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We consider the (graded) Matlis dual D(M) of a graded 
D-module M over the polynomial ring R = k[x1, . . . , xn]
(k is a field of characteristic zero), and show that it can 
be given a structure of D-module in such a way that, 
whenever dimk Hi

dR(M) is finite, then Hi
dR(M) is k-dual to 

Hn−i
dR (D(M)). As a consequence, we show that if M is a graded 

D-module such that Hn
dR(M) is a finite-dimensional k-space, 

then dimk(Hn
dR(M)) is the maximal integer s for which 

there exists a surjective D-linear homomorphism M → Es, 
where E is the top local cohomology module Hn

(x1,...,xn)(R). 
This extends a recent result of Hartshorne and Polini on 
formal power series rings to the case of polynomial rings; 
we also apply the same circle of ideas to provide an alternate 
proof of their result. When M is a finitely generated graded 
D-module such that dimk Hi

dR(M) is finite, we generalize 
the above result further, showing that Hn−i

dR (M) is k-dual 
to Exti

D(M, E).
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1. Introduction

Let k be a field of characteristic zero and let R denote either a polynomial ring or 
formal power series ring in n variables over k. Let D be the ring of k-linear differential 
operators on R, i.e., D = R〈 ∂

∂x1
, . . . , ∂

∂xn
〉. Each (left) D-module M admits a de Rham 

complex M ⊗ Ω•
R, where Ω•

R is the canonical de Rham complex of R. The cohomology 
spaces of M ⊗ Ω•

R are called the de Rham cohomology spaces of M and denoted by 
Hi

dR(M). The study of de Rham cohomology of D-modules has a long and rich history, 
and has found numerous applications in different areas of mathematics.

When R = k[[x1, . . . , xn]], in a recent paper [8], Hartshorne and Polini investigate the 
connection between the top de Rham cohomology Hn

dR(M) of a holonomic D-module 
M and D-linear maps M → Es where E is the local cohomology module Hn

(x1,...,xn)(R). 
We rephrase their result as follows:

Theorem 1.1 (cf. Theorem 5.1 in [8]). Let M be a holonomic D-module. Then

dimk(Hn
dR(M)) = max{s ∈ N | ∃ a surjective ϕ ∈ HomD(M, Es)}.

Theorem 1.1 has the following striking consequences when applied to certain local 
cohomology modules:

Theorem 1.2. [8, Theorem 6.4 and Corollary 6.6] Let V ⊆ Pn
k be a nonsingular pro-

jective variety of codimension c, where k is a field of characteristic zero. Let I ⊆
R = k[x0, . . . , xn] be the homogeneous defining ideal of V . Then there is a simple 
D-submodule M ⊆ Hc

I (R), supported on the affine cone C(V ) over V , such that the 
quotient Hc

I (R)/M ∼= Ebd−bd−2 where d = dim(V ) and bi = dimk HdR
i (V ) are the di-

mensions of the algebraic de Rham cohomology spaces of V .
In particular, if I ⊆ R = k[x0, . . . , xn] is the homogeneous defining ideal of an em-

bedding of Pd
k into Pn

k , then the local cohomology module M = Hn−d
I (R) is simple as a 

D-module.

Hartshorne and Polini observe that Theorem 1.1 fails in general over polynomial rings, 
so in order to establish Theorem 1.2, they pass to completions.

In this paper, we investigate extensions of Theorem 1.1 to graded D-modules over 
polynomial rings. To this end, we develop a theory of graded Matlis duality for graded 
D-modules. One of our main results is that the graded Matlis dual is compatible with 
de Rham cohomology in the case that this cohomology is finite-dimensional:

Theorem A (Proposition 3.6 and Theorem 3.11). Let R = k[x1, . . . , xn] where k is a field 
of characteristic zero, and let D = D(R, k) be the ring of k-linear differential operators 
on R. Let M be a graded D-module (Definition 3.1). The graded Matlis dual D(M)
(Definition 2.12) has a natural structure of graded D-module. For all i such that the de 
Rham cohomology space Hi

dR(M) of M is finite-dimensional over k, we have
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Hi
dR(M)∨ ∼= Hn−i

dR (D(M))

as k-spaces, where ∨ denotes k-space dual.

We apply Theorem A to prove the following extension of Theorem 1.1 to the case of 
polynomial rings:

Theorem B (Theorem 3.16). Let R and D be as in Theorem A, and let M be a graded 
D-module such that Hn

dR(M) is a finite-dimensional k-space. Then

dimk(Hn
dR(M)) = max{s ∈ N | ∃ a surjective ϕ ∈ HomD(M, Es)},

where E is the top local cohomology module Hn
(x1,...,xn)(R).

We observe that the local cohomology module M = Hc
I (R) in the statement of The-

orem 1.2 is a graded D-module (since I ⊆ R is a homogeneous ideal), and its de Rham 
cohomology spaces are finite-dimensional (since it is a holonomic D-module). Therefore 
Theorem B applies to M and can be used to recover Theorem 1.2. The idea of using 
duality to prove Theorem B also leads us to an alternate proof of Theorem 1.1 in the 
formal power series case.

We also give the following interpretation of the other de Rham cohomology spaces of 
M , a graded analogue of a recent result of Lyubeznik [14, Theorem 1.3] in the formal 
power series case.

Theorem C (Theorem 5.3). Let R and D be as in Theorem A. Let M be a finitely gener-
ated graded left D-module. For all i such that Hi

dR(M) is a finite-dimensional k-space,

Hn−i
dR (M)∨ ∼= Exti

D(M, E)

as k-spaces.

We note that if M is a graded holonomic D-module (e.g. a local cohomology module 
of R supported in a homogeneous ideal), then the hypotheses of Theorems A, B, and C
are satisfied.

This paper is organized as follows: in section 2, we summarize background material 
on D-modules, de Rham cohomology, Matlis duality for D-modules in the formal power 
series case (following [22]), generalities on graded modules, and graded Matlis duality 
in the polynomial case; in section 3, we describe the graded D-module structure on 
the graded Matlis dual of a graded D-module and proceed to the proofs of our main 
results; the brief section 4 contains our alternate proof of Hartshorne and Polini’s result 
(Theorem 1.1) in the formal power series case; section 5 is denoted to proving Theorem C; 
finally, in section 6, we apply our Theorem B to the specific D-module E to show that E
is not an injective object in the category of graded holonomic D-modules, which shows 
that the analogue for holonomic D-modules of [15, Corollary 2.10] does not hold.
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2. Preliminaries

In this section, we collect some background material on D-modules (over polynomial 
and formal power series rings), review the theory of Matlis duality for D-modules in 
the formal power series case developed in [22], and recall the graded version of Matlis 
duality.

Throughout this paper, k is a field of characteristic zero, R is either the polynomial 
ring k[x1, . . . , xn] or the formal power series ring k[[x1, . . . , xn]], and m is the maximal 
ideal (x1, . . . , xn) ⊆ R. We let E = Hn

m(R) be the top local cohomology module of R
supported in m, which is an injective hull of k = R/m in the category of R-modules. The 
underlying k-space of E is the same whether R is the polynomial ring or the formal power 
series ring: it is spanned by inverse monomials xi1

1 · · · xin
n where all ij ≤ −1. Finally, ∨

always denotes k-space dual.

2.1. D-modules and de Rham cohomology

In this subsection, R is either the polynomial ring k[x1, . . . , xn] or the formal power 
series ring k[[x1, . . . , xn]]. Our basic reference for the material in this subsection is [1].

We denote by D the non-commutative ring D(R, k) of k-linear differential operators on 
R. As an R-module, D is free on the monomials ∂i1

1 · · · ∂in
n where i1, . . . , in ≥ 0 (here ∂i

denotes the partial differentiation operator ∂
∂xi

: R → R); as a ring, D = R〈∂1, . . . , ∂n〉
with the relations ∂i∂j = ∂j∂i and ∂if = ∂i(f) + f∂i for all i and j and all f ∈ R. 
A D-module M is an R-module together with a left action of D on M (when we need 
to consider a right D-module, we will say so explicitly).

