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Abstract

Motivated by Popa’s seminal work Popa (Invent Math 165:409-45, 2006), in this paper,
we provide a fairly large class of examples of group actions I' ~ X satisfying the
extended Neshveyev—Stgrmer rigidity phenomenon Neshveyev and Stgrmer (J Funct
Anal 195(2):239-261, 2002): whenever A ~ Y is a free ergodic pmp action and there
is a *k-isomorphism © : L*°(X) x '— L% (Y) x A such that ©(L(T")) = L(A) then
the actions ' ~ X and A ~ Y are conjugate (in a way compatible with ®). We
also obtain a complete description of the intermediate subalgebras of all (possibly
non-free) compact extensions of group actions in the same spirit as the recent results
of Suzuki (Complete descriptions of intermediate operator algebras by intermediate
extensions of dynamical systems, To appear in Comm Math Phy. ArXiv Preprint:
arXiv:1805.02077, 2020). This yields new consequences to the study of rigidity for
crossed product von Neumann algebras and to the classification of subfactors of finite
Jones index.

1 Introduction

In the mid thirties Murray and von Neumann found a natural way to associate a von
Neumann algebra to any measure preserving action I' ~ X of a countable group
I" on a probability space X. This is called the group measure space von Neumann
algebra, denoted by L°°(X) x I'. The most interesting case for study is when the
initial action I' ~ X is free and ergodic, in which case the group measure space
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construction is in fact a type I factor. When X is a singleton the group measure space
construction yields just the group von Neumann algebra that will be denoted by L(T").
The latter is a II; factor specifically when all nontrivial conjugacy classes of I are
infinite (henceforth abbreviated as the icc property).

A problem of central importance in von Neumann algebras is to determine how
much information about the action I' ~ X can be recovered from the isomorphism
class of L>(X) x I'. An unprecedented progress in this direction emerged over the
last decade from Popa’s influential deformation/rigidity theory [68]. A remarkable
achievement of this theory was the discovery of first classes of examples of actions
that are entirely remembered by their von Neumann algebras; for some examples see
[6,11,12,14,17,18,25,29,32,35,37-39,58,68,69,71-73,78]. We refer the reader to the
surveys [41,77] for an overview of the recent developments.

There are two distinguished subalgebras of L°°(X) x I': the coefficient (or Cartan)
subalgebra L*°(X) C L°°(X) x I" and the group von Neumann subalgebra L(I") C
L*°(X) x T'. The classification of group measure space von Neumann algebra is
closely related to the study of these two inclusions of von Neumann algebras. For
instance, in [74] Singer observed that the study of the inclusion L>°(X) C L*®°(X)x T
amounts to the study of the equivalence relation induced by the orbits of I' ~ X. Thus
reconstructing the action I' ~ X from the inclusion L*°(X) C L*°(X) x I relies
upon the reconstruction from its orbits. This theme in contemporary ergodic theory
is known as orbit equivalence rigidity. The study of orbit equivalence rigidity has
received a lot of attention over the last couple of decades and has major consequences
to the classification of von Neumann algebras in general, and the structure of the
crossed product algebras in particular; for instance see [11,27,30,32,37,49,51].

Deriving information about the action I' ~ X from the other inclusion L(I") C
L*°(X) x T is another topic which is implicit in many core rigidity results in von
Neumann algebras [52,55,66,67]. When T is abelian L>°(X) x I' = R is the hyper-
finite II; factor and each of L°°(X) and L(I") is a maximal abelian subalgebra of
R (henceforth abbreviated as MASA). In their study on structural aspects of these
MASAs in [52] Neshveyev and Stgrmer discovered that the positions of these two
MASA:s inside R completely determines the action. More precisely, they showed the
following: Let I be an infinite abelian group, I' ~ X be a weak mixing action and
A N Y be any action. If there is a x-isomorphism ® : L°(X) X\ I'—L*°(Y) x A sat-
isfying ® (L(I")) = L(A) and ®(L®° (X)) is inner conjugate to L°°(Y) then I’ ~ X
is conjugate with A ~ Y (in a way compatible to ®). They also conjectured the same
statement holds without the inner conjugacy of the Cartan subalgebras condition. In
other words the inclusion L(I") C L°°(X) x I' alone completely captures the entire
crossed product structure of L>(X) x TI'.

The first examples of actions satisfying the full statement of Neshveyev—Stgrmer
conjecture emerged from the impressive work of Popa on the classification of von
Neumann algebras associated with Bernoulli actions, [66,67]. Specifically, using his
influential deformation/rigidity theory Popa was able to show that this is the case for
all clustering (e.g. Bernoulli) actions I' ~ X [67, Theorem 0.7]. Remarkably, this
holds even when I" is nonabelian. These significant initial advances strongly suggest
that the Neshveyev-Stormer conjecture could hold in a much larger generality that
supersedes the amenable regime (e.g. I is abelian). Motivated by this and the implicit
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relevance to the study of rigidity aspects for crossed products it is natural to investigate
the following extended version of the Neshveyev—Stgrmer rigidity question:

Question 1.1 (Extended Neshveyev—Stormer rigidity question). Let I" and A be icc
countable discrete groups and let ' ~ X and A ~ Y be free, ergodic, pmp actions.
Assume that there is a *-isomorphism © : L®°(X) x I' — L*®(Y) x A such that
O(L(I")) = L(A). Under what conditions on I' ~ X are the actions ' ~ X and
A Y conjugate?

Besides Popa’s examples at this time there are several other families of specific actions
I' ~ X for which Question 1.1 has a solution. These arise mostly from decade-long
developments in the classification of von Neumann algebras via Popa’s deforma-
tion/rigidity program. For instance, this is the case for all W*-superrigid actions (see
[41] for a survey on W* superrigidity and the references therein). Also, using [67,
Theorem 5.2] one can easily see that the rigidity phenomenon in Question 1.1 is also
satisfied by any weak mixing action I' ~ X for which, up to unitary conjugacy,
L*°(X) is the unique group measure space Cartan subalgebra of L°°(X) x I'. This
way one can get more examples using the recent results on uniqueness of Cartan sub-
algebras, see [11,12,39,55,72,73] for example. However not much was known beyond
these classes of examples and it remained open to find a more intrinsic approach to
Question 1.1 which does not rely on uniqueness of Cartan subalgebras results from
deformation/rigidity theory.

In this article we develop new technical aspects that enables us to partially answer
Question 1.1. In particular we are able to describe a fairly large family of actions which
covers many new examples beyond all the aforementioned classes, e.g. all nontrivial
mixing extensions of free compact actions, satisfying the extended Neshveyev—
Stgrmer rigidity phenomenon. More generally, we have the following result.

Theorem 1.2 Let I" be anicc group and letI” ~° X be an action whose distal quotient
I' ~ X is free and the extension w : X — X4 is (nontrivial) mixing. Let A ~\* Y
be any action. Assume that © : L°°(X) x =L (Y) X A is a x-isomorphism such
that ® (L(I")) = L(A). Then there exist a unitary x € L(A), a character w : T — T,
and a group isomorphism 8 : T’ — A such that x® (L% (X))x* = L*(Y) and for all
a € L®(X),y €T we have

O(auy) = o (y)O(a)x v X.

In particular, we have x© (0, (a))x* = asu)(xO(a)x™) and hence I' ~ X and
A "~ Y are conjugate.

Here {uy,},cr and {v)}rea are the canonical group unitaries implementing the
actions in L°(X) x I and L*°(Y) x A, respectively.

In particular the theorem implies that if I" is any icc group then any action I' ~ X
which admits a free profinite quotient I' ~ X; with (nontrivial) mixing extension 7 :
X — X, satisfies the extended Neshveyev-Stgrmer rigidity question. As a concrete
example let I be any icc residually finite group and let - - - <", <1+ - - <1, <" <" be a
resolution of finite index normal subgroups satisfying N,I",, = 1. Consider the action
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I' ~ (I'/ Ty, ¢;) by left multiplication of I" on the left cosets I'/ ', seen as a finite
probability space with the counting measure ¢, andletI" ~ (Z, u) = l(iLn(F /Th,cn)
be the inverse limit of these actions. In addition let 7 : I' ~ O(H) be any mixing
orthogonal representationand letI" ~ (Y™, v™) be the corresponding Gaussian action.
Then the diagonal action I’ ~ (Y™ x Z, v™ x ) is profinite-by-(nontrivial) mixing,
and hence by Theorem 1.2 the rigidity Question 1.1 has a positive solution in this
case.

Theorem 1.2 is obtained by heavily exploiting, at the von Neumann algebraic level,
the natural tension that occurs between mixing and compactness properties for actions.
Briefly, let ' ~ X and A ~ Y be actions as in Theorem 1.2 so that L*°(X) x ' =
L*°(Y) x A with L(I") = L(A). First we use the description of compactness via
quasinormalizers from [15,36] to identify the von Neumann algebras of their distal
parts, i.e. L°°(Xy) x ' = L°°(Yy) x A. In turn this is used to show that the mixing
property of the extension L*°(Xy) € L% (X) is transferred through von Neumann
equivalence to the extension L*°(Yy;) € L*°(Y) (Theorem 2.10). Once these are
established, some basic adaptations of Popa’s intertwining techniques from [66] further
show that the Cartan subalgebras L°°(X) and L°°(Y) are in fact unitarily conjugate.
Then the desired result is derived from a general principle which states that for any free
ergodic actions ' ~ X, A ~ Y of icc groups I" and A, inner conjugacy of L*°(X)
and L°°(Y) together with L(I") = L(A) imply conjugacy of ' ~ X and A ~ Y
(Theorem 4.5). This criterion for conjugacy of group actions generalizes the earlier
works [52,67] and is obtained using the notion of height of elements with respect to
groups from [42]. Specifically, using Dye’s theorem and an averaging argument we
show that I" has large height with respect to A inside L(A) (Theorem 4.4). By [42,
Theorem 3.1] this further implies I" is unitarily conjugate to A. Further exploiting the
icc condition we deduce conjugacy of the actions (Theorem 4.5).

While Theorem 1.2 settles the extended Neshveyev-Stgrmer rigidity question for
nontrivial extensions, two natural extreme situations, namely, when I' ~ X is either
mixing or compact (even profinite) remain open. We believe that in both of these cases
one should still get a positive answer and we formulate a few sub problems in this
direction; see for instance Problem 4.12. However, in order to successfully tackle
these questions, significant new technical advancements are needed. Specifically, if
one pursues an approach similar to Theorem 1.2 the key step is to establish the inner
conjugacy of L>°(X) and L°°(Y). In the presence of mixing this would follow if one
can show there exist free factors I' ~ Xgof ' ~ X and A ~ Yp of A ~ Y whose
von Neumann algebras coincide, i.e. L°°(Xg) x ' = L®(Yy) x A; see Corollary 4.9.
In turn this highlights the importance of studying intermediate subalgebras in the
inclusion L(I") € L°°(X) x I'. In addition this seems relevant even to the study of
Question 1.1 for profinite actions.

Note that when I" isicc, and I' ~ X is free, ergodic and pmp, the inclusion L(I") C
L°°(X) x T is an irreducible inclusion of II; factors. In his seminal paper [44] Jones
pioneered the study of inclusions of type II; factors, or subfactors. Subfactor theory
has had a number of striking applications over the years in various diverse branches of
mathematics and mathematical physics, including Knot theory and Conformal Field
theory, [45—-47]. A major motivating question in Subfactor theory is the classification of
all intermediate subalgebras. Pursuing this perspective, we were able to classify all the
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intermediate subalgebras in compact extensions in the same spirit as Suzuki’s recent
results from [75]. To properly introduce our result we briefly recall some terminology.
Given two actions ' ~# Xgand " ~% X we say that « is an extension of g if there is
a'-equivariant factor map = : X— X(. At the von Neumann algebra level this induces
aninclusion L*°(X¢) € L*°(X) on which I acts naturally viaa,, (f) = fOOlV—l when
f € L*®(X). An intermediate extension for w (or between I' ~ Xg and I’ ~ X)
is an action I' ~ Z for which there exist I"-equivariant factor maps 71 : X—Z
and mp : Z— X such that m, o m; = 7. Note that the intermediate extensions
of m are in bijective correspondence with the I'-invariant intermediate subalgebras
of L®(Xp) € L°°(X). We show that there is a bijective correspondence between
intermediate von Neumann algebras in crossed products and intermediate extensions
of dynamical systems. More precisely, we have the following

Theorem 1.3 Let T be an icc group and let T ~P Xo be a pmp action. Let T ~
X be an ergodic compact extension of B, [28]. Consider the corresponding group
measure space von Neumann algebras and note that we have the following inclusion
L>®(Xg) ©x T' € L°®(X) x I'. Then for any intermediate von Neumann subalgebra
L®(Xg) xI' € N C L®(X) x I there exists an intermediate extension I’ ~ Z
between I’ ~ X and I ~ X satisfying N = L*°(Z) x T.

In many respects this theorem complements the results from [75]; for instance, it
covers various examples of non-free extensions, most notably, when Xy is a single-
ton. In this situation our result provides a complete description of all intermediate
von Neumann subalgebras in the inclusion L(I') € L°°(X) x I" for any compact
ergodic action ' ~ X of any icc group I". This in turn yields new interesting conse-
quences towards the classification of finite index subfactors. For example, combining
Theorem 1.3 with the characterization of compactness via quasinormalizers from [36,
Theorem 6.10], for any icc group I' and any ergodic action I' ~ X, we are able to
classify all the intermediate subfactors L(I') € N C L*°(X) x I' with finite Jones
index [N : L(I')] < oo. Specifically we show that all such N could arise only from
the transitive finite factors of I' ~ X (see part 2. in Corollary 1.4); in particular, this
entails that the Jones index [N : L(I')] is always a positive integer. This should be
compared with the similar statement [62, Corollary 2.4] for the intermediate subfactors
of the Cartan inclusion L*®(X) C N C L*®(X) x I’ with [L*®°(X) x " : N] < oo.

Corollary 1.4 Let T’ be an icc group and let T ~ X be an ergodic pmp action. If
M = L*°(X) x T is the corresponding group measure space construction then the
following hold:

1. For any intermediate von Neumann algebra L(I') C N C L°°(X) x I satisfying
N C ON y(L()) there exists a factor T ~ X of ' ~ X such that N =
L*®(Xg) x T.

2. If L(T) € N C L*®(X) x U is an intermediate subfactor with [N : L(I')] <
oo then there is a finite, transitive factor I' ~ Xo of ' ~ X such that N =
L (Xo) x T; in particular, [N : L(I')] € N. Thus for any subfactors L(I') C
Ni € Ny C L®(X) x T, with either [N] : L(I')] < oo or I' ~ X compact, we
have [Ny : N1] € N U {o0}.
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In particular, part 2. implies that for any icc group I' with no proper finite index
subgroups and any free ergodic action I' ~ X there are no nontrivial intermediate
subfactors L(I') € N € L*°(X) x T of finite index [N : L(I")] < oo. For example
this is the case for all I" infinite simple groups, e.g. Tarski’s monsters, Burger-Mozes
groups [7], Camm’s groups [8], or Bhattacharjee’s groups [3], just to enumerate a few.

