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ABSTRACT: Often the development of novel functional peptides is Candidates Training Target
not amenable to high throughput or purely computational screening
methods. Peptides must be synthesized one at a time in a process that Active 7,

does not generate large amounts of data. One way this method can be Learning .‘

improved is by ensuring that each experiment provides the best > S

improvement in both peptide properties and predictive modeling |:

accuracy. Here, we study the effectiveness of active learning, %

optimizing experiment order, and meta-learning, transferring knowl-

edge between contexts, to reduce the number of experiments

necessary to build a predictive model. We present a multitask

benchmark database of peptides designed to advance these methods for experimental design. Each task is a binary classification of
peptides represented as a sequence string. We find neither active learning method tested to be better than random choice. The meta-
learning method Reptile was found to improve the average accuracy across data sets. Combining meta-learning with active learning
offers inconsistent benefits.

B INTRODUCTION task to another. We only allow our active learners to choose
from the data set of labeled peptides (rather than generate new
sequences), so that we can accurately assess the selection
during training. However, these methods are ultimately

Although great strides have been made in predictive computa-
tional modeling where large data sets exist, the use of
computational modeling where data is scarce and/or expensive

has been limited. Data expense and scarcity is the norm in evaluated not based on the peptide chosen but the accuracy
materials design,l Computer-aided design often relies on of the resulting trained model. The rationale is that there are
physics-based predictive methods,” which require no data, but many competing design constraints in peptide design (e.g,,
cannot predict complex properties like activity of a drug or synthetic feasibility, cost, bioavailability, etc.), and thus, it is
refractive index of a thin film. Even if physics-based modeling better to have an accurate model than a finite set of examples
is used, there is no clear mechanism to improve predictions as proposed to be active.
data is gathered in the course of testing. Thus, human intuition Computer-aided design of bioactive peptides is an
is often the state-of-the-art method for choosing which new established field of research with a variety of approaches,
peptides to test when there are small amounts of data. spanning from quantitative structure—activity relationship
Peptides are a popular target for biomaterials design.*™” (QSAR) modeling to machine learning. For example, Franco
Unlike most synthetic polymers, the amino acid sequence of a et al.*! used a genetic algorithm to optimize an antimicrobial
desired peptide can be controlled at the monomer level to peptide derived from the guava plant, and Hancock et al.”*
form specific sequences.'’ Being biologically derived polymers, used a QSAR model to find antibiofilm peptides. For further
peptides are generally biocompatible. They are relatively easy information on peptide design principles and modeling efforts,
to synthesize and some undergo self-assembly to form ordered see Torres et al,,>> Fjell et al,”* and Gromski et al.>® The goal

structure spontaneously.' ' Creating or coating an object
with functional peptides is an appealing way to create
biocompatible materials with various applications in medi-
cine,' ¥ drug delivery,lS’16 and more %71 #1718

Here, we apply active learning to binary classification of
peptides across a variety of binary tasks like predicting
solubility or activity against bacteria. We examine two standard
active learning methods: query by committee (QBC)'’ and
uncertainty minimization”’ with supervised learning of a deep
convolutional neural network. We also examine meta-learning
to see if there is a benefit in transferring knowledge from one

of this work is not to compete with these methods but to assess
active learning and meta-learning as potential ways to improve
iterative discovery of peptides in this setting.
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Active learning has a history as an extension to design of
experiments, which is about choosing the optimal experiments
to do with limited resources. Our concern is a sequence of
experiments where the results of the previous experiments
influence our decision of the next, whereas optimal design of
experiments is about choosing the best experiment prior to
beginning and assumes a linear model. Active learning is this
process of choosing the next experiment optimally.” Tt is
sometimes called optimal experimental design,”’ targeted
experiment design,”” sequential design of hypotheses,”
optimal learning,” and artificial intelligence scientific discov-
ery’' depending on the goal and problem context.