The ring D has an increasing filtration {F lD}, called the order (or degree) filtration, 
where F lD consists of those differential operators in which each term has no more than 
l partial derivatives. The associated graded object gr(D) = ⊕lF

lD/F l−1D with respect 
to this filtration is isomorphic to R[ξ1, . . . , ξn] (a commutative ring), where ξi is the 
image of ∂i in F 1D/F 0D ⊆ gr(D). If M is a finitely generated left D-module, there 
exists a good filtration {GpM} on M , meaning that M becomes a filtered left D-module 
with respect to the order filtration on D and gr(M) = ⊕pGpM/Gp−1M is a finitely 
generated gr(D)-module. We let J be the radical of Anngr(D) gr(M) ⊆ gr(D) and set 
d(M) = dim gr(D)/J (Krull dimension). The ideal J , and hence the number d(M), is 
independent of the choice of good filtration on M .

By Bernstein’s theorem, if M 
= 0 is a finitely generated left D-module, we have 
n ≤ d(M) ≤ 2n. In the case d(M) = n we say that M is holonomic. It is known (see 
[1, §1.5, 3.3]) that submodules and quotients of holonomic D-modules are holonomic, 
an extension of a holonomic D-module by another holonomic D-module is holonomic, 
holonomic D-modules are of finite length over D, and holonomic D-modules are cyclic 
(generated over D by a single element). Examples of holonomic D-modules include R
itself, E = Hn

m(R), and more generally any local cohomology module Hi
I(M) where 

I ⊆ R is an ideal and M is a holonomic D-module (see [2] for generalities concerning 
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local cohomology). By Kashiwara’s equivalence [11, Example 1.6.4], if M is a holonomic 
D-module whose support as an R-module consists only of the maximal ideal m, then M
is a finite direct sum of copies of E.

Given any D-module M , we can define its de Rham complex. This is a complex of 
length n, denoted M ⊗ Ω•

R (or simply Ω•
R in the case M = R), whose objects are 

R-modules but whose differentials are merely k-linear. It is defined as follows [1, §1.6]: 
for 0 ≤ i ≤ n, M ⊗ Ωi

R is a direct sum of 
(

n
i

)
copies of M , indexed by i-tuples 1 ≤

j1 < · · · < ji ≤ n. The summand corresponding to such an i-tuple will be written 
M dxj1 ∧ · · · ∧ dxji

. The k-linear differentials di : M ⊗ Ωi
R → M ⊗ Ωi+1

R are defined by

di(m dxj1 ∧ · · · ∧ dxji
) =

n∑
s=1

∂s(m) dxs ∧ dxj1 ∧ · · · ∧ dxji
,

with the usual exterior algebra conventions for rearranging the wedge terms, and ex-
tended by linearity to the direct sum. We remark that in the polynomial case, we are 
simply using the usual Kähler differentials to build this complex, whereas in the formal 
power series case, we are using the m-adically continuous differentials (since in this case 
the usual module Ω1

R/k of Kähler differentials is not finitely generated over R). The 
cohomology objects hi(M ⊗ Ω•

R), which are k-spaces, are called the de Rham cohomol-
ogy spaces of the left D-module M , and are denoted Hi

dR(M). The simplest de Rham 
cohomology spaces (the 0th and nth) of M take the form

H0
dR(M) = {m ∈ M | ∂1(m) = · · · = ∂n(m) = 0} ⊆ M ;

Hn
dR(M) = M/(∂1(M) + · · · + ∂n(M)).

The following theorem is standard (see [1, Theorem 1.6.1]) in the polynomial case, 
and is due to van den Essen [24, Proposition 2.2] in the more difficult formal power series 
case:

Theorem 2.1. Let M be a holonomic D-module. The de Rham cohomology spaces Hi
dR(M)

are finite-dimensional over k for all i.

Example 2.2. The de Rham cohomology of R itself is k in degree 0 and 0 otherwise; 
this is the “algebraic Poincaré lemma”, proved in the polynomial case in [6, Proposition 
II.7.1] (the same proof works in the formal power series case). The de Rham cohomology 
of E is k in degree n and 0 otherwise [8, Example 2.2(4)].

The dimension of the 0th de Rham cohomology space of a D-module M has the 
following useful interpretation:

Lemma 2.3. [8, Example 2.2(6)] Let M be a D-module such that H0
dR(M) is a finite-

dimensional k-space. Then the k-dimension of H0
dR(M) is equal to the maximal integer 

s for which there exists an injective D-module homomorphism Rs → M .
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We remark that in [8], M is assumed to be a holonomic D-module in the statement of 
the preceding lemma. However, all that is needed for the proof is the finite-dimensionality 
of H0

dR(M), and we will need this stronger statement below. In the proof of Lemma 2.3
(in the formal power series case), we will need the following result of van den Essen:

Lemma 2.4. [23, Lemme 1] Suppose that R is the formal power series ring k[[x1, . . . , xn]]. 
Let M be a D-module, and denote by M∗ the kernel of ∂n : M → M . Any R-linear 
dependence relation among elements of M∗ holds homogeneously in xn: that is, if 
f1, . . . , fl ∈ R and m1, . . . , ml ∈ M∗ are such that f1m1 + · · · + flml = 0, then we 
have f1,jm1 + · · · + fl,jml = 0 for all j, where fi,j ∈ k[[x1, . . . , xn−1]] is the coefficient 
of xj

n in fi.

Proof of Lemma 2.3. Let {m1, . . . , mt} be a k-basis for H0
dR(M). By the definition of 

the de Rham complex, we have ∂i(mj) = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ t. Define a map 
λ : Rt → M by

λ(r1, . . . , rt) = r1m1 + · · · + rtmt,

which, since ri ∈ R ⊆ D for all i, is clearly D-linear. We claim that λ is injective. Suppose 
not, and let r1, . . . , rt be elements of R (not all zero) such that r1m1 + · · · + rtmt = 0. 
Observe that for all i and j, we have ∂i(rjmj) = ∂i(rj)mj + rj∂i(mj) = ∂i(rj)mj (since 
∂i(mj) = 0), and consequently

0 = ∂i(0) = ∂i(r1m1 + · · · + rtmt) = ∂i(r1)m1 + · · · + ∂i(rt)mt.

At this point we must treat the polynomial and formal power series cases separately. 
If R = k[x1, . . . , xn], then it is clear from the displayed equality that we can simply 
differentiate repeatedly until all nonzero coefficients are scalars, contradicting the k-linear 
independence of the mi.

On the other hand, in the case R = k[[x1, . . . , xn]], we may similarly differentiate the 
given R-linear dependence relation repeatedly to obtain a new R-linear dependence re-
lation in which at least one coefficient is a unit. By Lemma 2.4, any R-linear dependence 
relation among elements in ker(∂n) (in particular, among elements of H0

dR(M)) holds 
homogeneously in xn; taking the x0

n-term, we obtain an Rn−1-linear dependence relation 
among m1, . . . , mt. Applying Lemma 2.4 n − 1 more times, we obtain a k-linear depen-
dence relation among m1, . . . , mt: to be specific, we find that r1,0m1 + · · · + rt,0mt = 0
where ri,0 is the constant term of ri. By assumption, at least one of these constant terms 
is nonzero, so the k-linear dependence relation is nontrivial, contradicting the fact that 
{m1, . . . , mt} is a k-basis of H0

dR(M). We conclude that in either the polynomial or 
formal power series case, we have H0

dR(M) = t ≤ s.
The converse inequality is easier: if Rs → M is an injective D-linear homomorphism, 

it restricts to a injective k-linear map H0
dR(Rs) → H0

dR(M), and since dimk H0
dR(Rs) = s

by Example 2.2, we have s ≤ t as well, completing the proof. �
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2.2. Matlis duality for D-modules

In this subsection, R = k[[x1, . . . , xn]] is the formal power series ring and m =
(x1, . . . , xn). This subsection summarizes some of the theory in [22]. See [18, §18] for 
proofs of the basic facts about Matlis duality (over any complete local ring) that appear 
in the following paragraph.