We point out in passing that Theorem 1.3 actually holds in a more general set-
ting, namely, for actions of groups on compact extensions of possibly non-abelian
von Neumann algebras; this notion is highlighted in Definition 3.9. In this generality
our result yields a twisted version of Ge’s splitting theorem for tensor products (see
Corollary 3.13) in the same spirit as [75, Example 4.14].

The classification of the intermediate subalgebras in Theorem 1.3 is achieved
through a new mix of analytic and algebraic techniques that combines factoriality
arguments together with a general algebraic criterion outlined in Theorem 3.2. We
also note the same criterion can be used in conjunction with various soft analytical
arguments to successfully recover, in the finite von Neumann algebra case, several
well-known results such as Ge’s tensor splitting theorem [31, Theorem 3.1] or the
Galois correspondence for group actions [21]. These applications are presented in
Corollary 3.3 and Theorems 3.4 and 3.7.

Finally, Theorem 1.3 in combination with methods from Popa’s deforma-
tion/rigidity theory and Jones’ finite index subfactor theory provide new insight
towards rigidity aspects for II; factors arising from profinite actions I' ~ X of icc
property (T) groups I'. While Ioana has already established in [37] that such actions
are completely reconstructible from their orbits, significantly less is known about their
rigid behavior at the von Neumann algebraic level. When I" is in addition properly
proximal, Boutonnet, loana and Peterson showed in [5] using boundary techniques
[4] that all compact Cartan subalgebras in L°°(X) x I' are unitarily conjugate to
L*°(X). (For T direct products of nonamenable biexact groups this already follows
from the earlier works [17,18].) Consequently, this combined with [37] yields that
for any non-commensurable groups I" and A and any free ergodic profinite actions
I' ~ X and A ~ Y the von Neumann algebras L°°(X) x I" and L*°(Y) x A are not
isomorphic; remarkably, this is the case for lattices ' = PSL,,(Z) and A = PSL,,(Z)
for all n # m. However, without these additional assumption on I, the study of von
Neumann algebraic rigidity aspects for profinite (or compact) actions I' ~ X remains
an wide open problem. For example, even establishing strong rigidity results similar to
the ones obtained in [67] by Popa for Bernoulli actions of rigid groups seems elusive
at this time. While it is very plausible that such results should hold true, we only have
the following partial result at this time in this direction.

Theorem 1.5 Let " and A be icc property (T) groups. LetT' ~ X = l(gl X, be a free
ergodic profinite action and let A ~ Y be a free ergodic compact action. Assume that
O : L®(X) x T—L>®(Y) x A is a x-isomorphism. Then A ~ Y = l(in Y, is also a
profinite action. Moreover, there existl € N and a unitary w € L (Y) X A such that
O(L®(Xgy1) X T) = w(L®Yiy1) X A)w* for every integer k > 0.

This should be compared with Popa’s work on inductive limits of II; factors [70].
Finally, the same strategy used in the proof of Theorem 1.2 can be successfully used
in combination with Theorem 1.5 to provide a purely von Neumann algebraic approach
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to a version of loana’s orbit equivalence superrigidity theorem from [37]; see the proof
of Theorem 5.3.

2 Some preliminaries and technical results
2.1 Popa’s intertwining techniques

Over a decade ago, Popa introduced in [66, Theorem 2.1 and Corollary 2.3] a pow-
erful analytic criterion for identifying intertwiners between arbitrary subalgebras of
tracial von Neumann algebras. This is now termed Popa’s intertwining-by-bimodules
technique.

Theorem 2.1 [66] Let (M, t) be a separable tracial von Neumann algebra and let
P, QO € M be (not necessarily unital) von Neumann subalgebras. Then the following
are equivalent:

1. There exist p € P(P),q € P(Q), a x-homomorphism 6 : pPp — qQq and a
partial isometry 0 # v € g Mp such that 0(x)v = vx, forall x € pPp.

2. For any group G C U(P) such that G’ = P there is no sequence (u), C G
satisfying | Eg(xuyy)ll2 — 0, forall x,y € M.

If one of the two equivalent conditions from Theorem 2.1 holds then we say that a
corner of P embeds into Q inside M, and write P <y Q.

For further use, we record a result which states that whenever an irreducible sub-
factor P € M intertwines into a II; subfactor N € M, then we can choose the image
of the intertwining to be an irreducible subfactor itself inside a corner of N. Notice
that our theorem is inspired by a similar result in the context of maximal abelian
subalgebras [40, Lemma 1.5].

Theorem 2.2 Let P, N C M be 11 factors such that P’ "M = C. If P <y N, then
one can find nonzero projections p € P(P), qo € P(N), a nonzero partial isometry
wo € qoMp, and a x-isomorphism on its image ¥y : pPp — goNqo such that

i) Yo(x)wo = wox forall x € pPp, and
i) Yo(pPp)’ NgoNgo = Cqo.

Proof Since P <y N, there exist nonzero projections p € P(P), ¢ € P(N), a
nonzero partial isometry v € g Mp, and a x-isomorphism on its image ¥ : pPp —
g Ng such that

Y(x)v=ovx forallx € pPp. 2.1.1)

Since P’ N M = C, equation (2.1.1) implies that v*v = p. Also, we get that
q' == vv* € ¥ (pPp) N gMgq. Using the Borel functional calculus, after replacing ¢
with a nonzero subprojection if necessary, we may assume that

g = support(En(g")) and cog < En(q’) < c1q for some scalars c; > ¢o > 0.
2.12)
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Claim 2.3 The von Neumann algebra vy (p Pp) N qgNgq is completely atomic.

Proof of Claim 2.3. Notice thatEq. (2.1.1) yields ¥ (p Pp)q’ = vp Ppv*.Since P C M
is irreducible, we have

q'(y(pPp) NgMq)q" = Cq'. (2.1.3)
By construction we have that
¥ (pPp) NgNg S ¥ (pPp) NgMq. (2.1.4)

Fix 0 #£ e € P(W(pPp) NgNgq). Using Egs. (2.1.3)~(2.1.4), we have ¢’'eq’ =
T(q'eq)

7, (e)q’, where 7,/ (e) = @) Therefore, using equation (2.1.2) in the one hand
we get
leg'ellz = | En(eq’e)ll2 = lleEn(g)ell2 = collell2. (2.1.5)

On the other hand, we have |lege||3 = t(eq’eq'e) = T, (e)T(eq'e) = rqz,(e)r(q/).
Hence,
leg'ell2 = 74 (e)llq"|l2- (2.1.6)

Combining (2.1.5), (2.1.6) and (2.1.2) we see that

t(q'eq’) ., t(eq) ., t(eEn(q"))  ,
collelz < tp@lg'lle = ———=q'I> = gl = —————=1l¢'ll2
1 T(q") t(q") 7(q)
crt(e) cillell3
<—lg'lh=—-2
1(q) g2

Thus, |le|l, > C"“q I2° and hence t(e) > Gt (q) . Since this holds for all 0 # ¢ €

P (pPp) NgN q) we conclude that ¥ (p P p) Ng N g is completely atomic, thereby
establishing the claim. O

The Claim 2.3 implies that there is 0 # go € ¥ (pPp) N gNg such that
(W (pPp)qo) N qgoNgo = Cqp. Let w = qov and note that w # 0. Indeed,
otherwise 0 = w = ¢gov and hence 0 = govv*. This would further imply that
0 = goEn (vv*) and hence 0 = gosupport(Ey (vv*)). Using relation (2.1.2) it would
give 0 = gog = qo, which is a contradiction. Moreover, if we let {o(x) = ¥ (x)qo,
then we see that Yo(x)w = wx for all x € pPp. In particular, this equation entails
that w*w € pPp’ N pMp = Cp and hence w*w = dp, for a scalar d > 0. Therefore
wo = d~"/?w is a partial isometry satisfying ¥ (x)wo = wox, for all x € p Pp.

In conclusion, ¥g : pPp — Yo(pPp) = v (pPp)go S qoNqo is ax-isomorphism
onto its image, satisfying ¥o(pPp)’ N goNgo = Cqo. O

2.2 Quasinormalizers of von Neumann subalgebras
Given an inclusion N C M, the quasi-normalizer QN p;(N) is the *-subalgebra of M

consisting of all elements x € M such that there exist x1, x2, ..., Xy € M satisfying
Nx € Y, x;Nand xN C ), Nx;, [63]. The von Neumann algebra QN p/(N)" is
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called the quasi-normalizing algebra of N inside M. This is an extension of normal-
ization and it is precisely the von Neumann algebraic counterpart of the notion of
commensurator in group theory. As usual, Ny (N) = {u € U(M) : uNu* = N}
denotes the normalizing group and Ny (N)” denotes the normalizing algebra of N in
M. We obviouslyhave N € NVN'NM C Ny (N)" € ON y(N)” € M. In general
the quasinormalizing algebra is (much) larger than the normalizer but there are natural
instances when they coincide; e.g. when N € M is a MASA it was shown in [64] that
ON M (A)" = Ny (A)”. Quasinormalizers play an important role in the classification
of von Neumann algebras and over the last decade there have been a sustained effort
towards computing these algebras in various situations [64].

In this subsection we highlight some new computations of quasinormalizers of
subalgebras in crossed products from [15] that are essential to deriving our main
results from Sect. 4. If ' 7 X is a free ergodic action and M = L°°(X) x I" then
ON p(L(T))” was computed in the following situations. When I' is infinite abelian
and o is weak mixing Nielsen observed that L(I") is a singular MASA in M [53].
Later Packer was able to show that the normalizer (and hence the quasinormalizer)
depends only on the discrete spectrum of o; more precisely one has QN (L(I"))” =
L*®(X.) x ', where I' ~ X, is the maximal compact factor of ' ~ X [57]. More
recently Ioana obtained a far-reaching generalization of Packer’s result by showing
that the same holds for every I' and any ergodic action o, [36, Sect. 6]. In [15] this
analysis was completed at the entire level of the distal tower of ' ~ X using iterated
quasinormalizers.

An action I' ~ X is called distal if it is the last element of an increasing finite
or transfinite sequence I' ~ Xg of factors 8 < «, such that I' ~ X, is the trivial
factor, each extension 7 : Xgy1— X is maximal compact, and for every limit ordinal
B =< a the action I' ~ X is the inverse limit of the preceding factors. The sequence
{I' ~ Xg}g<q of factors is also called the Furstenberg-Zimmer tower of I' ~ X.
Furstenberg [28] and Zimmer [79] independently obtained the following structure
theorem

Theorem 2.4 Let ' ~ X be any action. Then there exists an ordinal a and a unique
distal tower {I' ~ Xg}p<q such that the extension w : X— X is weak mixing.

In [15] Peterson and the first author obtained a purely von Neumann algebraic way of
describing Furstenberg-Zimmer distal tower of factors for an action, namely as towers
of quasinormalizers.

Theorem 2.5 Let I' n\7 X be an ergodic action and let {I' ~ Xg}g<q be the cor-
responding Furstenberg-Zimmer tower. Let M = L°°(X) x T" and for all B < « let
Mg = L*(Xg) x T be the corresponding cross-products von Neumann algebras.
Then the following hold:

1. forall B < B < a we have the following inclusions of von Neumann algebras
L(T) =M, S Mg € My € My C M;
2. forall B < a we have QN y(Mg)" = Mp1;

3. for every limit ordinal B < o we have Uy<ﬂL°°(Xy)WOT = L*°(Xp) and also

———WorT
Uy <M, = Mg;
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4. There exists an infinite sequence (y,), C I such that for every x,y € L°°(X) ©
L% (Xg) we have that limy_, « | E 50 (x,) (x0y, (") ]2 = 0.

2.3 Finite index inclusions of Il; factors

A trace-preserving action I' ~ A on a finite von Neumann algebra is called transitive
if A is abelian and there exist finitely many minimal projections 7 C P(A) such that
spanF = A and for every p, g € F thereis y € I' such that o, (p) = g. Throughout
the paper the set F will be denoted by A#(A) and will be called the atoms of A. In
particular all atoms of A have same trace, i.e. dim(A)~".

Lemma 2.6 Let A be an abelian von Neumann algebra and let ' ~\° A be a trace
preserving action. Assume that the inclusion L(I') € A x I" admits a finite Pimsner-
Popa basis. Then A is completely atomic. Moreover, if ' ~ A is ergodic then T' ~ A
is transitive.

Proof By assumption there exist my,....,m;y € A x I' = M, with EL(F)(mim;‘.) =
8i,j pi where p; € P(M), such that forall x € M we have x = Z{'(:I Epr)(xm)m;.
Thus, for all x € M we have ||x||% = Zle ||EL(r)(xm;*)||%. Approximating m; € M
using their Fourier decompositions and doing some basic calculations this further

implies the following: for every ¢ > O one can finda; € Awith1 < j </andc > 0
so that for all x € (M) we have

l

X113 < &+ ¢ > NELm a3 (2.3.1)
i=1

Assume for the sake of contradiction that A has a diffuse corner, i.e. there is
0 # p € A so that Ap is diffuse. Hence one can find a sequence of unitaries
u, € U(Ap) so that for all x € Ap we have 7(u,x)—0, as n—o00. Since g; € A
we have Epy(upa;) = t(upa;) = t(ua;p). Thus using (2.3.1) we get that
©(p) = lunll} < & + ¢ Ximy IELa)@aa)|3 = & + ¢ Y, [ (una; p)|* and since
lim,— oo Zé:l |r(u,,aip)|2 = 0 we get that 7(p) < e. Letting ¢ \( 0 we get p =0,
a contradiction.

To see the moreover part let 0 # g € A be a minimal projection of maximal trace.
Thus for all y € T either go, (q) = 0 or g = 0,,(g). Thus the orbit F = {0, (q) | ¥y €
'} is necessarily a finite set of (orthogonal) minimal projections of A. Lets = > gerd
and notice that 0 # ¢ € A is a projection satisfying o, (t) = ¢ for all y € I'. Since
I' ~ A is ergodic it follows that = 1. Since A is completely atomic this entails that
A = spanF. Thus I' ~ A is transitive. O

Proposition 2.7 LetT", A beicc groupsandletT” ~ A, A ~ B be transitive actions so
that AXT and B X A are Il factors. Assume that 0 : AX ' — B X A is a x-isomorphism
such that O(L(T")) = L(A). Then dim(A) = dim(B) and for every a € At(A),
b € At(b) there is a unitary u € L(A) so that 6(L(Stabr(a)) = u*L(Staby (b))u.
In addition, if there exists a € At(A) such that Stabr(a) is normal in T then for
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every b € At(B) then Staba (b) is also normal in A; moreover, T'/Stabr(a) =
A/Staby (b).

