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1. Introduction

Let k be a field of characteristic zero and let R denote either a polynomial ring or
formal power series ring in n variables over k. Let D be the ring of k-linear differential
operators on R, i.e., D = R(a%17 cey %). Each (left) D-module M admits a de Rham
complex M ® Q%, where Qf is the canonical de Rham complex of R. The cohomology
spaces of M ® QY are called the de Rham cohomology spaces of M and denoted by
H!,(M). The study of de Rham cohomology of D-modules has a long and rich history,
and has found numerous applications in different areas of mathematics.

When R = k[[x1, ..., 2,]], in a recent paper [8], Hartshorne and Polini investigate the
connection between the top de Rham cohomology HJr(M) of a holonomic D-module
M and D-linear maps M — E?® where F is the local cohomology module H(’;h”_ﬁzn)(R).

We rephrase their result as follows:
Theorem 1.1 (¢f. Theorem 5.1 in [8]). Let M be a holonomic D-module. Then
dimy (Hjr(M)) = max{s € N| 3 a surjective ¢ € Homqp (M, E*)}.

Theorem 1.1 has the following striking consequences when applied to certain local
cohomology modules:

Theorem 1.2. /8, Theorem 6.4 and Corollary 6.6] Let V. C P} be a nonsingular pro-
jective wvariety of codimension c, where k is a field of characteristic zero. Let I C
R = k[xzg,...,x,] be the homogeneous defining ideal of V. Then there is a simple
D-submodule M C H{(R), supported on the affine cone C(V) over V, such that the
quotient H§(R)/M = Eb~ba-2 where d = dim(V) and b; = dimy, HI(V) are the di-
mensions of the algebraic de Rham cohomology spaces of V.

In particular, if I C R = k[xo,...,2,] is the homogeneous defining ideal of an em-
bedding of Pg into Py, then the local cohomology module M = H}kd(R) is simple as a
D-module.

Hartshorne and Polini observe that Theorem 1.1 fails in general over polynomial rings,
so in order to establish Theorem 1.2, they pass to completions.

In this paper, we investigate extensions of Theorem 1.1 to graded D-modules over
polynomial rings. To this end, we develop a theory of graded Matlis duality for graded
D-modules. One of our main results is that the graded Matlis dual is compatible with
de Rham cohomology in the case that this cohomology is finite-dimensional:

Theorem A (Proposition 3.6 and Theorem 3.11). Let R = k[x1, ..., x,]| where k is a field
of characteristic zero, and let D = D(R, k) be the ring of k-linear differential operators
on R. Let M be a graded D-module (Definition 35.1). The graded Matlis dual D(M)
(Definition 2.12) has a natural structure of graded D-module. For all i such that the de
Rham cohomology space H,(M) of M is finite-dimensional over k, we have
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Hyp(M)Y = Hjp" (D(M))
as k-spaces, where ¥ denotes k-space dual.

We apply Theorem A to prove the following extension of Theorem 1.1 to the case of
polynomial rings:

Theorem B (Theorem 3.16). Let R and D be as in Theorem A, and let M be a graded
D-module such that Hjp (M) is a finite-dimensional k-space. Then

dimy (Hjp(M)) = max{s € N | 3 a surjective p € Homqp (M, E*)},
where E is the top local cohomology module H(’;lw’zn)(R).

We observe that the local cohomology module M = Hf(R) in the statement of The-
orem 1.2 is a graded D-module (since I C R is a homogeneous ideal), and its de Rham
cohomology spaces are finite-dimensional (since it is a holonomic D-module). Therefore
Theorem B applies to M and can be used to recover Theorem 1.2. The idea of using
duality to prove Theorem B also leads us to an alternate proof of Theorem 1.1 in the
formal power series case.

We also give the following interpretation of the other de Rham cohomology spaces of
M, a graded analogue of a recent result of Lyubeznik [14, Theorem 1.3] in the formal
power series case.

Theorem C (Theorem 5.3). Let R and D be as in Theorem A. Let M be a finitely gener-
ated graded left D-module. For all i such that Hp(M) is a finite-dimensional k-space,

Hyjp'(M)Y = Extiy (M, E)
as k-spaces.

We note that if M is a graded holonomic D-module (e.g. a local cohomology module
of R supported in a homogeneous ideal), then the hypotheses of Theorems A, B, and C
are satisfied.

This paper is organized as follows: in section 2, we summarize background material
on D-modules, de Rham cohomology, Matlis duality for D-modules in the formal power
series case (following [22]), generalities on graded modules, and graded Matlis duality
in the polynomial case; in section 3, we describe the graded D-module structure on
the graded Matlis dual of a graded D-module and proceed to the proofs of our main
results; the brief section 4 contains our alternate proof of Hartshorne and Polini’s result
(Theorem 1.1) in the formal power series case; section 5 is denoted to proving Theorem C;
finally, in section 6, we apply our Theorem B to the specific D-module E to show that F
is not an injective object in the category of graded holonomic D-modules, which shows
that the analogue for holonomic D-modules of [15, Corollary 2.10] does not hold.
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2. Preliminaries

In this section, we collect some background material on D-modules (over polynomial
and formal power series rings), review the theory of Matlis duality for D-modules in
the formal power series case developed in [22], and recall the graded version of Matlis
duality.

Throughout this paper, k is a field of characteristic zero, R is either the polynomial
ring k[x1,...,x,] or the formal power series ring k[[z1,...,2,]], and m is the maximal
ideal (z1,...,2,) € R. We let E = HZ(R) be the top local cohomology module of R
supported in m, which is an injective hull of £ = R/m in the category of R-modules. The
underlying k-space of E is the same whether R is the polynomial ring or the formal power
series ring: it is spanned by inverse monomials xlf <o~ xi» where all i; < —1. Finally, ¥
always denotes k-space dual.

2.1. D-modules and de Rham cohomology

In this subsection, R is either the polynomial ring k[x1,...,2,] or the formal power
series ring k[[z1, ..., 2,]]. Our basic reference for the material in this subsection is [1].

We denote by D the non-commutative ring D(R, k) of k-linear differential operators on
R. As an R-module, D is free on the monomials 8{1 -+ Oin where iy, ...,i, > 0 (here 9;

denotes the partial differentiation operator % : R — R); as aring, D = R{01,...,0n)

i

with the relations 0;0; = 0;0; and 0;,f = 0;(f) + f0; for all ¢ and j and all f € R.
A D-module M is an R-module together with a left action of D on M (when we need
to consider a right D-module, we will say so explicitly).

The ring D has an increasing filtration {F'D}, called the order (or degree) filtration,
where F!'D consists of those differential operators in which each term has no more than
| partial derivatives. The associated graded object gr(D) = & F'D/F'~1D with respect
to this filtration is isomorphic to R[&1,...,&,] (a commutative ring), where &; is the
image of 9; in F'D/F°D C gr(D). If M is a finitely generated left D-module, there
exists a good filtration {GP M} on M, meaning that M becomes a filtered left D-module
with respect to the order filtration on D and gr(M) = @®,GPM/GP~1M is a finitely
generated gr(D)-module. We let J be the radical of Anng,(p)gr(M) C gr(D) and set
d(M) = dimgr(D)/J (Krull dimension). The ideal J, and hence the number d(M), is
independent of the choice of good filtration on M.