Recall that the Matlis dual of an R-module M is the R-module D(M) = HomR(M, E)
where E = Hn

m(R). In particular, we have D(R) = E and D(E) = R. The contravariant 
functor D is exact and defines an anti-equivalence between the category of finitely gen-
erated R-modules and the category of Artinian R-modules. If M is finitely generated or 
Artinian, the canonical evaluation map

ιM : M → D(D(M)) = HomR(HomR(M, E), E)

is an isomorphism of R-modules. More generally, ιM is an isomorphism if and only if 
M/N is Artinian for some finitely generated R-submodule N ⊆ M [4, Proposition 1.3]. 
(Such modules are called Matlis reflexive.)

Let σ : E → k be the residue map, that is, the k-linear projection of E ∼= ⊕i1,...,in>0k ·
x−i1

1 · · · x−in
n onto its x−1

1 · · · x−1
n -component. This component is the socle Soc(E) =

(0 :E m) of E. (Any projection of E onto its socle will suffice for our purposes; we make 
this choice for concreteness.) If M is an R-module, post-composition with σ defines an 
injective homomorphism of R-modules

ΦM : D(M) = HomR(M, E) → Homk(M, k)

whose image consists of precisely those k-linear maps λ : M → k that are m-adically 
continuous when restricted to any finitely generated R-submodule N ⊆ M . Such maps 
are called Σ-continuous in [22] or continuous in [8]. We summarize the above in the 
following proposition, which is stated without proof in [5, Remarque IV.5.5], and proved 
in detail in [22, Theorem 3.15] (see also [8, Proposition 5.4]; in all these references, the 
result is stated more generally for a complete local ring with a coefficient field):

Proposition-Definition 2.5. Let M be an R-module. We say that a k-linear map λ : M →
k is Σ-continuous if for every finitely generated R-submodule N ⊆ M , there exists an 
integer l such that λ(mlN) = 0. We denote the set (indeed, R-module) of Σ-continuous 
maps M → k by DΣ(M) and refer to it as the Σ-continuous dual of M . There is an 
isomorphism of R-modules ΦM : D(M) → DΣ(M) defined by post-composition with the 
residue map σ : E → k and functorial in M .

Note that if M is finitely generated, DΣ(M) is the continuous k-dual of M , and if M
is Artinian (so that every finitely generated submodule of M is of finite length), DΣ(M)
is simply the k-dual of M .
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Now suppose that M is a D-module. By using the identification of Proposition-
Definition 2.5, we can endow the Matlis dual D(M) with a structure of D-module, 
as follows. Given a differential operator δ ∈ D, we write δM : M → M for its action on 
M . If λ : M → k is a Σ-continuous map, so also is λ ◦ δM : M → k [22, Proposition 
4.8]. By setting λ · δ = λ ◦ δM , we obtain a structure of right D-module on DΣ(M), and 
by transport of structure, D(M) becomes a right D-module as well. There is a simple 
transposition operation that converts right D-modules to left D-modules (with the same 
underlying R-module) and conversely (we will explain this operation in more detail below 
in the polynomial case: see Definition 3.4). After transposing, we get a (left) D-module 
structure on the Matlis dual D(M) of a (left) D-module M .

Lemma 2.6. [22, Proposition 4.11] Let M and N be D-modules, and let ϕ : M → N

be a D-linear map. The Matlis dual ϕ∗ (that is, the map DΣ(N) → DΣ(M) defined by 
pre-composition with ϕ) is D-linear as well.

Proof. We work with the right D-module structures; the result remains true, of course, 
after transposing. Let δ ∈ D be given. Since ϕ is D-linear, we have ϕ ◦ δM = δN ◦ ϕ. 
Therefore, if λ ∈ DΣ(N), we have

ϕ∗(λ · δ) = ϕ∗(λ ◦ δN ) = λ ◦ δN ◦ ϕ = λ ◦ ϕ ◦ δM = ϕ∗(λ) ◦ δM = ϕ∗(λ) · δ,

so that ϕ∗ is D-linear. �
Lemma 2.7. [22, Proposition 4.12] Let M be a D-module. The canonical evaluation map 
ιM : M → DΣ(DΣ(M)) is D-linear.

Proof. Let m ∈ M and δ ∈ D be given. Since D acts on DΣ(DΣ(M)) by (iterated) 
pre-composition, δ · ιM (m) is the map DΣ(M) → M defined by evaluation at δ · m, 
which is exactly ιM (δ · m). �

Finally, we have the following theorem on the de Rham cohomology of Matlis duals:

Theorem 2.8. [22, Theorem 5.1] If M is a holonomic D-module, then

Hi
dR(M)∨ ∼= Hn−i

dR (D(M))

as k-spaces for all i.

Example 2.9. Even if M is holonomic, the Matlis dual D(M) need not be holonomic. For 
example, it follows from a result of Hellus [9, Theorem 2.4] that if R = k[[x1, . . . , xn]] with 
n ≥ 2 and M is the local cohomology module H1

(x1)(R), then every prime ideal of R that 
does not contain x1 is an associated prime of the Matlis dual D(M). By [13, 2.2(d)], M
is a holonomic D-module. However, by [13, Theorem 2.4(c)], D(M), which has infinitely 
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many associated primes, cannot even be a finitely generated D-module, a fortiori cannot 
be holonomic. Nevertheless, Theorem 2.8 implies that D(M) has finite-dimensional de 
Rham cohomology.

2.3. Graded duals over polynomial rings

In this subsection, R = k[x1, . . . , xn] is the polynomial ring with its standard grading, 
i.e., deg(xi) = 1 for all i and deg(c) = 0 for c ∈ k. By a graded R-module we mean a 
Z-graded module.

An R-module homomorphism f : M → N between graded R-modules is graded (or ho-
mogeneous) if f(Mn) ⊆ Nn for all n ∈ Z; a submodule N ⊆ M is a graded submodule if 
there is a direct sum decomposition N = ⊕l∈ZNl as above such that the inclusion of N in 
M is a graded homomorphism. If {Mi} is a collection of graded R-modules, their direct 
sum ⊕iMi is also a graded R-module, with grading given by (⊕iMi)l = ⊕i(Mi)l for all l. 
Graded R-modules together with graded homomorphisms form an Abelian category with 
enough projective and injective objects.

If l ∈ Z is fixed and M is a graded R-module, the shifted module M(l) has the same 
underlying R-module as M but a Z-grading defined by M(l)n = Ml+n for all n ∈ Z. If M
and N are graded R-modules, we define ∗HomR(M, N) = ⊕n∈Z HomR(M, N)n where 
HomR(M, N)n is the Abelian group of graded R-module homomorphisms M → N(n)
(such homomorphisms are called homogeneous of degree n). Note that ∗HomR(M, N)
is a graded R-module; its underlying R-module is an R-submodule of HomR(M, N), 
and if M is finitely generated as an R-module, we have the equality ∗HomR(M, N) =
HomR(M, N).

If I is a homogeneous ideal of R, then the local cohomology modules Hj
I (R) are 

naturally graded, with the grading induced by the grading on R. In particular, Hn
m(R)

is naturally graded. More explicitly, each class 
[

1
x

i1
1 ···xin

n

]
has degree −(i1 + · · · + in) [2, 

Example 13.5.3].

Convention 2.10. We will consider Hn
(x1,...,xn)(R) as the R-injective hull of k and denote 

it by E; when R is a polynomial ring, E is endowed with the natural grading (in which 
deg(x−i1

1 · · · x−in
n ) = − 

∑n
j=1 ij). Throughout this paper, we will always consider this 

grading on E.

Remark 2.11. The R-module E, with the grading defined in Convention 2.10, is isomor-
phic as an R-module (but not as a graded R-module) to the graded injective hull ∗E of 
k defined in [3, §3.6]. In fact, we have E ∼= ∗E(n) as graded R-modules.

Throughout this paper, we define the graded Matlis dual of a graded R-module as 
follows.
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Definition 2.12. Let M be a graded R-module. The graded Matlis dual of M is the graded 
R-module D(M) = ∗HomR(M, E).