Proof To simplify the presentation, we assume that A x I' = B x A and L(I") =
L(A). Let n = dim(A) and fix a € At(A). Notice t(a) = 1/n and hence
Epqy(a) = t(a)l = 1/n. Also for each x € L(I'), using its Fourier decom-
position, we have axa = Zyer r(xu;l)auya = Zyer t(xu;l)aay (@u, =
ZyeSmbr(a) T(xu,-1)uya = EL(stabr(a)) (¥)a. Since clearly x-alg{a, L(I")} = AxT
then, altogether, the above relations show that A x I' is the basic construction of the
inclusion L(Stabr(a)) € L(I") and also [I" : Stabr(a)] =[AxT : L(I'N)] =n. A
similar statement holds for L(A) € B x A. Since by assumption [A x " : L(I")] =
[B x A : L(A)] it follows that dim(A) = dim(B) = n. To show the remaining part of
the statement fix b € At(B). By the factoriality assumption, since t(a) = 7(b) = 1/n,
there is a unitary u € A x I' so that

b = uau®. (2.3.2)

Since a € A x T is the Jones projection for inclusion L(Stabr(a)) € L(T"), by pull-
down lemma there exists m € L(I") suchthatb = uau™ = mam™. Thus one can check
that 1/n = ©(b) = Epn)(b) = Erq)(b) = Epq)(mam™) = mELq)(a)m™ =
t(a)ymm™ = (1/n)mm™*. Hence mm* = 1 which implies that m € L(A) is a unitary.
Thus in equation (2.3.2) we can assume wlog that the unitary u belongs to L(I"). Hence
using (2.3.2) we further have that L(Stab (b)) = {b} N L(A) = {uau™}) N L(T) =
{uau*y NuL(T)u* = uL(Stabr(a))u*, as desired. Since Stabr(a) is normal in I it
follows from the above relation that uu, u* € NL(A) (L(Stabp (b))) forevery y € I'.
Since A isicc and [A : Staba (b)] < oo then L(Staba (b)) € L(A) is a irreducible
inclusion of II; factors. Thus using [76, Corollary 5.3] we have that for every y € I'
there exist a unitary x € L(Stab, (b)) and A € A suchthat uu, u™ = xvy. In particular
this implies that Stab (b) is normal in A and also I'/Stabr(a) = A/Staba(b). O

2.4 Mixing extensions

Let B € A be an inclusion of von Neumann algebras and assume that ' ~7 A is
an action that leaves the subalgebra B invariant. Throughout the paper we call such a
system an extension and we denote it by I' ~ (B € A). When A is endowed with a
state ¢ preserved by o the extension is said to be ¢-preserving and will be denoted by
I' ~ (B C A, ¢). When A is a finite von Neumann algebra and ¢ is a faithful normal
trace then I' ~ (B C A, ¢) is called a trace-preserving extension.

Definition 2.8 A trace-preserving extension I' ~ (B C A, 7) is called mixing if for
every t,z € A © B we have limy, o | Eg(toy, (2))|l2 = 0.

Lemma29 Let ' ~ (B C A, 1) be a trace-preserving mixing extension. Then for
everyt,z € (AXT') 6 (B xT')and every sequence (x),, C (L(I'))1 that converges
to 0 weakly, we have lim,,_, 5 | Egwr (tx,2)]l2 = 0.
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Proof Fix t,z € (A x ') © (B x I'). Consider the Fourier decompositions ¢z =
Zy Ea(tu,-1)uy andz = Zy u,—1 Ea(uyz) and notice that Eg(tu,) = Ep(uyz) =
Oforall y € T'. Fix ¢ > 0. Using these decompositions and basic || - ||2-estimates one
can find finite subsets ', G C I' such that

&
||EB>4F(lan)”2§§+ Z |Epxr(Ea(tug-1)usxnu,—1 Eo(u;2))ll2. (2.4.1)
SeF,AeG

Also fixa,b € A and x € L(I"). Using the Fourier decomposition of x € L(I") we
see that Egwr (axb) = ZV t(xu,—1)Epxr(au,b) = Zy t(xu,—1)Eg(aoy (b))uy.
Thus we have the formula

IEpur(axb)l3 =) |t (xu, )’ Eg(acy, (b))]3. (24.2)
Y

Since ' ~ (B C A, t) is mixing and F, G are finite one can find a finite subset
H C TI'sothat |[Eg(E4(tug-1)oy, (Ea(uz2))l2 < s/(\/§|F||G|) forally e '\ H,
6 € Fand A € G. Also since x,,—0 weakly, and F, G, H are finite there is an integer
ng such that [ (xpu,,-1)| < &/(V8|H||G||Fllltllxcllzlloc) forall y € G 'H™'Fand
n > ng. Using these basic estimates in combination with formula (2.4.2) we see that
for all n > ng we have

Y IEpsur(Ea(tug-1)usxmit; -1 Ex;2) |2
seF ., eG

= Y D t@auymy ) PIEB(Ea(tus-1)oy (Ea;2)) | I3
seF.,reG \yeH

+ 3 G, 1) PIEs(Ea(tus 1oy (Ea@)))13)?
yel'\H

D=

2 2

€ £
= Z Z IEg(toy )3 + =——5— llxall3
21G 12 2 2 Y 2 3142 1%nll2
serrec \pon SIFPIGPIHINIS IS 8|F|2|G|

1
_ 82+822_8
-\8 8) 2

This combined with (2.4.1) show that for every ¢ > 0 there exits ng such that for all
n > no we have | Eg(tx,z) |2 < ¢, as desired. O

Theorem 2.10 Let I' ~ (B C A, 1) be a trace-preserving mixing extension. Also
let A ¥ (D C C, 1) be a trace-preserving extension for which there exists a *-
isomorphism 6 : AXT'—C x A satisfying (B xT') = Dx Aand0(L(I')) = L(A).
Then A ~ (D C C, 1) is a mixing extension.
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Proof Suppressing 6 from the notation we assume that AXT = Cx A, BxI' = DxA
and L(I') = L(A). Fix t,z € C & D. We now show that for any infinite sequence
(An)n € A we have that

Jm [|Ep(te, (2)]l2 = 0. (24.3)

Since B x I' = D x A we note that

Epxr() = Epxa(x) = Y Epvi-va = Y Ep(Ec(zv;-1)v;
AEA AEA

=Y EpEc(v;-1))vi = Ep(z) =0.
rEA

Similarly we have Epwr(f) = 0. Sincef,z € Cand D x A = B x I" we see that

I Ep (tay, (D)2 = | Epxa(te, (2))]l2 = [Epxa (T, 2)v,-1]l2
= |Epxa(tvy,2)ll2 = | Epxr(tva,2) 2. (2.4.4)

Since (A,), is infinite the sequence (v;,,), C L(A) = L(I") converges weakly to 0.
Thus applying Lemma 2.9 we get lim,, o | Epxr (tv3,2)]l2 = 0 and hence (2.4.3)
follows from (2.4.4). O

For further use we recall the following technical variation of [66, Theorem 3.1]. The
proof is essentially the same with the one presented in [66] and will be left to the
reader.

Theorem 2.11 Let Let ' ~ (B C A, t) be a trace-preserving mixing extension.
Denoteby M = A xT" D B xI' = N the corresponding inclusion of crossed product
von Neumann algebras. Then for every von Neumann subalgebra C C N satisfying
C 4N B we have QN y(C)” C N.

3 Extensions satisfying the intermediate subalgebra property

Let ' ~ (Py € P) be an extension of tracial von Neumann algebras and consider
the corresponding inclusion Py x I' € P x I' of von Neumann algebras. Suzuki
discovered in [75] that if Py, P are abelian and I’ ~ Py is free then the extension
I' ~ (Py C P) satisfies the intermediate subalgebra property, i.e. every intermediate
subalgebra Pp x ' € N € P x I' arises as N = Q x I' for some I'-invariant
intermediate subalgebra Py € Q C P. In this section we establish the intermediate
subalgebra property for new classes of extensions (e.g. compact) for icc groups I'
(see Theorem 3.10). In many respects these results complement Suzuki’s as they
cover several examples of non free extensions, for instance when Py = CI1. As a
consequence, for all free ergodic pmp actions on probability spaces I' ~ X of icc
groups I, we are able to completely describe all intermediate subfactors L(I') € N C
L*°(X) »x T" with finite index [N : L(I")] < oo (see Theorem 3.14). Our strategy also
enables us to recover some well-known older results on intermediate subalgebras (see
Corollary 3.3 and Theorems 3.4, 3.7).
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We briefly introduce a few preliminaries. The first result describes the algebraic
structure of fixed point subspaces associated with u.c.p. maps and it is essentially [2,
Lemma 3.4]. For reader’s convenience we also include a short proof.

Lemma 3.1 Let M be a von Neumann algebra, and let ¢ be a faithful, normal state
on M. Let WV : M — M be a normal, u.c.p. map. Define Har (V) = {m € M :
W (m) = m} to be the fixed points of V. If p o W = @ then Har (V) is a von Neumann
subalgebra of M.

Proof From the definition it is clear that Har (W) is closed under sum and taking
adjoint. Also since W is normal, Har (W) is closed in the weak-operator topology.
Thus, to finish the proof we only need to show that Har (V) is closed under product.
Using the polarization identity, it suffices to show that whenever x € Har (V) we
have that x*x € Har(¥) as well. By Kadison—Schwarz inequality we have that
W(x*x) > W(x)*W(x) = x*x, where the last equality follows because x € Har(¥);
thus W(x*x) —x*x > 0. Since ¢ o ¥ = ¢ we also have (¥ (x*x) —x*x) = 0. Since
@ is faithful, we get that W (x*x) = x*x, thereby proving that Har (V) is an algebra.

O

Theorem 3.2 Let T' ~ (P, 1) be a trace preserving action on a finite von Neumann
algebra P and consider the corresponding crossed product von Neumann algebra
P xT. Let Py C P be aTl-invariant subalgebra. Assume that Pp xI' T N C P x T
is an intermediate von Neumann subalgebra. Then there is a I'-invariant subalgebra
PyC QC Psothat N = Q x T ifandonly if EN(P) C P.

Proof Denoteby M = P x I"andlet Ep : M— P and E : M— N be the canonical
conditional expectations onto P and N, respectively. To see the direct implication, fix
ae P.Since N=Q xTI'"and L(I') € N we have

En(a) =Y Eg(Ex(a)u,-uy = »  Eg(Ey(au,-1))u,
14 14
=Y Eg(au,-uy, =Y Eg(Ep(au,-1))u,
14 14

=Y Eg@Ep(u,-))uy = Eg(a) € P.
Y

Next we show the reverse implication. Let ep : L3 (M)—L2(P) and ey
L*>(M)—L?(N) be the canonical orthogonal projections. Since Ey(P) C P then
Ep(En(a)) = En(a) foralla € P. Therefore Ep o Ey o Ep = En o Ep and hence
epenyep = eyep. Taking adjoints we obtain eyep = epen and since (epenep)”
converges to ey A ep in the strong-operator topology, as n tends to infty, we conclude
that epey = eyep = ey A ep. This also entails that ey A ep = eynp and thus

EyoEp=EpoEN = Epnnp. (3.0.5)

Alternatively, one can show (3.0.5) just by using Lemma 3.1. Indeed since Ex (P) € P
then from assumptions E|, : P — P is a u.c.p. map which preserves t, a normal,
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faithful, tracial state. Letting W = E, we can easily see that N N P C Har(¥) C
En(P). Since we canonically have Ex(P) € N N P we conclude that Har (V) =
En(P) = P N N. The last equality gives (3.0.5).

Notice that from assumptions Q := N N P C P is a ['-invariant von Neumann
subalgebra of P containing Py. So to finish the proof of our implication we only need
to show that N = Q x I'. Since Q x I € N canonically, we will only argue for the
reverse inclusion. To see this fix x € N and consider its Fourier decomposition (in M)
x =), Xyuy where x, € P.Since L(I') € N we have }_, xyu, =x = Ey(x) =
EN(Zy Xyuy) = Zy En(xy)uy,. By (3.0.5) we have Ey(xy) = Eg(x,) € Q and
hence x, = Eg(x,) € Q forall y € T'. Thus x = Zy Eg(x))u, € Q x T, as
desired. O

The conditional expectation property presented in the previous theorem can be used
effectively to describe all the intermediate subalgebras for many inclusions arising
from canonical constructions in von Neumann algebras. In the remaining part of the
section we highlight several situations when this is indeed the case. For instance
it provides a very fast approach to Ge’s well known tensor-splitting theorem [31,
Theorem 3.1] for finite von Neumann algebras.

Corollary 3.3 ([Ge, Theorem 3.1]) Let Py be a factor and let P, N be von Neumann
algebras suchthat Py®1 C N C Py® P>. Assume there exist faithful normal states ¢
on Py and @> on Py, and a faithful, normal conditional expectation En : Py ® Py — N
preserving ¢ = @1 ® ¢2. Then N = Pi®Q for some (von Neumann) subalgebra
0CPh.

Proof We first claim that Ex (1 ® P2) € 1® P;. To see this fix pp € P> and p € Py.
Since N D Py®1wehave (p1 @ D)EN(1®p2) = En(p1®p2) = En((1@p2)(P1®
1) =En(1® p2)(p1 ®1). This implies that Exy (1 ® p2) € (P1® 1) N(PIQP;) =
1 ® P», thereby proving the claim. So we have that Ey : 1@ P, > 1 ® Py is a
u.c.p. map, preserving ¢, a faithful, normal state. So by Lemma 3.1, Ex(1 ® P») is a
subalgebra of 1 ® P,, which we can identify as a von Neumann subalgebra Q C P».
Under this identification we have that | ® Q0 = Ex(1 ® P,) = NN (1 ® P»). Hence
Pi®Q C N.

To show the reverse containment, we first claim that (P; ®ag P2) N N is WOT-
dense in N. Let n € N. By Kaplansky’s density theorem, we can find a bounded
net (x;) C Pi ®ag P> such that x; — n in WOT. Since Ey is normal, we get
that Ex(x;) — n. If x, = Zi pi ® gi, with p; € Py and ¢; € P> then En(x;) =
EnQ i pi®gi) = i (pi®DEN((1®¢;)) € (P ®ag P2) NN, thereby establishing
the claim. Now fix n € (P ®ag P2) N N. Then, there exist py, ..., pr € P; and
q1,--s gk € Py sothatn = Zl- pi @ qi. Now, sincen € N and P; ® 1 € N we have

k k k
n=Ey(n)=Ey (Z pi ®qi) =Y Ex(pi®a) =) (pi® DEN(1®q).
i=1 i=1 i=1
(3.0.6)
Since Enx(1 ® g;) € Q then (3.0.6) implies that (P} ®ag P2) NN € P ®u¢ Q. As
(P1 Qalg P») NN is WOT-dense in N we get N = PiQQ. O
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We also record a twisted version of the above theorem.

