
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lagb20

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: https://www.tandfonline.com/loi/lagb20

A dichotomy for the injective dimension of F-finite
F-modules and holonomic D-modules

Nicholas Switala & Wenliang Zhang

To cite this article: Nicholas Switala & Wenliang Zhang (2019) A dichotomy for the injective
dimension of F-finite F-modules and holonomic D-modules, Communications in Algebra, 47:6,
2525-2539, DOI: 10.1080/00927872.2018.1501574

To link to this article:  https://doi.org/10.1080/00927872.2018.1501574

Published online: 24 Jan 2019.

Submit your article to this journal 

Article views: 16

View Crossmark data



A dichotomy for the injective dimension of F-finite
F-modules and holonomic D-modules

Nicholas Switala and Wenliang Zhang

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA

Dedicated to Professor Gennady Lyubeznik on the occasion of his 60th birthday.

ABSTRACT
Let M be either a holonomic D-module over a formal power series ring
with coefficients in a field of characteristic zero, or an F-finite F-module
over a noetherian regular ring of characteristic p> 0. We prove that
injdimRM enjoys a dichotomy property: it has only two possible values,
dimSuppRM�1 or dimSuppRM.
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1. Introduction

This article is concerned with the injective dimension of two kinds of modules: D-modules M over a
formal power series ring R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, and F-modules M
over a noetherian regular ring R of characteristic p> 0. In both cases, the upper bound

injdimRM � dimSuppRM (1.0.1)

holds by the foundational work of Lyubeznik ([6, Theorem 2.4(b)] in the D-module case and
[7, Theorem 1.4] in the F-module case). Here, injdimRM denotes the injective dimension of M as an
R-module. Lyubeznik’s proof also shows that (1.0.1) is true if R is a polynomial ring instead of a for-
mal power series ring. In the special case of local cohomology in positive characteristic, (1.0.1) is due
originally to Huneke and Sharp [5, Corollary 3.9]; in equicharacteristic zero, Lyubeznik shows further
[6, Theorem 3.4(b)] that (1.0.1) holds for the local cohomology of any noetherian regular ring.

In either setting, if p � R is a prime ideal of dimension d and EðR=pÞ is the R-module injective
hull of R=p, then EðR=pÞ is a D-module (resp. F-module) with injective dimension zero whose
support has dimension d. It is clear from this example that without imposing further hypotheses,
there does not exist a nontrivial lower bound for injdimRM in terms of dimSuppRM.

Our main result is the following theorem.

Main Theorem (Theorems 6.2 and 7.2). Let M be either a holonomic D-module over R ¼
k½½x1; :::; xn�� where k is a field of characteristic zero, or an F-finite F-module over a noetherian
regular ring R of characteristic p> 0. Then injdimRM � dimSuppRM�1.
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Our Main Theorem combined with the upper bound (1.0.1) shows that injdimRM (with M as
in the theorem) enjoys a dichotomy property: it has only two possible values, either
dimSuppRM�1 or dimSuppRM.

In the case of a polynomial ring R ¼ k½x1; :::; xn� over a characteristic-zero field, Puthenpurakal
[10, Corollary 1.2] has shown that injdimRM ¼ dimSuppRM whenever M is a local cohomology
module of R. This result was strengthened by Zhang [12, Theorem 4.5] who established this
equality for all holonomic D-modules over polynomial rings, as well as for all F-finite F-modules
over certain regular rings (finitely generated algebras over an infinite, positive-characteristic field).
In the case of a formal power series ring, or in the general case of a positive-characteristic regular
local ring, this equality need not hold: indeed, in both cases, the injective hull of R=p where p is
a prime ideal of dimension one provides a counterexample (see Remark 6.3 below).

The proof of our Main Theorem appears in Sections 6 and 7, following the most technical
part of the article: Section 5, an in-depth study of the last terms of minimal injective resolutions
over the rings considered in our Main Theorem as well as their localizations. One key observation
is that the assumption that R is Jacobson in [12, Theorem 3.3] can be weakened; to this end, we
introduce a notion of pseudo-Jacobson rings in Section 4.

During the preparation of this article, we were made aware of the article arXiv:1603.06639v1,
which investigates the injective dimension of local cohomology modules Hj

IðRÞ when R is a for-
mal power series ring in characteristic zero and the dimension of the support of Hj

IðRÞ is at most
4. In November 2017 an updated version, arXiv:1603.06639v2, appeared; it investigates the inject-
ive dimension of F-finite F-modules over a regular local ring in characteristic p> 0 and modules
of the form ðHj

IðRÞÞg over a regular local ring R in characteristic zero (here g 2 R). The approach
in our article is different: in order to investigate the injective dimension of holonomic D-modules,
we introduce and study the notion of pseudo-Jacobson rings. Such an approach works well for
both holonomic D-modules and F-finite F-modules, further illustrating the nice parallel between
these two classes of modules.

2. D-module and F-module preliminaries

In this section, we review some basic notions concerning D-modules, F-modules, and local coho-
mology that will be needed throughout the article. We begin with general notation and
conventions.

Throughout the article, a ring is commutative with 1 unless otherwise specified, and a local
ring is always noetherian.

If R is a noetherian ring and M is an R-module, we will denote the minimal injective reso-
lution of M as an R-module by E�RðMÞ (or E�ðMÞ if R is understood). The R-module E0RðMÞ ¼
E0ðMÞ (the injective hull of M) will simply be denoted ERðMÞ (or E(M)). We denote the set of
associated primes of M by AssM or AssRM.

If R is a ring and S � R is a multiplicative subset, we will use without further comment the
one-to-one correspondence between prime ideals of S�1R and prime ideals of R that do not meet
S. In particular, if we write “let S�1p be a prime ideal of S�1R”, it is to be understood that p � R
is a prime ideal and p \ S ¼ Ø.

2.1. D-modules

Our basic references for D-modules are EGA [3] and the book [1] of Bj€ork.
Let R be a ring and k � R a subring. We denote by D(R, k) (or simply D, if R and k are

understood) the (usually non-commutative) ring of k-linear differential operators on R, which is
a subring of EndkðRÞ. This ring is recursively defined as follows [3, §16]. A differential operator
R ! R of order zero is multiplication by an element of R. Supposing that differential operators of
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order � j�1 have been defined, d 2 EndkðRÞ is said to be a differential operator of order � j if,
for all r 2 R, the commutator ½d; r� 2 EndkðRÞ is a differential operator of order � j�1, where
½d; r� ¼ dr�rd (the products being taken in EndkðRÞ). We write DjðRÞ for the set of differential
operators on R of order � j and set DðR; kÞ ¼ [jDjðRÞ. If d 2 DjðRÞ and d0 2 DlðRÞ, it is easy to
prove by induction on jþ l that d0 � d 2 DjþlðRÞ, so D(R, k) is a ring.