As in the formal power series case, we have a k-linear residue map σ : E → k, defined 
by projecting an element of E onto its x−1

1 · · · x−1
n -component. There is an analogue of 

Proposition-Definition 2.5 that allows us to view elements of the dual D(M) as maps to 
the field k:

Proposition 2.13. [3, Proposition 3.6.16] Let M be a graded R-module. There is an iso-
morphism of graded R-modules

ΦM : D(M) → ∗Homk(M(−n), k)

defined by post-composition with the residue map σ and functorial in M .

A few remarks are in order.

Remark 2.14.

(1) Both forms of the graded Matlis dual will be useful for us, and so we will use the 
residue map, sometimes implicitly, to identify the two in what follows.

(2) Our graded Matlis dual differs from the one in [3, p. 141] by a degree shift. The 
reason for this difference will become clear in Proposition 3.9. If one does not care 
whether the Eulerian property is preserved by the graded Matlis dual, one can use 
the non-shifted version throughout (only Proposition 3.9 would become false).

(3) The canonical evaluation map ιM : M → D(D(M)) is an isomorphism of graded 
R-modules if and only if Ml is a finite-dimensional k-space for all l.

3. Graded D-modules over polynomial rings

Throughout this section, R = k[x1, . . . , xn] is the polynomial ring with its standard 
grading.

Hartshorne and Polini give an example [8, Example 6.1] showing that Theorem 1.1
fails in general in the polynomial case. Instead of holonomic D-modules, we will restrict 
our attention to graded D-modules. We begin with the graded (polynomial) analogue of 
the Matlis duality theory for D-modules recalled in subsection 2.3.

Definition 3.1. Let M be a (left) D-module whose underlying R-module is given a grading 
M = ⊕l∈ZMl. We say that M is a graded D-module if for all l ∈ Z and 1 ≤ i ≤ n, we 
have ∂i(Ml) ⊆ Ml−1. There is an entirely analogous notion of graded right D-module.
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Chapters 1 and 2 of [19] are a good reference for the general theory of (possibly non-
commutative) graded rings and modules over them. The only non-commutative graded 
ring we will consider in this paper is D.

Example 3.2. R itself (with its standard grading) is a graded D-module, as is E. (Any de-
gree shift of a graded D-module is again a graded D-module.) The graded D-modules that 
are relevant for applications in [8] are local cohomology modules supported in homoge-
neous ideals (the previous examples are special cases of these). If I ⊆ R is a homogeneous 
ideal, we know that Hi

I(R) is a graded R-module (see [2, Ch. 13] for a detailed discus-
sion of the natural gradings on Hi

I(R) and proofs that they all coincide) as well as a left 
D-module, and the D-module structure is compatible with the grading (it is easiest to 
see this if the Čech complex is used to compute Hi

I(R)).

Example 3.3. [8, Example 6.1] Let R = k[x], let d = d
dx ∈ D, and let M be a free 

R-module R · e of rank 1 generated by e ∈ M . We can give M a structure of D-module 
by setting de = x2e and extending by R-linearity to all of M . In [8, Example 6.1], it 
is proved that this D-module is holonomic but fails to satisfy Theorem 1.1. We observe 
that M is not a graded D-module. Indeed, the formula de = x2e shows that d would be 
required to act simultaneously as an operator of degree −1 and an operator of degree 2, 
which is absurd.

If M is a graded D-module, its Matlis dual D(M) can be endowed with a (left) graded 
D-module structure. We will do this in two equivalent ways, corresponding to the two 
sides of the isomorphism in Proposition 2.13 (both will be useful).

Ignoring the gradings for a moment, if M and N are any two left D-modules, we 
can define a left D-module structure on HomR(M, N) extending the natural R-module 
structure by setting

(∂i · ϕ)(m) = ∂i · ϕ(m) − ϕ(∂i · m) (3.3.1)

for i = 1, . . . , n and all m ∈ M and ϕ ∈ HomR(M, N) [11, Proposition 1.2.9]. Since D is 
generated over R by the derivations ∂i, this formula gives a well-defined left D-module 
structure (simply extend by D-linearity) as long as the relations among elements of R and 
the ∂i are preserved. (See [11, Lemma 1.2.1] for a precise statement of what this means.) 
This D-module structure on Hom is well-known and originates in Rinehart’s thesis [20]. 
If M and N are graded D-modules, it is clear from (3.3.1) that the left D-structure on 
HomR(M, N) induces a left D-structure on ∗HomR(M, N). Taking N = E, we see that 
whenever M is a graded D-module, so also is D(M).

On the other hand, we can define a graded D-module structure directly on 
∗Homk(M(−n), k): since each differential operator in D acts on M via a k-linear map, we 
can decree that such differential operators act on ∗Homk(M(−n), k) by pre-composition. 
This construction is more explicitly a “dual” of the original D-module structure on M . 
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However, it is naturally a right D-module structure, so in order to compare the two 
structures, we will need to use the following transposition operation:

Definition 3.4.

(a) The standard transposition τ : D → D is defined by

τ(f∂i1
1 · · · ∂in

n ) = (−1)i1+···+in∂i1
1 · · · ∂in

n f

for all f ∈ R, extended to all of D by k-linearity (observe that the same operation 
makes sense for formal power series).

(b) Let M be a right D-module. The transpose Mτ of M is the left D-module defined 
as follows: we have Mτ = M as Abelian groups, and the left D-action ∗ on Mτ is 
given by δ ∗ m = m · τ(δ) for all δ ∈ D and m ∈ M(= Mτ ).

Remark 3.5.

(1) If M is a left D-module, a completely analogous transposition operation produces a 
right D-module.

(2) τ2 = idD; hence applying this operation twice recovers the original (right or left) 
D-module.

(3) If M is a graded right (resp. left) D-module, its transpose Mτ is clearly a graded 
left (resp. right) D-module.

(4) We have τ(δ1δ2) = τ(δ2)τ(δ1) for all δ1, δ2 ∈ D.

Given any graded D-module M , a left D-module structure on ∗Homk(M(−n), k)
extending the natural R-module structure can be defined by setting

(∂i · λ)(m) = λ(τ(δ) · m) (3.5.1)

for i = 1, . . . , n and all m ∈ M(−n) and λ ∈ ∗Homk(M(−n), k). It is not hard to check 
that the resulting D-module structure is well-defined and graded by direct calculation. 
However, this also results by “transport of structure” from the following proposition, 
since by Proposition 2.13, ΦM : ∗HomR(M, E) → ∗Homk(M(−n), k) is an isomorphism 
of graded R-modules.

Proposition 3.6. Let M be a graded D-module. For all i, there is a commutative diagram

∗HomR(M, E) ΦM−−−−→ ∗Homk(M(−n), k)⏐⏐	∂i

⏐⏐	∂i

∗ ΦM ∗
HomR(M, E) −−−−→ Homk(M(−n), k)
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where the left vertical arrow is given by (3.3.1) and the right vertical arrow is given by 
(3.5.1).

The upshot of Proposition 3.6 is that if we identify ∗HomR(M, E) with
∗Homk(M(−n), k) using the residue map (Proposition 2.13), it does not matter whether 
we use (3.3.1) or (3.5.1) to make D(M) into a graded (left) D-module. Both viewpoints 
will be useful to us below and we will freely switch between them. In either case we refer 
to D(M) as the graded D-module Matlis dual of M .

Proof. Let ϕ ∈ ∗HomR(M, E) and m ∈ M be given. By (3.3.1), we have (∂i · ϕ)(m) =
∂i · ϕ(m) − ϕ(∂i · m). Applying ΦM , which is post-composition with the residue map σ, 
we see that

ΦM (∂i · ϕ)(m) = σ(∂i · ϕ(m) − ϕ(∂i · m)) = σ(∂i · ϕ(m)) − σ(ϕ(∂i · m)).