Theorem 3.4 Let P be a 11 factor and let Q be a finite separable von Neumann
algebra, equipped with a trace preserving action of I'. Assume thatT' ~° P is an outer
action. Then for any intermediate von Neumann subalgebra P xI' C N C (PQQ)xI
there is a von Neumann subalgebra Qo € Q suchthat N = (P®Qg) x T,

Proof Using Theorem 3.2 we only need to show that Ex (Q) € Q. Naturally, we have
that Ey (Q) € P'N(P® Q) xI". We shall now briefly argue that P’N(PQ Q) xT" C Q,
which will prove our claim. To see this fix Zy ayu, € P'N(PRQO) x I', where
ay, € P®Q. Thus for every y € I' and p € P we have that pa, = a,0,(p). Fix
e #y eTl.Leta, = ), pi ®q;, with p; € P and ¢; € Q. We may assume
that g; are orthogonal with respect to 7y (by using the Gram-Schimdt process, and
using the separability of Q). Thus we have ) ;(ppi) ® ¢i = p(Q_; pi ® qi) =
Qi pi ® qi)oy(p) = Y ;(pioy(p)) ® gi. As g;’s are orthogonal we further get
ppi = pioy(p) forall i and p € P. Since ' ~ P is outer, this implies p; = 0
for all i and hence a,, = 0. Thus, P’ N (P®Q) x ' € P'N(PRQ) = Q. Hence
N = (P®Qg) x I where Q¢ = En(Q). O

If P is a II; factor then an action I' ~ P is called centrally free if the induced
action ' ~ P’ N P% is properly outer (see [75, Definition 4.3]). Theorem 3.4 was
first obtained by Y. Suzuki under the assumption that the I’ ~ P is centrally free,
[75, Example 4.14]. In general the centrally freeness assumption introduces certain
limitations. For instance, if P = L(IF,) then P’ N P® = C and hence no nontrivial
group admits a centrally free action on P. However, when P is the hyperfinite II;
factor, then requiring the I' ~ P to be outer is the same as requiring the I’ ~ P
to be centrally free. This surprising result is a consequence of Ocneanu’s central
freedom lemma ([26, Lemma 15.25]). The reader may also consult [9] for another
recent application of the central freedom lemma.

Theorem 3.5 Let R denote the hyperfinite type 11} factor and let " be a discrete group
acting on R. Then T’ ~\° R is outer if and only if ' ~° R is centrally free.

Proof Let ' ~° R be an outer action. Leta € R’ N R® and y € T be such that
0g-1(x)a = ax forallx € R'NR®. This clearly implies thatu,a € (R'NR®) N(R
I')?. Now, by Ocneanu’s central freedom lemma we get that (R’ NR®) N(R xT)® =
RV (R NR xT)® =R (where the last equality holds because I' ~ R is outer).
Thus u, € R which implies that y = e. Hence I' A7 R’ N'R* is outer.

Conversely, assume that ' ~? R'NR® is outer. We will show that R’NR T = C,
which shall establish that " ~? Risouter. Letx € R'NR xTI", and consider its Fourier
decomposition x = Zy xyuy,, where x, € R. Now x € R’ N'R x I' implies that
xyuy € R'OR XTI forally € I'.Hence x,u, € RV(R'NRxT)® = (R'NR)'N
(R x T')® (where the last equality follows from Ocneanu’s central freedom lemma).
Thus we get x, u, x = xxy,u, forall x € R' 1R which gives that x,, 0, (x) = xx,,
implying o, (x)xyx;j = xyx;jx, which implies ER/nRe (xyx; )x = xERnRe (xyx;),
forallx € R’ NR®.

Since ' ~ R’ N'R¥ is outer, we get that ER/ARre (xyx]’ﬁ) = (O forall y # e. Since
ER/nRe is faithful, this further implies that x,, = O for all y # e. This implies that
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x € R'NR = C, thereby establishing that R’ N R x ' = C, which implies that
I' 7 R is outer. O

Theorem 3.4 leads to new examples of subalgebras in (P® Q) x T that are amenable
relative to P x I', [55, Definition 2.2]. Note that for von Neumann algebra inclusions
N C M, the existence of a maximal amenable subalgebra P in M relative to N
follows from [24, Lemma 2.7]. We remark that very similar methods were used in [48,
Theorem 3.4] to provide examples of maximal Haagerup subalgebras arising from
extremely rigid actions of an icc group.

Corollary 3.6 Let P be a type 11, factor, let Q be a finite von Neumann algebra, and let
I" be an amenable group acting outerly on P, Q (the actions are assumed to be trace
preserving). Let Qo € Q be a maximal amenable subalgebra. Then (P® Q) % I is
a maximal amenable subalgebra in (P® Q) x I relative to P x T. In particular, if
R is the hyperfinite 11; factor, and ' ~ 'R is an outer trace preserving action, then

(R®Qo) » T is maximal amenable in (RQQ) x I

Proof Let (P®Qo)xI' € N C (P®Q)xI'.Thenby Theorem3.4N = (P®Q;)«T,
with Qg € Q1 € Q. If N is amenable relative to P x I, then Q; is amenable. By
maximal amenability of Qo we obtain that Q1 = Qg thereby establishing the result.

O

The next theorem re-establishes a well known Galois correspondence for group actions.

Theorem 3.7 Let ' be a group, let A < T be a normal subgroup, and let (P, )
be a tracial von Neumann algebra. Assume that I acts on P via trace preserving
automorphisms such that (P x A) N (P x T) = C. Then for any intermediate
subfactor P x A € N C P x T there exists an intermediate subgroup A < K < T
such that N = P x K.

Proof LetK = {y € I' : u,, € N}.Clearly, K is a group satisfying A < K <T'. Also
PC PxACNandhence Px K C N C P xI'.Nextweshowthat N C P X K.

First we claim for every y € I' thereis ¢, € Csothat Ey(uy,) = cyu,.Fixy e T
and let ¥ (x) = uyxu;, for all x € L(I"). Since A is normal in I", i restricts to an
automorphism of P x A. Thus for all x € P x A we have ¥ (x)u, = u, x and hence
Y (x)En(uy) = En(uy)x. This implies that En (u),)*¥ (x) = xEy(u,)* and hence
En(uy)EN(uy)* € (P xA)'N(PxT)=C.Letd = Ey(uy,) Ey(u,)*. Note that
0<d<1.1Ifd # 0, we get that (@~ "2En(uy))(d~?En(u,))* = 1, implying
that d~'/2Ey (uy) € U(N). Next consider u = u, Ex(d~"/>u,) € U(M). For every
x € P x A we can check that

uxu* =d =" En(uy)xEn (uy)uy = d ™'} En(uy) En () (), = wh i (x)u, = x.

Hence d_l/Zu;jEN(uy) =uc(PxA)N(P xT)=C.Thus En(uy) = cyu,, for
some ¢, € C.

The claim shows that for any y € T', either Ex (1)) = 0 or u,, € N. Finally, if
N>n= Zyel" nyu, is its Fourier decomposition in P x I', then applying Ey, we
seethatn =} . nyEy(uy) € P x K, as desired. |
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Below we highlight a few special cases of the above theorem, which are well known
in the literature.

Corollary 3.8 1. ([21], [43, Theorem 3.13]) Let M be a 11| factor, and let T be a
discrete group with an outer action on M. Let N be an intermediate subalgebra,
i.e. M C© N C M xT. Then there exists a subgroup K of I suchthat N = M x K.

2. Let T be an icc group, and let A <\ T be a normal subgroup such that L(A) N
L(I") = C. Then for any intermediate subfactor L(A) € N C L(T") there exists
an intermediate subgroup A < K < T such that N = L(K).

Proof Since ' ~ M is outer, M' N M x I' = C. Taking A = {e}, and appealing to
Theorem 3.7 yields the first statement.
Taking P = C in Theorem 3.7 yields the second statement. O

In the remaining part of the section we show that the strategy presented in Theorem 3.2
can be successfully used to classify all intermediate subalgebras for inclusion of von
Neumann algebras arising from compact extensions. This covers a new situation which
complements the case of free extensions discovered in [75, Main Theorem]. To be
able to properly introduce our result we first recall the following notion of compact
extension of actions on von Neumann algebras:

Definition 3.9 Let ' ~ (Py € P) be an extension of tracial von Neumann algebras.
One says that I’ ~ (Py C P) is a compact extension if there exists F C P satisfying
the following properties:

1. spanF 2 = 12(py;

2. for every f € F and ¢ > O there exist &, &,....,& € L*(P) such that
for every y € T one can find «;(y) € Py, with i = 1,n satisfying
SUP|<j<n,yer llxi (¥)lo < 00 and

lloy (f) =Y ki(y)Eill2 < &

i=1
When Py = C1 we simply say that the action I’ ~ P is compact.

Examples Assume that ' ~ X is an ergodic pmp action on a probability space X
and let ' ~ X be a factor such that the extension = : X— X¢ is compact in the
usual sense [28,79]. Then it is a routine exercise to show that the corresponding von
Neumann algebraic extension I' ~ (L°(X() € L% (X)) automatically satisfies the
definition above. In particular whenever I' ~ X is an ergodic compact pmp action
then I' ~ L°°(X) is compact in the above sense.

With this definition at hand we can now introduce the main result of this section.

Theorem 3.10 Let I" be an icc group and let ' ~ (Py € P) be a compact exten-
sion of tracial von Neumann algebras as in Definition 3.9. Let Pp x ' € P x T
be the corresponding inclusion of crossed product von Neumann algebras. Then for
any intermediate von Neumann subalgebra Py x I' € N C P x I there exists an
intermediate von Neumann subalgebra Py € Q C P suchthat N = Q x T.
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Proof Let M = P x I'. Denote by Ey : M — N the canonical trace preserving
conditional expectation and note that it extends to a map from L2(M) — L*(M) by
Eny(m) = E/N(;). Similarly, let £ : M — P be the trace preserving conditional
expectation. E also extends to amap E : LZ(M) — LZ(M). For every & € LZ(M) let
§ = En(§) — E o Ex(&). With these notations at hand we prove the following

Claim 3.11 for every & € F and every € > 0 there exists a finite set K C T\ {e}

and n1, N2, ..., Np € spanPK such that for every y € T there exist ki(y) € Py with
sup,, er llki (¥)lloo < 00 such that

lloy &) = D " ki(y)milla < e. (3.0.7)

Proof of Claim 3.11. First notice that since L(I"') € N and P is I'-invariant then for all
& e LZ(M) and y € I" we have

EN(uyEu;k,) = uyEN(S)u)*/, and E(uyéu;) = u},E(S)u;. (3.0.8)
Fix £ € Fand ¢ > 0. Since ' 7 Py € P is a compact extension there is a finite

set &1, &, ..., & € L*(P) such that for every y € T there exist k;(y) € Py with
sup, cr lIi (¥)lloo < 00 so that

loy (&) = > ki()&ill2 < (3.0.9)

&
3

Using (3.0.8) in combination with (3.0.9) and the basic inequalities || Ey (m)]|2, || E o
Ex(m)l| < ||m||2, for all m € LZ(M) we get that

lloy (En(8) = D (P EnGEDl2 < § and |loy (E 0 En(€)) — Y _ki(¥)E 0 EN(E)l)2

=

W ™

Subtracting these relations and using the triangle inequality we conclude that

- - 2
loy @) = Yl = 5 (3.0.10)

Approximating the §;’s one can find a finite set ' C I" \ {e} so that & — nill2 <
e/Bnsup,cr llki(y)lloo) forall 1 < i < n.Thus || 3_; ki ()& — ki(yInill2 < &/3
and combining it with (3.0.10) we get the desired conclusion. O

Next we prove the following

Claim 3.12 For every £ € F we have &€ = 0.
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Proof of the Claim 3.12. Fix ¢ > 0 and & € F. Approximating & there exists a finite
set K C T\ {e} and r € spanP K such that

IE —rll2 <e. (3.0.11)
Also by Claim 3.11 there exists a finite set G C I" \ {e} and 51, 12, ..., N, € spanPG

such that for every y € I there exist ;(y) € Py with Sup,, llki (¥)]loo < 00 such
that

loy &) = > kimillz < e. (3.0.12)

Since ' isicc and G, K C I'\ {e} are finite by [19, Proposition 3.4] there exists A € I"
such that AK =1 N G = @; in particular, we have

(urruz -1,y ki) = 0. (3.0.13)

Using (3.0.11) in combination with Cauchy—Schwarz inequality, (3.0.12), and (3.0.13)
we see that

_— S w2 - -
€113 = Nuwpguill; = {ur§uy-1, uz&u;-1)|

< ellElla + wruy—1, uzEu,—1)| < elléllo +elrlo +

<uﬂ”;\l» > ki ()»)ﬂi>

1

<el&la+e(llElz + ).

Letting £ \, 0 we get £ = 0, as desired. O

Claim 3.12 implies that Ex (§) = Eo En(€) forall £ € F. Since spanF is dense in
L?(P), these two maps agree on L>(P) 2 P. Appealing to Theorem 3.2 we conclude
that N = Q x I', for some subalgebra Pp € Q C P. O

Remarks After the first draft of the paper appeared on the ArXiv, we were kindly
informed by Y. Jiang and A. Skalski that they had subsequently obtained a charac-
terization of intermediate subfactors N satisfying L(I') € N C L*°(X) x I, with
I' ~ X a profinite action, in an independent manner (see [48, Cor 3.11]).

Corollary 3.13 Let T" be an icc group and let T ~ A and T" ~ B be trace preserving
actions with ' ~ B compact, and where A is a 11y factor. Consider the diagonal
action T' ~ A®B and let (AQB) x T be the corresponding crossed product von
Neumann algebra. Then for any von Neumann subalgebra AxT" C N C (AQB)x T
one can find a I'-invariant von Neumann subalgebra C C B so that N = (AQC) x T.

Proof Since I' ~ B is compact one can see that ' ~ (A € A x B) is a compact
extension and hence the conclusion follows from Theorem 3.10. O

We end this section with an immediate application of Theorem 3.10 to the study
of finite index subfactors. More specifically, we show that Theorem 3.10 can be used
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effectively to completely describe all intermediate subfactors L(I') € N € L°°(X) x
I' with [N : L(I")] < oo for any ergodic action I' ~ X of any icc group I'.