Within this framework, there are a variety of approaches
depending on the form of the task model and utility function.
If the task model is probabilistic, like above, utility functions
which maximize information gain,w’32 reduce model un-
certainty,”> maximize expected model change,’® or reduce
model variance’ can be chosen. Within variance reduction
methods, there are so-called A-optims\~l,3’4 D-optimal,3’4’3’5 and
E-optimal36 approaches which minimize the covariance matrix
according to different assumptions. If the task model is
nonparametric, Bayesian approaches are well suited.”® One still
has a choice of utility function (also known as acquisition
function) and can, for example, maximize the expected model
improvement at each experiment.‘%s’?’7 Bayesian approaches can
work with recent deep learnin§ methods through Bayesian
convolutional neural networks® or through the connection
between dropout and neural network uncertainty.>

If the task model is not stochastic but there is flexibility in
parameter choice or multiple models to choose from, then
there are a variety of pooled or consensus active learning
approaches. Query By Committee (QBC) is an active learning
approach that maintains a committee of models and chooses
the next experiment based on where the committee disagrees
most."" This “disagreement” is quantified using one of the
various utility functions described above, for each committee
member, and combining the results in some way, for example,
using summation or taking the mean. There are also active
learning pool methods for specific model types, for example, k-
nearest neighbor,41 logistic reg1‘ession,42’43 and linear regres-
sion with noise.* One can also treat the choice of model as a
probability distribution, and then, the pool of models can be
viewed as a stochastic or Bayesian model to use any of the
previous utility functions.

There are active learning methods that are independent of
the task model and instead find a characteristic set of data.”
This can be done by clustering the data, optimizing a function
which describes local variance,* finding regions of high
uncertainty,”’ or by finding a characteristic subset of data
called a “core set” via submodular function optimization.*"**
These methods are closely related to semisupervised learning,
which tries to use unlabeled data to improve a model when
labeled data is sparse.””>

Another closely related topic to active learning is Bayesian
optimization or global optimization of black box functions.
There the goal is to optimize a function while evaluating it a
minimum number of times. To connect this to active learning
described above, view the “expensive function” as the
experiment. A surrogate stochastic model is constructed,
often through bootstraping or nonparametric models, and
that surrogate model is used within an active learnin_§
framework to reduce the number of the function evaluations.”
Then, active learning is applied so that each function
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evaluation improves the maximum function value and/or
understanding of the model. This method can be equivalent to
the variance reduction techniques discussed above if the same
utility functions are chosen.””> More sophisticated active
learning methods can be used with the surrogate model,
including Gaussian process regression and complex portfolios
of acquisition (utility) functions.”** A common critique of
Bayesian optimization is that it typically scales between O(n*)
to O(n*), depending on approximations made, and struggles
with high-dimensional surrogate models. However, this is not
applicable here, since our goal is learning in systems with
dozens of experiments not thousands. A recent overview on
the application of Bayesian optimization to materials design
can be found in Frazier and Wang.”

An early example of active learning in chemistry can be
found with van de Walle and Ceder,”® where a phase diagram
was explored using variance minimization active learning on
cluster expansions. Active learning works well, in general, with
choosing cluster expansions via variance minimization.””>®
More recently, Lookman et al.”” explored elastic properties
with ab initio calculations using a Bayesian optimization
technique (Efficient Global Optimization) to optimize the
ratio of three metals. The authors applied the same method to
design new piezoelectrics’ with a four-dimensional design
space. Gopakumar et al.”’ also showed how active learning
methods that balance exploration and exploitation can work
well on two- and three-dimensional systems. This active
learning approach to finding compositions with Bayesian
optimization is quickly gaining populari?r in the informatics
community for low-dimensional systems.”' ~**

Kim et al.’* explored active learning methods to find
polymers with a specific glass transition temperature. This is a
high-dimensional system because the polymers are represented
with a variety of descriptors. It was made tractable by treating a
list of 731 possible polymers as known a priori. At each step,
the model evaluates all 731 possible polymers. An earlier
example using a fixed molecule set can also be found in
Warmuth et al,*> where candidate drug molecules were
selected from a vendor catalogue with a variance minimization
active learning algorithm.

Recently, Tallorin et al.®® explored the use of Bayesian
optimization for de novo design of peptide substrates. Their
work is similar in that both this work and theirs used a
sequence model with the goal of minimizing the number of
experiments required to train a model. The differences are that
they were modeling with regression, allowed for complete
choice in sequence space, did not have a goal of creating
accurate models, and did not use a deep learning model but a
Naive Bayes classifier. Their work is an experimentally
validated demonstration that intelligently designing experi-
ments with predictive models can reduce the required number
peptides that need to be synthesized and tested.

