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Abstract

Odors emanating from a biologically relevant source are rapidly embedded within a windy, turbu-
luent medium that folds and spins filaments into fragmented strands of varying sizes. Environmental
odor plumes therefore exhibit complex spatiotemporal dynamics, and rarely yield an easily discernible
concentration gradient marking an unambiguous trail to an odor source. Thus, sensory integration of
chemical input, encoding odor identity or concentration, and mechanosensory input, encoding wind
speed, is a critical task that animals face in resolving the complex dynamics of odor plumes and track-
ing an odor source. In insects, who employ olfactory navigation as their primary means of foraging
for food and finding mates, the antennal lobe (AL) is the first brain structure that processes sensory
odor information. Although the importance of chemosensory and mechanosensory integration is widely
recognized, the AL itself has traditionally been viewed purely from the perspective of odor encoding,
with little attention given to its role as a bimodal integrator. In this work, we seek to explore the
AL as a model for studying sensory integration – it boasts well-understood architecture, well-studied
olfactory responses, and easily measurable cells. Using a moth model, we present experimental data
that clearly demonstrates that AL neurons respond, in dynamically distinct ways, to both chemosen-
sory and mechanosensory input; mechanosensory responses are transient and temporally precise, while
olfactory responses are long-lasting but lack temporal precision. We further develop a computational
model of the AL, show that our model captures odor response dynamics reported in the literature, and
examine the dynamics of our model with the inclusion of mechanosensory input; we then use our model
to pinpoint dynamical mechanisms underlying the bimodal AL responses revealed in our experimental
work. Finally, we propose a novel hypothesis about the role of mechanosensory input in sculpting AL
dynamics and the implications for biological odor tracking.

Keywords: neuronal network models; antennal lobe dynamics; computational neuroscience; olfactory
modeling

1 Introduction

Integration of chemosensory input (encoding odor identity and concentration) and mechanosensory input
(encoding wind velocity) is critical for olfactory navigation and the ability of insects to home in on and
locate an odor source [48]. One particularly crucial task for an insect is the ability to track an odor source
mid-flight. This ability is critical for finding food, but poses a monumental challenge: turbulent wind
eddies produce complex patterns of odor strands of different sizes and concentrations intermixed with clear
media, obfuscating the odor source and rarely yielding an easily discernible ‘concentration gradient’ to
follow [65, 9, 53]. To successfully track an odor, an insect must simultaneously classify odor identity and
rapidly resolve the spatio-temporal dynamics of the odor plume, all while maintaining balance and bearing
during flight.
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Evidence strongly suggests that the ability of insects to track odors mid-flight relies on the integration of
mechanical with chemical input, and, accordingly, chemosensory and mechanosensory bimodality is indeed
widespread within the central nervous system of insects. In terms of sensory organs, while Johnston’s organ
and Böhm’s bristles on the antenna are well known to detect wind velocity and guide flight maneuvers
[57, 29, 61], there are also less studied bimodal sensilla [29, 61]. For example, a subtype of trichoid sensilla
on the antenna of the male hawkmoth [39] and sensilla chaetica on the honeybee antenna [71] exhibit chemo-
and mechano-sensory bimodality. A wide range of animals have been shown to be adept at intelligently
sampling environmental odor plumes to home in on an odor source [3, 56, 58, 64]; moths, in particular,
employ a strategy in which they surge upwind upon encountering odor strands and cast across wind when
losing contact with odors [66]. This suggests that chemosensory and mechanosensory input may augment
and corroborate each other, consistent with the close link between odor plume structure and air turbulence;
the apparent convergence on this strategy across many species reveals the importance of sensory integration
in tracking odor sources.

The antennal lobe (AL), consisting of excitatory projection neurons (PNs) and inhibitory local neurons
(LNs) organized into cellular clusters called glomeruli, is the first brain area to substantially process odor
information arriving from olfactory receptor neurons (ORNs) in the sensory periphery. While the AL has
been traditionally investigated within the domain of odor (and CO2) detection, there exist some data in
moths and other insects suggesting that AL neurons are actually bimodal [20, 33, 18]; recently, a study in
tadpoles [8] and a couple of studies in mice [28, 4] have shown that olfactory bulb glomeruli are responsive
to mechanosensory input (in the absence of odor) arising from air pressure. Unfortunately, such data
are sparse, and little attention has been given to developing models of sensory integration within the AL
– models of AL function and dynamics have thus far focused on the AL from a purely chemosensory
perspective. Hence, the network mechanisms and dynamics underlying sensory integration within the AL,
and the biological significance of the interplay of olfactory and mechanical input within the AL, remain
poorly understood, despite the fact that sensory integration is an important aspect of odor tracking. The
AL, however, is an otherwise ideal system for the study of bimodality – specifically, AL architecture is well
understood, AL odor response dynamics are well-studied, and AL neurons are easy to measure individually
and in aggregate. Additionally, the anatomy and physiolology of the AL is analogous to that of the olfactory
bulb (OB) in vertebrates [23], and hence may provide insight into chemo- and mechano-sensory integration
in a broad range of species.

In this work, we seek to explore the interaction between chemosensory and mechanosensory input within
the AL, and propose possible network mechanisms underlying observed PN response patterns. We begin
by presenting some preliminary data within the moth showing that PNs within the AL respond to both
olfactory and mechanosensory signals, and that these two sources of input may influence AL dynamics in
starkly disparate ways. These data suggest that strong mechanosensory input may enhance the amplitude
and temporal precision of AL odor responses – i.e., that high speed nonscented air (mechanosensory input
alone) elicits a transient, temporally precise burst of activity in PNs, while an odor delivered at low wind
speed (low mechanosensory input) tends to induce a more prolonged response in PNs, and odor delivered
at high wind speed (high mechanosensory input) tends to combine features of both mechanosensory and
olfactory response patterns in isolation.

To examine the network dynamics underlying our early experimental observations, we construct a
large-scale biophysical model of the moth AL, with physiologically reasonable components and parame-
ters, consisting of PNs and LNs organized into glomeruli. Furthermore, we simulate both olfactory and
mechanosensory input to the model, under the reasonable assumption that mechanosensory input is less
focal in the glomeruli it targets than olfactory input. We first probe the responses of our model network
to odor input alone, and we not only show that our model exhibits the triphasic odor responses observed
experimentally in moth PNs [11, 69, 12, 13, 16], but we also dissect model dynamics to provide plau-
sible mechanistic explanations for how such response patterns arise. We then explore model responses
to mechanosensory input alone, and show that the transient, temporally precise nature of responses to
mechanosensory signals arises naturally from model dynamics as a consequence of pervasive slow inhibi-
tion activated via excitation of the global LN network. Finally, we show that model dynamics are capable
of capturing empirically observed response patterns to olfactory and mechanosensory input in combination,
and we examine the implications of bimodality for odor discrimination and tracking.

Section 2 describes our experimental and theoretical results (with experimental results prior to section
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2.1 and modeling results in sections 2.1-2.4), section 3 provides our discussion, while section 4.1 and 4.2
describe our experimental and computational methods, respectively.

2 Results

In the male sphinx moth Manduca sexta, the cell bodies of sex pheromone-sensitive uniglomerular AL PNs
are located within the medial cluster, a convenient target for identifying PNs (figure 1A); dye injection
into glomerular neuropil often results in partial staining at the soma. Data from such PN recordings, in
response to scented and non-scented air puffs at various air flow speeds, are shown in figure 1. We recorded
from a total of 9 PNs, most of which (7 out of 9) showed a clear increase in spike rate in response to
non-scented air puffs. One representative example is shown in figure 1. This PN displayed clear responses
to mechanical stimulation alone (figure 1D), with a stronger response to air puffs infused with pheromone
(which provides both chemical and mechanical stimulation) (figure 1E). Furthermore, within our recorded
PN population, increasing the puffing speed of non-scented air puffs from 0.5 liter/min (low speed) to 1
liter/min (high speed) increased the intensity of the response of the PN population, as shown in figure
1B,D. Other published work within the AL has reported similar phenomena [20, 18].

We further parse the dependence of the PN response on air speed from the data displayed in figure 1.
The sample PN did not respond to non-scented air puffs at low speed (figure 1B), but displayed a clear,
long-lasting response to pheromone-infused air puffs at low speed (figure 1C); the correlation coefficient of
these two response patterns (based on peri-stimulus time histograms) is rather low (r=-0.19). However,
at high air-puffing speed, the PN exhibited a rather robust bursting response to non-scented puffs (figure
1D), but showed a clear and substantial increase in response intensity to pheromone-infused air puffs at
the same speed (figure 1E); interestingly, these two response patterns are remarkably similar (r=0.67).