The most important case for us will be where k is a field of characteristic zero and R ¼
k½½x1; :::; xn�� is a formal power series ring over k. In this case, the ring D, viewed as a left R-module,
is freely generated by monomials in the partial differentiation operators @1 ¼ @

@x1
; :::; @n ¼ @

@xn
([3,

Theorem 16.11.2]: here the characteristic-zero assumption is necessary). This ring has an increasing
filtration fDð�Þg, called the order filtration, where Dð�Þ consists of those differential operators of
order � �. The associated graded object grðDÞ ¼ �Dð�Þ=Dð��1Þ with respect to this filtration is
isomorphic to R½f1; :::; fn� (a commutative ring), where fi is the image of @i in Dð1Þ=Dð0Þ � grðDÞ.

By aD-modulewe alwaysmean a leftmodule over the ringD unless otherwise specified. IfM is a finitely
generated D-module, there exists a good filtration fMð�Þg on M, meaning that M becomes a filtered left
D-module with respect to the order filtration onD and grðMÞ ¼ �Mð�Þ=Mð��1Þ is a finitely generated
grðDÞ-module.We let J be the radical of AnngrðDÞgrðMÞ � grðDÞ and set dðMÞ ¼ dim grðDÞ=J. The ideal
J, and hence the number d(M), is independent of the choice of good filtration on M. By Bernstein’s the-
orem, ifM 6¼ 0 is a finitely generatedD-module, we have n � dðMÞ � 2n.

Definition 2.1. Let M be a finitely generated D-module. We say that M is holonomic if M¼ 0
or d(M)¼ n.

The ring R itself is a holonomic D-module. More generally, local cohomology modules of R
are holonomic D-modules (Proposition 2.5(c)). The ring D is a holonomic D-module if and only
if n¼ 0 (so D¼ k), since dðDÞ ¼ 2n.

We collect in the following proposition the basic results on D-modules that we will use below.

Proposition 2.2. Let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, and let M be a
D(R, k)-module.

a. injdimRM � dimSuppRM [6, Theorem 2.4(b)];
b. If S � R is a multiplicative subset, S�1M is both a D-module and a DðS�1R; kÞ-module; and if

M is of finite length as a D-module, S�1M is of finite length as a DðS�1R; kÞ-module
([12, Proposition 2.5]; this is true for any domain R and subring k);

c. If M is finitely generated as a D-module (in particular, if M is holonomic), then M has finitely
many associated primes as an R-module [6, Theorem 2.4(c)];

d. If M is holonomic, then M is of finite length as a D-module [1, Theorem 2.7.13];
e. If 0 ! M0 ! M ! M00 ! 0 is a short exact sequence of D-modules and D-linear maps, then

M is holonomic (resp. finite length) if and only if M0 and M00 are holonomic (resp.
finite length).

As remarked in [6, 2.2(c)], a proof of the “holonomic” part of Proposition 2.2(e) is analogous to
the proof of [1, Proposition 1.5.2] (the “finite length” part is a well-known fact about modules over
any ring). We note that part (b) of the proposition does not assert that if M is of finite length as a D-
module, so is S�1M. This is not known even in the case where S�1R ¼ Rf for a single element f 2 R.
Part (b) only makes the weaker claim that S�1M is of finite length as a DðS�1R; kÞ-module.

2.2. F-modules

Our basic reference for F-modules is the article [7] of Lyubeznik in which they were introduced.
Let R be a noetherian regular ring of characteristic p> 0. Let FR denote the Peskine-Szpiro

functor:
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FR Mð Þ ¼ R0	RM

for each R-module M, where R0 denotes the R-module that is the same as R as a left R-module
and whose right R-module structure is given by r0 
 r ¼ rpr0 for all r0 2 R0 and r 2 R.

Definition 2.3. (Definitions 1.1, 1.9 and 2.1 in [7]). An FR- module (or F-module, if R is under-
stood) is an R-module M equipped with an R-linear isomorphism hM : M ! FRðMÞ.

A homomorphism between FR-modules ðM; hMÞ and ðN; hNÞ is an R-linear map u : M ! N
such that the following diagram commutes:

A generating morphism of an FR-module ðM; hMÞ is an R-linear map b : M0 ! FRðM0Þ, where
M0 is an R-module, such that the direct limit of the diagram

is the map hM : M ! FRðMÞ.
An FR-module M is called FR- finite (or F-finite) if it admits a generating morphism b : M0 !

FRðM0Þ such that M0 is a finitely generated R-module.
The counterpart to Proposition 2.2 for F-modules is the following.

Proposition 2.4. Let R be a noetherian regular ring of characteristic p> 0, and let M be an
F-module.

a. injdimRM � dimSuppRM [7, Theorem 1.4];
b. The minimal injective resolution E�ðMÞ is a complex of F-modules and F-module morphisms

[7, Example 1.2(b”)];
c. If S � R is a multiplicative subset, then S�1M is an FS�1R-module; and if M is F-finite, then

S�1M is FS�1R-finite (both statements follow from [7, Remark 1.0(i)]);
d. If M is F-finite, M has finitely many associated primes as an R-module [7, Theorem 2.12(a)];
e. If 0 ! M0 ! M ! M00 ! 0 is a short exact sequence of F-modules and F-module morphisms,

then M is F-finite if and only if M0 and M00 are F-finite [7, Theorem 2.8];
f. If E is an injective R-module, E is an F-module [5, Proposition 1.5].

2.3. Local cohomology

We will also make use of local cohomology modules, for whose definition and basic properties
we refer to [2]. The most important facts about local cohomology we will use are the following.

