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Abstract
Let X be a closed equidimensional local complete intersection subscheme of a smooth
projective scheme Y over a field, and let Xt denote the t-th thickening of X in Y . Fix an
ample line bundleOY (1) on Y . We prove the following asymptotic formulation of the
Kodaira vanishing theorem: there exists an integer c, such that for all integers t ≥ 1,
the cohomology group Hk(Xt ,OXt ( j)) vanishes for k < dim X and j < −ct . Note
that there are no restrictions on the characteristic of the field, or on the singular locus
of X . We also construct examples illustrating that a linear bound is indeed the best
possible, and that the constant c is unbounded, even in a fixed dimension.

1 Introduction

Let Y be a projective scheme over a field, and let X be a closed subscheme defined by
an ideal sheaf I ⊂ OY . For integers t ≥ 1, let Xt denote the t-th thickening of X in Y ,
i.e., the closed subscheme of Y defined by I t . In [2], we proved the following version
of the Kodaira vanishing theorem for thickenings of local complete intersection (lci)
subvarieties of projective space P

n :

Theorem 1.1 [2, Theorem 1.4] Let X be a closed lci subvariety of P
n over a field of

characteristic zero. Then, for each t ≥ 1 and k < codim(Sing X), one has

Hk(Xt , OXt ( j)) = 0 for j < 0.
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When X is smooth and t = 1, this is precisely what is obtained from the Kodaira
vanishing theorem. There are well-known counterexamples in the case of positive
characteristic [9,12]; the condition on the singular locus is needed as well in view of
the examples from [1]. Nonetheless, as we prove here, there is an asymptotic version
of the above vanishing theorem that holds in good generality:

Theorem 1.2 Let Y be a smooth projective scheme over a field, equippedwith an ample
line bundleOY (1). Let X be a closed equidimensional lci subscheme of Y . Then there
exists an integer c ≥ 0, such that for each t ≥ 1 and k < dim X, one has

Hk(Xt , OXt ( j)) = 0 for all j < −ct,

where, for a closed subscheme Z ⊂ Y and integer j , we writeOZ ( j) := OY (1)⊗ j |Z .
Unlike Theorem 1.1 that relies on Hodge-theoretic input (via Kodaira vanishing),

the proof of Theorem 1.2 only uses Serre vanishing; this is why we do not need any
assumption on the characteristic of the field in Theorem 1.2.

In the case where Y = P
n , withOY (1) the standard ample line bundle, Theorem 1.2

answers [6, Questions 7.1 and 7.2] in the lci case; see Corollaries 3.3 and 3.4. The
linear bound in Theorem 1.2 is best possible in view of Example 4.1 where, for each
integer c ≥ 2, we construct an lci scheme X of dimension 1 such that, for each t ≥ 1,
the cohomology group H0(Xt , OXt ( j)) vanishes for j ≤ −ct , and is nonzero for
j = −ct + 1. Theorem 1.2 may fail—even in characteristic zero—when X is not lci,
see Example 4.2, or when X is lci but not equidimensional, see Example 4.3.

2 Preliminaries

Let X be a projective scheme over a field F. Set d := dim X . We use Dcoh(X) to
denote the derived category of complexes

· · · −−−−→ Pi−1 −−−−→ Pi −−−−→ Pi+1 −−−−→ · · ·
of OX -modules with coherent cohomology, and Db

coh(X) for the full triangulated
subcategory of bounded complexes, i.e., those with only finitely many nonzero coho-
mology groups. We use D≤a

coh(X) (resp. D≥a
coh(X)) for complexes whose cohomology

vanishes for i > a (resp. i < a). It is straightforward that each complex in D≤a
coh(X)

(resp. D≥a
coh(X)) is quasi-isomorphic to a complex P• such that Pi = 0 for i > a (resp.

i < a). In particular, each complex in Db
coh(X) is quasi-isomorphic to a complex P•

such that Pi �= 0 only for finitely many integers i .
We use D≤a(F) to denote the derived category of complexes of F-vector spaces

whose cohomology vanishes for i > a, with D≥a(F) defined analogously.
Since the global section functor R�(X ,−) sends a coherent sheaf E on X to a

complex in D≤d(F), and since each element P in Db
coh(X) ∩ D≤a

coh(X) is represented
by a complex P• such that Pi �= 0 only for finitely many i and Pi = 0 for i > a, it
follows by applying the hypercohomology spectral sequence to P• that the complex
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R�(X , P•) lies in D≤a+d(F); while we do not need it here, this is true even without
the boundedness assumption.