Another topic explored in this work is meta-learning. Meta-
learning is a technique for improving few-shot learning across
multiple tasks. The goal, in our nomenclature above, is to make
the task model depend on hyperparameters ¢ that are trained
to work well across multiple tasks. Then, on a new task, using
£, few new examples are required to improve performance.
Active learning and meta-learning are connected because both
are concerned with maximizing the value of data. As the goal is
to minimize the number of experiments required for new
systems, we find it natural to consider this method on our data
set. Examples of meta-learning for accelerating task models can

https://dx.doi.org/10.1021/acs.jcim.0c00946
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be found in transfer Iearning,()7 few-shot learning,sg_70 and

automated machine learning.71 One application that has
recently connected active learning and meta-learning is in

. . P73 74
model—_free reinforcement learning. Pang et al.”” and Fang
et al.”®> have also explored the connection between active
learning and meta-reinforcement learning.

B METHODS

Functional peptide data sets were prepared by mapping each
amino acid to a one-hot encoded vector of dimension [N X
20], where N is the length of the peptide. Five past published
databases were used to generate training data sets in this work:
the Antimicrobial Peptide Database (APD),”® the collection of
protein surface fragments from White et al,”’ the PROSO II
database,”® library hits with activity against TULA-2 protein,79
and library hits with activity against SHP-2.° The APD
contains peptides flagged with a variety of activities, such as
antibacterial, antifungal, antiviral, anticancer, and hemolytic
activities. The PROSO II databse contains peptides and
proteins categorized as soluble or insoluble. The TULA-2 and
SHP-2 libraries contain fixed-width peptides optimized for
binding to a specific target. Eight data sets were chosen from
the APD: (1) “antibacterial”, (2) “anticancer”, (3) “antifungal”,
(4) “anti-HIV”, (5) “anti-MRSA”, (6) “antiparasital”, (7)
“antiviral”, and (8) “hemolytic”. All sequences above length
200 were excluded. This wide variety of tasks represents a
range of modeling goals in peptide research. Table 1 shows the
negative data sets used for training each classifier. Here,
“human” refers to the aforementioned collection of human
protein surface fragments.

Active learning is typically formulated as an optimization
problem.”® Consider N observation pairs ; y; of features and
labels, respectively, with i € [0, 1, ..., N] indicating the order of
observation. Assume that y; is a class label, and x; is a feature
vector of real numbers. We have a task model, ng_(ylx), that

assigns a probability to each class label for a feature x and is
defined by parameters 6, which are updated after each new
observation. In this work, Py is a deep-learning convolutional
neural network. 6; is updated according to some training
procedure after a new x;, y; pair is observed. In active learning,
we choose x;,, from our fixed data set of x, y pairs according to

x4y = argmaxA  [x;, Pgi(yilxj)]
% (1)

where A,(-) is a functional of the task model and possibly .
The j subscript only indicates that for a given x; we must use
the corresponding y; to evaluate the functional. A,(-) can be
defined by parameters i, although it is normally fixed. For
example, A,(-) could be the most uncertain point, which gives

%y = argmax[1 — Py(jlx)] .

where ¥ is the most likely class label for x under Pa'zo Aw(') is

called the acquisition function or utility function depending on
the problem setting.”®

Here, the task model is a deep convolutional neural network
classifier, necessitating negative training examples as well as
positive. One corresponding negative training data set was
generated for each positive data set. Two types of negative data
were generated: scrambled data with amino acid distributions
identical to the “soluble” data set but length distributions
identical to the corresponding positive data set, and samples

97

Table 1. Positive and Negative Examples Chosen for
Training the Classifiers”

Positive
data set Size Negative data sets
antibacterial 2079  shp2”, tula2, insoluble®, antifungald, anti-HIV,
anticancer®, scrambled
anticancer 183 shp2, tula2, insoluble, antifungal, anti-HIV,
antiparasital, antibacterial®, scrambled
antifungal 891 shp2, tula2, insoluble, anti-HIV, anticancer,
antibacterial, scrambled
anti-HIV 87 shp2, tula2, insoluble, antifungal, anticancer,
antiparasital, antibacterial, scrambled
anti-MRSA 119 shp2, tula2, insoluble, anti-HIV, anticancer,

antiparasital, scrambled

antiparasital 90 shp2, tula2, insoluble, anti-HIV, anticancer,

scrambled
antiviral 150 shp2, tula2, insoluble, antifungal, anticancer,
antiparasital, antibacterial, scrambled
hemolytic 253 shp2, tula2, insoluble, humar/, scrambled
soluble 7028  insoluble®
shp2 120 scrambled”
tula2 65 scrambled”
human 2880  insoluble, hemolytic, scrambled