Corollary 3.14 Let T" be an icc group and let ' ~ X be an ergodic action. Let
M = L*°(X) x I denote the corresponding group measure space von Neumann
algebra. Then the following hold:

1. Suppose L(I') C N C L*°(X) x T is an intermediate von Neumann subalgebra
so that N € QN p(L(I))". Then there exists a factor I' ~ Xo of I' ~ X such
that N = L°°(Xg) x I

2. For any intermediate subfactor L(I') € N C L*®°(X) x " with [N : L(T')] < o0
there is a finite, transitive factor ' ~ Xo of ' ~ X such that N = L*°(Xo) x T';
in particular [N : L(I')] € N. Thus for any subfactors L(I') € N; € Ny €
L®(X) x T, with either [N : L(I')] < oo or ' ~ X compact, we have [N :
Ni] € NU {oo}.

3. If T has no proper finite index subgroups (e.g. U is simple) then there are no
nontrivial intermediate subfactors L(I') C N C L®(X) x "' with [N : L(I')] <
Q.

Proof 1. Let ' ~ X, be a maximal compact factor of I’ ~ X and using [36,
Theorem 6.9] we have that QN 3y (L(I"))” = L*°(X.) x I'. Altogether these show
that L(I') € N € L*°(X.) x I'. Then the desired conclusion follows directly
from Theorem 3.10.

2. Since [N : L(I')] < oothen N admits a finite left (and also a finite right) Pimsner-
Popa basis over L(I') and hence N € QN j/(L(I"))”. By part 1. there is a factor
I' ~ Xgof ' ~ X such that N = L*°(Xo) x I'. As " is icc and N is a factor
we also have that ' ~ L% (Xj) is ergodic. Since N admits a finite Pimsner-
Popa basis over L(I') then by Proposition 2.6 it follows that ' ~ L*°(Xj) is
a transitive action. In particular X is a finite probability space and I' ~ Xo
is transitive. If I', < T is the stabilizer of an x € X one can also check that
[N : L] =|Xo| =|I'/Tx| € N. The rest of the statement follows easily.

3. Assumethat [N : L(I")] < oco.From the proof of part 2. wehave N = L*°(X() xT’
where " ~ Xgisanactiononafinite set Xgandalso[N : L(I")] = | Xo| = |/ |
where I', is the stabilizer of x € Xg. Since I' has no nontrivial finite index
subgroups then I' = I'y and hence N = L(I').

O

Final remarks. The previous corollary also holds for intermediate subalgebras
L®X) T C N CL®Y) T with[N : L®(X) x I'l < oo for von Neumann
algebras arising from extensions I' ~ L*°(X) € L*°(Y) of icc groups I'. The proof
is essentially the same as the one presented in Corollary 3.14 with the only difference
that we use Theorem 2.5 instead of [36, Theorem 6.9]. Also, parts 1. and 2. hold for
any von Neumann algebra N which admits a finite Pimsner-Popa basis over L(I"), if
we use the Pimsner-Popa index [61] instead of Jones index [44].

In connection with the previous problems one may attempt to describe the sub-
factors of group von Neumann algebras N C L(I') that are normalized by the T’
itself, i.e. ' C Np(r)(N). Very recently this problem was considered in [1] where a

@ Springer



928 I. Chifan, S. Das

complete description was obtained for I lattices in higher rank simple Lie groups via
a noncommutative version of Margulis’ normal subgroup theorem; in turn this was
obtained using character rigidity techniques introduced [20,59]. In this work we make
further progress on this question for many new families of groups I' complementary
to the ones from [1]. In particular, we show that under additional conditions on the
relative commutant N’ N L(T") (e.g. finite dimensional) these subfactors are always
“commensurable” with von Neumann algebras arising from the normal subgroups of
I' (Theorem 3.15). Moreover, in the case of all exact acylindrically hyperbolic groups
[23,54], all nonamenable groups with positive first L2-Betti number, and all lattices
in product of trees the same holds without any a priori assumptions on N’ N L(I") (see
Theorem 3.16, Corollary 3.17, and part 3 in Theorem 3.15).

Theorem 3.15 Let I" be a countable discrete group and let N C L(I") be a subfactor
such that T C Npa)(N). Then there exists a normal subgroup A <A T' such that
N C L(A) € N Vv (N' 0 L()). Moreover, we have the following

1) If N'0L(T) is finite dimensional then the inclusions N € L(A) C NV N'NL(T)
have finite index; in particular, when N' N L(T') = C1 then N = L(A).

2) If L(') is solid" then either N is an amenable factor or the inclusions N C
L(A) € N Vv N’ N L(') have finite index. Moreover if L(I") is strongly solid*
then either N is finite dimensional or the inclusions N € L(A) € NV N'NL(A)
have finite index.

3) T be a simple group such that L(I") is a prime factor, e.g. Burger-Mozes group
[7], Camm’s group [8] or Bhattacharjee’s group [3] (see [10]). Then N is either
finite dimensional or [L(I") : N] < oo.

Proof Denote by X the set of all ¥y € T" for which there is y € U(N) such that
7(yuy) # 0. Note that X coincides with the set of all y € I' such that Ey (1, ) # 0.

Fix y € X and denote by ¢, : N— N the automorphism given by ¢, (x) =
uyxu,— for all x € N. Thus ¢, (x)u, = uyx and applying the expectation Ey
we also have ¢, (x)Ey(uy,) = En(uy)x for all x € N. These two relations give
that ¢y(x)EN(uy)uy_1 = EN(MV).XM)/—I = EN(uy)uV_1¢y(x) for all x € N;in
particular, a, = En(uy)u,-1 € N’ N L(T"). Thus

En(u,) = ayuy. (3.0.14)

Thus En(uy)EN(u,-1) = aya;. Applying the expectation Ey and using Ey o
Ennpay = T (since N is a factor) we get En(uy)En(u,-1) = t(aya;)l. As
a, # 0 one can find a unitary b, € N so that Ey(u,) = |la, |l2b, . Combining with
(3.0.14) we get ||lay ||l2by, = a,u,, and hence u, = |la, ||2a;jbg. In particular we have
||ay||2a;ﬁ € U(N' N L(I")) and hence u,, € UN)UN'N L)) € NV (N NLT)).
Let A be the set of all y € I' such that u,, = x,y,, where x, € U(N) and
yy € U(N' N L(T")). Observe that A < T is in fact a normal subgroup. The pre-
vious relations show that ¥ C A and by the definition of ¥ we have that N € L(A).
Since L(A) € N Vv (N’ N L(T")) canonically, the first part of the conclusion follows.

I For every diffuse A C L(I") the relative commutant A’ N L(I") is amenable
2 For every diffuse amenable A C L(I") the normalizer NL(F) (A)” is amenable
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Since N’ N L(T") is finite dimensional then N v N’ N L(T") admits left (and right)
finite Pimsner-Popa basis over N and /) follows.

If N is nonamenable, then N’ N L(T") is finite dimensional, as L(I") is solid. The
rest of 2) follows easily from 7).

If T is simple, then A = T, as A is anormal subgroup of I'; hence, NV N'NL(T") =
L(I"). Since L(T") is prime, this further implies that either N or N’ N L(T") is finite
dimensional, and thus 3) follows from /). O

Next we show that whenever I is a “negatively curved” group then all subfactors N C
L(I") normalized by I' are commensurable to subalgebras L(A) arising from normal
subgroups A <1 T". Our proof relies heavily on the deformation/rigidity techniques for
array/quasi-cocycles on groups that were introduced and studied in [13,17-19]. We
advise the reader to consult these references beforehand.

Let 7 : '—>O(H) be an orthogonal representation. Let QH}” (T, ) be the set of
all unbounded quasicocycles into m, i.e. unbounded maps ¢ : '—"H so that d(q) :=
SUp,, jer lg(yr) — q(y) — m,(g(A)|| < oo. When the defect d(q) = O the set

QH;S (', ) is nothing but the first cohomology group H!(I', 7).

Theorem3.16 Let 7 : ' — O(H) be an orthogonal mixing representation that is
weakly contained in the left regular representation of I'. Assume one of the following
holds: a) T is exact and QH}”(F, w) # W orb) H(U, ) #£0. Let N € L(I') be a
subfactor satisfying ' C Ny (N). Then there is a normal subgroup A < T so that
N C L(A) € NV N' N L(A) and one of the following holds:

1. N is finite dimensional, or
2. A is infinite amenable, or
3. [L(A): N] < o0.

Proof Let M = L(I"). By Theorem 3.15 there is A < T, such that N € L(A) C
N Vv (N’ N M) and moreover from its proof it follows that for every y € A there are
unitaries a, € N and b, € N’ N L(A) so that

w, = ayb,. (3.0.15)

Also since N is a factor, using Ge’s tensor splitting result (Theorem 3.3) we also get
that
L(A) = N Vv (N'NL(A)). (3.0.16)

Assume that A is nonamenable. Letg € QH Cl, s(I', m) and consider the restriction g4 .

One can easily see that the representation n‘?ioo is still mixing and is weakly contained

in £2(A). Moreover since A <I I is normal and the representation is mixing it follows
that g | is unbounded and hence g|5 € QH;S (A, 7 |§'\9°°). Thus by [13, Corollary 7.2]
it follows that the finite conjugacy radical F'C(A) of A is finite and hence Z(L(A))
is finite dimensional.

Assume that N’ N L(A) is amenable. If it is finite dimensional then (3.0.16) already
implies 3. If not then there is a projection 0 # z € Z(N’' N L(A)) = Z(A) such
that (N’ N L(A))z is isomorphic to the hyperfinite factor. Since A is nonamenable N
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is also nonamenable. Thus L(A)z has property (Gamma) and there is a sequence of
(1), of unitaries in (N’ N L(A))z such that u® := (u,), € (L(A) N L(A)®)z and
u® 1 L(A);here wis a free ultrafilter on N. On the other hand using [19, Theorem 4.1]
we get that L(A) N L(A)® € L(A). Thus u L u, which is a contradiction.

Now assume that N’ N L(A) is nonamenable. If N is amenable then a similar
argument as before shows that N is finite dimensional leading to /. Thus for the rest
of the proof we assume that N and N’ N L(A) are nonamenable and we will show this
leads to a contradiction.

Let P = L(A). Following [17, Sect. 2.3] consider V; : L2(P) — L2(P) be
the Gaussian deformation corresponding to the quasicocycle gja € QH, LA, nl?ioo)

where the supralgebra P C P is the Gaussian dilation. Let ep : P — P denote
the orthogonal projection. Since N’ N L(A) is nonamenable there exists a nonzero
projection 0 # p € N’ N L(A) such that (N' N L(A))p has no amenable direct
summand. Thus applying a spectral gap argument a la Popa (see for instance [17,
Theorem 3.2]), we obtain that

lim( sup JlepV,(x)2) =0, and lim sup  [lepVi(x)2 | =0.
=0 \xe)1p =0 \ xe(N'NL(A),
(3.0.17)

Fix ¢ > 0. Thus, using the transversality property from [17, Lemma 2.8], relations
(3.0.17) and a simple calculation show that there exist C, D > 0 satisfying

P (x)—xl|l2 < eforallx e U(N)p, | Pg,(y)—yll2 < & forall y € U(N'NP).

(3.0.18)
Here for every constant C > 0 we denoted by Bc = {A € A : |lg(A)|lx < C} and
by Pp. the orthogonal projection onto the Hilbert subspace of L?(A) spanned by Bc.
Since by (3.0.15) we have u,, = a, b, then (3.0.18) imply

| P (uybyp) —uybypla <& and ||Pg,(byp) —bypla < eforally € A.
(3.0.19)
Thus using triangle inequality, for all y € A, we also have

1Pae ey b3 p) — wy Ppyy (05 p) 12 < 1| Pa (it pbs) — ity pby ll2 + | Pe, (85 p) — b plla < 2e.
(3.0.20)

Since g|a is unbounded, there exists yp ¢ Bc4D43d(gn)- Also the quasicocycle
relation and the triangle inequality show that BCBI;l C Bc+D+3d(gn) and thus
Yo ¢ BCBB]. Hence (P (&), uyyPp,(n)) = O forall £,n € L?(A). Thus using
inequalities 3.0.20 for y = yp and (3.0.19) we see that 4% > | P (u},ob;iop) —
tyy Py (5 P13 = [l P (b, )3+ llity Py (b33 = layob?, plI3+IID, plI3—
2e2 = 2||pll3 — 2e. Thus ||p[l3 < 3%, which contradicts p # 0 when e—0. This
completes the proof of the first part of the theorem in the the case when ¢ is a qua-
sicocycle with d(q) # 0. When d(g) = 0 i.e. g is a cocycle the same proof works
with the only difference that to derive the convergence 3.0.18, instead of using [17,

Theorem 3.2] (which requires exactness of I') one can use the spectral gap arguments
as in [58] or [78]. O
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When combined with results in geometric group theory the previous result leads to
the following

Corollary 3.17 Let I' be a nonamenable group that is either exact and acylindrically
hyperbolic or has positive first L*-Betti number. Let N € L(I") be a subfactor such
that T C Ny (N). Then there is a nonamenable normal subgroup A <\ T so that
N C L(A) € N Vv N' N L(A) and one of the following holds:

1. N is finite dimensional, or
2. [L(A) : N] < oc.

Proof From [60] and [34] it follows that these families always have QHals (T, £2(I")) #
). Hence the result follows directly from the previous theorem as both classes of
nonamenable acylindrically hyperbolic groups and nonamenable groups with positive
first L2-Betti number have finite amenable radical. O

4 Actions that satisfy Neshveyev-Stgrmer rigidity

If T', A are abelian (or more generally amenable) groups, and ' ~ X, A ~ Y are
free, ergodic, pmp actions, then L°°(X) x I and L*°(Y) x A are isomorphic to the
hyperfinite II; factor R. However, Neshveyev and Stgrmer proved that if we assume
that ® : L°(X) x I' — L%(Y) x A is an x-isomorphism such that ® (L*°(X)) is
unitarily conjugate to L°°(Y) and ®(L(I")) = L(A) then the actions I' ~ X and
A Y are conjugate [52, Theorem 4.1]. Motivated by this group action conjugacy
criterion, they further conjectured the following: if I', A are abelian groups, I' ~
X, A ~ Y are free, weak mixing, pmp actions and © : L®°(X) x ' — L*®(Y) x A
is a x-isomorphism satisfying ® (L(I")) = L(A) then ' ~ X is conjugate to A ~ Y
[52, Conjecture]. Shortly after, using his influential deformation/rigidity theory Popa
was able to prove the following striking result: if I', A are any countable groups,
I' % X, A P Y are free, ergodic actions, with o Bernoulli (or more generally
clustering), and ® : L®°(X) x ' — L%°(Y) x A is an x-isomorphism such that
®O(L(T")) = L(I') then I' ~ X is conjugate to A ~ Y, [67, Theorem 5.2]. In
particular, this settled Neshveyev-Stgrmer conjecture for Bernoulli actions. Popa also
showed that the study of the Neshveyev-Stgrmer rigidity question in the context of
icc property (T) groups eventually leads to his remarkable proof of the group measure
space version of Connes’ rigidity conjecture, [67, Theorem 0.1]. All these results
motivate the study of the following generalized Neshveyev-Stprmer rigidity question.