A key technical ingredient is the derived m-th divided power functor

�m : D≤0
coh(X) −→ D≤0

coh(X)

constructed in [8], see also [10, Chapter 25] or [11]. We summarize the properties of
�m that we use in this paper. For a locally free sheaf E of finite rank, �m is the usual
m-th divided power of E . In particular, one has in this case,

�m(E) = Symm(E∨)∨,

where (−)∨ = Hom(−,OX ). By [10, 25.2.4.1], the functor �m preserves D≤a
coh(X)

for all integers a ≤ 0. Just as divided powers are not an additive functor, neither is
�m ; the functor �m does not preserve shifts or exact triangles in general. However, �
is compatible with direct sums in the following sense: if P = ⊕

Pi is a (finite) direct
sum, then

�m(P) ∼=
⊕

ai≥0,
∑

ai=m

⊗

i

�ai (Pi ).

More generally, by [8, 5.4] or [10, 25.2], �∗ := ⊕
m �m extends to a monoidal

functor on the filtered derived category, which is compatible with the formation of
the associated graded object in the above sense. In particular, if P• is a complex with
a finite filtration whose associated graded object is

⊕
Pi , then �m(P•) has a finite

filtration with the associated graded object given by

⊕

ai≥0,
∑

ai=m

⊗

i

�ai (Pi ).

In our applications, an ample line bundleOX (1) on X is usually fixed at the outset.
Thus, for E ∈ Dcoh(X) and any integer n, we write E(n) := E ⊗OX (OX (1))⊗n as
expected.

3 Proof of themain theorem, and some consequences

To prove Theorem 1.2, we shall need a result which, very roughly speaking, is a variant
of Serre vanishingwhere tensor powers of a sufficiently ample line bundle are replaced
by divided powers of a sufficiently ample vector bundle. Tomake the proof flow better,
it is convenient to formulate a more general statement involving complexes as follows:

Proposition 3.1 Let X be a projective scheme over a field F, equipped with an ample
line bundle OX (1). Fix a coherent sheaf F and E ∈ Db

coh(X) ∩ D≤0
coh(X). Then, for

c 
 0, one has

R�
(
X , �m(E(c)

) ⊗ F(l)) ∈ D≤0(F)
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for all integers l ≥ 0 and m > 0.

The idea of the proof is to choose a representative of E where each term is a direct
sumof twists of the structure sheafOX , and thenuseSerre vanishing.However, to avoid
working with unbounded complexes, we only choose an “approximate representative”
for E , i.e., one that does not change cohomology in a certain range of degrees. The
key point is Lemma 3.2, which ensures that applying derived divided powers to a shift
of a “positive” complex can only increase “positivity.”

Proof Fix a coherent sheaf F on X as in the statement of the proposition. By Serre
vanishing, there exists an integer j0 > 0 such that Hi (X , F( j)) = 0 for all i > 0 and
j ≥ j0. Stated differently, R�(X , F( j)) ∈ D≤0(F) for j ≥ j0.
For the purpose of the proof, we may replace E by any complex quasi-isomorphic

to E . By constructing a resolution of E whose terms consist of finite direct sums of
twists of OX , we may hence assume that E is bounded above by zero, and that each
Ei is a finite direct sum of twists ofOX . Set d := dim X . For an integer r with r > d,
set P• to be

0 −−−−→ E−r −−−−→ E−(r−1) −−−−→ · · · −−−−→ E−1 −−−−→ E0 −−−−→ 0.

Then each Pi is a finite direct sum of twists ofOX , and the cokernel Q• of the injective
map P• −→ E• lies in Db

coh(X) ∩ D≤−r
coh (X).