“Negative data sets were sampled to be the same size as the positive
data sets. “It is exceedingly rare to find antibacterial peptides, so it is
assumed that the SHP-2/Tula-2 binding peptides are not good
examples of antibacterial peptides. “Insoluble peptides cannot be
successful antibacterial peptides. dAntifungal and antibacterial activity
are different mechanisms, so it is unlikely that a given peptide is both
antifungal and antibacterial. “It is known that antimicrobial and
anticancer peptides often have a similar method of action, and there is
significant overlap between the two data sets. Including these data sets
in one another’s negative example sets might be expected to reduce
overall model accuracy. This conservative choice of data set still
resulted in accuracy near baseline on these two tasks in the context of
meta-learning and active learning. A1t is assumed that fragments of
proteins found on surfaces of proteins found in humans are not
hemolytic (kill red blood cells). No scrambled data set is necessary
because there are known negative examples. hClassifying SHP-2 and
Tula-2 is in the context of fixed-length peptides so only scrambled
peptides with the same length are used for classification.

from data sets which are expected to have no intersection with
positive examples (Table 1). These are expected to be rather
challenging negative examples, since scrambled peptides likely
have many physical properties of the positive examples.
Generally, the nonintersecting data sets are also naturally
occurring peptides that likely are biologically relevant. To
generate the scrambled negative data set, a number of peptides
were generated randomly, with lengths sampled from the same
length range as their respective positive set, and residues
sampled from the frequency distribution of the soluble data set.
The nonintersecting examples are shown in Table 1 along with
rationale in the caption. To balance classes, the negative data
sets were sampled down to be the same size as the
corresponding set of positive examples.

Peptide sequences are encoded as one-hot vectors of
dimension N X 20 (with N the length of the peptide),
where each index in the second dimension corresponds to the
index of the amino acid in the nth position in the alphabet of
amino acids: [A,R,N,D,C,Q,E,G, H, L, K, M, E, P, S, T,
W, Y, V]. Activity was encoded as a one-hot label vector of
length 2, where [1, 0] indicates a positive label and [0, 1]
indicates a negative label.

The task model is a convolutional neural network whose
structure was partially based on that of a model from our past

https://dx.doi.org/10.1021/acs.jcim.0c00946
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work in peptide modeling."’ The model structure is shown
schematically in Figure 1. The first layer of the neural network

Amino Acid Counts Vector

’— e 2 ‘l

Peptide sequence Append. AR counts

AR...RY o
One-Hot Encodin
[15 0., 8,40] Classification
[0,1,.. 0, 4] > =[74% +, 26% -1 |
[0,1,-.,0,0]
[020 5 n 0]

1x K
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(7] Max Pooling (] Fully Connected + tanh
(7 Fully Connected + Softmax

Figure 1. Neural network structure for active learning. Here, L, is
the maximum width of a peptide in the data set (although a
convolution can use any length), K is the number of motif classets,
and A is the length of the amino acid alphabet. Peptides are first
translated to a one-hot encoding (L, X A) and a vector of
normalized amino acid counts (1 X N). The output of the max pool
layer is passed through one fully connected layer with ReLU
activation; then, amino acid counts are appended to the output. This
is then passed into two more fully connected layers with a final output
dimension of 2 for positive and negative class labels. Labels below
neural network layers indicate the dimensionality of the data as it
passes through the layer.

is a convolutional layer with a weight matrix of dimension [W
X A X K], where W and K conceptually represent peptide
“motif widths” and number of “motif classes,” respectively, and
A is the length of the amino acid alphabet considered (20 for
the naturally occurring peptides used here). The next layer is a
mean pool layer, which captures which “motif class” is most
likely in the input peptide by pooling across the peptide’s
length dimension, leaving a 1 X K vector.