Question 4.1 Let ' and A be icc countable discrete groups and let T ~ X and
A Y be free, ergodic, pmp actions. Assume that there is a *-isomorphism © :
L®(X) X T — L®Y) x A so that ©(L(T")) = L(A). Under what conditions on
I' ~ X can we conclude that " ~ X and A ~ Y are conjugate?

Informally, the generalized Neshveyev-Stgrmer rigidity question asks, under what con-

ditions can I' ~ X be completely recovered from the irreducible subfactor inclusion
L) Cc L*™®(X) xT.
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Using existing literature, one can see that the generalized Neshveyev-Stgrmer rigid-
ity phenomenon holds for the following classes of actions: all Bernoulli actions of icc
groups, [67]; all W*-superrigid actions, [6,11,12,14,17,18,25,35,38,58,71-73,78]; all
weak mixing Cgms-superrigid actions, [67, Theorem 5.1]; and all mixing Gaussian
actions [6, Corollary 3.9].

In this section we provide new classes of actions satisfying the generalized
Neshveyev—Stgrmer question, most notably, all actions that appear as (nontrivial)
mixing extension of free distal actions (see Theorem 4.8).

4.1 A criterion for conjugacy of group actions

Within the class of icc groups, we further generalize Neshveyev—Stgrmer’s aforemen-
tioned criterion for conjugacy of group actions on probability spaces by completely
removing the weak mixing assumption of I' ~ X (see Theorem 4.5). In this context
our result also generalizes [67, Theorem 0.7] as it covers many new actions (e.g. com-
pact) that were not previously analyzed in this context. Our proof relies on the usage of
the notion of height of elements in group von Neumann algebras introduced in [42]. In
order to prove our result we need to establish first a few preliminary technical results
on height of elements in group von Neumann algebras, [42, Definition 3.1].

Definition 4.2 A trace preserving action I’ ~% A on a finite von Neumann algebra
A is called properly outer over the the center of A if for every y # 1 and every
0 # z € Z(A) such that o), (z) = z the automorphism o}, : Az— Az is not inner.
When A is abelian this amounts to the usual freeness of the action I' ~ A.

The following lemma is a basic generalization of Dye’s famous result in the case of
group measure space von Neumann algebras. For readers’ convenience we include a
short proof.

Lemma4d.3 Let ' ~° A and A ~* B be properly outer actions. Also let © :
A X T'—B x A be a x-isomorphism such that ®(A) = B. Fix y € T and let
O(uy) = ), cp arvy be the Fourier decomposition of ®(ug) in B x A. Then there
are mutually orthogonal projections {e)}ren C Z(B) and unitaries {x)}en C B so
that a;, = ex;, forall . € A. Also, ) ", ., en = 1.

Proof To ease our presentation we assume that A = B. Thus, M := A x T = A x A.
Fix y € I''and let u, = ), 5 axvy. Since o, (a)u, = u,a forall a € A then
0y (@) Y 5en @V = D s cp @UNA = Y5 cp ar0y(@)vy. Thus oy (@)a) = ayoy(a)
foralla € Aand A € A. If g = w;|a,| is the polar decomposition of a, this further
implies that foralla € A and > € A we have

oy (@wy, = wyoy(a). 4.1.1)
Hence ¢; = wyw} € Z(B). Let x;, € U(A) such that wy, = xpe. Fix A # p €
A. Using (4.1.1), for all a € A we have o) (a)e; = x,a;(a)xje, and o, (a)e, =

xuau(a)xZeu. Thus o (a)eye, = xyan(a)xje e, = xuau(a)x:bexeu. Letting a =
o, -1(b) we geta; -1 (b)ese, = x;‘xubeleux;xx for all b € A. Also one can easily
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check that ;-1 (ese,) = exey. Since A ~% A is properly outer and Al £ 1, we
get e; e, = 0; thus for all A # 1 we have eje;, = 0.

Asu, € UM) wehave | = Y, afa; = |a;|> < Y, e, < 1. Thus |ay|?> = e
and hence |a) | = e, for all A € A; moreover Z)L e, = 1. O

With this result at hand we are now ready to prove the first technical result needed
in the proof of Theorem 4.5.

Theorem4.4 Let T' ~° A and A ~* B be properly outer actions. Assume that
® : A x I'—=B X A is a x-isomorphism satisfying the following conditions:

i) ®(A) = B, and
ii) there exist 1 > ¢ > 0 and a finite subset K C B X A such that for every y € T
we have

1©@y) — Z aEpa (O uy))e)d|2 < e. (4.1.2)
a,b,c,deK

Then one can find D > 0 and finite subset F C B such that for every y € T there
exists A € A satisfying maxp cer |T(6* O (u))cv;)| = D > 0.

Proof As before assume that A = B and notice that M = A x T = A x A. Let
1> e >0and K € M a finite subset such that for all g € I" we have

luy = Y zELa)(tuywir|y <. (4.1.3)

z,t,w,rek

Approximating the elements of K via Kaplansky’s density theorem we can assume
there are finite subsets ¥ € A, G € A (some elements could be repeated finitely
many times!) so that for all y € I' we have

2
e>luy, — > avi, ELa) (v, 16"ty cvi) v, 1d 3.

a,b,c,deF
Al,A2,A3,04€G

For the simplicity of writing we convene for the rest of the proof that Y 4 p.c.aer =
A1,A2,A3,04€G
> _r.g- Thus forall y € I' we have

2
e > |luy, — Z Zaf(”xlxz‘lb*“chMA;]rl)vkd*”2
AEA F,G

= Y (EaGuyvy) = Yo t(v, ;b uye, oy Dacs @), @.1.4)
AEA F.G

By the previous lemma 4.3 we have that E4(u,v;) = eyx; with x; € U(A) and
e) € Z(A). Then using ||| f| — Iglll2 < || f — gll2 for f, g € A we see that the last
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quantity in (4.1.4) is larger than

2
> e, — ZT(U)Ll)\z—lb*uycl))%k;l)\_])aOl)\(d*)
reA F.G )
2
= llell? + (v b*u, cv Yao (d™)
= A2 Aay ! YUt A
reA F.G 5
—2Ret | ¢, Zr(vmglb*uycvm;lrl)aak(d*) ) (4.1.5)

F.G

From Lemma 4.3 we also have that Y, _, ex = 1 and hence Y, _, llexll3 = 1.
Combining this with (4.1.4) and (4.1.5) we get

2
2 2
Doellenld = Y lleald + || D0 1w, ;16 uycu, ;- Daci(d)
reA 2 F.G )
—2Ret | e Z t(vklkzqb*u},cvkﬂ;lrl)aax(d*)
F.G
Hence, for every y € I' there exists A € A such that e; # 0 satisfies
2
2 2 * *
> _ _
ellealld = leall3 + | D v, ;0% uycv, ;- acs(d)
F.G 5
—2Ret [ ex ) T(v, ;b uyev, o, Daad)] ] 4.1.6)
F.G

Using (4.1.6) and the operatorial inequality (37, xi)* (3 1, xi) <2130 | x¥x;
we get

2 —2Vo)llexll

2

< (U =o)llel3 + || D] v, ;16 uyev, ;1 -Nasd)

F.G 2

<2Ret | e ZT(v)q)»;lb*uycv)\})»zl)»_l)aa)‘(d*)
F.G
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1/2
FI*G*+1 2 2
< 2lFFIGIH Rer | €y Z|t(vklxz"b*”7/c”x3x;‘rl)| lac) (d*)|
F.G
1/2
FI*G*+1 2 2 2
Szl Fer+ Ret Z|T(v}»|)»271b*uycvl3)»;l)\._')| ”a“oo”d”oo e
F.G
4114 2
FI*GI*+1 4 -4 2
< 2lFFIGI+ (max||a||oo) |G|} F| max lt(b*uycvp)llenl3.
aeF neGG—1A"1GG~1 b,ceF

4.1.7)

. 461t .

Letting 0 < Do := 2IFIO*  (max e r [lalloo)?|G|*| F|* and using that [ey > #
0, the previous equation gives that max,cgG-1,-1GG-1p,cer |T (B Uycvy )| >
1—./¢

Dy

> 0, which finishes the proof. O

The previous technical result on height can be successfully exploited in combination
with some soft analysis arising from icc property for groups in order to derive the
conjugacy criterion for actions.

Theorem 4.5 LetT' ~ X and A ~ Y be free ergodic actions where T is icc. Assume
that® : L®°(X)xI'— L% (Y) X A is a x-isomorphism such that ® (L*° (X)) = L*(Y)
and there exists a unitary u € L*°(Y) x A such that ® (L(I")) = uL(A)u*. Then one
can find x € ./\/LoO(y)X]A(LOO(Y)), a character n : I'>T, and a group isomorphism
8 : T— A such that xu € U(L(A)) and for all a € L*°(X), y € T’ we have

O(au,) = n(y)@(a)x*v(g(y)x. 4.1.8)

Here {uy},cr and {v)}rca are the canonical group unitaries implementing the actions
in L®°(X) x T and L®(Y) X A, respectively.
In particular, it follows that ' ~ X is conjugate to A ~ Y.

Proof For the ease of presentation we first introduce some notations. After suppressing
© from the notation we assume that A = L*°(X) = L*°(Y)andhence M = Ax,[" =
A Xy A. Also letting C = uAu™ and A1 = uAu* we also have M = C x4 Ay and
L(I") = L(Ay). Throughout the proof we denote by £, = uv,u™ and a; (c) = trcty—1
for all ¢ € C. Note that the condition ii) in Theorem 4.4 is automatically satisfied
and hence by the conclusion of Theorem 4.4 there exists a D > 0 and a finite subset
F C A so that for every y € I, there is A € A such that

D < max |t(b*uy,cvy)| = max |t ((ub®)uy, (cu™uvyu™)| = max |t((ub*)u, (cu™)n)|.
b,ceF b,ceF b,ceF

(4.1.9)
Approximating b*u, u*c in (4.1.9) via Kaplansky’s theorem with elements in C X A |
and then diminishing D if necessary, we can in fact assume the following: there exists
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D > 0and K C C finite, such that for every y € I', there exists A € A satisfying

max |t(duyet,)| = D. (4.1.10)
d,eecK

On the other hand since Ec(x) = t(x)1 for all x € L(A) we can see that

d )| = du, o = Ec(du, tyo! _
max [T (duyety)| ,}22’,‘{”( uytra; i (e))| dtg%é);{lf( c(duyto; _ (e)))]
= E ! = /
dlgéé);{lf(d c(uyty)er i (e))] ;227[((|T(Myvx)||f(da)\—l(e))|

2
< max ||d T(u,ty)l.
< max ldllsol T (uy )]

Combining this with (4.1.10), for every y € I there exists A1 € Aj such that
Tyt 2 —————> > 0. Since L(I") = L(A}), in the notation of [42] this
maxgek [1dI5,

implies o, (I") > 0. Then by [42, Theorem 3.1] there is w € U(L(A1)), a character
n : I'=T, and a group isomorphism 8 : I'— Ay satisfying wu, w* = n(y)ts,)-
Since t,, = uv,u*, letting x = u*w, we further get that there is a group isomorphism
8 : T'— A satisfying

xuyx™ =n(y)vse), forally e I'. 4.1.11)

As vy Av,-1 = A, using (4.1.11) we get xupx*Axu,-1x* = Aforall h € I'. Fix arbi-
trary a € A with ||a|| < 1,and note upx*axu,—1 = x*E s (xupx*axu,—1x*)x. Apply-
ing the expectation we also have uy E4 (x*ax)uy—1 = Eo(x*E s (xupx*axu,—1x*)x).
Subtracting these relations, for every & € I' we have

up(x*ax — Ea(x*ax))up—1 = x*Eg(xupx*axu,-1x)x — Eqo(x* Eg(xupx*axu;,-1x*)x).
(4.1.12)
Fix ¢ > 0. By Kaplansky Density Theorem there exist finite subsets K C I' \ {1},
L C T and elements yg € spanAK and x;, € spanAL such that

Iyklloo =2, llxLlloo =1

[x*ax — Ea(x*ax) — ykl2 <&, |x—xpl2<e¢ (4.1.13)

Using (4.1.12) and (4.1.13) together with basic calculations we see that for every
h € T we have

Ix*ax — Ea(x*ax)|5 = llup(x*ax — Ea(x*ax)uy-1]l3
= [{up(x*ax — Eg(x*ax))up-1, x*Eg(xupx*axu,—1x*)x
— EA(XTEA(xupx*axu,-1x)x))|
<2e+ [{upygup—1, x* Epa(xupxaxuy,1x*)x — EA(xX*Eq(xupx®axu;,-1x¥)x))|
<2¢+ [{upygup-1, x*Es(xupx*axu,-1x")x)|
< 6e + [{upyxup-1, x Ea(cupx*axuy,—1x*)xp)| (4.1.14)
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Since I'isiccand K C I''\ {1}, L C I are finite then by [19, Proposition 2.4] there is
h e T'sothathKh~'NL™'L = ¢. Hence (upyxuy-1, x1* Ea(xupx*axu,-1 x*)xp) =
0 and using (4.1.14) we conclude that ||x*ax — E(x*ax)||> < 4e. Since this holds
forall ¢ > O then x*ax = E4(x*ax) forall a € A. Therefore x*Ax C A and since A
is a MASA we obtain x*Ax = A; thus x € Ny (A). This together with (4.1.11) give
(4.1.8). In addition, for every a € A and y € I" we have xo, (@)x* = xu,au,,—1x* =

¥
Us(y)Xax v,y -1 = as(y)(xax™); in particular I' ~ X and A ~ Y are conjugate. O

Remarks The Theorem 4.5 actually holds in a greater generality, namely, for all actions
I' ~ A, A ~ B that are properly outer over the center. The proof is essentially the
same with the one presented above. We highlighted only the more particular case of
free ergodic actions solely because this is what we will mainly use to derive the main
results of this section.

4.2 Applications to the generalized Neshveyev-Stgrmer rigidity question

In this subsection we show that large families of group actions verify the conju-
gacy criterion presented in Theorem 4.5 and therefore will satisfy the generalized
Neshveyev—Stgrmer rigidity question. Our examples appear as mixing extensions of
free distal actions. Our method of proof rely on combining the persistence of mixing
through von Neumann equivalence from Sect. 2.4 and the von Neumann algebraic
description of compactness using quasinormalizers from [15,36,52,53,57].