Proposition 2.5.
a. Local cohomology commutes with flat base change: if R ! S is a flat homomorphism of noe-

therian rings, I � R is an ideal, and M is an R-module, then Hi
ISðS	RMÞ ffi S	Hi

IðMÞ as S-
modules for all i � 0 [2, Theorem 4.3.2]. In particular, local cohomology commutes with local-
ization and completion.
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b. If R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, M is a holonomic D-module, and
I � R is an ideal, then for all i � 0, the local cohomology module Hi

IðMÞ is a holonomic D-
module; in particular, Hi

IðRÞ is a holonomic D-module [6, 2.2(d)].
c. If R is a noetherian regular ring of characteristic p> 0, M is an F-finite F-module, and I � R

is an ideal, then for all i � 0, the local cohomology module Hi
IðMÞ is an F-finite F-module; in

particular, Hi
IðRÞ is an F-finite F-module [7, Proposition 2.10].

d. If R is a Gorenstein ring and m � R is a maximal ideal of height n, then Hn
mðRÞ ffi EðR=mÞ as

R-modules [2, Lemma 11.2.3].
Part (d) of Proposition 2.5 is stated in [2] only in the case where R is a Gorenstein local ring,

but the same result is true for maximal ideals in arbitrary Gorenstein rings, with the same proof:
if E� is the minimal injective resolution of R as a module over itself, then CmðE�Þ, which com-
putes the local cohomology of R supported at m, is simply EðR=mÞ concentrated in degree n.

Recall that if M is a module over a noetherian ring R, E�ðMÞ is its minimal injective resolution,
and p � R is a prime ideal, then the Bass number liðp;MÞ is the (possibly infinite) number of copies
of the indecomposable injective hull EðR=pÞ occurring as direct summands of EiðMÞ (see [9, §18]
for properties of Bass numbers, including their well-definedness). In particular, to say that
liðp;MÞ>0 is to say that EðR=pÞ is a summand of EiðMÞ, which implies that p 2 SuppRE

iðMÞ.
If p � R is a prime ideal, the R-module EðR=pÞ is naturally an Rp-module isomorphic to

ERp
ðRp=pRpÞ. We will use this fact repeatedly. For now, we remark that in conjunction with

Proposition 2.5(d), this fact implies that EðR=pÞ is a D(R, k)-module whenever R is a Gorenstein
ring and k � R is a subring; indeed, since Rp is a Gorenstein local ring, we have

E R=pð Þ ffi ERp
Rp=pRp

� � ffi Hhtp
pRp

Rpð Þ ffi Hhtp
p Rð Þ

� �
p

as Rp-modules, so since Hhtp
p ðRÞ is a D-module by Proposition 2.5(b), its localization EðR=pÞ is as

well. (In the F-module case, if R is a regular local ring of characteristic p> 0 and p � R is a
prime ideal, then EðR=pÞ is an F-module by Proposition 2.4(f).)

Finally, we will need to make use of a lemma of Lyubeznik on Bass numbers and
local cohomology.

Lemma 2.6. [6, Lemma 1.4] Let R be a noetherian ring, let p � R be a prime ideal, and let M be
an R-module such that the Rp-module ðHi

pðMÞÞp is injective for all i � 0.

a. All differentials in the complex ðCpðE�ðMÞÞÞp of Rp-modules are zero.
b. For all i � 0, the Bass numbers liðp;MÞ and l0ðp;Hi

pðMÞÞ are equal.

3. Localizations of D-modules

Throughout this section, let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, and let
D ¼ DðR; kÞ. The goal of this section is to prove the following generalization of
Proposition 2.2(a).

Theorem 3.1. Let M be a D-module, and let S � R be a multiplicative subset. Then

injdimS�1RS
�1M � dimSuppS�1RS

�1M:

In fact, it suffices to prove the following weaker statement.

Proposition 3.2. Let M be a D-module, and let p 2 SuppRM. Then

injdimRp
Mp � dimSuppRp

Mp:

Proof that Proposition 3.2 implies Theorem 3.1. Let M and S � R be given, and let t be the inject-
ive dimension injdimS�1RS

�1M. Since EtS�1RðS�1MÞ 6¼ 0, there exists a prime ideal S�1p � S�1R
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such that ltðS�1p; S�1MÞ>0. Since S�1p belongs to the support of EtS�1RðS�1MÞ, if we localize the
complex E�S�1RðS�1MÞ at S�1p, its length remains the same. But this new complex is the minimal
injective resolution of ðS�1MÞS�1p ¼ Mp as an Rp-module, so we have

t ¼ injdimS�1RS
�1M ¼ injdimRp

Mp � SuppRp
Mp � dimSuppS�1RS

�1M;

where the first inequality holds since we have assumed Proposition 3.2. This completes
the proof. w

The proof of Proposition 3.2 below proceeds similarly to that of [6, Theorem 3.4(b)], an analo-
gous statement for local cohomology modules over more general rings. We first need a couple
of lemmas.

Lemma 3.3. Let p be a prime ideal of R. Then the pRp-adic completion bRp of Rp is isomorphic to a
formal power series ring K½½z1; :::; zc�� where K is a field of characteristic zero and c ¼ htp, and thebRp -module bRp	Rp

Mp is in fact a Dð bRp ;KÞ-module.

Proof. The statement about the form of the ring bRp is simply Cohen’s structure theorem, since Rp

is a regular local ring. The second statement is essentially included in the proof of [8, Corollary
8] (see also the proof of [6, Theorem 2.4]), so we omit most details, contenting ourselves with
the following outline. There exist derivations di : Rp ! Rp for 1 � i � c such that, upon passing
to the completion, each di induces the K-linear derivation @i ¼ @

@zi
on bRp . We define the

Dð bRp ;KÞ-module structure on bRp	Rp
Mp as follows: if br;bs 2 bRp and l 2 Mp, then br 
 ðbs 	 lÞ ¼brbs 	 l and @i 
 ðbs 	 lÞ ¼ @iðbsÞ 	 lþbs 	 diðlÞ. It is easy to see that, for 1 � i � c and all br 2 Rp,

the actions of @ibr�br@i and @iðbrÞ on bs 	 l are the same. w

Lemma 3.4. For all prime ideals p of R and all i � 0, the Rp-module ðHi
pðMÞÞp is injective.