The output of the max pool layer is concatenated with the
relative frequency of each amino acid in the input peptide (1 X
20 vector) and standardized (0—1) sequence length. This is
then fed to three fully connected (FC) layers with the ReLU
activation function and then to one FC layer with softmax
activation for classification, ensuring that the outgoing vector
of size 2 adds up to 1, since this vector is meant to represent
the likelihood of assignment to the positive or negative classes.
The final output is compared with the true label vector
(classification) or the true activity (regression), and loss is
calculated as the cross-entropy between the two. The
minimization algorithm used during training was Tensor-
Flow’s®> Adam optimizer with parameters recommended in
Kingma and Ba"’ and a learning rate of 0.001. This
architecture is relatively simple compared to state-of-the art
deep leanring for sequence prediction tasks of peptides.
Recently, Veltri et al.** developed a deep learning model for
predicting antimicrobial activity. As our goal is to explore
active and meta-learning, we use a simpler architecture.
Namely, we do not use embeddings, and we use smaller and

98

tewer filters and fully connected layers after features instead of
a recurrent neural network.

The method of uncertainty minimization is designed to favor
exploration to maximize information gained per training
iteration of a model. This is achieved by choosing a new
training point based on some measure of the uncertainty of the
machine learning model used. In this sense, it is well aligned
with an eventual goal of automated experiment selection
because it can minimize the number of necessary experiments
to characterize a property space well. This, in turn, would lead
to a reduction in operating costs and time spent performing
experiments.

For uncertainty minimization training, the model described
previously was used, with W and K both chosen to be 6. Before
training, model weights are randomly initialized. The model
uncertainty is calculated as the variance of the output vector of
the neural network for each peptide. One peptide is then
sampled, with probabilities of selection for each peptide
weighted by their respective variances under the current model
parameters, ie., p(1 — p). This is different than eq 1, where
argmax is used instead of sampling. The chosen peptide is then
used to train the neural network for one training iteration;
then, an additional 16 training iterations are performed with
batch size 16, sampling uniformly from all previously observed
peptides for training input. Thus, in the first iteration, the first
point is used for S0 training steps; then, in the second, the first
and second points used an expected value of 12.5 times each,
etc. This process is repeated for 50 training epochs for one
training run. To gather statistics, 30 training runs of 50 epochs
each were performed for each data set. We also investigated
model performance after 100 training runs of 10 epochs to
evaluate the few-shot learning capability of the various
combinations of active and meta-learning methods used here.

The QBC method employed in this work uses the same
approach as uncertainty minimization, but instead of a single
task model that is trained and used for selection, a committee
of 10 models is used. The nine additional models are all
structured in the same way as the model used in uncertainty
minimization but used different hyperparameters. They differ
in the dimensions of the weights matrix used in the
convolution layer, having all combinations of 3 < w < 5 and
3 < k £ 5 along with the W = 6, K = 6 model used in
uncertainty minimization. In QBC, input data are passed to
each committee member (task model), and each one produces
a prediction. The average variance among all models is used as
the sampling weight for selecting a new training point, and
training is performed in the same way as for uncertainty
minimization, with the same number of epochs and training
runs.

To compare these active learning methods against a base
case, we use two control training methods with the same
model as used for the uncertainty minimization method. The
first control is a “baseline” Adam training, where the model
trains on all peptides for 5000 steps with a batch size of 32.
The second is a more direct comparison to the active learning
methods called “random”, where peptides are chosen
randomly, and the model is trained in the same way as in
the active learning methods (batch size 16, 16 iterations, SO
epochs).

The meta-learning method used in this work is Reptile from
Nichol et al.** It is related to the work by Finn et al,* called
model agnostic meta-learning. In our notation, the goal of
meta-learning is to optimize the initial parameters of the task

https://dx.doi.org/10.1021/acs.jcim.0c00946
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Figure 2. Training curves of uncertainty minimization active learning compared with baseline (gray) trained across all data points and randomly
choosing examples. The y-axis is accuracy on withheld data. Light traces are individual 30 runs, and the dark trace is median (only one set of traces
is shown). Each run has a different train/withheld split and random number generator seeds. Each subplot is a different task, arranged in increasing
order of number of training points from left to right, top to bottom.
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Figure 3. Box-and-whisker plot comparing average accuracy values after 10 and S0 training examples across all 12 data sets for five different
methods explored in this work. Asterisks indicate statistically significant difference (p < 0.05) in mean accuracy, calculated using Wilcoxon’s signed
ranks test among the 12 average accuracy values compared between two methods. Meta-learning significantly improves few-shot performance over
uncertainty minimization or QBC alone when combined with these active learning methods, but only ML+QBC shows significant performance
improvement after 50 training examples. This indicates that meta-learning can be a good tool for increasing few-shot learning in settings where data
is scarce. See Tables S7 and S8 for all possible p-value pairs.