In figure 2, we summarize and quantify response features of each of our recorded PNs. We define a
PN as being responsive to mechanosensory input if the peak response to high speed air puffs, based on its
peri-stimulus time histogram, exceeded 1.5X its background activity – based on this metric, we find that
7/9 of our recorded PNs respond to mechanosensory input, and we include only these 7 PNs in figure 2.
Figure 2A shows the peak firing rate, while figure 2B shows the temporal duration, of the responses of
each of the 7 PNs to high-speed air puffs, phereomone at low puffing speed, and pheromone at high puffing
speed.

In most cases, odor-laden high speed air puffs (which impart both a strong olfactory and mechanical
signal) induce larger peak responses than nonscented high speed air puffs (which convey only a strong
mechanosensory signal). Odor-laden low speed air puffs (which impart a strong olfactory signal with little
mechanosensory content) yield varying peak responses, presumably due to variability in the number of
input ORNs or in the affinity of input ORNs for the employed odor. However, it is worth noting that in
most cases the response to odor-laden high speed air puffs is larger than that to odor-laden low speed air
puffs; since responses to high speed nonscented air puffs are larger than responses to low speed nonscented
air puffs (as described above), this suggests that, in these cases, a strong mechanosensory signal augments
the reponse induced by the olfactory signal alone (figure 2A).

Figure 2B shows that, in most cases, the response to odor-laden low speed air puffs exhibits a longer
temporal length than the response to nonscented high speed air puffs, suggesting the relatively transient
nature of PN responses to isolated mechanosensory input versus isolated olfactory input. Interestingly,
there is some diversity in the the temporal duration of PN responses to high speed odor-laden air puffs; in
some cases, the duration of the response to high speed odor-laden air puffs is similar to the (generally short)
response duration for high speed nonscented air puffs, while in other cases, the duration of the response
to high speed odor-laden air puffs is similar to, or even longer than, the (generally lengthier) response
duration for low speed odor-laden air puffs.

Thus, the data indicate that most PNs (7/9) respond robustly and diversely to strong mechanosensory
input (i.e., high wind speed), even in the absence of an olfactory signal. Moreover, mechanical and chemical
input appear to trigger distinct response patterns in PNs – strong mechanosensory input alone elicits a
transient, temporally precise burst of spikes lasting a few hundred ms, while olfactory input with low air
flow (at low wind speed, mechanical input is reduced) yields a more prolonged, sustained spiking response
that is hence less temporally precise. The observed transiency of the response to purely mechanosensory
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input is consistent with recordings shown in other published work (e.g., see figure 10A of [33]). When the
two modalities are combined (i.e., odor delivered at high wind speed), strong mechanosensory input often
augments the intensity of the olfactory response, while response length can be short and transient (as with
mechanosensory stimulation alone) or prolonged (as with olfactory input in isolation). In the case of a
prolonged response, both the isolated mechanosensory input and isolated olfactory input response patterns
can contribute to PN dynamics, with the PN response to high speed odor-laden air puffs exhibiting a large,
transient, temporally precise burst of spikes followed by a lower-intensity sustained spiking response (as
exhibited by the sample PN shown in figure 1E).

Finally, it is tantalizing that there is a high correlation between a PN’s response pattern to strong
mechanosensory input alone and its response pattern to strong mechanosensory input plus olfactory input.
This suggests that, in natural environments, strong mechanosensory input may serve to mold and shape the
dynamic, correlational structure of PN responses across the AL network. This possibility will be elaborated
upon further within the Discussion section.

2.1 Model Construction

In order to examine the mechanisms underlying AL responses to olfactory or mechanosensory input, as well
as the juxtaposition of the two, we construct a realistic, large-scale, spiking-network model of the moth
AL; the model consists of six glomeruli, with 10 PNs and 6 LNs per glomerulus [25, 35, 27, 22, 49, 10, 26].
Individual PNs and LNs are governed by integrate-and-fire spiking dynamics, with random but fixed
network connectivity – LNs synapse onto other LNs within the same glomerulus and onto PNs both within
and across glomeruli, while PNs synapse only onto PNs and LNs within the same glomerulus [59, 42].
LNs are GABAergic and inhibit other neurons through fast GABAA receptors, and LNs also deliver a slow
inhibitory current to PNs, acting over ∼500-1000 ms time scales, via slower metabotropic GABA receptors.
PNs within the model are cholinergic and act synaptically through fast nicotinic acetylcholine receptors;
PNs are also equipped with an intrinsic calcium-dependent potassium (SK) current that activates following
several PN spikes and serves to curtail further spiking [51, 50].

We simulate both chemosensory and mechanosensory input to the model, both in isolation and in con-
junction. In accordance with the well-established combinatorial odor code employed by olfactory receptor
neurons (ORNs) [31, 67, 68, 47, 1, 70, 54], an odor (in the absence of significant mechanosensory input) is
simulated by delivering an excitatory stimulus current to all cells within a subset of model glomeruli (half
of model glomeruli are designated to receive stimulus current); different odors are simulated by varying the
composition of the glomerular subset receiving stimulus current.

Mechanosensory input, on the other hand, is modeled by sending stimulus current to cells within all
network glomeruli. Thus, in our model we make the assumption that mechanosensory input is less local,
and at least somewhat more widespread, in its glomerular targets than olfactory input arising from a typical
odorant. While it is well known that chemosensory input from a typical odorant tends to target a highly
localized glomerular subset, due to the combinatorial nature of the ORN odor code and the relatively
strict one-to-one mapping of ORN types onto AL glomeruli, the extent or number of glomeruli targeted by
mechanosensory input is less well-known. Our data suggest the possibility that mechanosensory responses
within the moth AL may be relatively widespread across glomeruli, but we cannot definitively derive this
conclusion from our data. Another suggestive piece of evidence, though, is that responses to nonscented
air puffs can be observed in recordings from ORNs – e.g, see [55], figure 4 of [60], and figure 1 of [38].
Hence, ORNs themselves may be the source of mechanosensory input to the AL; if this is the case, then it
may be reasonable to hypothesize that more ORNs respond to mechanosensory input than chemosensory
input from a typical odorant, since chemoselectivity arises from the fact that each ORN tends to express a
single type of olfactory receptor (among many), while mechanoselectivity does not exist – any ORN that
can sense mechanical stimuli will provide mechanosensory input. Thus, while our modeling assumption
of mechanosensory input targeting a broader swath of glomeruli than olfactory input has not yet been
experimentally verified, we believe that it is a reasonable one. Moreover, we note that the modeling results
described in this manuscript (namely, the transiency of the response to mechanosensory signals) can also be
obtained by sending mechanosensory input to only 3 or 4 (rather than all 6) glomeruli – all that is required
to obtain transient responses to mechanosensory input in isolation is that the mechanosensory signal is
weak and ‘enough’ of the global LN network is activated by the signal (i.e., a weak mechanosensory signal
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– near the strength employed in the present model – elicits weakly active PNs, and if this signal is sent to
3 or 4 glomeruli, then the global LN network is sufficiently activated by the signal to suppress these weakly
excited PNs after an initial burst).

We employ two paradigms to simulate both modalities in conjunction (i.e., an odor delivered within the
context of strong mechanosensory input due to high wind speed): (i) Additive Paradigm – the stimulus
current due to mechanosensory input and odor input are simply added together to construct the high
wind speed odor stimulus; (ii) Normalized Paradigm – the stimulus current due to mechanosensory input
and odor input are both halved in amplitude then added together. Paradigm (i) may be more akin to
physiological reality, since PN responses from our data (figure 1) are suggestive of the possibility that the
mechanosensory response and the odor response of a PN augment each other to obtain the response to an
olfactory signal delivered at high wind speed. Paradigm (ii) allows analysis of network dynamics when net
excitation to the AL is kept approximately constant in the three cases of odor input alone, mechanosensory
input alone, and odor+mechanosensory input, permitting a more distilled comparison of the dynamical
effects of the two modalities in isolation and in conjunction. Figure 3 shows a schematic of the model
network. Model details can be found in the Methods.