By Bernstein’s theorem, if M # 0 is a finitely generated left D-module, we have
n < d(M) < 2n. In the case d(M) = n we say that M is holonomic. It is known (see
[1, §1.5, 3.3]) that submodules and quotients of holonomic D-modules are holonomic,
an extension of a holonomic D-module by another holonomic D-module is holonomic,
holonomic D-modules are of finite length over D, and holonomic D-modules are cyclic
(generated over D by a single element). Examples of holonomic D-modules include R
itself, £ = HZ(R), and more generally any local cohomology module H%(M) where
I C R is an ideal and M is a holonomic D-module (see [2] for generalities concerning
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local cohomology). By Kashiwara’s equivalence [11, Example 1.6.4], if M is a holonomic
D-module whose support as an R-module consists only of the maximal ideal m, then M
is a finite direct sum of copies of E.

Given any D-module M, we can define its de Rham complex. This is a complex of
length n, denoted M ® Qf, (or simply %, in the case M = R), whose objects are
R-modules but whose differentials are merely k-linear. It is defined as follows [1, §1.6]:
for0<i<n M® Qﬁ is a direct sum of (7:) copies of M, indexed by i-tuples 1 <
j1 < -+ < j; < n. The summand corresponding to such an i-tuple will be written
Mdzj, A--- Adzj,. The k-linear differentials d* : M ® Q% — M @ Q4! are defined by

d'(mdzj, A Ndxj,) = Zas(m) dxs Ndxzj, A--- Adxj,,
s=1

with the usual exterior algebra conventions for rearranging the wedge terms, and ex-
tended by linearity to the direct sum. We remark that in the polynomial case, we are
simply using the usual Kéahler differentials to build this complex, whereas in the formal
power series case, we are using the m-adically continuous differentials (since in this case
the usual module Q}% . of Kahler differentials is not finitely generated over R). The
cohomology objects h'(M ® Q%), which are k-spaces, are called the de Rham cohomol-
ogy spaces of the left D-module M, and are denoted H}n(M). The simplest de Rham
cohomology spaces (the Oth and nth) of M take the form

Hip(M)={me M| (m)=---=08,(m) =0} C M;
Hyp(M) = M/(01(M) + - + 0p(M)).

The following theorem is standard (see [1, Theorem 1.6.1]) in the polynomial case,
and is due to van den Essen [24, Proposition 2.2] in the more difficult formal power series
case:

Theorem 2.1. Let M be a holonomic D-module. The de Rham cohomology spaces HQR(M)
are finite-dimensional over k for all i.

Example 2.2. The de Rham cohomology of R itself is k in degree 0 and 0 otherwise;
this is the “algebraic Poincaré lemma”, proved in the polynomial case in [6, Proposition
I1.7.1] (the same proof works in the formal power series case). The de Rham cohomology
of F is k in degree n and 0 otherwise [8, Example 2.2(4)].

The dimension of the Oth de Rham cohomology space of a D-module M has the
following useful interpretation:

Lemma 2.3. /8, Ezample 2.2(6)] Let M be a D-module such that HYx(M) is a finite-
dimensional k-space. Then the k-dimension of Hlp(M) is equal to the mazimal integer
s for which there exists an injective ‘D-module homomorphism R® — M.
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We remark that in [8], M is assumed to be a holonomic D-module in the statement of
the preceding lemma. However, all that is needed for the proof is the finite-dimensionality
of H)p(M), and we will need this stronger statement below. In the proof of Lemma 2.3
(in the formal power series case), we will need the following result of van den Essen:

Lemma 2.4. [23, Lemme 1] Suppose that R is the formal power series ring k[[z1, ..., x,]].
Let M be a D-module, and denote by M, the kernel of 0, : M — M. Any R-linear
dependence relation among elements of M, holds homogeneously in wx,: that is, if
fi,-..sfi € R and mq,...,m;y € M, are such that fym; 4+ --- + fim; = 0, then we
have fijmy + -+ fiymy = 0 for all j, where f; ; € k[[x1,...,2n_1]] is the coefficient

of xJ in fi.

Proof of Lemma 2.3. Let {m1,...,m;} be a k-basis for HJp(M). By the definition of
the de Rham complex, we have Bi(mj) =0forl <i<nand1l<j<t. Define a map
A: Rt — M by

ATy . oyre) =rimy 4 -+ Ty,

which, since r; € R C D for all 4, is clearly D-linear. We claim that A is injective. Suppose
not, and let ri,...,r; be elements of R (not all zero) such that rymq + - -+ rymy = 0.
Observe that for all ¢ and j, we have 0;(r;m;) = 0;(r;)m; + r;0;(m;) = 0;(r;)m; (since
0;(m;) = 0), and consequently

0= (9Z<0) = &(rlml —+ -4 rtmt) = 6i(r1)m1 —+ 4+ 8i(7‘t)mt.

At this point we must treat the polynomial and formal power series cases separately.
If R = k[xy,...,x,], then it is clear from the displayed equality that we can simply
differentiate repeatedly until all nonzero coefficients are scalars, contradicting the k-linear
independence of the m;.

On the other hand, in the case R = k[[z1, ..., ]|, we may similarly differentiate the
given R-linear dependence relation repeatedly to obtain a new R-linear dependence re-
lation in which at least one coefficient is a unit. By Lemma 2.4, any R-linear dependence
relation among elements in ker(d,) (in particular, among elements of HJp(M)) holds
homogeneously in z,,; taking the 20-term, we obtain an R, _;-linear dependence relation
among my, ..., m;. Applying Lemma 2.4 n — 1 more times, we obtain a k-linear depen-
dence relation among my, ..., m;: to be specific, we find that r gmq + -+ reome =0
where 7; ¢ is the constant term of r;. By assumption, at least one of these constant terms
is nonzero, so the k-linear dependence relation is nontrivial, contradicting the fact that
{mq,...,my} is a k-basis of Hlp(M). We conclude that in either the polynomial or
formal power series case, we have Hn(M) =1t < s.

The converse inequality is easier: if R® — M is an injective D-linear homomorphism,
it restricts to a injective k-linear map HYp(R*) — HYp(M), and since dimy, H)p(R®) = s
by Example 2.2, we have s <t as well, completing the proof. O
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2.2. Matlis duality for D-modules

In this subsection, R = k[[x1,...,z,]] is the formal power series ring and m =
(1,...,%,). This subsection summarizes some of the theory in [22]. See [18, §18] for
proofs of the basic facts about Matlis duality (over any complete local ring) that appear
in the following paragraph.

Recall that the Matlis dual of an R-module M is the R-module D(M) = Hompg(M, E)
where E = H(R). In particular, we have D(R) = F and D(F) = R. The contravariant
functor D is exact and defines an anti-equivalence between the category of finitely gen-
erated R-modules and the category of Artinian R-modules. If M is finitely generated or
Artinian, the canonical evaluation map

ity M — D(D(M)) = Homg(Homg (M, E), E)

is an isomorphism of R-modules. More generally, ¢j; is an isomorphism if and only if
M/N is Artinian for some finitely generated R-submodule N C M [4, Proposition 1.3].
(Such modules are called Matlis reflexive.)