Theorem 4.6 Let I' ~ X be a ergodic pmp action whose distal quotient T ~ Xg4
is free and the extension w : X — Xy is nontrivial and mixing. Let A ~ Y be
an ergodic pmp action whose distal quotient A ~ Yy is also free. Assume that ©
L®(X) X T—=L>®(Y) x A is a x-isomorphism such that ® (L(I")) = L(A). Then
there exists a unitary u € L°°(Yg) X A such that © (L (X)) = uL*>®(Yy)u* and
O(L® (X)) = uL>®(Y)u*.

Proof To ease our presentation we assume that M := L®(X) x ' = L) x A
with P = L(I") = L(A). Using Theorem 2.5 it follows that N := L*(Xy) x
I' = L*®(Yy) x A. Next we argue that L*°(Yy) <y L%°(Xg). Indeed, if we
assume L*°(Yy) Ay L°°(Xy), since the extension 7 : X— X, is assumed to be
mixing, by Theorem 2.11 we have that QN (L*°(Y;))” < N. However since
ON M (L®(Yy))" = M it would imply that M C N which is a contradiction.

Since ' ~ Xy and A ~ Yy are free and L>°(Yy) <y L°°(Xy) then by [64,
Appendix A] one can find a unitary u € N so that L*(Xy) = uL®(Yy)u*. Passing
to relative commutants and using freeness of ' ~ X4, A ~ Y4 again we also get
L®(X) = uL®(Y)u*, as desired. O

Theorem 4.7 Let ' be an icc group and let T ~ X be an ergodic pmp action whose
distal quotientI' ~ Xy is free and the extensionw : X — X is nontrivial and mixing.
Let A ~ Y be any free ergodic pmp action. Assume that © : L (X)xT—L®(Y)x A
is a x-isomorphism such that @ (L(I')) = L(A). Then there exists a unitary u €
L% (Yy) ¥ A such that ©(L*°(Xy)) = uL®(Y)u* and ® (L*° (X)) = uL*>®(Y)u*.
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Proof Asbefore we assumethat M := L (X)X = L®°(Y)x A with L(T") = L(A).
Using Theorem 2.5 it follows that N := L®(Xy) x I' = L*®(Yy) x A. Next we
argue that L*°(Xy) <y L% (Y,). First notice since 7w : X— X is mixing it follows
from Theorem 2.10 that 7w : Y— Y, is also mixing. If we would have L*°(Y;) An
L*>°(Xy), since the extension 7 : ¥ — Yy is mixing, then Theorem 2.11 would imply
that QN (L% (X4))” € N. However since QN (L (X)) = M it would imply
that M C N which is a contradiction.

Notice that since I" is icc and L(I") = L(A) it follows that A is icc as well. Also
since L*°(Xy4) <y L (Yy) and L°°(X,) is a Cartan subalgebra in N it follows from
[55, Lemma 4.1] that A ~ Yy is free and then the desired conclusion follows from
Theorem 4.6. O

Remarks 1) If in the statements of Theorems 4.6 and 4.7 one only requires that the
distal factor I' ~ X, is actually compact, then in the proof of Theorem 4.6 we don’t
need to use Theorem 2.5. Instead one can just directly apply [36, Proposition 6.10].

2) If in the statement of Theorem 4.7 one requires that the first element I' ~ X of
the distal tower I' ~ X is free profinite then one can show the action A ~ Yy
is free without appealing to [55, Lemma 4.1]. Briefly, using the mixing we have
L*®(Xg) <y L°°(Y) and employing some basic intertwining properties one can
further show that L*°(Xo) <roo(x,)x«r L (Yo) and hence L™ (Yp)' N (L*°(Yp)
A) <roevyyxa L (Xo) (). However using the same calculations from the proof
of part 2. in Theorem 4.12 we have L*°(Yy)' N (L™ (Yy) x A) = L*®°(Yy) x X for
some normal subgroup ¥ <1 A. However since L(X) C L(I") the the intertwining
() implies that X is finite and since A is icc we further have ¥ = 1;hence A ~ Yj
must be free.

Combining the previous theorems with Theorem 4.5 we obtain the following

Theorem 4.8 Let I' be an icc group and let T' ~ X be a free, ergodic pmp action
whose distal quotient ' ~ X4 is free and the extension w : X — Xy is nontrivial
and mixing. Let A ~ Y be any free ergodic pmp action. Assume that © : L*°(X) %
I'—L®°(Y) x A is a x-isomorphism such that © (L(I')) = L(A). Then there exists
yeULA), w: T — Tacharacter, and § : I' — A a group isomorphism such that
YO(L®(X))y* = L°(Y), and for alla € L*(X), y € T, we have

O(auy) = w(y)O@)y*vs(y)y-

In particular, we have y® (o, (a))y* = as@)(yO(a)y*) and hence T' ~ X and
A "~ Y are conjugate.

Here {uy,},cr and {v)}rea are the canonical group unitaries implementing the
actions in L°°(X) x I and L*°(Y) x A, respectively.

Proof To ease our presentation, we assume, as before, that L°(X) xI" = L®(Y) x A,
and L(T") = L(A). Theorem 4.7 yields that there is a unitary u € L°(Yy) X A such that
L*°(X) = uL®°(Y)u*. This is equivalent to assuming that L>°(X) xT" = L®°(Y) x A,
L(T) = uL(A)u* and L°(X) = L*°(Y). We are now exactly in the set up of
Theorem 4.5, which yields the desired conclusions. O
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Examples Theorem 4.8 implies thatif I" be anicc groupand I' ~ X is any ergodic pmp
action that admits a free profinite quotient ' ~ X and the extension 7 : X — Xy
is nontrivial and mixing then I' ~ X satisfies Neshveyev—Stgrmer rigidity question.
For instance if I" is icc residually finite then this is the case for any diagonal action
I' ~ Z x T where I' ~ Z is a Gaussian action associated to a mixing orthogonal
representation of I" and I' ~ T is any free ergodic profinite action.

Corollary 4.9 Let I be an icc group, let T' ~ X be a free, mixing pmp action and let
A Y be any free ergodic pmp action. Also let ' ~ X be a free factor of ' ~ X
and A ~ Yy be a factor of A ~ Y. Assume that ©® : L®°(X) x I'—=L®°(Y) x A is
a *-isomorphism such that © (L(T")) = L(A) and ©(L*°(Xg) x ') = L*°(Yy) x A.
Then there exists y € U(L(A), w : I' — T a character, and § : I' — A a group
isomorphism such that y© (L°°(X))y* = L*®(Y), and foralla € L*(X),y € T, we
have
O(auy) = o (y)O(@)y* vsy)y.

In particular, we have y© (o, (a))y* = as4)(yO(a)y*) and hence ' ~ X and
A Y are conjugate.

Here {uy},cr and {v)}ren are the canonical group unitaries implementing the
actions in L*°(X) x " and L*°(Y) x A, respectively.

Proof Since I' ~ X is mixing then by Theorem 2.10so is A ~ Y. In particular
the extensions I' ~ (L*°(Xp) C L®(X)) and ' ~ (L*°(Xp) C L°°(X)) are
mixing. Since ®(L>®(Xg) x I') = L®(Yy) x A the conclusion follows using the
same arguments as in the proof of Theorem 4.8. O

Following the terminology from [71] a free ergodic action I' ~ X is called Cyps-
superrigid if up to unitary conjugacy L>(X) C L*°(X) x I' = M is the only
group measure space Cartan subalgebra of M. Over the last decade many classes of
examples of such actions have been discovered via deformation/rigidity theory. For
some concrete examples the reader is referred to [12,17,18,39,55,72,73] and the survey
[41]. An immediate consequence of [67, Theorem 5.1] is that all weakly mixing Cgpms-
superrigid actions satisfy the statement of Theorem 4.8. Using our Theorem 4.5 we
obtain the following generalization

Corollary 410 Any Coms-superrigid action T' ~ X of any icc group T satisfies the
statement of Theorem 4.8.

In particular the generalized Neshveyev-Stgrmer rigidity holds for all action " ~ X
of icc groups I' that are: hyperbolic groups, [73], free products [39] or finite step
extensions of such groups [12].

At this point it is increasingly evident that all the above Neshveyev—Stgrmer type
rigidity results were achieved by heavily exploiting, at the von Neumann algebra level,
the natural tension between mixing and compactness properties for action. It would
be interesting to understand whether such results could still be obtained only in the
compact regime. Specifically, we would like to propose for study the following

Problem 4.11 If T is icc does every free ergodic profinite action I' ~ X satisfy the
statement of Theorem 4.8?
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While providing a complete answer to this question seems hard at the moment, one
can show there are many aspects of ' ~ X that are shared by A ~ Y through this
equivalence (e.g. compactness, profiniteness, etc). In fact we have the following result.

Theorem 4.12 Let I' ~ X be a free ergodic action and let A ~ Y be any action.
Let ©® : L°(X) x > L°°(Y) x A be a x-isomorphism such that © (L(T")) = L(A).
Then the following hold

1. IfT' ~ X is (weakly) compact then A ~ Y is also (weakly) compact.

2. If Uisicc and T' ~ X is profinite then A ~ Y is also ergodic and profinite.
Specifically, if ' ~ X is the inverse limit of ' ~ X, with X,, finite then A ~
Y is the inverse limit of T ~ Y, with Y, finite so that for every n we have
O(L®(X,) xT') = L*(Y,) x A. In addition, the stabilizer Stabp (Y,) <\ A is
normal and we have that T /Stabr (X,) = A/Stabp (Y,) for all n. Finally, there
exists a normal subgroup ¥ <1 A so that L*°(Y) NL®(Y) x A = L®(Y) x .

Proof 1. Asbefore we assumethat L°°(X)xI' = L®°(Y)XA = Mand L(I") = L(A).
Since I' ~ X is compact, [36, Theorem 6.10] implies that the quasinormalizer algebra
satisfies QN (L(I"))” = M. Since canonically QN 3 (L))" = QN p(L(A))”
then QN y(L(A))” = M which by [36, Theorem 6.10] again implies that A ~ Y is
also compact. The statement on weak compactness follows from [55, Proposition 3.2].

2. Since I' is icc then A is also icc. Hence A ~ Y is ergodic (otherwise M will not
be a factor). Next we show that A ~ Y is profinite. As I' ~ X is profinite, it is the
inverse limit of ergodic actions I' ~ X, on finite spaces. Thus A, = L*°(X,,) form a

tower of finite dimensional abelian I"-invariant subalgebras Ag C ... C A, C Ap41 C

... C L®°(X) such that U,,AnSOT = L*°(X).Moreover I' ~ A, is transitive for every

n.Since L*®(X) x ' = L*®(Y) x A and L(T") = L(A) using Theorem 3.10 for every
n one can find a A-invariant subalgebra B, C L°°(Y) such that A, x ' = B, X A.
Factoriality of A, x I' and A being icc imply that the action A ~ B, is ergodic.
Since L(T") € A,, x T is a finite index inclusion of II; factors sois L(A) C B, x A.
Using Lemma 2.6 we get that B, is finite dimensional and the action A ~ B, is

transitive. One can easily check that By C ... C B, C By41 C ... C L*(Y) and also

Un BnSOT = L% (Y). Thus there exist factors A ~ Y,, of A ~ Y with Y,, finite such

that A ~ Y is the inverse limit of A ~ Y,.

Denote by {p;’ |1 <i < k,} = At(B,). Since Stabr(q) is assumed normal in T’
for every g € At(Ap) it follows from Proposition 2.7 that Stab (p}') is normal in A
for every i. Moreover, since the action A ~ B, is transitive one can easily see that we
actually have Stabp (p}') = Staby (By) forall 1 <i < k. Finally, by Proposition 2.7
we also have that I'/Stabr (X,,) = A/Stabp (Yy) for all n.

In the remaining part we describe the relative commutant L*°(Y) N M. So fix
b € L*°(Y) N M and consider its Fourier decomposition b = ZAGA b, v,. Since b
commutes with L>°(Y) we get that yb, = o, (y)b; forall A € A and y € L*°(Y).
Letting e, be the support projection of by b this further implies that forall y € L*°(Y)
and A € A we have

yer = ay(y)e. 4.2.1)
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Fix A such that by # 0 (and hence e;, # 0). Denote by e} := Ep, (e;) and applying
the conditional expectation Ep, in (4.2.1), for all y € B, we have

yey, = ax(y)ey. 4.2.2)

Since e; # 0 then e} # 0 and hence there is p!' € Az(B,) satisfying e p!' = cp}
for some scalar ¢ > 0. Multiplying (4.2.2) by c’]p;’ we get yp!' = a;(y)p} for all
y € By. This entails that ; (p!') = p; and hence A € Stabp(p}) = Stabp(By).
Altogether, we have shown that for every A with b, # 0 we have A € Stabu (B,).
Applying this for every n we conclude that . € N,Stabp(B,) =: X. In particular
b e L®(Y)x X andhence L>®(Y)' NM C L°°(Y)x . Since the reverse containment
canonically holds we get L*°(Y) "M = L*°(Y) X Z. As Stabp (B,)’s are normal

in A then X is also normal in A. |

These results can be used to produce additional examples of actions satisfying the
statement of Theorem 4.8. For example part 1. of the previous theorem in combination
with Theorem 4.5 and [5, Theorem 4.16], [16, Theorem 5.1] shows that any free ergodic
weakly compact action I' ~ X satisfies the generalized Neshveyev-Stgrmer rigidity
whenever I" is an icc group in one of the following classes

1. ' is any properly proximal group [5, Definition 4.1], in particular when I' =
PSL,(Z),n > 2orany I that admits a proper array into a nonamenable represen-
tation (see [17, Definition 2.1]). In fact the latter also follows by using the results
in[17,18];

2. I' = H G is a wreath product where H is nontrivial abelian and G nonamenable
[16].

5 Some applications to strong rigidity results in von Neumann
algebras and orbit equivalence

Theorem 5.1 Let I" and A be icc property (T) groups. Let T' ~ X = lim X, be a free
ergodic profinite action and let A ~ Y be a free ergodic compact action. Assume
that ©® : L°(X) x T'—=L*>°(Y) X A is a *-isomorphism. Then A ~ Y = limY,, is
a profinite action. Moreover there exists | € N and a unitary w € L°°(Y) X A such
that © (L (X41) x T) = w(L>®(Yr11) X A)w™ for every positive integer k.

Proof To simplify the notations let A = L*°(X), B = L°°(Y) and notice that M =
A xT'= B x A.Moreover if L*°(X,) = A,.then A, C A,y1and A = U,,AnSOT.