Proof. First recall that ðHi
pðMÞÞp ffi Hi

pRp
ðMpÞ as Rp-modules. Since Hi

pRp
ðMpÞ is supported only at

pRp, every element of this module is annihilated by some power of pRp, and therefore Hi
pRp

ðMpÞ
is an bRp-module, where bRp is the pRp-adic completion of Rp: this bRp-module may be identified
with bRp	Rp

Hi
pRp

ðMpÞ. The extension Rp ! bRp is flat, so since local cohomology commutes with
flat base change, we have

bRp	RpH
i
pRp

Mpð Þ ffi Hi

pbRp

bRp	RpMp

� �

as bRp-modules. As in Lemma 3.3, bRp ffi K½½z1; :::; zc�� where K is a field of characteristic zero. By
that lemma, bRp	Rp

Mp, and hence Hi

pbRp

ð bRp	Rp
MpÞ, is a Dð bRp ;KÞ-module. Since bRp is a formal

power series ring over K, we have

injdimbRp

Hi

pbRp

bRp	Rp
Mp

� �
� dimSuppbRp

Hi

pbRp

bRp	Rp
Mp

� �
¼ 0;

where the inequality is Proposition 2.2(a) and the equality holds because Hi

pbRp

ð bRp	Rp
MpÞ is

supported only at the maximal ideal p bRp . Therefore Hi

pbRp

ð bRp	Rp
MpÞ, which we have identified

with Hi
pRp

ðMpÞ, is injective as an bRp-module; since Rp ! bRp is flat, Hi
pRp

ðMpÞ is injective over Rp

as well, completing the proof. w

Proof of Proposition 3.2. We proceed by induction on dimSuppRp
Mp. If p is a minimal prime of

M, then this dimension is zero and we must show that Mp is injective as an Rp-module. Since p
is minimal in SuppRM, every element of Mp is annihilated by some power of pRp, and so Mp is a
module over the pRp-adic completion bRp of Rp: this module may be identified with bRp	Rp

Mp. By
the same reasoning used in the proof of Lemma 3.4, Mp is injective over bRp and therefore over
Rp. Now suppose that dimSuppRp

Mp>0. Let E�ðMpÞ denote the minimal injective resolution of
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Mp as an Rp-module. By the inductive hypothesis, if q � p and q 2 SuppRM, we have

injdimRq
Mq � dimSuppRq

Mq<dimSuppRp
Mp;

so if i � dimSuppRp
Mp;EiðMpÞ is supported only at pRp. By Lemma 3.4, ðHi

pðMÞÞp is an injective
Rp-module for all i � 0. By Lemma 2.6(a), the differentials

Ei Mpð Þ ¼ CpRp
Ei Mpð Þ
� � ! CpRp

Eiþ1 Mpð Þ
� � ¼ Eiþ1 Mpð Þ

are zero for all i � dimSuppRp
Mp. By the minimality of the resolution, EiðMpÞ itself is zero for all

such i, completing the proof. w

4. Pseudo-Jacobson rings

Recall that a ring R is said to be Jacobson if every prime ideal of R is equal to the intersection of
the maximal ideals containing it, and that if R is a Jacobson ring, so also is every quotient R/I of
R. It is not hard to see from this that every non-maximal prime ideal of R must be contained in
infinitely many distinct maximal ideals. It is this weaker statement that will be important for us;
hence we make the following definition.

Definition 4.1. A commutative ring R is called pseudo-Jacobson if every non-maximal prime ideal
p of R is contained in infinitely many distinct maximal ideals.

Pseudo-Jacobson rings will arise for us in the following way: if R is a regular local ring and f
is a non-unit of R, then unless R is of very small dimension, the localization Rf is pseudo-
Jacobson. This follows from Proposition 4.4(a) below; the next preliminary results are given with
this result in mind.

Lemma 4.2. Let ðR;mÞ be a local domain of dimension d � 2. Then
\

p�R prime
htp¼1

p ¼ 0:

Proof. Suppose otherwise, and let f 6¼ 0 belong to the displayed intersection. Then every height 1
prime ideal p is a minimal prime of f. Since R is noetherian, there are only finitely many such
minimal primes. By Krull’s principal ideal theorem, m is contained in the union of all height 1
prime ideals. Since there are only finitely many such, prime avoidance implies that m is contained
in a height 1 prime ideal, a contradiction since dimR>1. w

Proposition 4.3. Let ðR;mÞ be a catenary local domain of dimension d> 0. Let t be an integer
such that 0 � t � d�1. Then \

p�R prime
htp¼t

p ¼ 0:

Proof. If d¼ 1, then the only possible value for t is 0 and our conclusion is clear. We will proceed
by induction on d. When d¼ 2, our conclusion is clear from Lemma 4.2. Now suppose that d �
3 and fix a height 1 prime ideal p � R. By Lemma 4.2, we may assume that t � 2. Since R is
catenary, the height t – 1 prime ideals of R=p are precisely the height t prime ideals of R contain-
ing p. Therefore, the inductive hypothesis applied to the ðd�1Þ-dimensional ring R=p shows that
p is the intersection of all height t prime ideals of R containing p. Taking the intersection over all
height 1 prime ideals p (which is 0 by Lemma 4.2), we conclude the proof. w

Proposition 4.4. Let ðR;mÞ be a catenary local domain of dimension d � 2, and let f 2 m be a
nonzero element.

a. The ring Rf is pseudo-Jacobson.
b. Every maximal ideal of Rf has height d – 1.
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Proof. We claim first that there are infinitely many height d – 1 prime ideals of R that do not contain
f. Suppose otherwise and let p1; :::; pn be all the height d – 1 prime ideals not containing f. Choose a
nonzero g 2 \n

i¼1pi: since R is a domain, it is enough to choose a nonzero element of each pi and let
g be their product. Then fg belongs to every height d – 1 prime ideal of R, a contradiction to
Proposition 4.3.

Now let p be a prime ideal of R such that pRf is a non-maximal prime ideal of Rf. Since
dimRf ¼ d�1, the height of p is at most d – 2, so the quotient R=p is a catenary local domain of
dimension at least 2. By the reasoning of the previous paragraph applied to R=p, there are infin-
itely many height dimðR=pÞ�1 prime ideals in R=p that do not contain the image of f (which is a
nonzero element in the maximal ideal m=p), and these prime ideals correspond to infinitely
many prime ideals of R that contain p but not f. Since R is catenary, these prime ideals all have
height d – 1, and therefore correspond to maximal ideals in Rf. This proves part (a).