For each integer c, we view

ϕ : P•(c) ↪−→ E•(c)

as a one-step decreasing filtration of E•(c), normalized so that gr1(E•(c)) = P•(c)
and gr0(E•(c)) = Q•(c). By the compatibility of �m with filtrations, as discussed in
§2, we obtain an induced filtration on �m(E•(c)) with the associated graded pieces
given by

gra(�m(E•(c)) = �a(P•(c)) ⊗ �b(Q•(c)), with a + b = m,

where negative divided powers are understood to be 0. Thus, the graded pieces vanish
unless 0 ≤ a ≤ m, and a = 0 gives the “top” graded piece (i.e., the quotient) while
a = m gives the “bottom” graded piece (i.e., a subobject). In particular, the map

�m(ϕ) : �m(P•(c)) −→ �m(E•(c))

identifies with the inclusion

grm(�m(E•(c))) �←−−−− Film(�m(E•(c))) −−−−→ �m(E•(c)),

and hence its cokernel (which we regard as a representative for its cone in the derived
category) carries a filtration whose graded pieces have the form

�a(P•(c)) ⊗ �b(Q•(c)), with a + b = m and b > 0.
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Since �a preserves D≤i
coh(X) for i ≤ 0, we have �a(P•) ∈ D≤0

coh(X) and �b(Q•) ∈
D≤−d
coh (X) provided b > 0, and hence their tensor product lies in D≤−d

coh (X). Since

tensoring with F( j) preserves D≤−d
coh (X), we see that the cone of

�m(P•(c)) ⊗ F( j) −→ �m(E(c)) ⊗ F( j)

also lies in D≤−d
coh (X) for all m ≥ 0 and c, j ∈ Z.

Since R�(X ,−) takes D≤−d
coh (X) to D≤0(F), the cone of

R�(X , �m(P•(c)) ⊗ F( j)) −→ R�(X , �m(E(c)) ⊗ F( j))

lies in D≤0(F) for allm ≥ 0 and c, j ∈ Z. It is thus sufficient to prove the proposition
when E is replaced by P•; indeed, for the remainder of the proof, we take E to be P•.

By construction, Pi = 0 for i > 0 and i < −r . Consider the filtration on P•(c)
with the i-th filtered piece given by

0 −−−−→ P−i (c) −−−−→ · · · −−−−→ P0(c) −−−−→ 0.

By the compatibility of �m with filtrations, we get that �m(P•(c)) has a filtration with
associated graded object

⊕

ai≥0,
∑

ai=m

�a0(P0(c)) ⊗ �a1(P−1(c)[1]) ⊗ · · · ⊗ �ar (P−r (c)[r ])

for each m ≥ 0 and c ∈ Z. Tensoring with F( j), we see that for each c, j ∈ Z and
m ≥ 0, the complex �m(P•(c)) ⊗ F( j) has a finite filtration with associated graded
object

⊕

ai≥0,
∑

ai=m

�a0(P0(c)) ⊗ �a1(P−1(c)[1]) ⊗ · · · ⊗ �ar (P−r (c)[r ]) ⊗ F( j).

It is thus enough to show: for m > 0, j ≥ 0, and c 
 0, applying R�(X ,−) to each
of the terms in the direct sum above produces an object in D≤0(F). Fix such a term
corresponding to an index of the form m = ∑

i ai with ai ≥ 0.
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As each P−i is a finite direct sum of twists of the structure sheaf, and only finitely
many terms P−i are nonzero, we know that for c 
 0, each P−i (c) is a direct sum
of line bundles of the form OX ( j) for j ≥ j0, where j0 was the integer chosen at
the start of the proof. By Lemma 3.2 below, there are now two possibilities for the
term �ai (P−i (c)[i]) appearing above: if ai = 0, we simply getOX , while for ai > 0,
we get a complex which is a direct sum of complexes of the form OX ( j) ⊗F V with
V ∈ D≤0(F). Since m = ∑

i ai is positive, we must have ai > 0 for at least one i .
Thus, the complex displayed above is a direct sum of complexes of the form F( j)⊗FV
for some j ≥ j0 and V ∈ D≤0(F). By our choice of j0, we know that