Let 0 : E — k be the residue map, that is, the k-linear projection of £ = ®;, . ;. >ok-

—i1 —i ; -1 1
Ty ' -eoex, ' onto its xy

(0:g m) of E. (Any projection of E onto its socle will suffice for our purposes; we make

--+z, '-component. This component is the socle Soc(E) =
this choice for concreteness.) If M is an R-module, post-composition with o defines an
injective homomorphism of R-modules

Oy i D(M) = Hompg(M, E) — Homy (M, k)

whose image consists of precisely those k-linear maps A\ : M — k that are m-adically
continuous when restricted to any finitely generated R-submodule N C M. Such maps
are called X-continuous in [22] or continuous in [8]. We summarize the above in the
following proposition, which is stated without proof in [5, Remarque IV.5.5], and proved
in detail in [22, Theorem 3.15] (see also [8, Proposition 5.4]; in all these references, the
result is stated more generally for a complete local ring with a coefficient field):

Proposition-Definition 2.5. Let M be an R-module. We say that a k-linear map A : M —
k is X-continuous if for every finitely generated R-submodule N C M, there exists an
integer [ such that A(m!N) = 0. We denote the set (indeed, R-module) of X-continuous
maps M — k by D¥(M) and refer to it as the Y-continuous dual of M. There is an
isomorphism of R-modules ®; : D(M) — D*(M) defined by post-composition with the
residue map o : E — k and functorial in M.

Note that if M is finitely generated, D¥(M) is the continuous k-dual of M, and if M
is Artinian (so that every finitely generated submodule of M is of finite length), D* (M)
is simply the k-dual of M.
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Now suppose that M is a D-module. By using the identification of Proposition-
Definition 2.5, we can endow the Matlis dual D(M) with a structure of D-module,
as follows. Given a differential operator 6 € D, we write 65y : M — M for its action on
M.If X: M — k is a ¥-continuous map, so also is Aoy : M — k [22, Proposition
4.8]. By setting A -§ = X oy, we obtain a structure of right D-module on D*(M), and
by transport of structure, D(M) becomes a right D-module as well. There is a simple
transposition operation that converts right D-modules to left D-modules (with the same
underlying R-module) and conversely (we will explain this operation in more detail below
in the polynomial case: see Definition 3.4). After transposing, we get a (left) D-module
structure on the Matlis dual D(M) of a (left) D-module M.

Lemma 2.6. [22, Proposition 4.11] Let M and N be D-modules, and let ¢ : M — N
be a D-linear map. The Matlis dual ¢* (that is, the map D¥(N) — D*(M) defined by
pre-composition with ¢) is D-linear as well.

Proof. We work with the right D-module structures; the result remains true, of course,
after transposing. Let § € D be given. Since ¢ is D-linear, we have @ o dpy = dn o .
Therefore, if A € D¥(N), we have

" (A-0) =¢"(Aodn) =Aodnop=Aopody =¢"(A)ody =¢"(A) -4
so that ¢* is D-linear. O

Lemma 2.7. [22, Proposition 4.12] Let M be a D-module. The canonical evaluation map
ty 2 M — D¥(D®(M)) is D-linear.

Proof. Let m € M and § € D be given. Since D acts on D¥(D*(M)) by (iterated)
pre-composition, & - tp7(m) is the map D¥(M) — M defined by evaluation at d - m,
which is exactly ¢ps(6-m). O

Finally, we have the following theorem on the de Rham cohomology of Matlis duals:
Theorem 2.8. [22, Theorem 5.1] If M is a holonomic D-module, then
Hin(M)¥ = Hz (D(M))
as k-spaces for all i.

Example 2.9. Even if M is holonomic, the Matlis dual D(M) need not be holonomic. For
example, it follows from a result of Hellus [9, Theorem 2.4] that if R = k[[z1, . .., x,]] with
n > 2 and M is the local cohomology module H (1901)(1?)7 then every prime ideal of R that
does not contain 7 is an associated prime of the Matlis dual D(M). By [13, 2.2(d)], M
is a holonomic D-module. However, by [13, Theorem 2.4(c)], D(M), which has infinitely
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many associated primes, cannot even be a finitely generated D-module, a fortiori cannot
be holonomic. Nevertheless, Theorem 2.8 implies that D(M) has finite-dimensional de
Rham cohomology.

2.8. Graded duals over polynomial rings

In this subsection, R = k[z1,...,z,] is the polynomial ring with its standard grading,
i.e., deg(x;) = 1 for all ¢ and deg(c) = 0 for ¢ € k. By a graded R-module we mean a
Z-graded module.

An R-module homomorphism f : M — N between graded R-modules is graded (or ho-
mogeneous) if f(M,) C N, for all n € Z; a submodule N C M is a graded submodule if
there is a direct sum decomposition N = @;czN; as above such that the inclusion of NV in
M is a graded homomorphism. If {M;} is a collection of graded R-modules, their direct
sum &@; M; is also a graded R-module, with grading given by (&;M;); = @;(M,), for all [.
Graded R-modules together with graded homomorphisms form an Abelian category with
enough projective and injective objects.

If I € Z is fixed and M is a graded R-module, the shifted module M (I) has the same
underlying R-module as M but a Z-grading defined by M(1),, = M4, foralln € Z. If M
and N are graded R-modules, we define *Hompg (M, N) = @®,cz Homg(M, N),, where
Hompg(M, N),, is the Abelian group of graded R-module homomorphisms M — N(n)
(such homomorphisms are called homogeneous of degree m). Note that *Hompg(M, N)
is a graded R-module; its underlying R-module is an R-submodule of Hompg(M, N),
and if M is finitely generated as an R-module, we have the equality *Hompg(M,N) =
Homp (M, N).

If I is a homogeneous ideal of R, then the local cohomology modules H} (R) are
naturally graded, with the grading induced by the grading on R. In particular, H?(R)

is naturally graded. More explicitly, each class [ L } has degree — (i1 + - -+ + i) [2,
Example 13.5.3].

zyt e

Convention 2.10. We will consider H{;, = zn)(R) as the R-injective hull of k£ and denote
it by E; when R is a polynomial ring, F is endowed with the natural grading (in which
deg(zy ™ -+ x,"™) = =377, i;). Throughout this paper, we will always consider this

grading on E.

Remark 2.11. The R-module E, with the grading defined in Convention 2.10, is isomor-
phic as an R-module (but not as a graded R-module) to the graded injective hull *E of
k defined in [3, §3.6]. In fact, we have E = *E(n) as graded R-modules.

Throughout this paper, we define the graded Matlis dual of a graded R-module as
follows.
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Definition 2.12. Let M be a graded R-module. The graded Matlis dual of M is the graded
R-module D(M) = *Hompg(M, E).