To prove part (b), suppose p is a prime ideal of R such that f 62 p and htp � d�2. Then as in
the proof of part (a), the quotient R=p has dimension at least 2 and satisfies the hypotheses of
Proposition 4.3, so p is properly contained in infinitely many prime ideals of R that do not con-
tain f, and therefore pRf is not a maximal ideal of Rf. We conclude that all maximal ideals of Rf

must have height d – 1, as claimed. w

5. The last terms of minimal injective resolutions

In this section, we study minimal injective resolutions. Proposition 5.2 below shows that the
property of a module M being of finite length as a D-module (resp. being F-finite) is inherited by
the indecomposable summands of the last term of the minimal injective resolution of M. The fol-
lowing lemma is the key to proving both cases of this.

Lemma 5.1. Let R be a noetherian domain and let M be an R-module of finite injective dimen-
sion t. Suppose that for all prime ideals p of R and all i � 0, the local cohomology R-modules
Hi

pðMÞ have finitely many associated primes, and their localizations ðHi
pðMÞÞp are injective

Rp-modules. Then for all p 2 SpecðRÞ such that ltðp;MÞ>0, there exists an ideal J � R such that
the quotient

N ¼ Ht
p Mð Þ=CJ Ht

p Mð Þ
� �

is isomorphic to a direct sum of copies of EðR=pÞ.
Proof. Let p 2 SpecðRÞ be such that ltðp;MÞ>0. Since ðHi

pðMÞÞp is injective over Rp for all i, it
follows from Lemma 2.6(b) that l0ðp;Ht

pðMÞÞ ¼ ltðp;MÞ>0, and therefore p 2 Ass Ht
pðMÞ. By

hypothesis, Ht
pðMÞ has only finitely many associated primes: say Ass Ht

pðMÞ ¼ fp; q1; :::; qrg. Let
J ¼ q1 
 
 
 qr (with the convention that if r¼ 0, that is, if Ass Ht

pðMÞ ¼ fpg, then J¼R), and as in
the statement of the lemma, let N ¼ Ht

pðMÞ=CJðHt
pðMÞÞ. By [2, Exercise 2.1.14], Ass Ht

pðMÞ is
the disjoint union of Ass N and Ass CJðHt

pðMÞÞ, from which we conclude that AssN ¼ fpg.
Now let f 2 R n p be given. By hypothesis, the minimal injective resolution E�ðMÞ is a complex

of length t. Since f 62 [q2AssNq ¼ p, multiplication by f is injective on N. On the other hand, since
R is a domain, the injective R-module CpðEtðMÞÞ is divisible, so multiplication by any non-zero
f 2 R is surjective on CpðEtðMÞÞ and therefore on any quotient of CpðEtðMÞÞ. Since Ht

pðMÞ (and
hence N) is such a quotient, we see that multiplication by f is an isomorphism on N for all
f 2 R n p, and therefore N ¼ Np. But ðCJðHt

pðMÞÞÞp ¼ 0, so Np ¼ ðHt
pðMÞÞp, which by hypothesis

is an injective Rp-module and is supported only at pRp. We conclude that N ¼ Np is isomorphic
to a direct sum of copies of ERp

ðRp=pRpÞ; but ERp
ðRp=pRpÞ ffi EðR=pÞ as R-modules, so the

lemma follows. w
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Proposition 5.2.
a. Let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, let M be a holonomic D(R, k)-

module, and let t ¼ injdimRM. For any p 2 SpecR such that ltðp;MÞ>0, the D(R, k)-module
EðR=pÞ is holonomic.

b. Let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, let M be a holonomic D(R, k)-
module, let S � R be a multiplicative subset, and let t ¼ injdimS�1RS

�1M. For any S�1p 2
SpecS�1R such that ltðS�1p; S�1MÞ>0, the DðS�1R; kÞ-module ES�1RðS�1R=S�1pÞ is of
finite length.

c. Let R be a noetherian regular domain of characteristic p> 0, let M be an F-finite F-module,
and let t ¼ injdimRM. For any p 2 SpecðRÞ such that ltðp;MÞ>0, the F-module EðR=pÞ is
F-finite.

We observe that parts (a) and (b) remain true if R is replaced with a polynomial ring (see the
proof of [12, Theorem 4.4]).

Proof. We prove part (b) first, and we begin by verifying the hypotheses of Lemma 5.1 for S�1M.
The ring S�1R is a domain. Since M is a D-module, it has finite injective dimension as an R-mod-
ule by Proposition 2.2(a), so S�1M has finite injective dimension as an S�1R-module (used impli-
citly in the statement). For all i � 0 and for all S�1p 2 SpecS�1R;Hi

pðMÞ is a holonomic D-
module and so has finitely many associated primes; it follows that S�1ðHi

pðMÞÞ ffi Hi
S�1pðS�1MÞ

has finitely many associated primes as an S�1R-module. All that remains to be checked is that,
for all i � 0; ðHi

S�1pðS�1MÞÞS�1p is an injective ðS�1RÞS�1p-module. Since the ring ðS�1RÞS�1p is sim-
ply Rp, and ðHi

S�1pðS�1MÞÞS�1p ffi Hi
pRp

ðMpÞ as Rp-modules, this follows from Lemma 3.4.
Now let S�1p 2 SpecS�1R be such that ltðS�1p; S�1MÞ>0. By the proof of Lemma 5.1, there is

an ideal J � S�1R such that N ¼ Ht
S�1pðS�1MÞ=CJðHt

S�1pðS�1MÞÞ is isomorphic to a direct sum of
copies of

ERp
Rp=pRp

� � ffi ES�1R S�1R=S�1p
� �

as S�1R-modules and, in fact, as DðS�1R; kÞ-modules. Since Ht
pðMÞ is a holonomic (and hence finite

length) D-module, its localization Ht
S�1pðS�1MÞ (and hence the DðS�1R; kÞ-module quotient N) is of

finite length as aDðS�1R; kÞ-module. But then ES�1RðS�1R=S�1pÞmust be of finite length as well, com-
pleting the proof of part (b). If we do not localize (that is, if S�1R ¼ R; S�1p ¼ p � R, and
S�1M ¼ M), then the same proof shows that EðR=pÞ is holonomic, proving part (a).