R�(X , F( j) ⊗F V ) ∈ D≤0(F)

if j ≥ j0 and V ∈ D≤0(F), which completes the proof. ��
Lemma 3.2 Let X be a projective scheme over a field F, equipped with an ample line
bundle OX (1). Let b, j1, . . . , js be integers, where b ≥ 0, and set

E :=
s⊕

i=1

OX ( ji )[b],

which is a shift of a direct sum of twists ofOX . Then, for each integer a ≥ 0, one has

�a(E) =
⊕

ai≥0,
∑

ai=a

OX (a1 j1 + · · · + as js) ⊗F �a1(F[b]) ⊗F · · · ⊗F �as (F[b]),

where each �ai (F[b]) is a complex of F-vector spaces lying in D≤0(F).

Proof As �∗(−) preserves D≤0(F), the containment in D≤0(F) asserted at the end is
automatic. The rest follows from the behavior of �a under direct sums, and the fact
that

�a(OX ( j)[b]) � OX (aj) ⊗F �a(F[b])

for integers a, b, j with a, b ≥ 0. ��
Proof of Theorem 1.2 Set d := dim X , and let I ⊂ OY be the ideal sheaf of the lci
subscheme X ↪−→ Y , so I/I2 is the conormal bundle of this closed immersion.
Since X is lci and equidimensional, its dualizing complex has the form ωX [d] for a
line bundle ωX , so Serre duality says

Hi (X , OX ( j)) ∼= Hd−i (X , ωX (− j))∨.

By Serre vanishing, there exists an integer c0 ≥ 1 such that

Hd−i (X , ωX (− j)) = 0 for all − j ≥ c0 and i < d.
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Equivalently, we have

R�(X , OX ( j)) ∈ D≥d(F) for j ≤ −c0.

We shall reduce the rest of the proof to the following assertion:
There exists an integer c1 ≥ 0 such that, for each integer s ≥ 1, one has

R�
(
X , Syms(I/I2)( j)

) ∈ D≥d(F) for j < −c1s. (3.1)

We claim that (3.1) implies the theorem. Indeed, given an integer t ≥ 1 as in the
theorem, summing the conclusion of (3.1) for s = 1, . . . , t − 1 implies that

R�
(
Xt , I/I t) ∈ D≥d(F)

for j < −c1(t−1) = −c1t+c1, and hence also for j < −c1t . Taking c = max(c0, c1)
gives the theorem.

It remains to prove (3.1). LetN := (I/I2)∨ denote the normal bundle. Using Serre
duality, it suffices to show that there exists c1 ≥ 0, such that for each s ≥ 1, one has

R�
(
X , �s(N )( j) ⊗ ωX

) ∈ D≤0(F) for j > c1s.

But this follows from Proposition 3.1, since

�s(N )(as + b) = �s(N (a))(b)

for all integers a, b. ��
We record implications of Theorem 1.2 for local cohomology modules. By a stan-

dard graded ring over a field F, we mean an N-graded ring R with R0 = F that
is generated, as an F-algebra, by finitely many elements of R1. Let R be a standard
graded polynomial ring over a field, and let I be a homogeneous ideal. For t ≥ 1, set
Xt := Proj R/I t . Let j be an arbitrary integer. Using m to denote the homogeneous
maximal ideal of R, one has an exact sequence relating local cohomology and sheaf
cohomology:

0 −−−−→ H0
m(R/I t ) j −−−−→ (R/I t ) j −−−−→ H0(Xt , OXt ( j))

−−−−→ H1
m(R/I t ) j −−−−→ 0.

(3.2)

Moreover, for each k ≥ 1, one has

Hk(Xt , OXt ( j)) = Hk+1
m (R/I t ) j .
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The asymptotic behavior of lengths of local cohomology modules has been studied
extensively, see [4] and the references therein. For R an analytically unramified local
ring and I an arbitrary ideal, the limit

lim
t−→∞ �(H0

m(R/I t ))/tdim R

exists by [4, Corollary 6.3]. In [5, Theorem 1.2] the authors give an example where
this limit is irrational, for I defining a smooth complex projective curve. In the context
of local cohomology, Theorem 1.2 yields the following:

Corollary 3.3 Let R be a standard graded polynomial ring over a field, and m the
homogeneous maximal ideal of R. Suppose I is a homogeneous ideal such that R/I
is equidimensional and Proj R/I is lci. Then

lim sup
t−→∞

�
(
Hk
m(R/I t )

)

tdim R
< ∞

for each k < dim R/I .