2.2 Model Dynamics To Olfactory Input In Isolation

Taking advantage of modeling power, we begin by probing model responses to olfactory input alone (i.e.,
without simulating mechanosensory input), modeled as strong, focal stimulus current delivered to a subset
of AL glomeruli (glomeruli 1,2, and 3). We verify that model responses to olfactory input alone recapitulate
the salient features of experimentally observed moth AL odor dynamics, and we further dissect the dy-
namical mechanisms underlying model behavior. Experimentally, during prolonged odor presentation PNs
within activated glomeruli tend to exhibit a characteristic triphasic response; the first phase (I1) occurs
at odor onset and consists of a brief membrane potential hyperpolarization that lasts ∼50 ms, after which
rapid depolarization accompanied by spiking ensues for the duration of the stimulus (phase II), while odor
offset triggers the third phase (I2, also called the AHP phase) of hyperpolarization followed by a slow
recovery back to background over ∼1 sec [11, 69, 12, 13, 16].

Figure 4A depicts a raster plot of AL spiking activity in response to odor input - PNs within stimulated
glomeruli tend to exhibit robust responses to the odorant, while PNs within nonstimulated glomeruli
are suppressed, due to pervasive network-wide LN inhibition induced by the stimulus [59, 42]. Figure
4A further shows that PNs within activated glomeruli exhibit the characteristic triphasic odor response
observed experimentally. Phase I (the I1 phase) occurs due to the stimulus current inducing LNs to reach
threshold prior to PNs; hence, odor onset yields an initial burst of synchronized LN spikes within activated
glomeruli, leading to compounded fast inhibition from LNs briefly hyperpolarizing and silencing glomerular
PNs. Following the initial burst of LN spikes, LN activity desynchronizes and diminishes slightly (due to
LN→LN fast synaptic inhibition), allowing PN depolarization to commence and phase II PN spiking to
ensue. This is consistent with experimental evidence showing that direct GABA application mimics an
I1-type response in PNs and that the GABA antagonist bicuculline (BIC) eliminates the I1 phase of
odor-evoked PN activity [69, 12, 16, 17]; indeed, blockade of fast GABAergic synapses within our model
eliminates the phase I hyperpolarization of PNs following odor onset (figure 6A).

However, while experiments indicate that the I1 response seems driven by GABAA receptors, the mech-
anisms underlying the phase II response and the AHP (or I2) phase are empirically less well-understood.
During the phase II response, PN spike patterns can vary broadly across PNs; within active glomeruli,
some PNs fire spikes in sporadic or irregular bursts, while others fire more continuously at moderate (∼50
Hz) firing rates, with a range of response patterns intermediate between the extremes of bursting and
continuous firing. Moreover, the phase II dynamics exhibited by a PN shows no spatial dependency – in
fact, a significant amount of intraglomerular variability has been observed during stimulation [43, 15].

Our model exhibits similar variability in phase II PN response patterns (figure 4A), with examples of
a continuously firing PN and a bursting PN shown in figures 4B and 4C, respectively. Within our model,
the phase II behavior of a PN is primarily determined by the strength of its SK current – the strength
of the SK current of each PN within our model is randomly drawn from a Gaussian distribution, leading
to inherent variability in SK current strength across PNs and hence the diversity in PN phase II response
patterns. Figure 5A shows spike rasters when the SK current is removed from our network (left) or fixed
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at a high value for all PNs (right), suggesting that a lack of SK currents tends to yield continuously firing
PNs, while potent SK currents tend to produce burst-like PN behavior. This is further corroborated by
measuring the phase II behavior of a single, fixed PN as the strength of its SK current is varied – figure
5B shows that the phase II response pattern of a PN undergoes a clear, progressive, and gradual transition
from continuous firing behavior to sporadic bursting behavior as SK strength is increased. Indeed, within
the normal network (with randomly drawn SK strengths), there is a substantial correlation between the
degree of burst-like behavior and SK current strength across PNs (figure 5C). Thus, this result represents
an experimentally testable prediction of the model – the model predicts that, in the moth AL, the strength
of the SK current varies across PNs, and that a PN’s SK current strength determines the nature of its
phase II response pattern.

Within our model, the AHP (or I2) phase of lengthy hyperpolarization following prolonged odor pre-
sentation emerges as a dynamical consequence of slow inhibition from LNs to PNs. During phase II spiking
in the midst of prolonged odor presentation, the slow inhibitory current activates and exerts a damping
effect on PN spiking, but the potent odor-induced current impinging upon stimulated glomeruli is still able
to elicit substantial PN spiking responses. Upon odor offset, however, the odor-induced current rapidly
dissipates, while slow inhibition from LNs to PNs decays over a longer 1-2 second time scale, allowing the
gradually dwindling slow inhibitory current to suppress PN activity for ∼1 second following odor offset.
Indeed, severing slow inhibitory synapses within the model virtually eliminates the AHP phase of PN odor
dynamics, and PNs return to background activity levels immediately following odor offset (figure 6B).

2.3 Model Dynamics With Mechanosensory Input

We now examine the behavior of our model with the inclusion of strong mechanosensory input, simulated as
a one second current pulse delivered to all glomeruli, though weakened in comparison to an odor-induced
current pulse to a stimulated glomerulus (an odor alone, as in the previous section, is simulated as a
stronger one second current pulse delivered to only three glomeruli). Thus, we construct four stimulus
scenarios: (i) odor only, with no mechanosensory input, which simulates odor delivered at low wind speed;
(ii) mechanosensory input only, which simulates a nonscented, high speed air puff; (iii) additive paradigm
of high wind speed odor delivery, simulated by simple summation of the current pulses in the odor-only and
mechanosensory-only scenarios; (iv) normalized paradigm of high wind speed odor delivery, simulated by
halving then summing the current pulses in the odor-only and mechanosensory-only scenarios. The additive
paradigm is likely more representative of the physiological reality of moth AL dynamics in response to high
wind speed odor presentation (our moth data in figure 1 suggest that PN responses to high wind speed
odor stimuli may be augmented relative to responses to either mechanosensory input alone or odor input
alone). However, the normalized paradigm maintains similar net excitation to the AL as in the odor-
only and mechanosensory-only scenarios, allowing direct comparison of scenarios (i), (ii), and (iv); this
permits distillation of the dynamical effects of odor input and mechanosensory input alone, and the two in
conjunction, without the potential confound posed by variation in the net integrated excitation impinging
upon the AL.

Figure 7 shows spike rasters of the AL model (left) and the trial-averaged firing rate of a sample
PN in the network (right) in response to the four stimulus scenarios. In the odor-only scenario, PNs
within stimulated glomeruli exhibit substantial spiking throughout the duration of the stimulus, with
only a modest differential elevation in firing rate occurring specifically at stimulus onset (figure 7A). In
the mechanosensory-only scenario, however, PNs throughout the entire AL respond with an intense spike
burst at stimulus onset, but within a few hundred milliseconds are rapidly suppressed to background or
lower than background activity levels, and subsequently remain in this suppressed state for the duration of
the stimulus (figure 7B). Thus, model behavior is consistent with the experimental data shown in figures
1 and 2 – purely mechanosensory input yields transient, temporally precise PN responses followed rapidly
by suppression, while olfactory input without a strong mechanical signal (i.e., odor delivered at low wind
speed) yields a more prolonged and sustained spiking response. Furthermore, we note that the brief and
transient nature of the response to purely mechanosensory input is a feature that automatically emerges
from model dynamics, despite the prolonged nature of the current pulse simulating mechanosensory input.

The response of our model AL to strong mechanosensory input in conjunction with odor input (figure
7C,D) combines features of the responses to the two modalities in isolation. All AL PNs respond with a
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sharp burst of spikes at stimulus onset (with PNs in glomeruli receiving odor input displaying considerably
higher-frequency spiking within the burst), while following the burst, for the remainder of the stimulus
duration, PNs within glomeruli receiving odor input continue firing at rates substantially elevated above
background (though considerably diminished in comparison to the prior spike burst) and PNs within
glomeruli not receiving odor input are strongly suppressed below background. The responses of our model
PNs to odor and mechanosensory input in conjunction (odor delivered at high wind speed) therefore
capture the salient features of the behavior of the experimentally recorded PN shown in figure 1 under
similar stimulus conditions – a response with a high-intensity transient, temporally precise component
followed by a lower-intensity longer-lasting component. The data in figure 2 suggest that a few of our
exmperimentally recorded PNs exhibit somewhat different response dynamics than our model PNs, in that
their responses to strong mechanosensory input in conjunction with odor input are relatively brief and are
more akin to responses to purely mechanosensory input; while we do not incorporate the behavior of such
PNs within our model, we note that such behavior can be captured within our model in a relatively simple
manner, and merely requires adjusting the relative strengths of olfactory versus mechanosensory input to
individual PNs.