Finally, we prove part (c). Since M is an F-finite F-module, so are the local cohomology mod-
ules Hi

IðMÞ for all i � 0 and all ideals I � R; what is more, ðHi
IðMÞÞp is an FRp

-finite FRp
-module

for all p 2 SpecðRÞ, so since ðHi
pðMÞÞp is supported only at the maximal ideal pRp, it is an inject-

ive Rp-module by Proposition 2.4(a). Therefore, the hypotheses of Lemma 5.1 are satisfied, so if
p 2 SpecðRÞ is such that ltðp;MÞ>0, then there is an ideal J � R such that N ¼
Ht

pðMÞ=CJðHt
pðMÞÞ is isomorphic to a direct sum of copies of EðR=pÞ. The R-submodule

CJðHt
pðMÞÞ � Ht

pðMÞ is in fact an F-submodule, so the quotient N is an F-finite F-module. It fol-
lows that EðR=pÞ must also be F-finite, completing the proof. w

Remark 5.3. In the proof of Proposition 5.2, we used the fact that if M is a holonomic D-module,
any local cohomology module Hi

IðMÞ has finitely many associated primes as an R-module, for the
reason that it is itself a holonomic D-module. In fact, any finite length (indeed, finitely generated)
D-module has finitely many associated primes by [6, Theorem 2.4(c)]. However, we do not know
whether Hi

IðMÞ is of finite length as a D-module whenever M is. This is the reason why we
require the stronger hypothesis (in Proposition 5.2 and in our Main Theorem) that M
be holonomic.
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Having shown that the minimal injective resolution of an F-finite F-module or (localization of
a) holonomic D-module terminates in an object that is the direct sum of indecomposables with
certain finiteness properties, our next task is to determine exactly which indecomposables have
these finiteness properties. This we do in the following proposition, of which only the D-module
parts are new.

Proposition 5.4.
a. Let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, and let p � R be a prime ideal.

The D(R, k)-module EðR=pÞ is holonomic if and only if htp � n�1.
b. Let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, let S � R be a multiplicative sub-

set, and let S�1p � S�1R be a prime ideal. The DðS�1R; kÞ-module ES�1RðS�1R=S�1pÞ is of
finite length if and only if S�1p is contained in only finitely many distinct prime ideals
of S�1R.

c. Let ðR;mÞ be a regular local ring of characteristic p> 0 and dimension n, and let p � R be a
prime ideal. The F-module EðR=pÞ is F-finite if and only if htp � n�1.

d. Let R be a noetherian regular ring of characteristic p> 0, and let p � R be a prime ideal. The
F-module EðR=pÞ is F-finite if and only if p is contained in only finitely many distinct prime
ideals of R.

In part (a), the conclusion is different from the polynomial case. If R is replaced with a poly-
nomial ring, EðR=pÞ is holonomic if and only if p is maximal: see [12, Propositions 4.2, 4.3].

Proof. We prove part (b) first, and we begin by considering the possible cases. Let h denote the
height of S�1p. If S�1p is a maximal ideal of S�1R, we must show that ES�1RðS�1R=S�1pÞ is of
finite length. If there exists a chain S�1p � S�1s � S�1q of proper inclusions of prime ideals, then
since S�1R is a noetherian ring, it is well-known that there are infinitely many prime ideals lying
strictly between S�1p and S�1q. Therefore, in this case we must show that ES�1RðS�1R=S�1pÞ is
not of finite length (this is the last case we treat below). Since S�1R is regular and therefore
catenary, the only remaining case is that in which S�1p is not maximal, but the only prime ideals
properly containing it are maximal ideals of height hþ 1. In this case, we must show that
ES�1RðS�1R=S�1pÞ is of finite length if and only if there are only finitely many such max-
imal ideals.

Suppose first that S�1p is a maximal ideal of S�1R. Since S�1R is Gorenstein, by Proposition
2.5(d), ES�1RðS�1R=S�1pÞ ffi Hh

S�1pðS�1RÞ, which is a localization of the holonomic D-module
Hh

pðRÞ and is therefore of finite length as a DðS�1R; kÞ-module by Proposition 2.2(b,d).
Now suppose that S�1p is not maximal, but that all maximal ideals containing it have height

hþ 1. Since E� can be identified with the Cousin complex of R [11, Theorem 5.4], all of whose
differentials are direct sums of canonical localization maps, it is a complex of D-modules. If we
localize E� at S, we obtain the minimal injective resolution of S�1R as a module over itself, and
this resolution is a complex of DðS�1R; kÞ-modules. After applying CS�1p, we obtain a short exact
sequence

0 ! Hh
S�1p S�1Rð Þ ! ES�1R S�1R=S�1p

� �
! �

S�1p�S�1q

htS�1q¼hþ1

ES�1R S�1R=S�1q
� �

! 0;

which is an exact sequence of DðS�1R; kÞ-modules. (The last map is surjective by the Hartshorne-
Lichtenbaum vanishing theorem [2, Theorem 8.2.1].) Since Hh

pðRÞ is a holonomic D-module, it
has finite length as a D-module, and therefore its localization Hh

S�1pðS�1RÞ has finite length as a
DðS�1R; kÞ-module. It follows that ES�1RðS�1R=S�1pÞ is of finite length as a DðS�1R; kÞ-module if
and only if the third term in the displayed short exact sequence is. By the previous paragraph,
each summand ES�1RðS�1R=S�1qÞ is of finite length, since the S�1q are maximal ideals; therefore
the sum is of finite length if and only if there are finitely many summands, as desired.
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Finally, we suppose that there exists a chain S�1p � S�1s � S�1q of proper inclusions of prime
ideals in S�1R. We claim that if such a chain exists, ES�1RðS�1R=S�1pÞ cannot be of finite length.
We may assume that the chain is saturated, from which it follows that htS�1q ¼ hþ 2. If we
localize at S�1q, the ring ðS�1RÞS�1q is isomorphic to Rq, and ES�1RðS�1R=S�1pÞ ffi ERq

ðRq=pRqÞ as
Rq-modules. If ES�1RðS�1R=S�1pÞ were of finite length as a DðS�1R; kÞ-module, its localization
ERq

ðRq=pRqÞ would be of finite length as a DðRq; kÞ-module, so it suffices to prove this last state-
ment false. We have therefore reduced the proof to the case where S�1R ¼ Rq for some prime
ideal q and pRq is a prime ideal in Rq of height h ¼ dimRq�2.