Proof The case k = 0 is covered by [4, Corollary 6.3], so assume k ≥ 1. By Theo-
rem 1.2 applied to Y = P

n , with OY (1) being the standard ample line bundle, there
exists an integer c ≥ 0, such that for each t ≥ 1 and k < dim R/I , one has

Hk
m(R/I t ) j = 0 for j < −ct .

The result now follows from [6, Theorem 5.3]. ��
Corollary 3.4 Let R be a standard graded polynomial ring over a field, with homoge-
neous maximal ideal m. Suppose I is a homogeneous radical ideal such that R/I is
equidimensional and �

(
Hk
m(R/I t )

)
< ∞ for each k < dim R/I and t ≥ 1. Then, for

each k < dim R/I ,

lim sup
t−→∞

�
(
Hk
m(R/I t )

)

tdim R
< ∞.

Proof For a radical ideal a in a regular local ring A, a theorem of Cowsik and Nori
implies that A/at is Cohen–Macaulay for each t ≥ 1 if and only if A/a is a complete
intersection ring, [3, page 219]. The finiteness of the length of each local cohomology
module Hk

m(R/I t ), for k < dim R/I , implies that (R/I t )p is Cohen–Macaulay for
each t ≥ 1 and p ∈ Spec R�{m}. It follows that (R/I )p is a complete intersection ring
for each p �= m, and hence that Proj R/I is lci. The desired result is now immediate
from Corollary 3.3.

Remark 3.5 In the recent paper [7], the authors prove the following result: let R be a
standard graded ring over a field of characteristic zero; letm denote the homogeneous
maximal ideal of R. Suppose I is a homogeneous ideal such that R/I is Cohen–
Macaulay and of dimension at least 2, and I is locally a complete intersection on
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Spec R�{m}. Fix an integer k with k < dim R/I . Then, for t ≥ 1, the lowest degree
in which the local cohomology module Hk

m(R/I t ) is nonzero is bounded below by a
linear function of t .

The hypotheses in [7] are somewhat different from those in Theorem 1.2 of the
present paper, where there is no assumption on the characteristic, nor do we require
the ring R/I to be Cohen–Macaulay.

4 Examples

The following example, which is a variation of [2, Example 5.7], shows that the bound
in Theorem 1.2 cannot be better than linear; the example also shows that the constant c
in the theorem may be unbounded, even when dim X is fixed.

Example 4.1 Consider the polynomial ring R := F[x, y, u, v, w], where F is a field
of arbitrary characteristic. Fix an integer c ≥ 2, and set

I := (uy − vx, vy − wx) + (u, v, w)c.

The ring R/I has dimension 2, and the elements x, y form a system of parameters.
Since

(R/I )x = F[x, x−1, y, u]/(uc) and (R/I )y = F[x, y, y−1, w]/(wc),

one sees that X := Proj R/I is lci. We prove that for all integers t ≥ 1, the asymptotic
vanishing in this example takes the form H0(Xt , OXt ( j)) = 0 for j ≤ −ct , whereas

H0(Xt , OXt (−ct + 1)) �= 0.

The argument is via local cohomology; the sequence (3.2) shows that for j < 0, one
has

H0(Xt , OXt ( j)) = H1
m(R/I t ) j .