This leads to a natural query: how do model dynamics give rise to such qualitatively discordant behavior
in response to the two modalities? In other words, why are responses to odor input long-lasting while those
to strong mechanosensory input are transient and brief, despite the temporally prolonged nature of both
stimuli? The answer lies within the the dynamics of the inhibitory current (particularly slow inhibition)
from LNs to PNs, coupled with the globally extensive nature of the glomeruli-spanning LN network (and
the relatively weak nature of mechanosensory input, compared to odor-induced input). Figure 8A shows
the AL response to strong mechanosensory input alone in the absence of slow inhibition, fast inhibition,
or the SK current, and suggests that the lack of slow inhibition produces the most profound effect on
eliminating the transient nature of responses to mechanosensory input; this is further quantified in figure
8C (left), which shows that PN firing rates during the latter half of a one second mechanosensory input
pulse tend to be higher in the absence of slow inhibition versus in the absence of other network components.
Since LN neurites traverse glomeruli to synapse onto PNs thoughout the AL, the mechanosensory signal,
which activates all glomeruli, yields global activation of the LN network, and hence globally pooled slow
inhibition is delivered to all network PNs; the potency of this pooled slow inhibitory current, coupled
with the mechanosensory signal to each PN being relatively small in amplitude, ensures that, after a few
hundred ms (once the slow inhibition activates and rises in strength) network PNs are hyperpolarized and
silenced. In the case of an odor input alone, on the other hand, only a subset of glomeruli receive stimulus
current, and activation of this LN subset does not generate enough pooled slow inhibition to overcome PN
responses to the relatively large-amplitude stimulus current, leading to long-lasting PN responses (though
PNs within nonstimulated glomeruli are indeed suppressed by the slow inhibitory current).

It should be noted that figure 8C (left) indicates that fast inhibition plays a substantial role in producing
the transient nature of responses to mechanosensory input alone as well, and hence that, within the model,
fast inhibition augments the slow inhibitory current to produce response suppression during the latter
half of stimulus presentation (i.e., response suppression is due to fast inhibition + slow inhibition). In our
simulations, however, we find that strengthening slow inhibition (in the absence of fast inhibition) is capable
of producing transient responses to isolated mechanosensory input, while strengthening fast inhibition (in
the absence of slow inhibition) is not capable of producing the same transient dynamics. If fast inhibition
is strengthened sufficiently without slow inhibition, then the entire response – during the entire period of
stimulus presentation – is suppressed (since fast inhibition activates rapidly over time scales of a few ms,
it is incapable of having a differential effect on the first 500 ms versus the second 500 ms of a stimulus
response); on the other hand, if slow inhibition is strengthened sufficiently in the absence of fast inhibition,
then there exists a range of values for the strength of slow inhibition in which the latter half of the stimulus
response is suppressed while the former half of the stimulus response is not, due to the slow rise time of the
slow inhibitory current (data not shown). In this work, we therefore focus on the slow inhibitory current
as the primary element driving the transiency of response dynamics to mechanosensory input in isolation.

This suggests that if the potency of slow inhibition were sufficiently enhanced, then PN responses to
odor input alone would also begin to display a more transient quality (since, presumably, slow inhibition
from even a subset of network LNs would then be sufficient to silence PNs). This is exemplified in figure 8B,
which shows the spike response of a sample glomerulus to a one second pulse of mechanosensory input alone
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(left) or odor input alone (right) for varying levels of pervasive slow inhibition within the network. For very
low levels of slow inhibition, responses to both mechanosensory input alone and odor input alone are long
lasting, while for very high levels of slow inhibition responses to both stimulus modalities are transient,
brief, and rapidly curtailed by the rising slow inhibitory current. For mid-range levels of slow inhibition
within the network, however, PN responses to mechanosensory input are transient and brief (global LN
activation is sufficient to suppress PN responses), while PN responses to odor input are long-lasting (local
LN activation does not produce enough network-wide slow inhibition to suppress PN responses). This
observation is quantified in the center and right panels of figure 8C, which show that slow inhibition levels
within a moderate, mid-level range, during the latter half of a one second stimulus pulse, yield strong
suppression of PN responses in the case of mechanosensory input alone but substantial PN spiking in the
case of odor input alone.

2.4 Odor Discrimination Dynamics Within The Model

Experimental studies show that simultaneous presentation of multiple odors can actually have a damping
effect on responses within the moth AL, often resulting in less intense network-wide PN activation than
in the case of single-odor presentation [45, 62, 72]. Our model exhibits behavior consistent with these
empirical observations – simultaneous presentation of two odors that activate sufficiently disparate sets of
glomeruli triggers network-wide inhibition that is stronger than the enhancement in excitatory ORN input
to the network resulting from simulating two odors (rather than a single odor), producing a net suppressive
effect on model dynamics (figure 9A). This is due to the diffuse, glomeruli-spanning LN network [59, 42];
simultaneous presentation of two odors, provided the odors activate minimally overlapping glomerular
subsets, activates a broad swath of this LN network (in comparison to a single odor), resulting in a
substantial increase in the barrage of globally pervasive slow (and fast) inhibitory inputs impinging upon
PNs across glomeruli that more than offsets the greater stimulus-induced excitation.

We further assess the ability of PN activity within our model to classify different odors. Since a
single odor within our model is represented by the identity of the three (out of six) glomeruli that receive
odor-induced stimulus current, this implies that our model is capable of simulating a suite of 20 distinct
odorants. We employ a simple linear classification scheme to test the ability of PN activity within the
model to discriminate among the panel of twenty odorants – each odorant is represented by a template,
given by the trial-averaged vector of PN firing rates in response to presentation of the odor (100 trials
per odor), and each trial is designated as ‘correctly classified’ by the network if the distance between the
vector of PN firing rates corresponding to that trial to the various odor templates is minimized for the
correct odor template (see Methods for details). We note that this scheme merely represents a simple way
to ascertain the separation between odor representations in our model AL, and may not fully capture the
complexity of the manner in which downstream mushroom body neurons decode AL activity in vivo.

Figure 9B (left) shows the correct classification rate of the network, computed in 10 ms windows, over
a one second odor pulse; in general, the odor alone (with no mechanosensory input) stimulus scenario
exhibits the greatest accuracy in odor classification in comparison to the stimulus scenarios which include
mechanosensory input (the additive or normalized sensory integration scenarios). This matches intuitive
expectations – the mechanosensory signal is nonspecific and independent of odor identity; thus, the mechan-
ical signal cannot impart any information about odor identity, and is more likely to confound and imbue
an element of ambiguity into existing odor identity information. Accordingly, odor classification is reduced
most strikingly in the normalized sensory integration stimulus scenario, since in this scenario the olfactory
signal is diminished in strength, along with the presence of the potentially confounding mechanosensory
signal.

The most informative comparison in terms of odor discrimination, however, is between the odor-only and
additive sensory integration scenarios, since the odor signal is fixed across both these cases, and hence the
effect of mechanosensory input on odor classification can be directly assessed. Interestingly, figure 9B (left)
indicates that while the odor-only scenario yields more accurate odor classification during the initial few
hundred ms of the odor response, the additive sensory integration scenario actually yields slightly higher
classification rates during the subsequent few hundred ms of the odor response (with the two scenarios
yielding comparable performance after ∼500 ms). The reason for this can be ascertained by comparing
spike rasters of odor-stimulated glomeruli in the two scenarios (figure 7A versus figure 7C); note that, in
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glomeruli receiving olfactory input, the initial burst of PN spikes at odor onset in the additive sensory
integration case outlasts the initial burst in the odor-only case by a few hundred ms, which presumably
enhances the separation between distinct odor templates in the 60 dimensional PN phase space for the
additive sensory integration scenario in comparison to the odor-only scenario (beginning a few hundred ms
after odor onset and ending ∼500 ms after odor onset). Thus, odor discrimination is better in the additive
sensory integration case versus the odor-only case during this brief temporal window.