Let E� ¼ E�Rq
ðRqÞ be the minimal injective resolution of Rq. The complex CpRq

ðE�Þ takes the
form

0 ! E Rq=pRq

� �!dh �
pRq�sRq
htsRq¼hþ1

E Rq=sRq

� �!dhþ1

E Rq=qRq

� � ! 0;

and gives rise to three short exact sequences

0 ! Hh
pRq

Rqð Þ ! ERq
Rq=pRq

� � ! imdh ! 0;

0 ! imdh ! kerdhþ1 ! Hhþ1
pRq

Rqð Þ ! 0;

0 ! kerdhþ1 ! �
pRq�sRq
htsRq¼hþ1

ERq
Rq=sRq

� � ! ERq
Rq=qRq

� � ! 0;

where now the dj are the differentials in the complex CpRq
ðE�Þ (and the third sequence is exact

by the Hartshorne-Lichtenbaum theorem). What is more, these are exact sequences of
DðRq; kÞ-modules, since they arise from localizations of the Cousin complex of R. The modules
Hh

pRq
ðRqÞ;Hhþ1

pRq
ðRqÞ, and ERq

ðRq=qRqÞ are localizations at q of holonomic (hence finite length) D-
modules (Hh

pðRÞ;Hhþ1
p ðRÞ, and Hhþ2

q ðRÞ respectively), so all three are of finite length as
DðRq; kÞ-modules. Assume for the purposes of contradiction that ERq

ðRq=pRqÞ is of finite length
as a DðRq; kÞ-module. Then we have the following chain of implications: since Hh

pRq
ðRqÞ and

ERq
ðRq=pRqÞ are of finite length, so is imdh; since imdh and Hhþ1

pRq
ðRqÞ are of finite length, so is

kerdhþ1; since kerdhþ1 and ERq
ðRq=qRqÞ are of finite length, so is �pRq�sRq;htsRq¼hþ1ERq

ðRq=sRqÞ.
This last statement is absurd, since there are infinitely many distinct summands ERq

ðRq=sRqÞ.
This contradiction completes the proof of part (b).

If we do not localize (that is, if S�1R ¼ R and S�1p ¼ p � R), then the same proof (using
Proposition 2.2(e)) shows that EðR=pÞ is holonomic if and only if p is contained in only finitely
many distinct prime ideals of R. Since R is a local ring of dimension n, this condition is satisfied
if and only if the height of R is at least n – 1, proving part (a).

The possible cases in part (d) are the same as in part (b): we must show that EðR=pÞ is F-finite
whenever p is a maximal ideal (which, since R is Gorenstein, follows at once from Proposition
2.5(c,d)); that EðR=pÞ is not F-finite whenever there exists a chain p � s � q of proper inclusions
of prime ideals (which is [12, Proposition 3.2]); and that in the only remaining case, where p is
not maximal but the only prime ideals properly containing it are maximal ideals of height
htpþ 1, that EðR=pÞ is F-finite if and only if there are only finitely many such maximal ideals.
This last case is [12, Proposition 3.1], which finishes the proof of part (d). As part (c) is merely a
special case of part (d), the proof is complete. w

Remark 5.5. In the setting of Proposition 5.4(a), ifM is a holonomic D-module and f 2 R, thenMf is
a holonomic D-module [1, Theorem 3.4.1]. It is known that Mp need not be a holonomic D-module
for all prime ideals p � R. We remark that the proposition provides many such examples: let p be any
prime ideal of height h � n�2, and consider the holonomic D-module Hh

pðRÞ. Its localization at p is
isomorphic to EðR=pÞ, which is not a holonomic D-module by the proposition.

We record separately the special cases of Proposition 5.4 that we will use in the proof of our
Main Theorem. This is where the pseudo-Jacobson property defined in section 4 is used.
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Corollary 5.6.
a. Let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero and n � 2. If q � R is a prime

ideal of height h � 2; f 2 qRq is a nonzero element, and ðpRqÞf is a prime ideal of ðRqÞf , then
the DððRqÞf ; kÞ-module EðRqÞf ððRqÞf =ðpRqÞf Þ has finite length if and only if ðpRqÞf is a max-
imal ideal in ðRqÞf , that is, if and only if p is a height h – 1 prime ideal of R contained in q
and not containing f.

b. Let ðR;mÞ be a regular local ring of characteristic p> 0 and dimension n � 2. If f 2 m is a nonzero
element and pRf � Rf is a prime ideal, the FRf -module ERf ðRf =pRf Þ is FRf -finite if and only if pRf

is a maximal ideal in Rf, that is, if and only if p is a height n – 1 prime ideal of R not containing f.

Proof. A regular local ring is a catenary domain, so by Proposition 4.4, the rings Rf of part (b)
and ðRqÞf of part (a) are pseudo-Jacobson, and all their maximal ideals have the same height n –
1. By the pseudo-Jacobson property, every non-maximal prime ideal pRf of Rf in part (b) (resp.
every non-maximal prime ideal ðpRqÞf of ðRqÞf in part (a)) is contained in infinitely many dis-
tinct maximal ideals, so part (b) (resp. (a)) follows from Proposition 5.4(d) (resp. (b)). w

6. Injective dimension of holonomic D-modules

In this section, we prove the characteristic-zero part (Theorem 6.2) of our main theorem. Most
of the work in the proof is contained in the following proposition.

Proposition 6.1. Let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, and let M be a holo-
nomic D(R, k)-module. Let q be a prime ideal of R belonging to SuppRM, and let f 2 qRq be a
element that does not belong to any minimal prime of Mq. Then

injdim Rqð Þf Mqð Þf ¼ dimSupp Rqð Þf Mqð Þf :

Proof. Recall that if S � R is a multiplicative subset, then

injdimS�1RS
�1M � dimSuppS�1RS

�1M

by Theorem 3.1. We will use this fact repeatedly below.
We proceed by induction on dimSuppRq

Mq. Observe first that if dimRq<2, then either
dimSuppðRqÞf ðMqÞf ¼ 0 and the statement is immediate by the previous paragraph, or no such f
as in the statement exists. Therefore we may assume that htq � 2 for all prime ideals q we
encounter. Let q be a minimal element of SuppRM. The localization Mq has zero-dimensional
support over Rq, so it is an injective Rq-module; the further localization ðMqÞf for any f 2 qRq is
then an injective ðRqÞf -module, establishing the base case.