We analyze H1
m(R/I t ) using the Čech complex

0 −−−−→ R/I t −−−−→ (R/I t )x ⊕ (R/I t )y −−−−→ (R/I t )xy −−−−→ 0,

and claim that
[
( u

x2

)ct−1
,

(
w

y2

)ct−1
]

∈ (R/I t )x ⊕ (R/I t )y (4.1)

determines a nonzero element of H1
m(R/I t )−ct+1. To verify that the displayed element

is indeed a Čech cocycle, it suffices to verify that

(uy2)ct−1 − (wx2)ct−1 ∈ I t .
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Since the ideal I contains uy2 − wx2 as well as (uy2)
c
, it suffices to check that

(uy2)ct−1 − (wx2)ct−1 ∈
(
uy2 − wx2, (uy2)

c
)t

in the polynomial ring F[x, y, u, v, w], and hence in its subring F[uy2, wx2]. Setting
a := uy2 and b := wx2 for notational simplicity, it suffices to check that

act−1 − bct−1 ∈ (
a − b, ac

)t

in the polynomial ring F[a, b]. Replacing b by a − b, we need to show

act−1 − (a − b)ct−1 ∈ (
b, ac

)t
,

which is evident by considering the binomial expansion of (a−b)ct−1. This completes
the argument that (4.1) is indeed a Čech cocycle.

To verify that (u/x2)
ct−1

is nonzero in (R/I t )x , note that its image under the
surjection

(R/I t )x −�
(

R

(uy − vx, vy − wx) + (u, v, w)ct

)

x
= F[x, x−1, y, u]/(uct )

is nonzero. As it has negative degree, the element (4.1) cannot be in the image of

R/I t −→ (R/I t )x ⊕ (R/I t )y,

which completes the argument that

H0(Xt , OXt (−ct + 1)) = H1
m(R/I t )−ct+1 �= 0.

Next, we examine the intersection of (R/I t )x and (R/I t )y in (R/I t )xy . For this,
consider the Z

3-grading with

deg u = (2, 0,−1), deg x = (1, 0, 0),
deg v = (1, 1,−1), deg y = (0, 1, 0),
degw = (0, 2,−1).

Each homogeneous element of (R/I t )x has degree (i, j, k) with j ≥ 0 and k > −ct ,
whereas, in (R/I t )y , each homogeneous element has degree (i, j, k) with i ≥ 0
and k > −ct . Thus, a homogeneous element in the intersection must have degree
(i, j, k) satisfying i ≥ 0, j ≥ 0, and k > −ct . But the Z

3-grading specializes to the
standard N-grading on R under the map

Z
3 −→ Z with (i, j, k) �−→ i + j + k,
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implying that each homogeneous element in the kernel of

(R/I t )x ⊕ (R/I t )y −→ (R/I t )xy

has degree greater than −ct . It follows that

H0(Xt , OXt ( j)) = H1
m(R/I t ) j = 0 for j ≤ −ct .

Theorem 1.2 may fail if X is not lci:

Example 4.2 Let Z denote the Segre embedding of P
1 × P

2 in P
5, over a field F of

characteristic zero, and set X ⊂ P
6 to be the projective cone over Z . Then X has

dimension 4, and is Cohen–Macaulay though not lci. If t ≥ 2, we claim that

H3(Xt , OXt ( j)) �= 0 for each j < 0.

By [2, Example 5.1], if t ≥ 2, then H2(Zt , OZt ) �= 0, i.e., H3
mR

(R/I t )
0

�= 0,

where R/I is the homogeneous coordinate ring for Z ⊂ P
5. But then X ⊂ P

6 has
homogeneous coordinate ring S/I S, where S := R[y] with y being a new indetermi-
nate, so

H4
mS

(S/I t S) ∼= H3
mR

(R/I t ) ⊗F H1
(y)(F[y])

has a nonzero graded component in each negative degree, which proves the claim.

Lastly, Theorem 1.2 may fail if X is lci but not equidimensional:

Example 4.3 Consider the polynomial ring R := F[x, y, z], where F is a field of
arbitrary characteristic, and set I := (xy, xz). Then R/I has dimension 2, and X :=
Proj R/I is smooth, hence lci. Fix t ≥ 1. The exact sequence

0 −−−−→ R/I t −−−−→ R/(xt ) ⊕ R/(y, z)t −−−−→ R/(xt + (y, z)t ) −−−−→ 0

induces an isomorphism

H1
m(R/I t ) j

∼= H1
m(R/(y, z)t ) j for j < 0

which shows that H1
m(R/I t ) has a nonzero graded component in each negative degree,

so

H0(Xt , OXt ( j)) �= 0 for each j < 0.
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