However, since ϕ(m) ∈ E, ∂i · ϕ(m) cannot have a nonzero x−1
1 · · · x−1

n -component (after 
partial differentiation, the variable xi must have degree −2 or lower). Therefore σ(∂i ·
ϕ(m)) = 0 and ΦM (∂i · ϕ)(m) = −σ(ϕ(∂i · m)), which is exactly (∂i · ΦM (ϕ))(m) (the 
minus sign arises from the application of the transpose τ). �
Example 3.7. Let ν : E → ∗HomR(R, E) be the canonical isomorphism of graded 
R-modules defined by η �→ (1 �→ η). We use (3.3.1) to calculate ∂i · ν(η) for i = 1, . . . , n
and η ∈ E:

(∂i · ν(η))(r) = ∂i · ν(η)(r) − ν(η)(∂i · r) = ∂i · (rη) − (∂i · r)η = r · ∂iη = ν(∂iη)(r),

from which it follows that ν is D-linear. Therefore the graded D-module Matlis dual 
D(R) of R is just E with its usual left D-module structure.

As we will see, the operation D enjoys some desirable properties. For instance, it 
preserves Eulerianness, whose definition we recall below.

Definition 3.8 (Definition 2.1 and Proposition 3.1 in [17]). A graded D-module M is 
called Eulerian if for each homogeneous element z ∈ M we have

(
n∑

i=1
xi∂i)z = deg(z)z.

Proposition 3.9. If M is an Eulerian graded D-module, then so is D(M).

Proof. For each λ ∈ D(M)l = Homk(M−l−n, k) and each z ∈ M−l−n, we have

(
n∑

xi∂i · λ)(z) = λ(τ(
n∑

xi∂i)z)

i=1 i=1
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= λ((−
n∑

i=1
∂ixi)z)

= −λ(
n∑

i=1
(xi∂i + 1)z)

= −λ((
n∑

i=1
xi∂i)z + nz)

= −λ((−l − n)z + nz) (since M is Eulerian)

= lλ(z)

= deg(λ)λ(z).

Therefore, 
∑n

i=1 xi∂i · λ = deg(λ)λ and hence D(M) is Eulerian. �
We now turn to the question of which k-linear maps between graded D-modules can 

be dualized. If δ : M → N is homogeneous of any degree (if there exists d such that 
δ(Ml) ⊆ Nl+d for all l), then whenever λ ∈ ∗Homk(N(−n), k), the composite δ ◦ λ

belongs to ∗Homk(M(−n), k). More generally, this is true whenever δ ∈ ∗Homk(M, N)
(that is, δ is a finite sum of k-linear maps, each homogeneous of a fixed degree), inspiring 
the following:

Definition 3.10. Let M and N be graded D-modules, and suppose that δ ∈ ∗Homk(M, N). 
We define the Matlis dual δ∗ ∈ ∗Homk(D(N), D(M)) of δ by pre-composition with δ: 
that is, δ∗(λ) = λ ◦ δ for all λ ∈ D(N) = ∗Homk(N(−n), k).

We remark that since the definition of δ∗ is simply pre-composition, if δ is also R-linear 
(that is, δ ∈ ∗HomR(M, N)), then δ∗ is again R-linear; moreover, if δ is D-linear, 
δ∗ is again D-linear (the proof is the same as that of Lemma 2.6). In particular, the 
graded Matlis dual operation is a contravariant functor from the category of graded 
(left) D-modules to itself.

If M is a graded D-module, we can discuss the de Rham cohomology spaces of M and 
its graded Matlis dual D(M), and in particular, we can ask whether the analogue of The-
orem 2.8 is true for a graded holonomic D-module M . In fact, a more general statement 
is true: such an analogue holds for any graded D-module M whose de Rham cohomology 
spaces are finite-dimensional. (In the formal power series case, the holonomicity of M is 
used in an essential way.)

Theorem 3.11. Let M be a graded D-module. For all i such that Hi
dR(M) is a finite-

dimensional k-space, we have

Hi
dR(M)∨ ∼= Hn−i

dR (D(M))

as k-spaces.
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Proof. We write the de Rham complex M ⊗ Ω•
R as

0 → M0 δ0

−−→ M1 δ1

−−→ · · · δn−1

−−−→ Mn → 0,

where M i is a direct sum of 
(

n
i

)
copies of M for all i. Observe that each M i is a graded 

D-module and each δi belongs to ∗Homk(M i, M i+1) (in fact, δi is homogeneous of degree 
−1). In the category of complexes of k-spaces, this complex decomposes as a direct sum

⊕l∈Z(0 → M0
l

δ0
l−−→ M1

l−1
δ1

l−1−−−→ · · ·
δn−1

l−n+1−−−−−→ Mn
l−n → 0)

where δi
j denotes the restriction of δi to the degree j component of M i. (Write M•

l for 
the lth summand, so that M ⊗ Ω•

R = ⊕l∈ZM•
l as complexes.) We can take the graded 

Matlis dual of this entire complex, obtaining the complex

D(M ⊗ Ω•
R) = (0 → D(Mn) (δn−1)∗

−−−−−→ D(Mn−1) (δn−2)∗

−−−−−→ · · · (δ0)∗

−−−→ D(M0) → 0),

again a complex whose objects are graded D-modules and whose differentials are k-linear 
and homogeneous of degree −1, but now with homological indexing. For all i, we have 
D(M i)l = (M i

−l−n)∨, and the complex D(M ⊗ Ω•
R) decomposes (in the category of 

complexes of k-spaces) as a direct sum

⊕l∈Z(0 → (Mn
−l−n)∨ (δn−1

−l−n+1)∨

−−−−−−−−→ (Mn−1
−l−n+1)∨ (δn−2

−l−n+2)∨

−−−−−−−−→ · · ·
(δ0

−l)∨

−−−−→ (M0
−l)∨ → 0),

that is, D(M ⊗ Ω•
R) = ⊕l∈Z(M•

−l)∨, which is just ⊕l∈Z(M•
l )∨ as a complex of k-spaces 

with the gradings forgotten. In the category of k-spaces, the (contravariant) k-dual func-
tor is exact, and taking the (co)homology objects of a complex commutes with arbitrary 
direct sums. It follows that

Hi
dR(M)∨ = (hi(M ⊗ Ω•

R))∨

= (hi(⊕l∈ZM•
l ))∨

∼= (⊕l∈Zhi(M•
l ))∨

∼= ⊕l∈Z(hi(M•
l ))∨

∼= ⊕l∈Zhi((M•
l )∨)

∼= hi(⊕l∈Z(M•
l )∨)

= hi(D(M ⊗ Ω•
R))

as k-spaces. The isomorphism (⊕l∈Zhi(M•
l ))∨ ∼= ⊕l∈Z(hi(M•

l ))∨ holds due to our as-
sumption that Hi

dR(M) is a finite-dimensional k-space (we always have (⊕l∈Zhi(M•
l ))∨ ∼=∏

l∈Z
(hi(M•

l ))∨, but since both sides are finite-dimensional, the direct product on the 
right-hand side coincides with the direct sum).
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It now suffices to show that

hi(D(M ⊗ Ω•
R)) ∼= hn−i(D(M) ⊗ Ω•

R) (= Hn−i
dR (D(M)))

as k-spaces, for all i. We first compute the differentials in the complex D(M ⊗Ω•
R). Let i

be given, and consider the differential di : M ⊗ Ωi
R → M ⊗ Ωi+1

R . An element of M ⊗ Ωi
R

is a sum of terms of the form mj1···ji
dxj1 ∧ · · · ∧ dxji

where 1 ≤ j1 < · · · < ji ≤ n, and 
the formula for di is

di(m dxj1 ∧ · · · ∧ dxji
) =

n∑
s=1

∂s(m) dxs ∧ dxj1 ∧ · · · ∧ dxji
.

Now consider the graded Matlis dual of this differential. Since the graded Matlis dual 
commutes with finite direct sums, we can identify D(M ⊗ Ωi

R) with a direct sum of 
(

n
i

)
copies of D(M), again indexed by the dxj1 ∧· · ·∧dxji

. If ϕ ∈ D(M), we have the formula

(di)∗(ϕ dxj1 ∧ · · · ∧ dxji+1) =
i+1∑
s=1

(−1)s−1∂∗
js

(ϕ) dxj1 ∧ · · · ∧ d̂xjs
∧ · · · ∧ dxji+1 .