model, 0, to work well given a sampled task 7. P(7) is taken to
be uniform across our data sets. 6, is optimized by Adam
optimization of a meta-objective function

EP(T)[L[U(V/J 90) T)]]

(3)

where 7 is the data set corresponding to a set (x, y), y are the
parameters defining the active learning method A,(-), and 6 is

929

the given initial task model parameters. L is the usual loss
function, and U is a stand-in for doing ] steps of active learning
training with A, (-). The gradient of this meta-objective
requires a Hessian, but Reptile approximates this with a
Taylor expansion. In this work, ] = 16, meaning we train with
active learning on 16 peptides each time with a batch size of
16. Here, 2500 meta-learning iterations were done, and then,
early stopping was used to prevent overfitting. This was done

https://dx.doi.org/10.1021/acs.jcim.0c00946
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Figure 4. Training curves of uncertainty minimization active learning with and without Reptile meta-learning compared with baseline (gray)
trained across all data points and training with randomly chosen examples with and without meta-learning. The y-axis is accuracy on withheld data.
Light traces are the 50 individual runs, and the dark trace is the median. Each run has a different train/withheld split and random number generator
seeds. Each subplot is a different task which was withheld during meta-learning. Meta-learning offers inconsistent improvements, while active
learning consistently offers no improvements over random, unless paired with meta-learning (although still not consistently).

on an 80% split of the left-out data set, and then, results were
reported on the 20% remaining sequences of the left-out data
set.

AUC values and accuracies are reported on withheld data
which was 20% of the data set size. Training curves are shown
in Figures 2 and 4, and exact final values for withheld set
accuracy and ROC AUC values are reported in the Supporting
Information in Tables S1—S4. The accuracies and AUCs
reported here are on the withheld data set from training.
During meta-learning, the location of active/inactive labels
(first or second index) was swapped between tasks to prevent
overfitting to active being in one position or another. This
gives minimal zero-shot accuracy but helps illustrate the rate of
training, as shown in Figures 2 and 4. The minimized loss
function was cross entropy between label probabilities and true
labels. Error bars and individual traces are different due to split
differences of data and random number initial parameter seeds.

B RESULTS AND DISCUSSION

Figure 2 shows the active learning, meta-learning, and baseline
results across the 12 data sets for the uncertainty minimization
active learning strategy. The baseline results (gray) show that
the convolutional neural network provides reasonable results
across the range of modeling tasks despite its simple
architecture. The subpanels are arranged in increasing order
of training set size, which were 65, 87, 90, 119, 120, 150, 183,
253, 891, 2079, 2880, 7028, respectively. Overall, training set
size does not correlate to learning performance. The solubility
task showed the worst overall performance despite being the
largest data set. Solubility classification is challenging because
many of the training examples are folded proteins, requiring
long-range sequence correlations to model properly. The
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length range of the solubility set is large, ranging from 19 to
198 amino acids. However, the ranges of the antifungal (2—
143) and antibacterial (2—183) sets are similar, so this is not
likely the source of difficulty. Indeed, solubility prediction is
known to be a difficult task, with state-of-the-art models
achieving reported accuracies between 0.52 and 0.77.°”*% Our
simple convolutional neural network has an accuracy of 0.59,
which is within this range.

Figure 2 also shows the comparison of choosing peptides
randomly and choosing peptides for which the model has
maximum uncertainty (uncertainty minimization). Uncertainty
minimization (blue line) is not better than choosing randomly
(dashed green), in general. It is sometimes worse and
sometimes better in the long term, but for few-shot learning
of up to 10 training examples, it is not significantly different
from random choice (Figure 3).

To assess the effect of meta-learning on reducing the
experiment number, it was evaluated both alone and in
combination with active learning. Results from combining
meta-learning with uncertainty minimization are shown in
Figure 2. Meta-learning consistently improves initial gains in
accuracy, except in the soluble, SHP-2, and TULA-2 tasks.
This is likely because these tasks are quite different from the
other nine, so feature reuse is less important. Note that meta-
learning results were controlled for label correlation due to
data set overlap by randomly swapping labels (negatives
become positive and vice versa) between meta-training trials.
Thus, although many negative data sets overlap—as do the
positive sets in the cases of anticancer and antibacterial —meta-
learning is unable to overfit to the labels of any one set.