As in the formal power series case, we have a k-linear residue map o : E — k, defined

L_component. There is an analogue of

by projecting an element of E onto its :1:1_1 ez
Proposition-Definition 2.5 that allows us to view elements of the dual D(M) as maps to

the field k:

Proposition 2.13. /3, Proposition 3.6.16] Let M be a graded R-module. There is an iso-
morphism of graded R-modules

Oy D(M) — *Homg(M(—n), k)
defined by post-composition with the residue map o and functorial in M.

A few remarks are in order.

Remark 2.14.

(1) Both forms of the graded Matlis dual will be useful for us, and so we will use the
residue map, sometimes implicitly, to identify the two in what follows.

(2) Our graded Matlis dual differs from the one in [3, p. 141] by a degree shift. The
reason for this difference will become clear in Proposition 3.9. If one does not care
whether the Eulerian property is preserved by the graded Matlis dual, one can use
the non-shifted version throughout (only Proposition 3.9 would become false).

(3) The canonical evaluation map ¢pr : M — D(D(M)) is an isomorphism of graded
R-modules if and only if M; is a finite-dimensional k-space for all [.

3. Graded D-modules over polynomial rings

Throughout this section, R = k[z1,...,z,] is the polynomial ring with its standard
grading.

Hartshorne and Polini give an example [8, Example 6.1] showing that Theorem 1.1
fails in general in the polynomial case. Instead of holonomic D-modules, we will restrict
our attention to graded D-modules. We begin with the graded (polynomial) analogue of
the Matlis duality theory for D-modules recalled in subsection 2.3.

Definition 3.1. Let M be a (left) D-module whose underlying R-module is given a grading
M = &z M;. We say that M is a graded D-module if for all ]l € Z and 1 < i < n, we
have 0;(M;) € M;_;. There is an entirely analogous notion of graded right D-module.
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Chapters 1 and 2 of [19] are a good reference for the general theory of (possibly non-
commutative) graded rings and modules over them. The only non-commutative graded
ring we will consider in this paper is D.

Example 3.2. R itself (with its standard grading) is a graded D-module, as is E. (Any de-
gree shift of a graded D-module is again a graded D-module.) The graded D-modules that
are relevant for applications in [8] are local cohomology modules supported in homoge-
neous ideals (the previous examples are special cases of these). If I C R is a homogeneous
ideal, we know that H:(R) is a graded R-module (see [2, Ch. 13] for a detailed discus-
sion of the natural gradings on H%(R) and proofs that they all coincide) as well as a left
D-module, and the D-module structure is compatible with the grading (it is easiest to
see this if the Cech complex is used to compute Hi(R)).

Example 3.3. [8, Example 6.1] Let R = k[z], let d = L € D, and let M be a free
R-module R - e of rank 1 generated by e € M. We can give M a structure of D-module
by setting de = z%e and extending by R-linearity to all of M. In [8, Example 6.1], it
is proved that this D-module is holonomic but fails to satisfy Theorem 1.1. We observe
that M is not a graded D-module. Indeed, the formula de = 2%e shows that d would be
required to act simultaneously as an operator of degree —1 and an operator of degree 2,
which is absurd.

If M is a graded D-module, its Matlis dual D(M) can be endowed with a (left) graded
D-module structure. We will do this in two equivalent ways, corresponding to the two
sides of the isomorphism in Proposition 2.13 (both will be useful).

Ignoring the gradings for a moment, if M and N are any two left D-modules, we
can define a left D-module structure on Homp (M, N) extending the natural R-module
structure by setting

(0i - )(m) = 0; - (m) — p(0; - m) (3.3.1)

fori=1,...,nand all m € M and ¢ € Homg(M, N) [11, Proposition 1.2.9]. Since D is
generated over R by the derivations 0;, this formula gives a well-defined left D-module
structure (simply extend by D-linearity) as long as the relations among elements of R and
the 0; are preserved. (See [11, Lemma 1.2.1] for a precise statement of what this means.)
This D-module structure on Hom is well-known and originates in Rinehart’s thesis [20].
If M and N are graded D-modules, it is clear from (3.3.1) that the left D-structure on
Hompg (M, N) induces a left D-structure on *“Hompg(M, N). Taking N = E, we see that
whenever M is a graded D-module, so also is D(M).

On the other hand, we can define a graded D-module structure directly on
*Homy, (M (—n), k): since each differential operator in D acts on M via a k-linear map, we
can decree that such differential operators act on *Homy (M (—n), k) by pre-composition.
This construction is more explicitly a “dual” of the original D-module structure on M.
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However, it is naturally a right D-module structure, so in order to compare the two
structures, we will need to use the following transposition operation:

Definition 3.4.
(a) The standard transposition 7 : D — D is defined by
(O - Op) = (- Oy O f

for all f € R, extended to all of D by k-linearity (observe that the same operation
makes sense for formal power series).

(b) Let M be a right D-module. The transpose M™ of M is the left D-module defined
as follows: we have M™ = M as Abelian groups, and the left D-action * on M7 is
given by 6 xm =m - 7(d) for all 6 € D and m € M(= M").

Remark 3.5.

(1) If M is a left D-module, a completely analogous transposition operation produces a
right D-module.

(2) 72 = idp; hence applying this operation twice recovers the original (right or left)
D-module.

(3) If M is a graded right (resp. left) D-module, its transpose M7 is clearly a graded
left (resp. right) D-module.

(4) We have 7(6102) = 7(d2)7(d1) for all d1,d2 € D.

Given any graded D-module M, a left D-module structure on *Homyg(M(—n), k)
extending the natural R-module structure can be defined by setting

(95 - N\)(m) = \(7(8) - m) (3.5.1)

fori=1,...,nand all m € M(—n) and A € *"Homy (M (—n), k). It is not hard to check
that the resulting D-module structure is well-defined and graded by direct calculation.
However, this also results by “transport of structure” from the following proposition,
since by Proposition 2.13, ®,; : *Hompg (M, F) — *Homy (M (—n), k) is an isomorphism
of graded R-modules.

Proposition 3.6. Let M be a graded D-module. For all i, there is a commutative diagram

“Homp(M, E) —2 *Homy,(M(—n), k)

l l

*Homp(M, E) — *Homy(M(—n), k)



N. Switala, W. Zhang / Advances in Mathematics 340 (2018) 1141-1165 1153

where the left vertical arrow is given by (3.3.1) and the right vertical arrow is given by
(3.5.1).

The upshot of Proposition 3.6 is that if we identify *Hompg(M,FE) with
“Homy (M (—n), k) using the residue map (Proposition 2.13), it does not matter whether
we use (3.3.1) or (3.5.1) to make D(M) into a graded (left) D-module. Both viewpoints
will be useful to us below and we will freely switch between them. In either case we refer
to D(M) as the graded D-module Matlis dual of M.

Proof. Let ¢ € *Homp(M, E) and m € M be given. By (3.3.1), we have (9; - ¢)(m) =
0; - o(m) — ¢(0; - m). Applying ® s, which is post-composition with the residue map o,
we see that

Dar(0; - p)(m) = 0(9; - p(m) = 9(9; - m)) = (8; - p(m)) = 7(p(0i - m)).