Recall that when D(M) is viewed as a left D-module via transposition, ∂i acts on 
D(M) via the map −∂∗

i . Therefore, it follows from the formula above that the complex 
D(M ⊗ Ω•

R) is the homological Koszul complex K•(D(M), −∂) of D(M) with respect 
to −∂1, . . . , −∂n, and if we replace −∂i with ∂i for all i, the homology objects are not 
affected. On the other hand, the de Rham complex D(M) ⊗ Ω•

R is the cohomological
Koszul complex K•(D(M); ∂) of D(M) with respect to ∂1, . . . , ∂n, and it is well-known 
[25, Exercise 4.5.2] that hi(K•(D(M), ∂)) ∼= hn−i(K•(D(M); ∂)) as modules over the 
commutative subring k[∂1, . . . , ∂n] ⊆ D (in particular, as k-spaces) for all i, completing 
the proof. �
Example 3.12. In general, even if a graded D-module M has finite-dimensional de Rham 
cohomology, its graded pieces Ml may be infinite-dimensional as k-spaces and thus fail 
to be isomorphic to their duals or double duals, and so the isomorphisms in the proof of 
Theorem 3.11 hold only at the level of cohomology. For example, let R = k[x1, . . . , xn]
with n ≥ 2 and let M be the local cohomology module H1

(x1)(R). Since R has its standard 
grading and (x1) ⊆ R is a homogeneous ideal, M is a graded D-module. Concretely, M
takes the form

k[x2, . . . , xn][x−1
1 ] ∼= ⊕l≥1k[x2, . . . , xn] · 1

xl
1

(we see this by computing H1
(x1)(R) using the Čech complex) where the R-module struc-

ture is defined by setting xi
1 = 0 for i ≥ 0. Each term x

i2
2 ···xin

n

xj
1

has degree i2 + · · ·+ in − j, 
and for each l, there are infinitely many tuples (i2, . . . , in, j) such that i2 +· · ·+in −j = l. 
Therefore, each component of M is an infinite-dimensional k-space.
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It follows from Theorem 3.11 that if M is a graded D-module with finite-dimensional 
de Rham cohomology (for example, a graded holonomic D-module), the graded Matlis 
dual D(M) has finite-dimensional de Rham cohomology. An important property of 
holonomic D-modules is that, by Theorem 2.1, they have finite dimensional de Rham 
cohomology. It is natural to ask whether the graded Matlis dual of a graded holonomic 
D-module is also holonomic. This turns out not to be the case, as shown in Exam-
ple 3.14. We note that since D(M) always has finite-dimensional de Rham cohomology, 
Theorem 3.16 below applies to it, even in cases where it is not holonomic.

Before proceeding to Example 3.14, we need a result due to Hellus and Stückrad [10].

Remark 3.13. The proof of [10, Lemma 1.1] shows that, given any commutative ring A
and any a1, a2 ∈ A, there are elements {bi ∈ A | i ∈ N} such that bi is either 1 or 0 for 
each i and the map defined via

[
1
ai

1

]
�→

i∑
j=1

[
bj

ai−j+1
1 aj

2

]

induces a surjective A-module homomorphism ϕ : H1
(a1)(A) → H2

(a1,a2)(A) (where 

brackets denote classes in local cohomology viewed as cohomology of the Čech 
complex). When A is graded and a1, a2 are homogeneous, it is clear that ϕ ∈
∗HomA(H1

(a1)(A), H2
(a1,a2)(A)). By induction, given homogeneous elements a1, . . . ,

am ∈ A, there exists a surjective A-module homomorphism ϕ ∈ ∗HomA(H1
(a1)(A),

Hm
(a1,...,am)(A)).

Example 3.14. Let R = k[x1, . . . , xn] with n ≥ 2. Let M = H1
(x1)(R) and let U+(x1)

denote the set of homogeneous prime ideals of R that do not contain x1. Then we claim 
that

U+(x1) ⊆ AssR(D(M)). (3.14.1)

Since U+(x1) contains infinitely many elements, (3.14.1) will imply that D(M) is not
holonomic since, by [13, Theorem 2.4(c)], a holonomic D-module has only finitely many 
associated primes. (Note the similarity of this example to Example 2.9.)

Proof of (3.14.1). Let p be a homogeneous prime ideal of R that does not contain x1. 
Then x1 is part of a homogeneous system of parameters for R/p; in fact, we can choose 
homogeneous elements x1, y2, . . . , yd ∈ R whose images in R/p form a homogeneous 
system of parameters (where d = dim(R/p)). By Remark 3.13, there is a surjective map 
ϕ ∈ ∗HomR(H1

(x1)(R), Hd
(x1,y2,...,yd)(R)) and hence an injective map

ϕ∗ : D(Hd
(x ,y ,...,y )(R)) ↪→ D(H1

(x )(R)).

1 2 d 1



1158 N. Switala, W. Zhang / Advances in Mathematics 340 (2018) 1141–1165
Thus, to show that p ∈ AssR(D(H1
(x1)(R))), it suffices to show that there is an injection 

R/p ↪→ D(Hd
(x1,y2,...,yd)(R)). To this end, it is enough to prove that

(1) ∗HomR(R/p, D(Hd
(x1,y2,...,yd)(R))) 
= 0, and that

(2) HomR(R/q, D(Hd
(x1,y2,...,yd)(R))) = 0 for any q properly containing p.

By the graded version of adjunction of Hom and ⊗ [19, Proposition 2.4.9], we have

∗HomR(R/p, D(Hd
(x1,y2,...,yd)(R))) = ∗HomR(R/p, ∗HomR(Hd

(x1,y2,...,yd)(R), E))
∼= ∗HomR(R/p ⊗R Hd

(x1,y2,...,yd)(R), E)
∼= ∗HomR(Hd

(x1,y2,...,yd)(R/p), E)


= 0,

since Hd
(x1,y2,...,yd)(R/p) 
= 0, proving the first statement. (The isomorphism R/p ⊗R

Hd
(x1,y2,...,yd)(R) ∼= Hd

(x1,y2,...,yd)(R/p) holds because the top local cohomology functor 
Hd

(x1,y2,...,yd) is right-exact.)
We also have ∗HomR(Hd

(x1,y2,...,yd)(R), E) ⊆ HomR(Hd
(x1,y2,...,yd)(R), E) and so, if 

p � q,

HomR(R/q, D(Hd
(x1,y2,...,yd)(R))) ⊆ HomR(R/q, HomR(Hd

(x1,y2,...,yd)(R), E))
∼= HomR(R/q ⊗R Hd

(x1,y2,...,yd)(R), E)
∼= HomR(Hd

(x1,y2,...,yd)(R/q), E)

= 0,

proving the second statement (Hd
(x1,y2,...,yd)(R/q) = 0 since dim(R/q) < d). �

Lemma 3.15. Let M and N be graded R-modules, and suppose that Nl is a finite-
dimensional k-space for all l. Suppose furthermore that ϕ ∈ ∗HomR(N, D(M)) is in-
jective. Then the composite

M
ιM−−→ D(D(M)) ϕ∗

−−→ D(N),

where ιM is the canonical evaluation map, is surjective.

Of course ϕ∗ is always surjective; the claim is that, in this case, it remains surjective 
when restricted to the image of M .

Proof. Consider the Matlis dual of the displayed composite, which factors as

D(D(N)) ϕ∗∗

−−→ D(D(D(M))) ι∗
M−−→ D(M),
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and pre-compose it with the evaluation map ιN , which is an isomorphism by assumption. 
It suffices to show that the resulting composite

N
ιN−−→ D(D(N)) ϕ∗∗

−−→ D(D(D(M))) ι∗
M−−→ D(M)

coincides with ϕ (and is therefore injective), since if ϕ∗ ◦ ιM were not surjective, its dual 
could not be injective.

Let n ∈ N be given. The element ιN (n) ∈ D(D(N)) is the map D(N) → E defined 
by evaluation at n, and therefore the element ϕ∗∗(ιN (n)) ∈ D(D(D(M))) is the map 
D(D(M)) → E defined by evaluation at ϕ(n) ∈ D(M). But then ι∗

M (ϕ∗∗(ιN (n))) is 
simply ϕ(n), since ι∗

M is the dual of the evaluation map. It follows that the composite 
ι∗
M ◦ ϕ∗∗ ◦ ιN coincides with ϕ, as claimed. �

Finally, we prove our main result, the graded analogue of Theorem 1.1. Note that we 
do not need any assumption on holonomicity, because in the graded case, Theorem 3.11
is valid under a weaker hypothesis.