This feature of odor classification dynamics is an emergent consequence of the slow inhibitory current
from LNs to PNs. In the odor-only scenario, odor-stimulated glomeruli receive less net ORN input than
in the additive sensory integration scenario, since in the latter scenario odor-stimulated glomeruli receive
the odor-induced signal (as in the former scenario) plus additional excitation from the mechanosensory
signal. This implies that stronger slow inhibition is required to substantially dampen PN spiking in odor-
stimulated glomeruli in the additive sensory integration scenario than in the odor-only scenario; however,
since the activation time scale of slow inhibition is similar in the two scenarios, substantial dampening of
PN responses during the initial stimulus-induced high-frequency spike burst takes a greater length of time
in the additive sensory integration scenario than in the odor-only scenario. Thus, due to the temporal
dynamics of the activation of the slow inhibitory current, there exists a brief time window, beginning a
few hundred ms after odor onset and ending ∼500 ms after odor onset, during which PNs within odor-
stimulated glomeruli spike at a substantially higher rate in the additive sensory integration scenario than in
the odor-only scenario, and odor classification is hence more accurate in the former scenario during this brief
epoch. Indeed, as evident from figure 9B (right), blockade of slow inhibitory synapses within the network
leads to removal of this brief epoch, yielding odor classification rates in the odor-only scenario that surpass
those in the additive sensory integration scenario for the entire first ∼500 ms of stimulus presentation.
Overall, since the first few hundred ms of an odor response are likely the most behaviorally relevant for
an insect, it is reasonable to suggest that odor classification is, for practical purposes, diminished with the
addition of mechanosensory input (even with the inclusion of slow inibition).

3 Discussion

In this work, we present experimental evidence showing that PNs within the moth AL respond not only
to ambient olfactory stimuli, but also to mechanosensory signals arising from high-speed air flow across
the antennae, supporting the idea that the AL is a structure that integrates input from multiple sen-
sory modalities (rather than simply responding to olfactory input). Additionally, our experimental work
suggests that olfactory and mechanosensory signals induce starkly different response dynamics within the
AL – olfactory input tends to induce long-lasting PN responses that lack temporal precision, while in
constrast mechanosensory input leads to brief, temporally precise PN responses. We then develop a bio-
physically detailed model of the moth AL that captures many salient features of moth AL odor responses
reported in the literature, and we use our model to dissect and distill the dynamical mechanisms underlying
these network behaviors. Furthermore, we simulate both olfactory and mechanosensory input within our
model, showing that model PN responses closely mimic our experimental observations, and we suggest
that a slow inhibitory current from LNs to PNs, coupled with the more global nature of mechanosensory
input (in comparison to olfactory input) and a glomeruli-spanning LN network that widely distributes
inhibition throughout the AL, may be largely responsible for the remarkably disparate AL dynamics we
observe in response to olfactory versus mechanosensory signals. Finally, we suggest, using our model, that
mechanosensory input may actually somewhat diminish the ability of AL activity to parse and classify a
set of ambient environmental odors.

3.1 Biological Implications and Hypotheses

The existence of sensory integration within the AL leads to a natural query: what are the possible biological
functions of such bimodality? Insight may be gleaned from two key features of AL responses delineated in
this paper: (i) while the PN response to scented puffs at low air speed contains a minimal mechanosensory
component and tends to be long-lasting (i.e., not temporally precise), the PN response to scented puffs at
high air speed is augmented by a strong mechanosensory component and exhibits a large transient burst
(i.e., exhibits more temporal precision); (ii) in general, PNs exhibit larger odor responses in the presence of
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significant mechanosensory input (see figures 1 and 7). These starkly disparate PN response patterns in the
presence versus absence of a strong mechanosensory signal suggests that the AL may alternate between two
mostly distinct dynamic regimes – an odor tracking regime and an odor discrimination regime, respectively.

Odor Tracking Regime: Strong mechanosensory input (e.g., when the insect is mid-flight and actively
tracking an odor source) may place the AL within an odor-tracking dynamic regime. Strong mechanosen-
sory input may ‘prime’ the AL network, allowing an accompanying odor to ‘push’ the AL into a globally
coherent dynamic regime (i.e., a regime of network-wide synchronous activity); when air speed is high,
strong and rapidly fluctuating mechanosensory input may induce subthreshold voltage fluctuations across
PNs that are tightly correlated and large in amplitude (due to the fact that all PNs receive the same
mechanosensory signal), and embedding an odor within the windy flow (causing odor packets to ‘ride’ atop
high-speed air pulses) may then yield widespread PN spiking, tightly correlated spiking across PNs, and
greater global coherence and synchrony. Widespread, globally coherent AL activity may then bring full
attentional resources to bear on the source-tracking task. Furthermore, strong mechanosensory input (in
addition to odor input) may enhance the temporal precision of AL responses (possibly due to both rapid
fluctuations in the mechanical input itself as well as AL network mechanisms similar to those encapsulated
in figure 8); this may allow the AL to both resolve odor plume dynamics by tracking pulsatile odor deliv-
ery (through the transient, precise component of the response) and ascertain odor identity (through the
longer-lasting response component).

Odor Discrimination Regime: A relatively small level of mechanosensory input (e.g., when the insect has
landed on the surface of or is hovering near a food source) may place the AL within an odor-discrimination
dynamic regime (since, without strong, rapidly fluctuating mechanosensory input, tracking odor pulses
is less meaningful while fine odor discrimination, enhanced by long-lasting odor inputs, may be a more
profitable endeavor). When air speed is low, the minimal mechansensory input may fail to induce large,
correlated subthreshold voltage fluctuations across PNs, and accompanying odors may then yield uncor-
related and lower intensity spiking responses across PNs within responsive glomeruli. Additionally, PN
responses may be longer-lasting, sacrificing temporal precision for duration. Thus, AL activity is globally
unorganized, and is instead dominated by ‘patchy’ local dynamics unfolding over prolonged time scales,
placing the network within a regime devoted to parsing the multitude of environmental odors (rather than
tracking rapidly fluctuating odor pulses).

This picture of the biological role of the AL is suggestive, and we therefore propose three overarching,
testable hypotheses about the effects of mechanosensory input on AL dynamics: (1) Strong mechanosensory
input correlates activity across PNs and glomeruli and results in greater global coherence and synchrony; (2)
Strong mechanosensory input enhances the temporal precision and pulse-tracking ability of PN responses;
(3) Strong mechanosensory input diminishes the ability of AL activity to discriminate among similar odors
(as suggested by figure 9).

Thus, within the insect, strong mechanosensory input may serve as a ‘switch’ that alternates the AL
between odor tracking and odor discrimination dynamic regimes. In the absence of strong mechanosensory
input, there is little environmental information to guide tracking of an odor source, and hence the AL
may employ locally disconnected, ‘patchy’, long-lasting dynamics to devote its resources to fine odor
discrimination. In the presence of strong mechanosensory input, however, the AL may ‘switch’ to a more
globally coherent regime with temporally precise responses; this allows AL activity to faithfully follow
the spatiotemporal dynamics of environmental odor pulses and track an odor source, while sacrificing the
ability of network dynamics to finely discriminate among similar odors.

3.2 Sources of Mechanosensory Input to the AL

While our data clearly indicate that AL neurons respond to mechanosensory input in the form of air speed
and pressure, this observation leads to a natural query: what are the potential mechanisms by which both
mechanosensory and chemosensory information to glomeruli within the AL are conveyed? Olfactory input
to the AL is well-known to arise from antennal ORNs, yet the source of mechanosensory input is less certain.
However, there are two apparent possibilities that exist. The first may be similar to a mechanism found in
vertebrate ORNs. In one study [19], mouse ORNs were shown to respond to both olfactory and mechanical
stimuli, and inhibiting adenylyl cyclase completely blocked both types of responses, suggesting that cyclic
adenosine monophosphate (cAMP) is involved as a second messenger. Furthermore, knocking out CNG
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(cyclic nucleotide-gated channels) eliminated mechanosensitivity. The authors speculated that either some
odorant receptors are sensitive to mechanical pressure or a mechanosensor in the membrane might cross-link
to the cAMP cascade. In Manduca sexta, CNG channels are believed to be similar to those in vertebrates
and are directly activated by cAMP and another second messenger, cGMP [37]. The similarities in signal
cascade pathways between moth and mouse ORNs may be indicative of physiological similarities as well.
The second possibility may be related to the physical proximity of specialized mechanosensitive neurons
and ORNs. The somata of bipolar ORNs reside below the base of the sensilum in close physical proximity
to one another [34]; the axons of mechanosensory neurons (such as those from the Johnston’s organ) travel
in the same nerve bundle as the axons of ORNs towards the brain [34, 61], providing opportunities for
ephaptic interactions between axons [30, 2, 24]. The ephaptic effects may be further augmented by the
fact that invertebrate neurons lack compact myelin sheaths [73].