However, since ¢(m) € E, 9; - p(m) cannot have a nonzero x7 ' - - - 2, *-component (after
partial differentiation, the variable x; must have degree —2 or lower). Therefore o(9; -
w(m)) = 0 and ®p(0; - ) (m) = —o(¢(0; - m)), which is exactly (9; - Par(p))(m) (the
minus sign arises from the application of the transpose 7). O

Example 3.7. Let v : E — “Hompg(R, E) be the canonical isomorphism of graded
R-modules defined by 1+ (1 — n). We use (3.3.1) to calculate 9; - v(n) fori=1,...,n
and n € E:

(i -v(m)(r) = 0; - v(n)(r) —v(n)(0; - 1) = 0; - (rn) — (0; - m)n =1 On = v(9in)(r),

from which it follows that v is D-linear. Therefore the graded D-module Matlis dual
D(R) of R is just FE with its usual left D-module structure.

As we will see, the operation D enjoys some desirable properties. For instance, it
preserves Eulerianness, whose definition we recall below.

Definition 3.8 (Definition 2.1 and Proposition 3.1 in [17]). A graded D-module M is
called Fulerian if for each homogeneous element z € M we have

n

(Z x;0;)z = deg(z)z.

i=1
Proposition 3.9. If M is an Eulerian graded D-module, then so is D(M).

Proof. For each A € D(M); = Homy(M_;_,, k) and each z € M_;_,,, we have

n

(Z 2i0; - N)(2) = Mr(>_ 2:0;)7)

i=1
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= AM(— Z@mi)z)

n

= —)\(Z(asl& + 1)2)

i=1
= —)\((Z x;0;)z + nz)
i=1

= —A((—=l —n)z+ nz) (since M is Eulerian)
=IA(2)
= deg(M)A(2).

Therefore, ' | 2;0; - A = deg(A\)A and hence D(M) is Eulerian. O

We now turn to the question of which k-linear maps between graded D-modules can
be dualized. If § : M — N is homogeneous of any degree (if there exists d such that
§(M;) C Nijq for all 1), then whenever A € *Homy(N(—n), k), the composite § o A
belongs to “Homy (M (—n), k). More generally, this is true whenever § € *Homy (M, N)
(that is, d is a finite sum of k-linear maps, each homogeneous of a fixed degree), inspiring
the following:

Definition 3.10. Let M and N be graded D-modules, and suppose that § € *Homy (M, N).
We define the Matlis dual §* € *Homy(D(N),D(M)) of § by pre-composition with &:
that is, 6*(A) = Ao d for all A € D(N) = *Homy(N(—n), k).

We remark that since the definition of §* is simply pre-composition, if § is also R-linear
(that is, 6 € *Hompg(M,N)), then ¢* is again R-linear; moreover, if § is D-linear,
0* is again D-linear (the proof is the same as that of Lemma 2.6). In particular, the
graded Matlis dual operation is a contravariant functor from the category of graded
(left) D-modules to itself.

If M is a graded D-module, we can discuss the de Rham cohomology spaces of M and
its graded Matlis dual D(M), and in particular, we can ask whether the analogue of The-
orem 2.8 is true for a graded holonomic D-module M. In fact, a more general statement
is true: such an analogue holds for any graded D-module M whose de Rham cohomology
spaces are finite-dimensional. (In the formal power series case, the holonomicity of M is
used in an essential way.)

Theorem 3.11. Let M be a graded D-module. For all i such that H'n(M) is a finite-
dimensional k-space, we have

Hgp(M)" = Hyp" (D(M))

as k-spaces.
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Proof. We write the de Rham complex M ® %, as

6n71

0 M0 Lt T g,

where M is a direct sum of (?) copies of M for all i. Observe that each M?® is a graded
D-module and each §° belongs to *Homy,(M?, M) (in fact, 6 is homogeneous of degree
—1). In the category of complexes of k-spaces, this complex decomposes as a direct sum

1
6[—1

08, st S, am
@ez(0 > M) — M | — - ——— M —0)
where 6; denotes the restriction of 4’ to the degree j component of M*. (Write M for
the lth summand, so that M ® Q% = @;ez M, as complexes.) We can take the graded
Matlis dual of this entire complex, obtaining the complex

((5"71)*

. n n-1 (6'”72)* (60)*
DM ®Q%)=(0—DM") —— D(M"™")

D(M°) = 0),

again a complex whose objects are graded D-modules and whose differentials are k-linear
and homogeneous of degree —1, but now with homological indexing. For all i, we have
D(M?%), = (M",_,)Y, and the complex D(M ® Q%) decomposes (in the category of
complexes of k-spaces) as a direct sum

n—1 )V

6 A\
@162(0 _ (M:Ll,n)v (6 i (Mf;jn+1)v (0 Zg2)

o (62"

(Mgl)v — 0)7

that is, D(M ® Q%) = ®iez(M*,)Y, which is just @ez(M;)Y as a complex of k-spaces
with the gradings forgotten. In the category of k-spaces, the (contravariant) k-dual func-
tor is exact, and taking the (co)homology objects of a complex commutes with arbitrary
direct sums. It follows that

as k-spaces. The isomorphism (ezh’(M?))Y = @ez(hi(M))Y holds due to our as-
sumption that H (M) is a finite-dimensional k-space (we always have (B;ezh! (M) =
[T,z (R*(M}))Y, but since both sides are finite-dimensional, the direct product on the

right-hand side coincides with the direct sum).
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It now suffices to show that
hi(D(M @ Q%)) = "~ (D(M) © Q%) (= Hj; (D(M)))

as k-spaces, for all . We first compute the differentials in the complex D(M ®%,). Let ¢
be given, and consider the differential d : M @ Q% — M ® Qigl. An element of M ® Q,
is a sum of terms of the form mj,...;, dx;, A--- Adxj, where 1 < j; <--- < j; <n, and
the formula for d’ is

d'(mdxj, A Ndxj,) = Z@S(m) dxg Ndxj, A+ ANdxj,.
s=1
Now consider the graded Matlis dual of this differential. Since the graded Matlis dual
commutes with finite direct sums, we can identify D(M ® Q%) with a direct sum of (%)
copies of D(M), again indexed by the dxj, A---Adzx;,. If ¢ € D(M), we have the formula

i+1
(dl)*(go dle ARERNA dx.ji+1) = Z(_1)5716;5 (90) dm]& TARRRNA dmjs ARERNA d‘rji+1'
s=1

Recall that when D(M) is viewed as a left D-module via transposition, 0; acts on
D(M) via the map —9;. Therefore, it follows from the formula above that the complex
D(M ® Q%) is the homological Koszul complex Ko(D(M),—0) of D(M) with respect
to —01,...,—0n, and if we replace —0; with 0; for all 7, the homology objects are not
affected. On the other hand, the de Rham complex D(M) ® QY is the cohomological
Koszul complex K*(D(M);0) of D(M) with respect to 01, ...,0n, and it is well-known
[25, Exercise 4.5.2] that h;(Ke(D(M),d)) = h"~*(K*(D(M);d)) as modules over the
commutative subring k[01,...,0,] C D (in particular, as k-spaces) for all ¢, completing
the proof. O

