

∗(s jk )∗ = c jk ≤ p j
k and

s jk ww∗
k a

i
k(As+k � �)aikwkw

∗(s jk )∗ = c jk (Bk � �)c jk (5.0.16)

and for every γ ∈ �k there is λ′ ∈ �k satisfying

(1 − 3δik − 36(δik)
1
4 )‖b j

k‖22 ≤ |τ(s jk ww∗
k a

i
kuγ wkw

∗(s jk )∗vλ′b j
k )|. (5.0.17)

Proof of Claim 5.5. As τ(aik) = τ(ww∗
k a

i
kwkw

∗) ≤ τ(p j
k ) there is a subprojection c

j
k ∈

Bk�� of b j
k that is equivalent (in Bk��) toww∗

k a
i
kwkw

∗. By [22, Lemma4.1] one can

find a unitary s jk ∈ Bk �� satisfying s jk ww∗
k a

i
kwkw

∗(s jk )∗ = cik , [sik, |ww∗
k a

i
kwkw

∗ −
cik |] = 0 and |s jk − 1| ≤ 3|ww∗

k a
i
kwkw

∗ − cik |.
Using (5.0.15) we see that

‖ww∗
k a

i
kwkw

∗ − cik‖22 ≤ 2(2(δik)
1
2 + δik)

2‖b j
k‖22 + 2‖b j

k − c jk‖22
= 2(2(δik)

1
2 + δik)

2‖b j
k‖22 + 2τ(b j

k − c jk )

= (2(2(δik)
1
2 + δik)

2 + 2)‖b j
k‖22 − 2‖aik‖22

≤ ((2(2(δik)
1
2 + δik)

2 + 2) − 2(1 − 2(δik)
1
2 )2)‖b j

k‖22
≤ 18(δik)

1
2 ‖b j

k‖22.

Combining with the previous inequality we get ‖s jk − 1‖2 ≤ 18(δik)
1
4 ‖b j

k‖2. In turn
this together with Cauchy-Schwarz inequality and (5.0.8) show that for every γ ∈ �k

there is λ′ ∈ � such that

|τ(s jk ww∗
k uγ a

i
kw

∗
kw(s jk )∗vλ′b j

k )| ≥ |τ(ww∗
k uγ a

i
kw

∗
kwvλ′b j

k )| − 2‖1 − s jk ‖2‖b j
k‖2

≥ (1 − 3δik − 36(δik)
1
4 )‖b j

k‖22.

This shows (5.0.17). Also since ‖c jkvλ′b j
k‖2 ≥ |τ(s jk ww∗

k uγ aikw
∗
kw(s jk )∗vλ′b j

k )| the
above inequality also shows that λ′ ∈ �k . The rest of the statement follows from the
previous relations. ��
Since aik(As+k � �)aik = L(�k)aik and b j

k (Bk � �)b j
k = L(�k)b

j
k then (5.0.16)

of Claim 5.5 implies that s jk ww∗
k L(�k)aikwkw

∗(s jk )∗ = c jk L(�k)b
j
k c

j
k ⊆ L(�k)b

j
k .

Since �k and �k are icc groups we see that the conditions (1) and (2) in [50, The-
orem 4.1] are satisfied, where G = s jk ww∗

k�kaikwkw
∗(s jk )∗. Also (5.0.17) shows

that (3) in [50, Theorem 4.1] is also satisfied. Therefore using the conclusion of that
theorem we get that c jk = b j

k .

In conclusion we have that s jk ww∗
k L(�k)aikwkw

∗(s jk )∗ = L(�k)b
j
k . Notice we

also have sikww∗
k (A � �k)aikwkw

∗(sik)∗ = sikww∗
k a

i
k(A � �)aikwkw

∗(sik)∗ = b j
k (A �
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�)b j
k = (A � �k)b

j
k . Let z ∈ NM (A) such that z∗z = aik and z∗z = b j

k and denote

by y = b j
k zwkw

∗(s jk )∗ one can check that y is a unitary in (A � �k)b
j
k satisfying

y(s jk ww∗
k Aa

i
kwkw

∗(s jk )∗)y∗ = Ab j
k . Thus applying Theorem 4.5 (working with the

algebra (A � �k)b
j
k ) we get the desired conclusion by letting p = aik q = b j

k etc. ��
Final remarks. We notice that (5.0.17) can be used directly to show that �k is iso-
morphic to finite index subgroup of �k . It is plausible that one can exploit this further
and show the conclusion directly, without appealing to the results in [42,50].
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