Theorem 3.16. Let M be a graded D-module such that Hn
dR(M) is a finite-dimensional 

k-space. Then

dimk(Hn
dR(M)) = max{s ∈ N | ∃ a surjective ϕ ∈ HomD(M, Es)}.

Note that we do not claim that the map M → Es is a homomorphism of graded
D-modules. (If we remember the grading on E, the map will be an element of 
∗HomR(M, Es).)

Proof. Let t = dimk Hn
dR(M). By Theorem 3.11, we have t = dimk H0

dR(D(M)). By 
Lemma 2.3, there exists an injective D-module homomorphism i : Rt → D(M).

Recall from the proof of Lemma 2.3 that i is constructed by choosing a ba-
sis {μ1, . . . , μt} for H0

dR(D(M)) and defining i(r1, . . . , rt) = r1μ1 + · · · + rtμt. It 
is clear that i is not, in general, a graded homomorphism, but we can show that 
i ∈ ∗HomR(Rt, D(M)), as follows. Each ∂i can be viewed as a graded homomorphism of 
k-spaces D(M) → D(M)(−1), and so its kernel is a graded k-subspace of D(M). There-
fore H0

dR(D(M)) = ∩n
i=1 ker(∂i) is also a graded k-subspace of D(M), from which it 

follows that every homogeneous component of μi, for all i, belongs again to H0
dR(D(M)). 

By decomposing each μi into its homogeneous components, we can write i as a finite 
sum of the maps (r1, . . . , rt) �→ rjμj,l (where μj,l is the degree l component of μj), each 
of which is k- (indeed, D-) linear and homogeneous of some degree.

Now we can take the Matlis dual of i, obtaining a map i∗ : D(D(M)) → D(Rt) =
Et. Since i is D-linear, so also is i∗, by the same argument given in the proof 
of Lemma 2.6. The graded components of Rt are finite-dimensional k-spaces, so we 

can apply Lemma 3.15, obtaining a surjection M
ιM−−→ D(D(M)) i∗

−→ Et (in fact, 
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i∗ ◦ ιM ∈ ∗HomR(M, Et)). The evaluation map ιM is D-linear (the proof is the same as 
in Lemma 2.7), so i∗ ◦ ιM is D-linear as well. It follows that t ≤ s.

To prove the converse inequality, consider a surjective D-linear homomorphism M →
Es. If K denotes the kernel of this homomorphism, we have a short exact sequence of 
D-modules 0 → K → M → Es → 0. The corresponding long exact sequence of de Rham 
cohomology terminates with a surjection

Hn
dR(M) → Hn

dR(Es)

of k-spaces. By Example 2.2, dimk Hn
dR(Es) = s, from which it follows that t =

dimk Hn
dR(M) ≥ s, completing the proof. �

4. An alternate proof of Theorem 1.1

In this section, we give an alternate proof of Theorem 1.1. In [8] it is stated that 
this theorem is dual in a sense to Lemma 2.3; our proof makes that duality explicit. 
Throughout this section, R denotes the formal power series ring k[[x1, . . . , xn]], and D
the Matlis dual functor.

We will need a local analogue of Lemma 3.15.

Lemma 4.1. Let M be an R-module, and let N be a Matlis reflexive R-module. Suppose 
that ϕ : N → D(M) is an injective R-module map. Then the composite

M
ιM−−→ D(D(M)) D(ϕ)−−−→ D(N),

where ιM is the canonical evaluation map, is surjective.

Proof. The evaluation map ιN : N → D(D(N)) is an isomorphism by the assumption 
on N , and the functor D is exact. Therefore the proof of Lemma 3.15 also works in this 
case. �
An alternate proof of Theorem 1.1. Let M be a holonomic D-module and let t =
dimk Hn

dR(M). By Theorem 2.8, t = dimk H0
dR(D(M)). By Lemma 2.3, there exists an 

injective D-module homomorphism Rt → D(M). Since Rt is a finitely generated (and 
hence Matlis reflexive) R-module, by Lemma 4.1, the composite M

ιM−−→ D(D(M)) →
D(Rt) = Et is a surjective R-module homomorphism. By Lemma 2.7, the evaluation 
map M

ιM−−→ D(D(M)) is D-linear, and by Lemma 2.6, the map D(D(M)) → D(Rt)
is D-linear as well, so the composite is D-linear. It follows that t ≤ s. The proof that 
t ≥ s is identical to the argument given in the proof of Theorem 3.16, since Example 2.2
applies to the formal power series case as well as the polynomial case. �
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5. The de Rham cohomology of a graded Matlis dual

Let R = k[[x1, . . . , xn]] and D = D(R, k). As observed by Hartshorne and Polini [8, 
Corollary 5.2], if M is a holonomic D-module, the maximal integer s such that there 
exists a surjective D-linear map M → Es is the dimension of the k-space HomD(M, E). 
Therefore, Theorem 1.1 asserts that dimk(Hn

dR(M)) = dimk(HomD(M, E)). It is natural 
to ask whether there is a similar connection between Hn−i

dR (M) and Exti
D(M, E) for i > 0, 

and a result in the affirmative was proved by Lyubeznik.

Theorem 5.1. Let R = k[[x1, . . . , xn]] and D = D(R, k), and let M be a D-module.

(a) For all i ≥ 0, Hi
dR(D(M)) ∼= Exti

D(M, E) as k-spaces. [14, Corollary 4.1, Theorem 
4.2].

(b) If M is holonomic, dimk(Hn−i
dR (M)) = dimk(Exti

D(M, E)) for all i ≥ 0. [14, Theo-
rem 1.3].

Of course, part (b) of Theorem 5.1 follows immediately from part (a) and Theorem 2.8. 
The proof of part (a) uses the following well-known fact (proved using an explicit free 
resolution of R as a D-module) that we will also need.

Proposition 5.2. Let R be either k[x1, . . . , xn] or k[[x1, . . . , xn]], let D = D(R, k), and let 
M be a D-module. Then Hi

dR(M) ∼= Exti
D(R, M) as k-spaces for all i ≥ 0.

Since Proposition 5.2 is also true for DX -modules over a complex-analytic manifold X, 
Theorems 5.1 and 5.3 are local algebraic versions of classical duality results in D-module 
theory. See, for example, Kashiwara’s [12, Proposition 5.1] for the complex-analytic ver-
sion of these statements.

The following Theorem 5.3 is an analogue of Theorem 5.1 for graded D-modules over 
polynomial rings. We remark that our proof of Theorem 5.3 (in the graded setting) 
adapts easily to give an alternate proof of Theorem 5.1 as well.

Since the graded Matlis dual is defined in terms of the functor ∗Hom, the correct state-
ment will involve its right derived functors ∗Ext [19, p. 28]; a true statement involving 
only ordinary Ext groups will be possible only for finitely generated graded D-modules, 
for which ∗Ext and Ext coincide.

Theorem 5.3. Let R = k[x1, . . . , xn] and D = D(R, k), and let M be a graded D-module.

(a) For all i ≥ 0, Hi
dR(D(M)) ∼= ∗Exti

D(M, E) as k-spaces.
(b) If M is finitely generated as a D-module and has finite-dimensional de Rham coho-

mology (for instance, if M is holonomic), then dimk(Hn−i
dR (M)) = dimk(Exti

D(M, E))
for all i ≥ 0.
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Proof. We note first that part (b) follows immediately from part (a): if M is finitely 
generated as a D-module, we have ∗Exti

D(M, E) = Exti
D(M, E) [19, Corollary 

2.4.7], and if M has finite-dimensional de Rham cohomology, then dimk(Hn−i
dR (M)) =

dimk(Hi
dR(D(M))) for all i ≥ 0 by Theorem 3.11.