Now suppose that l � 0 and that the displayed equality holds for all p 2 SuppRM such that
dimSuppRp

Mp � l. Fix q 2 SuppRM such that dimSuppRq
Mq ¼ l þ 1, and let f 2 qRq be an element

that does not belong to any minimal prime ofMq. Choose pRq 2 SuppRq
Mq such that dimSuppRp

Mp ¼
dimSuppRq

Mq�1 ¼ l and f 2 pRq. Then f does not belong to any minimal prime of Mp, so
dimSuppðRpÞf ðMpÞf ¼ dimSuppRp

Mp�1 ¼ l�1 (Rp is a local ring) and by the inductive hypothesis,

injdim Rpð Þf Mpð Þf ¼ dimSupp Rpð Þf Mpð Þf ¼ l�1:

Since ðRpÞf is a localization of ðRqÞf , we obtain the chain of inequalities

l�1 ¼ injdim Rpð Þf Mpð Þf � injdim Rqð Þf Mqð Þf � dimSupp Rqð Þf Mqð Þf ¼ l:

It remains only to rule out the case injdimðRqÞf ðMqÞf ¼ l�1. Since injdimðRpÞf ðMpÞf ¼ l�1,
there is a prime ideal ðsRpÞf of ðRpÞf such that
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ll�1 sRpð Þf ; Mpð Þf
� �

¼ ll�1 sRqð Þf ; Mqð Þf
� �� �

>0:

Since f 2 pRq n sRq and pRq � qRq, we have hts � htq�2. It follows that ðsRqÞf is not a maximal
ideal of ðRqÞf . Since ll�1ððsRqÞf ; ðMqÞf ÞÞ>0, we may invoke Proposition 5.2(b) and Corollary 5.6(a),
which here imply that injdimðRqÞf ðMqÞf cannot equal l – 1, completing the proof. w

Theorem 6.2. Let R ¼ k½½x1; :::; xn�� where k is a field of characteristic zero, and let M be a holo-
nomic D(R, k)-module. Then

injdimRM � dimSuppRM�1:

Proof. We may assume that dimSuppRM � 2, as otherwise there is nothing to prove. Since M is
holonomic, it has finitely many associated primes as an R-module. By prime avoidance, we can
choose a nonzero element f 2 m that does not belong to any minimal prime of M. We have
dimSuppRf

Mf ¼ dimSuppRM�1. By Proposition 6.1 (applied to q ¼ m), we have
injdimRf

Mf ¼ dimSuppRf
Mf . Since injdimRM � injdimRf

Mf , the theorem follows. w

Remark 6.3. The lower bound in Theorem 6.2 is the best possible. Indeed, let p � R be a prime
ideal of height n – 1, and let EðR=pÞ be the injective hull of R=p. By Proposition 5.4(a), EðR=pÞ is
a holonomic D-module, yet we have injdimREðR=pÞ ¼ 0 and dimSuppREðR=pÞ ¼ 1. As shown by
Hellus in [4, Example 2.9], this example can be realized as a local cohomology module of R. Take
n¼ 3 and let I ¼ ðx1x2; x1x3Þ and p ¼ ðx2; x3Þ. Then htp ¼ n�1 ¼ 2 and the holonomic D-mod-
ule H2

I ðRÞ is isomorphic to EðR=pÞ, therefore has injective dimension equal to one less than the
dimension of its support.

7. Injective dimension of F-finite F-modules

In this section, we prove the positive-characteristic part (Theorem 7.2) of our main theorem. We
begin with a counterpart to Proposition 6.1.

Proposition 7.1. Let ðR;mÞ be a regular local ring of characteristic p> 0, and let M be an F-finite
F-module. Let q be a prime ideal of R belonging to SuppRM, and let f 2 qRq be a element that
does not belong to any minimal prime of Mq. Then

injdim Rqð Þf Mqð Þf ¼ dimSupp Rqð Þf Mqð Þf :

Proof. If S � R is a multiplicative subset, then

injdimS�1RS
�1M � dimSuppS�1RS

�1M

by Proposition 2.4(a,c). The proof is now word-for-word the same as the proof of Proposition
6.1, except that we use part (b) of Corollary 5.6 instead of part (a). w

Theorem 7.2. Let R be a noetherian regular ring of characteristic p> 0, and let M be an F-finite
F-module. Then

injdimRM � dimSuppRM�1:

For the same reasons as in Remark 6.3, the lower bound in Theorem 7.2 is the best possible.

Proof. We may assume that dimSuppRM � 2, as otherwise there is nothing to prove. We may
also assume that ðR;mÞ is local; if the local case is known, we may choose a maximal ideal m in
SuppRM such that dimSuppRM ¼ dimSuppRm

Mm, and we have
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dimSuppRM�1 ¼ dimSuppRm
Mm�1 � injdimRm

Mm � injdimRM;

so that the global case follows. Since M is F-finite, it has finitely many associated primes as an R-
module. By prime avoidance, we can choose a nonzero element f 2 m that does not belong to
any minimal prime of M. We have dimSuppRf

Mf ¼ dimSuppRM�1. By Proposition 7.1 (applied
to q ¼ m), we have injdimRf

Mf ¼ dimSuppRf
Mf . Since injdimRM � injdimRf

Mf , the the-
orem follows. w

Let ðR;mÞ be a regular local ring of characteristic p> 0, and let M be an F-finite F-module.
Set n ¼ dimR; d ¼ dimSuppRM, and t ¼ injdimRM. We know by Theorem 7.2 that t 2 fd�1; dg.
We also know by Propositions 5.2(c) and 5.4(c) that if p � R is a prime ideal such that
ltðp;MÞ>0, then htp 2 fn�1; ng.

It is easy to see that if t¼ d, then ltðp;MÞ>0 if and only if p ¼ m: indeed, if ltðp;MÞ>0 for
some non-maximal prime ideal p in the support of M, we can localize at p, obtaining an
FRp

-module Mp whose injective dimension is still d but whose support has dimension strictly less
than d, in contradiction to Proposition 2.4(a).

Question 7.3. Does the converse hold? That is, if ltðp;MÞ>0 only for p ¼ m, must we
have t¼ d?

One can also ask the analogous question for holonomic D-modules over formal power ser-
ies rings.

A positive answer to Question 7.3 would impose strong constraints on the form of the min-
imal injective resolution E�ðMÞ. In particular, it follows from an easy induction argument that we
would have dimSuppRE

iðMÞ ¼ dimSuppRM�i for 0 � i � t.
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