Also if My = A, » T then My, C My and M = U, M, C" . Note that by [36,
Theorem 6.9(b)], L°°(X) x I has Haagerup’s property relative to L(I"). Since L(A)
has property (T), the same arguments as in the proof of [64, 5.4(2°)] (see also [64,
Remarks 6.3.1°]) and [66, Theorem 2.1] implies that L(A) < L(I'). Hence one can
find nonzero projections p € L(A), g € L(I") a nonzero partial isometry v € M and
an injective *-homomorphism ¢ : pL(A)p—qL(I")q satisfying ¢ (x)v = vx for all
x € pL(A)p. Since L(A) C M is a irreducible subfactor by Theorem 2.2, we may
assume that ¢ (pL(A)p)’ NgL(T")g = Cgq. Also, since L(A) N M = C we have that
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v*v = p. Denoting by QO = ¢(pL(A)p) we also have that r = vv* € Q' NgMyq.
Letting u € M a unitary such that uv*v = v we have that

upL(N)pu* = Qr. (5.0.3)
Next we prove the following

Claim5.2 Q € gL (')q is a finite index subfactor.

Proof of Claim 5.2. Since L(I') C M is a rigid subalgebra and M has Haagerup’s
property relative to L(A), by the same arguments as in the second paragraph of this
proof, we also have that L(I") <3 L(A). Since L(A) is a factor this further entails
that L(I") <p upL(A)pu* = Qr. Hence by Popa’s intertwining techniques there
exist finitely many x;, y; € M and ¢ > 0 such that Zj ||EQ,(xjuyj)||% > ¢ for all
u € U(L(I")). Since Eg(r) = 74(r)q then we have Eg,(x) = EQ(r)_lEQ(qxq)r =
7 (n~'E o(gxq)r for all x € L(I"). Using this formula in the previous inequality we
further get that Zj ||EQ(qxjuyjq)||% > c¢ty(r) > 0. Approximating x; and y; with
their Fourier decompositions one can find finitely many a;,b; € A and y;,8; € T
such that for all u € U(L(I")) we have Y; | Eg(quy,aiubjus,q)|3 > ”‘fT(’) Using
this together with Eg = Eg o E4r (), we see that for all y € I we have

T, (r) o u
—L= <Y NEg(quyaiuybius,g)ll; = Y I Eg(quy,aioy (bi)uys g)3

i=1 i=1

s
= Z IEo(qELryuy,aioy (bi)uys))|I3

i=1

N
= lt(aioy b)) PIEo(quy,ys 913

i=1
2 2 2
< (irg?ﬁ lai 136 11 ||oo) <Z ||EQ(quyiy,siq)||2> :
1

¢ty (1)

Thus letting d = s e Ve have that ) ; ||EQ(quy,.y,;iq)||% >d >0
for all y € G. Hence by Theorem 2.1 we get L(I') <) Q and since L(I") is a
II; factor we actually have g L(I')g <rr) Q and hence gL(I')g <41()q Q- Since
Q' NgL(T)g = Cq, this entails [¢L(T")q : Q] < oo by [9, Proposition 2.3], and the
claim follows. ]

Combining the Claim 5.2 with [65, Lemma 3.1] it follows the inclusion ¢ L(T")g’ N
qgMq C Q'NgMgq has finite Pimsner-Popa probabilistic index. Since " isiccand I' ~
X is free it follows that L(I')’ " M = C and thus ¢ L(I")¢' NgM g = Cg. Combining
with the above we conclude that Q' N gMgq is a finite dimensional von Neumann
algebra. Since Q € gL(I')g C gM1q C ... C gMu,q C gM,4+1q9 C ... C gMq and
qgMgq = UonnqSOT one can check that Q' NgMq C ... C Q' NgMuq C Q' N
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gM, 119 C ... C Q'NgMg andalso Q'NgMq = U, Q' N anqSOT.Since 0'NgMgq
is finite dimensional there must be a minimal integer / so that Q'NgM;q = Q'NgMgq.
In particular, we have r € ¢ Mg and by (5.0.3) we obtain upL(A) pu™ € M;. As M;
is a factor one can find w € U (M) so that wL(A)w™ C M;.

Since the action A ~ B is compact the using Theorem 3.10 there is a A-invariant
von Neumann subalgebra By C B satisfying w(B; x A)w™ = A; x I’ = M;. Since
L(T") has property (T) and [M; : L(I")] < oo it follows that M; has property (T). Thus
B1 x A is a factor with property (T) and as By x A has Haagerup property relative to
L(A) we conclude that By x A < L(A) and hence by [9, Proposition 2.3] we have
[B; x A : L(A)] < oo. Hence by Lemma 2.6 Bj is finite dimensional and the action
A ~ Bj is transitive. Finally, using Theorem 3.10 successively there exist a tower of
A-invariant finite dimensional abelian von Neumann subalgebras By C ... C B, C
B,4+1 C ... C B such that UnlenSOT = B and also w(Br41 X A)w* = Apy x T
for all k > 0. Thus there exists a sequence of factors A ~ Y, of A ~ Y into
finite probability spaces Y, such that L°°(Y,) = By, for all n > 1. From the previous
relations one can check A ~ Y is the inverse limit of A ~ Y, which gives the desired
statement. [}
The von Neumann algebraic methods developed in the previous sections can be used
effectively to derive the following version of loana’s O E-superrigidity theorem [37,
Theorem A] for profinite actions of icc groups.

Theorem 5.3 Let ' ~ X be a profinite free ergodic action of an icc property (T)
group I and let A ~ Y be an arbitrary free ergodic action of an icc group A. Assume
that ® : L°(X) x T—>L>®(Y) x A is a x-isomorphism such that ©®(L*° (X)) =
L°°(Y). Then there exist projections p € L°°(X) and g € L*°(Y), a unitary u €
Nrooyysua(L®(Y)) with u®(p)u* = q, normal subgroups T' < T, A" < A with
[T : T = [A : Al < oo, a character n : T'—=T and a group isomorphism
8 : T/— A’ such that for all y € T and a € A we have

O(apuy) = n(y)O(ap)u™vseu.

In particular the actions I’ ~ X and A ~ Y are virtually conjugate.

Proof Suppressing ® we can assume L®(X) = L°(Y)=AandAxXT = Ax A =
M. Since property (T) is an O E-invariant [27, Corollary 1.4] it follows that A is
also a property (T) icc group. Since I' ~ A is profinite then it is weakly compact
in the sense of Ozawa-Popa and by [55, Proposition 3.4] it follows that A ~ B
is also weakly compact. Since A has property (T) then [37, Remark 6.4] implies
that A ~ B is compact. Thus using Theorem 5.1 there exist increasing towers

of I'-invariant, finite dimensional algebras (A,), < A and (B;,), € A such that

——SO0T ——SOT . . .
U, Ay =A=U,B, . Also there is a unitary w € M and an integer s such

that for all k£ we have
W(Asx X D)w* = By x A. (5.0.4)

Since Ag X" € Agqi %I isafinite index inclusion of I factors thensois By x A €
By < A. Thus by Proposition 2.7 it follows that By is finite dimensional. Since
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Iy := Stabr (As4%) < T is afinite index normal subgroup so is Ay := Stabp (By) < A.
Since w € M = Up Ay X FSOT is a unitary there exists a sequence wi € U(Ax x I')
such that ||w — wi|»,—0 as k— o0.

For the remaining part of the proof for every m > k we will keep in mind the
following diagram of inclusions

Ww; (As4m X Dwgw™* = By X A

U U
wwy (Agpx X Dwiw* = By x A (5.0.5)
U U
w(Ag x Dyw* = By x A

Pick k large enough such that ||[1 — wwj|l2 < 107, Denote by Af(As4;) = {ali :
1 <i <r}and At(B)) = {blj ;1 < i < y}. Also we can assume without any
loss of generality that _dim By < dim A (hence dim By < dim Ay for all k); in
particular we have (b)) > t(a}). Fix I <i < ry such that [|a} (1 — ww})ll2 + [[(1 —
wwall, < .2||a,’; |!||1 — ww}|l>. Hence if we denote by 8; = [laj (1 — ww})|> +
(1 — ww,’:)a,’(||2||a,’c||2_l then we have that

8 <21 —wwj|2 < 1075 (5.0.6)

With this notations at hand we show that

Claim 5.4 There is a unique 1 < j < t such that for every y € Ty one can find
A, A € A such that

(1= 281613 < It (afuyvib))|, and (5.0.7)

(1= 38D)11b] 113 < |t (wwjalu, wew*vib))|. (5.0.8)

Proofof Claim 5.4. Fix y € T. By triangle inequality we have ||a,iu,, - wwy

a,iuywk w*|2 < 8,’; ||a,i 2. Applying the conditional expectation and using (5.0.5) we

also have ||E3kxA(a,’;u},)—ww,fa,iuywkw*Hz < 8,i||a,i||2.Thenthetriangle inequality
further gives

laguy — E,n(@juy)lz < 25} lagl2 (5.0.9

laguy — Eg,sn wwiajuywew®)lla < 38 g 2. (5.0.10)

By Lemma 4.3 there exist orthogonal projections e; € A so that ) , e, = 1 and
unitaries x; € A so that u,, = er/\ e, X, v. This combined with (5.0.9) yield

j j 2 j ] 2 iN2 0112
D lajerxs — Ep(ajuy v-0)li5 = lajuy — Epgan(aguy)ll3 < 460 lag I3
reEA
iN2 0 2
=Y 4  laferxal3-
reA
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Thus one can find A € A so that a,’;e,\x,\ # 0 and ||a,"cekxk — EBk(a]iMyUA—l)||2 <
28,i lla;.esx; |l2. This inequality and basic calculations show that

Q2 — 48 llalesxill3 < (1 —4@D)D llakesxall3 + | Ep, (@huy v, 1)1
< 2Ret(dale;x} Ep, (aluyv,1)). (5.0.11)

Using the formulas Zj b,{ = land Ep (x) = Zj r(xb,{)r(b,{)’lb,{,relation (5.0.11)
implies that (1-28;) 3 ; llagesxib} 3 < X [t (ajerxab) |t (apuy vy-1b7) [T (by) ™"
Hence there is j (which at this point may depend on y!) so that a,;e)\x,\b] # 0 and
(1- 25k)||akekxkb] 13 < |r(ake;\x;\bj)||r(akuyvk 1b])|r(bj) !, Using ||akekb] 13 >
|r(akekxxb/)| # 0 this further gives

- 28k)||bk||2 < |r(aku v, 1bk)| (5.0.12)

Proceeding in a similar manner inequality (5.0.10) implies there exist A’ € A and
1 < j’ < ry such that

(=380 1] 13 < |t (ww}aiu, wiw*vybl ). (5.0.13)

To finish the proof it suffices to argue that j = Jj and j is unique (hence does
not depend on y). Since r(aku U 1bk) = r(akEA(uyvA 1)bk) = t(akekxkbk) then
(5.0. 12)1mplles ||bk ak||2 t(bk—i-ak Zbkak) < f(bk)—i-r(ak) 2|t(bkekxxak)| <
48kt(bk) and hence

16 — ailla < 262 1] 2. (5.0.14)

By triangle inequality this also yields
b — wwjal wew* (s < (2(85)2 + 815! [l (5.0.15)
Then Cauchy—Schwarz inequality in combination with (5.0.13) and (5.0.15) show that

6] bl ll2 > |t (b] wwju, wew* v, b )|
. .y . . .
> [t (wwialu,ww* vy b)) — b — wwialwew* |2 1b] 12

> (1 — 488 —2(8)2)1b] 113

As b,{ ’s are orthogonal this forces that j = j’. Uniqueness of j (hence independence
of y) follows from (5.0.14). O

Next we show the following
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Claim 5.5 There exist 1 5 j < tx and a unitary s,{ € By X A such that
s,{ww,’:a,’(wkw*(s,{)* =c, < p; and

s,{ww,fa,i(AHk x Dalwyw*(s])* = ¢l (By x A)e] (5.0.16)
and for every y € Ty there is ) € Ay, satisfying
(1= 388 — 360D 1b] 13 < (s ww]aiu, wew*(s{) vub))].  (5.0.17)

Proof of Claim 5.5. As r(a,;) = r(wwka,;wkw*) < t(p,;)there is a subprojection ck-
B x A ofbk thatls equivalent (in By < A)to wwkakwkw .By[22,Lemma4.1] one can
find a unitary sk € By x A satisfying skwwkakwkw*(sk)* = Ck, [sk, |wwkakwkw —

ck|]_0and |sk -1 §3|wwkakwkw ckl
Using (5.0.15) we see that

lwwiagwiw® — cill5 < 22(8)2 + 8715115 + 2116 — ci I3
QO+ 8D2IbLI3 + 2t (b] — )
= (22617 +8)? + 2)1Ib] 113 — 2llal 13
< (2QEBD? +8D)*+2) =201 —26H )16} 113
-1 .
< 18(8)2 |1b] 113

Combining with the previous inequality we get ||s,{ =12 < 18(8};)% ||b,{ l2. In turn
this together with Cauchy-Schwarz inequality and (5.0.8) show that for every y € I'k
there is A’ € A such that

1T (s wwiuyapwiw(s) vub)| = [T(wwiu,awiwvebi)| — 2|11 —si 21161 ll2

> (138 — 36(8,’;)%)||b;£||%-

This shows (5.0.17). Also since ||} vub] 12 > |t(s{ wwiu,alwiw(s))*v,b])| the
above inequality also shows that A" € Aj. The rest of the statement follows from the
previous relations. O

Since a} (Ag4x x Da, = L(Fk)ak and bf(Bk X A)b = L(Ak)b’ then (5.0.16)
of Claim 5.5 implies that s; wka(Fk)akwkw*(sk)* = ckL(Ak)bJ - L(Ak)b]
Since Ay and I'y are icc groups we see that the conditions (1) and (2) in [50, The-

orem 4.1] are satisfied, where G = skwwkl"kakwkw (sk)* Also (5.0.17) shows
that (3) in [50, Theorem 4. 1}] is also satisfied. Therefore using the conclusion of that
theorem we get that ck = bk

In conclusion we have that skwka(Fk)akwkw*(sk)* L(Ak)b,{. Notice we
also have skwwk (A Fk)akwkw*(sk)* = skwwkak(A X F)a,iwkw*(s,i)* = b,ﬁ (A~
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T)b] = (A x Tb]. Let z € Ny(A) such that z*z = a! and z*z = b] and denote

by y = bjzwkw*(s/)* one can check that y is a unitary in (A X Ak)bj satisfying

y(sk ww; Aak wkw*(s,{) = Ab/ Thus applying Theorem 4.5 (Workmg with the

algebra (A x Ak)b ) we get the desired conclusion by letting p = ak q = b/ etc. O
Final remarks. We notice that (5.0.17) can be used directly to show that Fk is 1s0-
morphic to finite index subgroup of Ag. It is plausible that one can exploit this further
and show the conclusion directly, without appealing to the results in [42,50].
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