Combining uncertainty minimization with meta-learning
only sometimes increases accuracy over random choice but
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Figure S. Features across tasks for baseline model. The barplot shows the partial derivative of probability of activity with respect to amino acid
count averaged across training data. This gives importance for assigning label. The right side of the plots shows the maximum magnitude weight in
the convolution, which roughly corresponds to the most attended motif in the sequence. The y-axis label on the right side shows the frequency of
this motif across 50 training iterations. “Z” is the normalized length of the peptide.
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Figure 6. Training curves for different model choices, using the antibacterial data set. Baseline is the same in each panel, and the baseline subplot is
the model as presented in text. “No Motifs” has the convolution layers removed. “No Counts” has amino acid counts removed. “Abs Loss” uses an
absolute difference loss instead of cross-entropy. “No Label Swap” means that labels were not swapped during meta-learning so that zero-shot
accuracy is maximized. These results show that meta-learning is not always better but is consistently a good choice for few-shot learning.

significantly improves few-shot accuracy on average after 10 seems to have the best few-shot and final performance when
training examples (Figure 3). In some data sets, final accuracy combined with meta-learning, although uncertainty minimiza-
approaches or even exceeds baseline levels with less than 25 tion is as good for few-shot only. The Supporting Information
examples, whereas the baseline is trained on all data. This contains tabulated AUCs and accuracies in Tables S1—S8.
demonstrates the advantage of using meta-learning. Overall, meta-learning usually improves accuracy when
Receiver operator characteristic (ROC) curves provide an combined with active learning methods across these data
accounting of the balance between type I and type II errors. sets, as shown in Figure 3. Recent analysis of meta-learning has
This is important for peptide activity because, due to the large shown mixed results across tasks. Raghu et al.”’ showed that
design space, false positives are more detrimental to a model’s model agnostic meta-learning methods like Reptile only learn
usefulness. The area under curve (AUC) of a ROC curve gives to reuse features across tasks. To assess how feature reuse can
a scalar representing the quality of the ROCs. Note that here be applicable in these data sets, we performed a basic
we enforced balanced classes (same number of positive/ sensitivity analysis in Figure 5 which gives insight into the
negative examples in the training set). This ensures that various features used in the modeling. Figure 5 shows the
accuracy and ROC are good measures of performance, while features for the baseline model on the antibacterial data set and
other metrics become necessary in cases with unbalanced the zero-shot features for meta-learning. Note that all motif
training sets. The ROC AUCs are reported in the Supporting frequencies are 1.0 since this is the meta-learned parameters,
Information in Tables S1 and S2 and Figure S1. As observed in not a realization of training. The results show that meta-
Figures 2 and 3, there is no significant gain to be had in using learning does not have the same features found in the baseline
uncertainty minimization active learning. Also, S0 examples are model, although some of the important amino acids are shared
not enough to match the baseline models without meta- (N, C, H). Some of the amino acids within the motifs are
learning. The source of variance in this work is because there shared, but they are not identical.
are many ways to choose 50 peptides from the data sets, and To ensure our that conclusions about meta-learning and
the tasks of the data sets are disparate. Also, some data sets are QBC being preferred for peptide design are robust, we
small. Significant exceptions are the SHP-2 and soluble data explored four alternative model choices. These are shown in
sets, which show poor performance with limited examples Figure 6 for only the antibacterial task (although meta-learning
relative to baseline models. In particular, SHP-2 seems to traces were trained on all but antibacterial). The second
require the full data set to achieve good accuracy. This may be subplot is ablation of the motif convolutions, i.e., using only
due to the importance of motifs in this data set® and lack of amino acid count vectors for training. Without the motifs,
feature reuse between data sets due to its unique task (binding accuracy is roughly the same, and only the combination of
affinity with specific enzyme). QBC with meta-learning is advantageous over random choice.
The QBC training results are reported in Figure 4. QBC Training with only motifs (convolutions) and no amino acid
does not consistently provide better performance than random counts reduces performance, in general, and entirely removes
choice or uncertainty minimization. QBC significantly the benefits of meta-learning, active learning, and the
improves with meta-learning. As shown in Figure 3, QBC combination of the two. Using the original model structure
101 https://dx.doi.org/10.1021/acs.jcim.0c00946