Example 3.12. In general, even if a graded D-module M has finite-dimensional de Rham
cohomology, its graded pieces M; may be infinite-dimensional as k-spaces and thus fail
to be isomorphic to their duals or double duals, and so the isomorphisms in the proof of
Theorem 3.11 hold only at the level of cohomology. For example, let R = k[z1,...,z,]
with n > 2 and let M be the local cohomology module H (111) (R). Since R has its standard
grading and (x1) C R is a homogeneous ideal, M is a graded D-module. Concretely, M
takes the form

B 1
klxa, ..., xn)[o7 ] & Sis1k(z, ... 2n] - 2
1

1

(we see this by computing H, (zl)(R) using the Cech complex) where the R-module struc-

i _in
I2 vfn

—o— has degree ig+ - - -+, — 7,

ture is defined by setting ¢ = 0 for i > 0. Each term

Ty
and for each [, there are infinitely many tuples (is, ..., %y, j) such that io+---+i, —j = L.

Therefore, each component of M is an infinite-dimensional k-space.
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It follows from Theorem 3.11 that if M is a graded D-module with finite-dimensional
de Rham cohomology (for example, a graded holonomic D-module), the graded Matlis
dual D(M) has finite-dimensional de Rham cohomology. An important property of
holonomic D-modules is that, by Theorem 2.1, they have finite dimensional de Rham
cohomology. It is natural to ask whether the graded Matlis dual of a graded holonomic
D-module is also holonomic. This turns out not to be the case, as shown in Exam-
ple 3.14. We note that since D(M) always has finite-dimensional de Rham cohomology,
Theorem 3.16 below applies to it, even in cases where it is not holonomic.

Before proceeding to Example 3.14, we need a result due to Hellus and Stiickrad [10].

Remark 3.13. The proof of [10, Lemma 1.1] shows that, given any commutative ring A
and any aj,as € A, there are elements {b; € A | i € N} such that b; is either 1 or 0 for

eaCh Z and the map deﬁned \/ia
a j=1 al] 7 ajz

induces a surjective A-module homomorphism ¢ : H(lal)(A) — H(Qal,ag)(A) (where
brackets denote classes in local cohomology viewed as cohomology of the Cech
complex). When A is graded and aj,as are homogeneous, it is clear that ¢ €
*HomA(H(lal)(A)7Hfalyaz)(A)). By induction, given homogeneous elements aq,...,
am,m € A, there exists a surjective A-module homomorphism ¢ € *HomA(H(lal)(A),
Hi, 0y (A)-

Example 3.14. Let R = k[z1,...,z,] with n > 2. Let M = H(lwl)(R) and let Uy (zq)
denote the set of homogeneous prime ideals of R that do not contain x1. Then we claim

that
Ui(z1) C Assg(D(M)). (3.14.1)

Since U4 (z1) contains infinitely many elements, (3.14.1) will imply that D(M) is not
holonomic since, by [13, Theorem 2.4(c)], a holonomic D-module has only finitely many
associated primes. (Note the similarity of this example to Example 2.9.)

Proof of (3.14.1). Let p be a homogeneous prime ideal of R that does not contain ;.
Then z; is part of a homogeneous system of parameters for R/p; in fact, we can choose
homogeneous elements x1,¥s2,...,yq € R whose images in R/p form a homogeneous
system of parameters (where d = dim(R/p)). By Remark 3.13, there is a surjective map

NS *I—IomR(H(lwl)(R)7 ng17y27___7yd)(R)) and hence an injective map

4,0* : D(H(dwhyg,...,yd)(R)) — D(H(lzl)(R))
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Thus, to show that p € ASSR(D(H(lml)(R))), it suffices to show that there is an injection

R/p — D(H(dxhy?’__,yd)(R)). To this end, it is enough to prove that

(1) “Homp(R/p.D(H{, . (R)))#0,and that
R

(2) Hompg(R/q, D(H(dgﬂ1 Yareoorid) ))) = 0 for any q properly containing p.
By the graded version of adjunction of Hom and ® [19, Proposition 2.4.9], we have

“Homp(R/p, D(H{,, , . (R)) = "Homp(R/p, "Homp(HE, . . (R),E))
~ *Hompg(R/p ®r H(dxhy%__,yd)(R)a E)
= *HomR(H(‘fchyQ’“_,yd)(R/P),E)

70,
since H(dxhyz’___wd)(R/p) # 0, proving the first statement. (The isomorphism R/p ®pr
ae o @ =HE - (R/p) holds because the top local cohomology functor
(21,y2,..q) 18 Tight-exact.)
We also have *HomR(HEimhy%__,yd)(R)7E) C HomR(H&hy%_”’yd)(R),E) and so, if
psa,
Homp(R/q,D(H{,, ,, .y (R)) © Homp(R/q, Homp(H{,, ,, . (R), E))
>~ Homp(R/q ®r H(dwhyz,._”yd)(R), E)
= HomR(H(dzl,yg,...,yd)(R/q)’ E)
= O7
proving the second statement (Hél)yz)m’yd)(R/q) = 0 since dim(R/q) <d). O

Lemma 3.15. Let M and N be graded R-modules, and suppose that N; is a finite-
dimensional k-space for all l. Suppose furthermore that p € *Hompg(N,D(M)) is in-
jective. Then the composite

M 24 D(D(M)) £ D(N),
where vy 1s the canonical evaluation map, is surjective.

Of course ¢* is always surjective; the claim is that, in this case, it remains surjective
when restricted to the image of M.

Proof. Consider the Matlis dual of the displayed composite, which factors as

D(D(N)) £ D(D(D(M))) 4 D(M),
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and pre-compose it with the evaluation map ¢, which is an isomorphism by assumption.
It suffices to show that the resulting composite

N 2 DDV L5 DIDD(M))) 245 D(M)

coincides with ¢ (and is therefore injective), since if ¢* o1y were not surjective, its dual
could not be injective.

Let n € N be given. The element ¢y (n) € D(D(N)) is the map D(N) — E defined
by evaluation at n, and therefore the element ¢**(¢tn(n)) € D(D(D(M))) is the map
D(D(M)) — E defined by evaluation at ¢(n) € D(M). But then ¢}, (¢** (¢tn(n))) is
simply ¢(n), since ¢}, is the dual of the evaluation map. It follows that the composite
Ly © @™ oLy coincides with ¢, as claimed. O

Finally, we prove our main result, the graded analogue of Theorem 1.1. Note that we
do not need any assumption on holonomicity, because in the graded case, Theorem 3.11
is valid under a weaker hypothesis.

Theorem 3.16. Let M be a graded D-module such that H}}p(M) is a finite-dimensional
k-space. Then

dimy (Hjp(M)) = max{s € N | 3 a surjective p € Homqp (M, E*)}.

Note that we do not claim that the map M — FE° is a homomorphism of graded
D-modules. (If we remember the grading on F, the map will be an element of
*Hompg (M, E®).)