3.3 Future Directions

Our future work will involve further testing, through combined experimental and computational work,
of the hypotheses described above. We will examine the effects of strong mechanosensory input on the
correlational structure of PN responses across glomeruli, assessing its effects on global coherence and
synchrony within the AL. We will also assess the effects of high air-speed stimuli on the odor discrimination
ability of AL activity in order to further refine and probe the mechanisms underlying the modeling results
presented in this paper (figure 9).

In particular, we will investigate the ability of PN activity (individually and in aggregate) to track
transient odor pulses. Odor stimuli tend to present in nature as a series of discontinuous filaments that
occur with higher spatial frequency and in increasing concentration as the odor source is approached. Thus,
as a moth travels towards an odor source, it encounters brief pulses of odor that tend to occur at a more
rapid rate as the odor source becomes less distant [52]. Additionally, behavioral experiments in which male
moths were tested using the female pheromone blend have indicated that intermittent stimuli are more
effective at prompting the male moths to exhibit source-seeking behavior than continuous odor plumes
[7, 6, 5, 36, 32]. Collectively, these results suggest that the ability of PNs to track stimuli delivered in a
pulsatile fashion may be more behaviorally relevant than measuring static responses.

Indeed, experiments show that a series of short (several hundred ms) odor pulses evokes a sequence
of corresponding spike trains in activated PNs; each individual pulse produces an I1 hyperpolarization
followed by phase II depolarization and a burst of spikes, with pulse offset eliciting abrupt truncation of
spiking activity. The prolonged AHP phase, however, does not manifest until the end of the final pulse in
the stimulus train [17, 41]. Intracellular recordings from AL neurons using 50 ms odor pulses show that
moth PNs act as low-pass filters of pulse rate (each cell tracks odor pulses with bursts of spikes up to
a certain cutoff frequency that varies across PNs). Remarkably, PNs have been found that are capable
of tracking up to ten odor pulses per second, while pulse rates exceeding a cell’s cutoff frequency elicit
responses consisting of tonic firing. Furthermore, the cutoff frequency for pulse tracking is directly related
to the amplitude of the I1 hyperpolarization – PNs that display large I1 membrane potential deflections are
capable of locking to higher pulse rates [14, 21]. The transiency of experimentally observed PN responses
to odor pulses tantalizingly mirrors the effects of strong mechanosensory input on AL dynamics explored in
this paper. Experimentally assessing the effects of strong mechanosensory input on features of PN pulse-
tracking ability, while concurrently employing computational modeling to dissect and clarify the underlying
dynamical mechanisms, will provide a valuable avenue for investigating the nature, function, and purpose
of sensory integration within the AL.

4 Methods

4.1 Experimental Procedures

4.1.1 Preparation

The dissection procedure was as in a previous publication [40]. In brief, male Manduca sexta (Lepidoptera:
Sphingidae) moths were restrained with wax in a close-fitting plastic tube with only head protruding out
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of the tube. The wings and the rest of the body were capped in the tube to prevent scales from loosening
out. The labial palps and proboscis were removed, and a window was cut in the dorsal head capsule. The
cibarial pump and other muscles were excised to allow access to the brain. Isolated head preparations
were used during recordings. The head preparation was pinned to an algar-coated petri dish, with the ALs
oriented anteriorly. The dorsal region of protocerebrum behind an AL was carefully desheathed with a
pair of fine forceps. The preparation was superfused with a saline solution (150 mM NaCl, 3 mM CaCl2,
3 mM KCl, 10 mM TES buffer, and 25 mM sucrose, pH 6.9).

4.1.2 Intracellular recording and staining

Sharp microelectrodes were made from borosilicate glass capillaries with filament (1 mm outer diameter,
0.58 mm internal diameter, Sutter Instruments Co., Novato, CA) with a laser puller (P-2000, Sutter
Instruments Co., Novato, CA). The tip of the micropipette was filled with a solution of Lucifer Yellow CH
(65 mM, Sigma-Aldrich, St. Louis, MO) in 200 mM LiCl, and the shaft with 2 M LiCl; microelectrodes had
resistances in the range 100-350 MΩ. The electrophysiological activity of an impaled neuron to stimulation
of the ipsilateral antenna was amplified 10- to 50-fold with an Axoclamp-2A amplifier (Axon Instruments,
Molecular Devices, Sunnyvale, CA) coupled to a DC amplifier (LPF 202A, Warner Instruments, Hamden,
CT), and digitized at 20 kHz (via Datapack, Run Technologies, Mission Viejo, CA). The medial cluster
was targeted in these recordings because most of the pheromone sensitive PNs have their cell bodies in
this cluster [26]. After physiological characterization, neurons were injected with Lucifer Yellow by passing
hyperpolarizing current (0.21 nA) for 515 min. Upon completion of an experiment, the brain was excised
and immersed in 2.5% formaldehyde fixative solution (pH 7.2) overnight at 4◦ C, dehydrated through a
graded series of aqueous ethanol solutions (from 50 to 100%), and cleared with methyl salicylate (Sigma-
Aldrich, St. Louis, MO). Cleared brains were imaged as whole mounts with a laser-scanning confocal
microscope using a 20X objective lens (Carl Zeiss 510 Meta equipped with a 457-nm Argon laser and
a 543-nm Green HeNe laser). Unfortunately, we did not succeed in obtaining any complete fill of these
PNs except to observe that their soma are located in the medial cluster. However, these PNs are well
described in previous publications [11, 41]. Based on knowledge of the specialized sex-pheromone system
of this species, we are confident that our targeted PNs are the same type as those described in previous
publications.

4.1.3 Stimulus protocol

Pheromone components, E10-E12-Z14-hexadecatrienal (EEZ) and E10-Z12-hexadecadienal (Bombykal or
BAL), were diluted in cyclohexane to a concentration series ranging from 0.1–1000 ng/l and 0.22000 ng/l,
respectively. From these stocks, a binary blend was made in the natural 2:1 ratio at concentration of
10 ng/µl. One µl of the blend was deposited on a piece of filter paper that was contained in a 0.5 ml
glass syringe. Each syringe was used as a stimulus cartridge to deliver stimuli via a solenoid-controlled
air stream. The air stream was supplied from a pressurized building air line, which first passed through
a charcoal filter, then a water flask. Before reaching the solenoid, the air stream passed through an air
flow meter with mechanical control (AALBORG, Orangeburg, NY). Additionally, a vacuum exhaust funnel
was placed behind the preparation to remove odor molecules immediately after each puff. Non-scented air
puffs were delivered through empty syringe directly to the antennae without using a constant carrying
flow. Stimuli were delivered in train of 5 pulses with duration of 100 ms and interpulse interval of 2 sec,
which is well within the range of pulse resolution of these neurons (up to 2 Hz; see Fig. 2 of [44]). The air
speed in the delivering line was set at high (about 1 liter per minute) or low (about 0.5 liter per minute),
and the air pressure imposed on the solenoid was about 20 psi. In this system it takes about 150 ms for
stimulus molecules to reach the antenna. Comparing to a typical wind-tunnel experiment [44] where the
wind speed is about 20 cm/sec (or 240 ml/min if realized in a tube of 0.5 cm diameter), the air speeds used
in this study are higher but still within a conceivable range. Increasing the air flow speed in scented puffs
results in a higher odor flux, i.e. number of molecules per second. Ideally, the flux rate should be kept
constant; but that requires extensive further experimentation. For the purposes of the present study, we
merely note the differential response to nonscented air puffs at 2 speeds; and since high speed nonscented
air puffs yield higher responses than low speed nonscented air puffs (Fig. 1 and Fig. 2), we conclude that at
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least some of the increased response to odor-laden puffs at high speed versus low speed is due to increased
mechanosensory input.

4.1.4 Data analysis

Time stamps of recorded spikes were extracted within Datapack (Run Technologies, Mission Viejo, CA) and
subsequently exported to Neuroexplorer (Nex Technologies, Littleton, MA) to generate peristimulus time
histograms (PSTHs) and raster plots. The width of the response window for each neuron was determined
by inspecting all PSTHs across the entire dataset. The response windows varied from 0.3 to 0.8 sec. The
same width, however, was used for one neuron across all responses. The firing rate during response, i.e.
the mean instantaneous firing rate within a response window, was calculated by averaging the inverse of
inter-spike intervals (ISI) for all the spikes within the response window.