To prove part (a), we consider first the case i = 0. By definition, H0
dR(D(M)) is the 

kernel of the k-linear map D(M) → D(M) ⊕· · ·⊕D(M) defined by ϕ �→ (∂1 ·ϕ, . . . , ∂n ·ϕ). 
That is, we have

H0
dR(D(M)) = {ϕ ∈ ∗HomR(M, E) | ∂i · ϕ = 0 for all i}.

By (3.3.1), we have (∂i · ϕ)(m) = ∂i · ϕ(m) − ϕ(∂i · m) for all m ∈ M and ϕ ∈
∗HomR(M, E). It follows that ϕ ∈ H0

dR(D(M)) if and only if ∂i · ϕ(m) = ϕ(∂i · m)
for all m ∈ M and all i, that is, if and only if ϕ is D-linear. Therefore H0

dR(D(M)) ∼=
∗HomD(M, E).

Since the functors { ∗Exti
D(−, E)} are the right derived functors of a left exact functor, 

they form a (contravariant) universal δ-functor as in [7, pp. 205–206] from the category 
of graded D-modules to the category of k-spaces. It suffices [7, Corollary III.1.4] to 
prove that the functors {Hi

dR(D(−))} also form a universal delta-functor, since they 
coincide for i = 0. Short exact sequences of D-modules (graded or otherwise) give rise 
to short exact sequences of de Rham complexes and therefore to long exact sequences of 
de Rham cohomology spaces; since the graded dual functor D is exact, this implies that 
{Hi

dR(D(−))} form a contravariant delta-functor.
To show this δ-functor is universal, we need only show that every Hi

dR(D(−)) is co-
effaceable [7, Theorem III.1.3A]; since the category of graded D-modules has enough 
projective objects, it is enough to see that Hi

dR(D(P )) = 0 for all i > 0 and all projective 
graded D-modules P . By Proposition 5.2, we have Hi

dR(D(P )) = Exti
D(R, D(P )), which 

is isomorphic to ∗Exti
D(R, D(P )) since R is a finitely generated graded D-module. A pro-

jective object P in the category of graded D-modules is simply a projective D-module 
that is graded [19, Corollary 2.3.2, Remark 2.3.3], and any such object is a (graded) 
direct summand of a graded free D-module. Since de Rham cohomology commutes with 
direct sums, we may reduce the proof to the case where P is graded free and hence 
further to the case P = D.

To prove that ∗Exti
D(R, D(D)) = 0 for all i > 0, we use the change-of-rings spectral 

sequence for ∗Ext:

Ep,q
2 = ∗Extp

D(L, ∗Extq
R(D, N)) ⇒ ∗Extp+q

R (L, N)

for all graded D-modules L and graded R-modules N (the ungraded version is [21, 
Theorem 10.75], but since the category of graded D-modules has enough projective and 
injective objects, there is also a graded version). Taking L = R and N = E, we get

Ep,q
2 = ∗Extp

D(R, ∗Extq
R(D, E)) ⇒ ∗Extp+q

R (R, E).



N. Switala, W. Zhang / Advances in Mathematics 340 (2018) 1141–1165 1163
The abutment is zero for p + q > 0 since E is injective as a graded R-module, and the 
Ep,q

2 -term is zero for q > 0 for the same reason. Therefore the spectral sequence degener-
ates at E2. For q = 0, we have Ep,0

2 = ∗Extp
D(R, ∗HomR(D, E)) = ∗Extp

D(R, D(D)) = 0
for all p > 0, completing the proof. �
6. A remark on E

In this final section, we observe that E is not an injective object in the category of 
graded holonomic D-modules.

Example 6.1. Let R = k[x] (or k[[x]]), let d = d
dx ∈ D, and consider the quotients of D

by the (left) ideals D ·x, D ·xd, and D ·d. These quotients fit into a short exact sequence

0 → D/(D · x) ·d−→ D/(D · xd) → D/(D · d) → 0

of (left) D-modules, where the map D/(D · x) ·d−→ D/(D · xd) is right multiplication by 
d. We have D/(D · x) ∼= E and D/(D · d) ∼= R as D-modules, so the corresponding long 
exact sequence in de Rham cohomology takes the form

0 → H0
dR(E) → H0

dR(D/(D · xd)) → H0
dR(R)

→ H1
dR(E) → H1

dR(D/(D · xd)) → H1
dR(R) → 0.

By Example 2.2, the leftmost and rightmost terms are 0, from which it follows that 
H0

dR(D/(D · xd)) and H1
dR(D/(D · xd)) are either both zero or both isomorphic to k. 

Consider

H1
dR(D/(D · xd)) = D/(D · xd)

d(D/(D · xd)) .

On the one hand, since dx − xd = 1 in D, we have dx = 1 in D/(D · xd), where the 
overline denotes the class of an element of D in the quotient. If we write dx for the 
class of dx modulo d(D/(D · xd)), we therefore also have dx = 1. On the other hand, 
d(x) ∈ d(D/(D · xd)), so d(x) = 0 in (D/(D · xd))/d(D/(D · xd)). Clearly d(x) = dx, so 
0 = 1, from which it follows that H1

dR(D/(D ·xd)) = 0 (and therefore H0
dR(D/(D ·xd)) = 0

as well).

In [15, Corollary 2.10], it is proved that E is an injective object in the category 
of graded F-finite F-modules in characteristic p > 0. This is rather surprising since, 
according to [16, Example 4.8], E is not an injective object in the category of F-modules 
or the category of F-finite F-modules. Since F-finite F-modules (in characteristic p) are 
generally considered as counterparts of holonomic D-modules (in characteristic zero), 
it is natural to ask if E is also an injective object in the category of graded holonomic 
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D-modules. Example 6.1 implies that this is not the case, which we state in the following 
proposition.

Proposition 6.2.

(a) If R = k[[x]], then E is not an injective object in the category of holonomic 
D-modules (a fortiori, in the category of D-modules).

(b) If R = k[x], then E is not an injective object in the category of graded holonomic 
D-modules.

Proof. Let M denote the D-module D/(D · xd) of Example 6.1. In both cases, Exam-
ple 6.1 describes a short exact sequence 0 → E → M → R → 0 of D-modules such that 
H1

dR(M) = 0. Note that in both cases, this is an exact sequence of holonomic D-modules.
In the case R = k[[x]], Theorem 1.1 implies that there does not exist a surjective 

homomorphism M → E of D-modules, and hence the sequence cannot split. Hence E is 
not an injective object in the category of holonomic D-modules, proving part (a).

In the case R = k[x], since x, d, and xd are homogeneous elements of D, the objects 
in the short exact sequence are graded holonomic D-modules. The map E

·d−→ M is 
homogeneous of degree −1. By a degree shift, we obtain a short exact sequence

0 → E → M(−1) → R → 0

of graded holonomic D-modules. By Theorem 3.16, there does not exist a surjective 
homomorphism M → E of D-modules, and hence the sequence cannot split. Hence 
E is not an injective object in the category of graded holonomic D-modules, proving 
part (b). �
Remark 6.3. Let R be either k[x] or k[[x]]. Theorems 5.3 and 5.1 imply that 
dimk Ext1

D(R, E) = dimk H0
dR(R) = 1 and hence Ext1

D(R, E) can be generated by 
the nontrivial extension 0 → E → M → R → 0. Since both E and R are holonomic 
(and graded holonomic when R = k[x]), if Ext1 is defined in the category of holonomic 
D-modules (and also in the category of graded holonomic D-modules when R = k[x], 
respectively) using Yoneda’s characterization of Ext1, we have Ext1

D,hol(R, E) ∼= k (and 
Ext1

D,graded hol(R, E) ∼= k, respectively).

Remark 6.4. Let R = k[x1, . . . , xn] where k is a field of characteristic p > 0 and 
m = (x1, . . . , xn). In [15, Theorem 2.9], Lyubeznik, Singh, and Walther prove that each 
nonzero graded F-finite F-module M admits a graded F-finite submodule N such that 
M/N is supported in m and N does not admit any composition factor whose support 
is contained in {m}. Example 6.1 shows that the analogue of this result for graded 
holonomic D-modules over polynomial rings in characteristic zero does not hold.
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