J. Chem. Inf. Model. 2021, 61, 95—105



Journal of Chemical Information and Modeling

pubs.acs.org/jcim

but switching from a cross-entropy loss to absolute error loss
reduces accuracy for all methods. The last plot shows what
happens if we remove the label swapping during meta-learning,
which is used to reduce overfitting to “active” peptides. Zero-
shot performance is improved, due to good correlation of
activity in peptides across tasks. Meta-learning is preferred in
this setting, when it is known that the class labels of active vs
inactive can be reused across tasks. These results indicate that
the benefits of meta-learning paired with active learning can be
sensitive to the model structure used. In particular, if the
chosen loss function is poor, few-shot accuracy improvement
may be impossible. The benefits of meta-learning combined
with active learning seem to depend on the neural network
features, as evidenced by the difference between the “No
Motifs” and “No Counts” subplots of Figure 6.

Finally, to evaluate whether beta calibration” interacted
favorably with these methods, the uncertainty minimization
trials were repeated with beta calibration of the network
output. In this case, beta calibration fitting is done separately
after each training iteration, i.e, once per choice of new
training point(s). The intent of beta calibration is to ensure
that the scores output by the neural network reflect the actual
probabilities that a given point belongs to the positive class.
However, beta calibration did not have an appreciable effect on
the accuracy or training efficiency (Figure S2).

We assess statistical significance in Figure 3. The box-and-
whisker plots show average accuracy values for the 10-example
and S0-example training runs described in the Methods
section. We performed Wilcoxon’s signed ranks test on the
12 training accuracy values for a given method, comparing
between all possible pairs of the six methods explored here,
obtaining p-values for each pair. Asterisks are shown in Figure
3 for pairs with p < 0.0S. Methods with no asterisk were not
significantly different. Exact values for all p-values for accuracy
can be found in the Supporting Information in Tables S7 and
S8. We performed a similar analysis for the average AUC
values for each method, also found in the Supporting
Information in Figure S1 with p-values in Tables SS and S6.
We can see from Figure 3 that after 50 training examples nearly
all the methods explored here are not significantly different on
average from random choice (with or without meta-learning).
In the few-shot case, with only 10 training examples, the
differences between methods are more pronounced. In this
case, combining meta-learning with either uncertainty
minimization or QBC yields significantly better average
accuracy than either active learning method alone. This
supports the hypothesis that meta-learning can enhance the
accuracy of few-shot learning across multiple tasks, even for a
relatively simple convolutional neural network.

B CONCLUSIONS

This work has presented a data set of 12 different peptide
classification tasks and explored active learning and meta-
learning strategies for predicting peptide activity on them. The
simple deep convolutional neural network used here offers
greater than 85% accuracy across all tasks except soluble tasks,
which is known to be a difficult task and was within reported
ranges for other state-of-the-art models. We expect that more
complex models with attention, more layers, and long-range
interactions in sequence space could improve the accuracy.
The two active learning strategies explored here were not
found to provide significant improvements over sampling
peptides randomly. Meta-learning was found to improve few-
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shot accuracy with 10 training examples only when combined
with active learning. Here, every meta-learning method
performed significantly better on average than uncertainty
minimization with no meta-learning. Both meta-learning with
uncertainty minimization and meta-learning with QBC were
significantly better than either active learning srategy alone. In
contrast, after 50 training examples, only meta-learning with
QBC was found to significantly increase average accuracy over
random choice, indicating that the benefits of meta-learning
are short-lived but well-suited to a data-scarce context. These
conclusions also hold in the zero-shot learning setting, but
model ablation shows that they are dependent on loss choice
and model features. This work provides a new peptide
multitask data set and benchmark results for standard active
learning and meta-learning methods and shows that meta-
learning could have significant benefits for experimental
settings where data is scarce.

Data Availability. The data sets used in this work are
available in the following GitHub repository: https://github.
com/ur-whitelab/peptide-ai.

Code Availability. The code used to produce the results
shown here is available in the following GitHub repository:
https://github.com/ur-whitelab/peptide-ai.
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