For each recorded spike trace, a continuous firing rate function was generated by calculating spike rates
within a 300 ms sliding window with a step size of 1ms. The background firing rate for a trace was measured
over 2500 ms of spontaneous activity. Peak firing rate (in response to a stimulus) over background for a
trace was determined as the peak value of the firing rate response to the stimulus divided by background
firing rate; the data in figure 2A show averages over 5 trials for each stimulus condition. We set a threshold
response value to high flow air (no odor) of 1.5 (i.e., a peak firing rate at least 1.5 times background) to
indicate responsiveness to mechanosensory input (this threshold was chosen as a reasonable cutoff based
on visual inspection of the data).

Response lengths, as shown in figure 2B, were determined by observing the change in firing rate,
relative to background, through time. For each stimulus pulse, we began at the response peak and worked
backwards in time until the firing rate over background was 1 or lower (i.e., the firing rate was equivalent
to or lower than the background firing rate). This time was considered the start of the response. The
end of the response was determined similarly by starting at the response peak and moving forward in time
until the firing rate over background returned to 1. Response length was then quantified as end time minus
start time. For each stimulus condition, response lengths were averaged over 5 trials to produce the data
shown in figure 2B.

The statistical tests carried out in figure 2 employed the Kruskal-Wallis test followed by Turkey-Kramer
multiple comparisons, implemented in Matlab.

4.2 Computational Modeling

We constructed a spiking model of the AL network that attempted to attain enough architectural complex-
ity to achieve the complex dynamics of the AL while maintaining enough simplicity to allow for investigation
of core mechanistic components. Below, we elaborate on the components and connectivity of our model as
well as the details of our analyses of model dynamics.

4.2.1 The Neuron Model

The model was composed of two subclasses of neurons: excitatory, cholinergic PNs and inhibitory, GABAer-
gic LNs. The membrane potential of the jth PN (V jPN (t)) or the jth LN (V jLN (t)) were modeled using
integrate-and-fire dynamics by the following set of ODEs, which include both intrinsic and synaptic cur-
rents:

d

dt
V jPN (t) = − 1

τV
(V jPN − VL)− gjSK(t)(V jPN − VSK)− gjstim(t)(V jPN − Vstim)

− gjexc(t)(V
j
PN − Vexc)− g

j
inh(t)(V jPN − Vinh)− gjslow(t)(V jPN − Vinh)

d

dt
V jLN (t) = − 1

τV
(V jLN − VL)− gjstim(t)(V jLN − Vstim)

− gjexc(t)(V
j
LN − Vexc)− g

j
inh(t)(V jLN − Vinh)− gjslow(t)(V jLN − Vinh)
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PN j in the model was equipped with an intrinsic slow potassium current (SK), and received stimulus-
induced input (from external background, odor, and mechanosensory sources), fast excitatory input from
other PNs, fast inhibitory input from LNs, and slow inhibitory input from LNs. LN j in the model received
stimulus-induced input (from external background, odor, and mechanosensory sources), fast excitatory
input from PNs, fast inhibitory input from other LNs, and slow inhibitory input from other LNs. In
these equations, VL = 0, Vexc = Vstim = 14

3 , and VSK = Vinh = − 2
3 (expressed in nondimensional units)

represent reversal potentials associated with leakage, excitation, and inhibition respectively. The leakage
timescale is given by τV = 20ms. Upon any neuron reaching a threshold voltage of Vthres = 1, a spike was
recorded and its voltage was subsequently reset to VL = 0 (and held at VL = 0 for a refractory period of
τref = 2ms). The neuron model was based on a reduced dimensional integrate-and-fire model previously
developed in the literature [63], and our network model of the moth AL represents a modification of a prior
moth AL model [46] that employed reduced dimensional integrate-and-fire neuron components.

The term gjexc(t) represents the membrane conductance of neuron j to excitatory synaptic input from
PNs, and was modeled as follows:

gjexc(t) =
∑
s∈S

SPNαexc(t|s), where αexc(t|s) =
H(t− s)
τexc

e−
(t−s)
τexc ,

where H(t) is the standard Heaviside Step Function:

H(t) =

{
1, t ≥ 0

0, t < 0

In this equation, S represents the set of all spike times of all PNs presynaptic to neuron j. SPN is the
coupling strength of a network PN to neuron j; we set SPN = .01 if neuron j was a PN, while we set
SPN = .006 if neuron j was an LN. αexc(t|s) is a function with instantaneous rise time and exponential
decay time, with time constant τexc = 2ms (whether neuron j was an LN or a PN).

The other synaptic conductances, gjinh(t) and gjslow(t), as well as the stimulus conductance, gjstim(t),
were modeled similarly:.

gjinh(t) =
∑
s∈S

Sinhαinh(t|s), where αinh(t|s) =
H(t− s)
τinh

e
− (t−s)
τinh

gjslow(t) =
∑
s∈S

Sslowαslow(t|s), where αslow(t|s) =
H(t− s)
τslow

e
− (t−s)
τslow

gjstim(t) =
∑
s∈S

Sstimαstim(t|s), where αstim(t|s) =
H(t− s)
τstim

e
− (t−s)
τstim

For the gjinh(t) and gjslow(t) equations, S represents the set of all spike times of all LNs presynaptic to

neuron j. For the gjstim(t) equation, S represents the set of all spike times of the external input delivered
to neuron j; these stimulus-induced spike times arose from simulation of background input, odor input, and
mechanosensory input as Poisson processes of incoming spike events (see Stimulus Modeling section below
for details). If neuron j was a PN, the coupling strengths were given by Sinh = 0.0169, Sslow = 0.0338, and
Sstim = 0.004, while if neuron j was an LN, the coupling strengths were given by Sinh = 0.015, Sslow = 0.04,
and Sstim = 0.0031. The fast inhibition and stimulus timescales were comparable to excitation, with
τinh = τstim = 2ms, while the slow inhibition time scale was dramatically slower, with τslow = 750ms
(whether neuron j was a PN or an LN).

Finally, the SK current is an intrinsic slow potassium current, displayed by only PNs, that activates
upon spiking and serves to curb further spiking activity. Rather than an instantaneous jump, the rise time
of the SK current was modeled as sigmoidal; this non-instantaneous rise time allowed PNs to potentially
emit multiple spikes prior to suppression of firing activity by the SK current. The SK current for PN j
was modeled as follows:

gjSK(t) =
∑
s∈S

SSKβ(t|s)
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β(t|s) =


H(t−s)
τSK

e
5((t−s)−τrise)

τrise

1+e
5((t−s)−τrise)

τrise

, t ≤ s+ 2τrise

1
τSK

e
−(t−(s+2τrise))

τSK , t > s+ 2τrise

S represents the set of all firing times of PN j. The strength SSK of the SK current was a randomly
determined, but fixed, parameter, and hence varied from PN to PN; the value of SSK for PN j was
drawn from a normal distribution with mean µ = .5 and standard deviation σ = .2. While rare, it was
possible for SSK to be negative with this distribution, so any negative value for SSK was manually set
to 0. τSK = 250ms, and the rise of the SK current was modeled as sigmoidal with a half-rise time of
τrise = 25ms.

4.2.2 Network Architecture

Our AL model consisted of 6 glomeruli, with each glomerulus consisting of 10 PNs and 6 LNs; con-
nectivity within glomeruli was dense in comparison with relatively sparse connectivity across glomeruli.
Synaptic connections within the model were randomly determined but fixed, with the probability of a
synaptic connection varying within and across glomeruli and dependent on cell type. Within a glomeru-
lus, the PN→PN, PN→LN, LN→PN, LN→LN connection probabilities were given by 0.75, 0.75, 0.38,
0.25, respectively. Long-range connections (i.e., connections across glomeruli) were mediated exclusively
by LN→PN synapses, and the cross-glomerular LN→PN connection probability was given by 0.38.

It is worth mentioning that the model itself is quite robust, with the exact input parameters provided not
essential to producing reasonable behavior. Rather, we found that combinations of parameters, and hence
the relative strength of disparate network components, were important for producing realistic behavior.
For example, we found that slow inhibition must be sufficiently strong, relative to stimulus-induced inputs,
to suppress PN spiking if the global LN network was activated, yet not so strong as to silence PN activity
upon only focal activation of a few glomeruli. Likewise, we found that the strength of the SK current must
fall within a broad range of values, relative to the strength of stimulus-induced inputs and LN inhibition,
with the lower end of this range yielding homogeneous PN spiking activity and the higher end of this
range yielding burst-like PN behavior. Hence, our parameter choices represent a single point drawn from
a relatively large cloud (in multidimensional parameter space) of parameter combinations that produce
physiologically reasonable behavior.