Proof. Let ¢t = dimy H7;(M). By Theorem 3.11, we have t = dimy H}r(D(M)). By
Lemma 2.3, there exists an injective D-module homomorphism 7 : R* — D(M).

Recall from the proof of Lemma 2.3 that i is constructed by choosing a ba-
sis {p1,..., e} for HIR(D(M)) and defining i(ri,...,7¢) = ripr + - 4 repe. It
is clear that ¢ is not, in general, a graded homomorphism, but we can show that
i € "Hompg(R!,D(M)), as follows. Each 9; can be viewed as a graded homomorphism of
k-spaces D(M) — D(M)(—1), and so its kernel is a graded k-subspace of D(M). There-
fore HI5(D(M)) = NP ker(9;) is also a graded k-subspace of D(M), from which it
follows that every homogeneous component of y;, for all i, belongs again to Hy,(D(M)).
By decomposing each p; into its homogeneous components, we can write ¢ as a finite
sum of the maps (71,...,7¢) — 7 (where p1;; is the degree [ component of j;), each
of which is k- (indeed, D-) linear and homogeneous of some degree.

Now we can take the Matlis dual of i, obtaining a map i* : D(D(M)) — D(R!) =
E?. Since i is D-linear, so also is i*, by the same argument given in the proof
of Lemma 2.6. The graded components of R! are finite-dimensional k-spaces, so we

can apply Lemma 3.15, obtaining a surjection M % D(D(M)) RN ol (in fact,
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i* oty € “Homp (M, E)). The evaluation map ¢y, is D-linear (the proof is the same as
in Lemma 2.7), so i* o tps is D-linear as well. It follows that ¢ < s.

To prove the converse inequality, consider a surjective D-linear homomorphism M —
Es. If K denotes the kernel of this homomorphism, we have a short exact sequence of
D-modules 0 - K — M — E* — 0. The corresponding long exact sequence of de Rham
cohomology terminates with a surjection

Hyp(M) — Hjr(E?)

of k-spaces. By Example 2.2, dimy H},(E®) = s, from which it follows that ¢ =
dimy H}}j (M) > s, completing the proof. O

4. An alternate proof of Theorem 1.1

In this section, we give an alternate proof of Theorem 1.1. In [8] it is stated that
this theorem is dual in a sense to Lemma 2.3; our proof makes that duality explicit.
Throughout this section, R denotes the formal power series ring k[[z1,...,2,]], and D
the Matlis dual functor.

We will need a local analogue of Lemma 3.15.

Lemma 4.1. Let M be an R-module, and let N be a Matlis reflexive R-module. Suppose
that ¢ : N — D(M) is an injective R-module map. Then the composite

D(p)

M 24 D(D(M)) D(N),

where vpr s the canonical evaluation map, is surjective.

Proof. The evaluation map ¢y : N — D(D(N)) is an isomorphism by the assumption
on N, and the functor D is exact. Therefore the proof of Lemma 3.15 also works in this
case. O

An alternate proof of Theorem 1.1. Let M be a holonomic D-module and let ¢t =
dimy H}5(M). By Theorem 2.8, t = dimy, Hlp(D(M)). By Lemma 2.3, there exists an
injective D-module homomorphism R' — D(M). Since R! is a finitely generated (and
hence Matlis reflexive) R-module, by Lemma 4.1, the composite M 5 D(D(M)) —
D(R!) = E! is a surjective R-module homomorphism. By Lemma 2.7, the evaluation
map M 2% D(D(M)) is D-linear, and by Lemma 2.6, the map D(D(M)) — D(R!)
is D-linear as well, so the composite is D-linear. It follows that ¢ < s. The proof that
t > s is identical to the argument given in the proof of Theorem 3.16, since Example 2.2

applies to the formal power series case as well as the polynomial case. 0O
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5. The de Rham cohomology of a graded Matlis dual

Let R = k[[z1,...,2,]] and D = D(R, k). As observed by Hartshorne and Polini [8,
Corollary 5.2], if M is a holonomic D-module, the maximal integer s such that there
exists a surjective D-linear map M — E? is the dimension of the k-space Homqp (M, E).
Therefore, Theorem 1.1 asserts that dimy(H}5(M)) = dimg(Homp (M, E)). It is natural
to ask whether there is a similar connection between H} (M) and Ext’, (M, E) for i > 0,
and a result in the affirmative was proved by Lyubeznik.

Theorem 5.1. Let R = k[[x1,...,z,]] and D = D(R, k), and let M be a D-module.

a) Foralli>0, H,.(D(M)) = Ext'y (M, E) as k-spaces. [1/, Corollary 4.1, Theorem
dR D
1.2]. | |
(b) If M is holonomic, dimy(H}z " (M)) = dimg(Exty (M, E)) for all it > 0. [14, Theo-
rem 1.5].

Of course, part (b) of Theorem 5.1 follows immediately from part (a) and Theorem 2.8.
The proof of part (a) uses the following well-known fact (proved using an explicit free
resolution of R as a D-module) that we will also need.

Proposition 5.2. Let R be either k[xq,...,z,] or k[[z1,...,2,]], let D = D(R, k), and let
M be a D-module. Then Hip(M) = Exth (R, M) as k-spaces for all i > 0.

Since Proposition 5.2 is also true for D x-modules over a complex-analytic manifold X,
Theorems 5.1 and 5.3 are local algebraic versions of classical duality results in D-module
theory. See, for example, Kashiwara’s [12, Proposition 5.1] for the complex-analytic ver-
sion of these statements.

The following Theorem 5.3 is an analogue of Theorem 5.1 for graded D-modules over
polynomial rings. We remark that our proof of Theorem 5.3 (in the graded setting)
adapts easily to give an alternate proof of Theorem 5.1 as well.

Since the graded Matlis dual is defined in terms of the functor *Hom, the correct state-
ment will involve its right derived functors *Ext [19, p. 28]; a true statement involving
only ordinary Ext groups will be possible only for finitely generated graded D-modules,
for which *Ext and Ext coincide.

Theorem 5.3. Let R = k[x1,...,2,] and D = D(R, k), and let M be a graded D-module.

(a) Foralli>0, H.p(D(M)) = *Extiy (M, E) as k-spaces.

(b) If M is finitely generated as a D-module and has finite-dimensional de Rham coho-
mology (for instance, if M is holonomic), then dimy (H}j5"(M)) = dimy (Ext% (M, E))
for alli > 0.
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Proof. We note first that part (b) follows immediately from part (a): if M is finitely
generated as a D-module, we have *Ext’y(M,E) = Exti(M,E) [19, Corollary
2.4.7], and if M has finite-dimensional de Rham cohomology, then dimg(H}z"(M)) =
dimy (H}(D(M))) for all 4 > 0 by Theorem 3.11.

To prove part (a), we consider first the case i = 0. By definition, H},(D(M)) is the
kernel of the k-linear map D(M) — D(M)®- - -®@D(M) defined by ¢ +— (019, ..., 0n-¢).
That is, we have

Hir(D(M)) = {p € *Homg(M, E) | 9; - ¢ = 0 for all i}.

By (3.3.1), we have (0; - ¢)(m) = 9; - o(m) — ©(0; - m) for all m € M and ¢ €
“Homp (M, E). It follows that ¢ € HJ,(D(M)) if and only if 9; - ¢(m) = p(9; - m)
for all m € M and all 4, that is, if and only if ¢ is D-linear. Therefore HI,(D(M)) =
*Homop (M, E).

Since the functors { “Bxthy (—, E)} are the right derived functors of a left exact functor,
they form a (contravariant) universal §-functor as in [7, pp. 205-206] from the category
of graded D-modules to the category of k-spaces. It suffices [7, Corollary III1.1.4] to
prove that the functors {H)z(D(—))} also form a universal delta-functor, since they
coincide for ¢ = 0. Short exact sequences of D-modules (graded or otherwise) give rise
to short exact sequences of de Rham complexes and therefore to long exact sequences of
de Rham cohomology spaces; since the graded dual functor D is exact, this implies that
{H}x(D(=))} form a contravariant delta-functor.

To show this d-functor is universal, we need only show that every H,(D(—)) is co-
effaceable [7, Theorem II1.1.3A]; since the category of graded D-modules has enough
projective objects, it is enough to see that HY,(D(P)) = 0 for all i > 0 and all projective
graded D-modules P. By Proposition 5.2, we have Hi,(D(P)) = Ext} (R, D(P)), which
is isomorphic to *Extl, (R,D(P)) since R is a finitely generated graded D-module. A pro-
jective object P in the category of graded D-modules is simply a projective D-module
that is graded [19, Corollary 2.3.2, Remark 2.3.3], and any such object is a (graded)
direct summand of a graded free D-module. Since de Rham cohomology commutes with
direct sums, we may reduce the proof to the case where P is graded free and hence
further to the case P = D.

To prove that *Extéj (R,D(D)) = 0 for all ¢ > 0, we use the change-of-rings spectral
sequence for *Ext:

EDY = *BExth (L, *Ext%(D, N)) = *Exth (L, N)
for all graded D-modules L and graded R-modules N (the ungraded version is [21,

Theorem 10.75], but since the category of graded D-modules has enough projective and
injective objects, there is also a graded version). Taking L = R and N = E, we get

EP? = *Exth (R, *Exth(D, E)) = *Ext} (R, E).
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The abutment is zero for p 4+ ¢ > 0 since F is injective as a graded R-module, and the
EY%term is zero for ¢ > 0 for the same reason. Therefore the spectral sequence degener-
ates at Ey. For ¢ = 0, we have E2° = *Ext, (R, *Homp(D, E)) = *Ext}, (R, D(D)) =0
for all p > 0, completing the proof. O

6. A remark on F

In this final section, we observe that E is not an injective object in the category of
graded holonomic D-modules.

Example 6.1. Let R = k[z] (or k[[z]]), let d = £ € D, and consider the quotients of D
by the (left) ideals D -z, D-xzd, and D -d. These quotients fit into a short exact sequence

0= D/(D-2) L D/(D 2d) = D/(D-d) =0

of (left) D-modules, where the map D/(D - z) RN D/(D - zd) is right multiplication by
d. We have D/(D - z) = E and D/(D - d) = R as D-modules, so the corresponding long
exact sequence in de Rham cohomology takes the form

0— Hc(l)R(E) - HgR(D/(D - xd)) — H((iJR(R)
— Hip(E) = Hijp(D/(D - zd)) = Hjp(R) — 0.

By Example 2.2, the leftmost and rightmost terms are 0, from which it follows that
HY(D/(D - zd)) and Hip(D/(D - zd)) are either both zero or both isomorphic to k.
Consider

Hin(D/(D - 2d) = gl "0

On the one hand, since dzv — zd = 1 in D, we have dv = T in D/(D - zd), where the
overline denotes the class of an element of D in the quotient. If we write dx for the
class of dz modulo d(D/(D - xd)), we therefore also have dr = 1. On the other ‘hand,
d(T) € d(D/(D - zd)), so d(T) = 0 in (D/(D - zd))/d(D/(D - zd)). Clearly d(Z) = d, so
0 = T, from which it follows that H},(D/(D-zd)) = 0 (and therefore H)y(D/(D-zd)) = 0
as well).

In [15, Corollary 2.10], it is proved that E is an injective object in the category
of graded F-finite F-modules in characteristic p > 0. This is rather surprising since,
according to [16, Example 4.8], F is not an injective object in the category of F-modules
or the category of F-finite F-modules. Since F-finite F-modules (in characteristic p) are
generally considered as counterparts of holonomic D-modules (in characteristic zero),
it is natural to ask if F is also an injective object in the category of graded holonomic
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D-modules. Example 6.1 implies that this is not the case, which we state in the following
proposition.

Proposition 6.2.

(a) If R = K[[z]], then E is not an injective object in the category of holonomic
D-modules (a fortiori, in the category of D-modules).

(b) If R = k[x], then E is not an injective object in the category of graded holonomic
D-modules.

Proof. Let M denote the D-module D/(D - zd) of Example 6.1. In both cases, Exam-
ple 6.1 describes a short exact sequence 0 - F — M — R — 0 of D-modules such that
H} (M) = 0. Note that in both cases, this is an exact sequence of holonomic D-modules.

In the case R = k[[z]], Theorem 1.1 implies that there does not exist a surjective
homomorphism M — E of D-modules, and hence the sequence cannot split. Hence E is
not an injective object in the category of holonomic D-modules, proving part (a).

In the case R = k[z], since z, d, and xd are homogeneous elements of D, the objects
in the short exact sequence are graded holonomic D-modules. The map E LM s
homogeneous of degree —1. By a degree shift, we obtain a short exact sequence

0—-F—>M(-1)—-R—0

of graded holonomic D-modules. By Theorem 3.16, there does not exist a surjective
homomorphism M — FE of D-modules, and hence the sequence cannot split. Hence
E is not an injective object in the category of graded holonomic D-modules, proving
part (b). O

Remark 6.3. Let R be either k[z] or k[[z]]. Theorems 5.3 and 5.1 imply that
dimy, Ext, (R, E) = dimy, H}5(R) = 1 and hence Exty (R, E) can be generated by
the nontrivial extension 0 - £ — M — R — 0. Since both F and R are holonomic
(and graded holonomic when R = k[z]), if Ext! is defined in the category of holonomic
D-modules (and also in the category of graded holonomic D-modules when R = klx],
respectively) using Yoneda’s characterization of Ext!, we have Extlﬂhol(R, E) 2k (and
Ext%’graded ol (Ry E) = k, respectively).

Remark 6.4. Let R = k[xy,...,z,] where k is a field of characteristic p > 0 and
m = (21,...,2y,). In [15, Theorem 2.9], Lyubeznik, Singh, and Walther prove that each
nonzero graded F-finite F-module M admits a graded F-finite submodule N such that
M/N is supported in m and N does not admit any composition factor whose support
is contained in {m}. Example 6.1 shows that the analogue of this result for graded
holonomic D-modules over polynomial rings in characteristic zero does not hold.
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