4.2.3 Stimulus Modeling

Rather than explicitly modeling the behavior of ORNs or the cells responsible for mechanosensory sensory
inputs, input to each cell within the network was modeled as a Poisson process of incoming spikes. An
incoming spike to neuron j within the network was modeled as an instantaneous jump in gjstim(t) of size
.004 if neuron j was a PN, or .0031 if neuron j was an LN, followed by exponential decay with time
constant τ = 2ms (whether neuron j was a PN or an LN). Each cell had three potential sources of input;
all cells received a background rate of λback = 3.6 spikes/ms, while odor input (simulating the presence of
a single odor) was delivered at a maximum rate of λmaxodor = 3.6 spikes/ms and mechanosensory input was
delivered at a maximum rate of λmaxmech = 1.8 spikes/ms. The total rate of incoming spikes for the jth cell
was therefore given by:

λjtot(t) = λback + λjodorO
j(t) + λjmechM

j(t),

where Oj(t) and M j(t) are functions that range between 0 and 1 and serve to model the temporal dynamics
of odor and mechanosensory input pulses, respectively.

To simulate background AL activity, we set λjodor = 0 and λjmech = 0 for all j. To simulate a single odor
(without simulation of mechanosensory input) presented at time ton and removed at time toff , we sent
odor-induced input to all cells within 3 out of 6 model glomeruli (with the glomerular subset signifying odor
identity); we therefore set λjodor = 0 if cell j belonged to an unstimulated glomerulus and λjodor = λmaxodor if cell

j belonged to a stimulated glomerulus, and set λjmech = 0 for all j. To simulate a pulse of mechanosensory

input (without an accompanying olfactory stimulus) from time ton to time toff , we set λjodor = 0 and
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λjmech = λmaxmech for all j. Hence, within the model, olfactory input stimulated a focal glomerular subset,
while mechanosensory input represented a global signal delivered to the entirety of the AL.

In addition to simulating olfactory and mechanosensory input in isolation, we also simulated the two
in combination. To simulate a stimulus pulse (from time ton to time toff ) consisting of a single odor
accompanied by a mechanosensory signal, we employed two distinct paradigms – the additive sensory inte-
gration and the normalized sensory integration paradigms. In the additive sensory integration paradigm,
we set λjodor = 0 if cell j belonged to a glomerulus not responsive to the odor and λjodor = λmaxodor if cell

j belonged to a glomerulus activated by the odor, and set λjmech = λmaxmech for all j. In the normalized

sensory integration paradigm, we set λjodor = 0 if cell j belonged to a glomerulus not responsive to the

odor and λjodor = 1
2λ

max
odor if cell j belonged to a glomerulus activated by the odor, and set λjmech = 1

2λ
max
mech

for all j. Hence, the additive paradigm simply ‘added’ together the isolated olfactory and mechanosensory
signals, while the normalized paradigm scaled the two signals in order to maintain a similar overall level of
excitation sent to the AL network in comparison to the cases of olfactory input or mechanosensory input
in isolation.

Finally, to simulate two odors simultaneously (as in figure 9), we simply ‘added’ the inputs resulting
from the two odors in isolation. In other words, we set λjodor = 0 if cell j belonged to a glomerulus

stimulated by neither odor, λjodor = λmaxodor if cell j belonged to a glomerulus stimulated by only 1 of the 2

odors, and λjodor = 2λmaxodor if cell j belonged to a glomerulus stimulated by both odors.
The function Oj(t) represents the temporal dynamics of the olfactory component of a stimulus pulse

beginning at time ton and ending at time toff (with toff − ton = 1000ms – i.e., stimulus pulses were
modeled as having a 1 sec duration). Oj(t) = 0 for t < ton; at time ton, Oj(t) increases from 0 to 1 with
a prescribed rise time, while for t > toff , Oj(t) decreases from 1 to 0 with a prescribed decay time. If
neuron j was a PN, rise was sigmoidal with a half-rise time of τrise = 35ms, while decay was exponential
with τdecay = 384ms:

If j is a PN, Oj(t) =


H(t− ton) e

5((t−ton)−τrise)
τrise

1+e
5((t−ton)−τrise)

τrise

, t ≤ ton + 2τrise

1, ton + 2τrise < t ≤ toff

e
−(t−toff )

τdecay , toff < t

If neuron j was a LN, rise was instantaneous, while decay was exponential with τdecay = 384ms:

If j is an LN, Oj(t) =

H(t− ton), t ≤ toff

e
−(t−toff )

τdecay , toff < t

For Oj(t) we chose a sigmoidal rise time for PNs versus an instantaneous rise time for LNs in order to
capture the brief PN hyperpolarization that occurs at odor onset (the I1 phase of the odor response,
described further in the Results section). A slightly longer rise time for PNs ensured that the synchronized
burst of LN spikes that occurred at odor onset was strong enough to hyperpolarize PNs for a brief period
prior to the rise of the odor-induced current to PNs. While the I1 phase can be achieved in several ways
(e.g., strengthening fast inhibition from LNs to PNs, increasing the strength of the odor-induced current
to LNs, or decreasing the strength of the odor-induced current to PNs), the exact dynamics underlying
the I1 phase are not known, and hence in our model we chose to employ a differential rise time of the
odor-induced current to PNs versus LNs.

Similarly, the function M j(t) represents the temporal dynamics of the mechanosensory component of a
stimulus pulse beginning at time ton and ending at time toff (toff − ton = 1000ms). M j(t) = 0 for t < ton;
at time ton, M j(t) increases from 0 to 1 with a prescribed rise time, while for t > toff , M j(t) decreases
from 1 to 0 with a prescribed decay time. If neuron j was a PN, rise was instantaneous and decay was
exponential with τdecay = 384ms:

If j is a PN, M j(t) =

H(t− ton), t ≤ toff

e
−(t−toff )

τdecay , toff < t
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If neuron j was a LN, τrise = 300ms and τdecay = 384ms:

If j is an LN, M j(t) =


H(t− ton) e

5((t−ton)−τrise)
τrise

1+e
5((t−ton)−τrise)

τrise

, t ≤ ton + 2τrise

1, ton + 2τrise < t ≤ toff

e
−(t−toff )

τdecay , toff < t

We included a significantly longer rise time for mechanosensory input to LNs, relative to that for PNs, in
order to ensure that global LN inhibition at the inception of a stimulus pulse (mediated by fast inhibitory
synapses) was not overwhelmingly powerfully enough to prevent PN spiking altogether, and that substan-
tial suppression of PN spiking must await the lengthy activation time of slow inhibitory synapses. This
assumption, however, is not necessarily required to obtain physiologically reasonable dynamics – for exam-
ple, weakening fast inhibitory synapses from LNs to PNs or strengthening slow inhibition while reducing
the density of LN→PN synapses can yield similar dynamical effects without such a disparity in rise times.
Since the dynamics of mechanosensory input to AL cells has not yet been studied within the experimen-
tal literature, we (somewhat arbitratrily, due to ignorance of the actual physiological mechanism at play)
chose to include this mechanism of a disparity in rise times to ensure robust PN spiking at stimulus onset.
However, we note that including a disparity in rise times does not affect the basic dynamical behavior of
the model, other than delaying suppression of PN spiking at stimulus onset.

4.2.4 Simulation and Data Analysis

Means and standard deviations were taken over 100 trials. Normalized firing rates (as in figure 8) were
determined by dividing the firing rate during a period of interest (in our case, the last 500ms of an odor
pulse) by the firing rate during 1 second of background activity (both averaged over 100 trials). Thus,
a normalized firing rate greater than 1 represents enhanced spiking activity (over background) while a
normalized firing rate less than 1 represents reduced spiking activity (relative to background).

Odor discrimination rates within the model (as in figure 9) were determined using a linear classification
scheme. To calculate the time-dependent ability of the network to discriminate among n stimuli, we split
the total simulation time into nonoverlapping 10ms time bins; for stimulus i ∈ [1, n] and time bin k, we
constructed a template for stimulus i in time bin k as the 60-dimensional vector of PN firing rates within
time bin k averaged over 100 trials of stimulus i presentation. This yielded a total of 100n odor trials and n
odor templates for time bin k. For an individual stimulus trial (for, say, stimulus l ∈ [1, n]), we designated
the trial as ‘correctly classified’ within time bin k if the Euclidean distance between the 60-dimensional
vector of PN firing rates for that trial and each of the n odor templates was smallest for the template for
odor l; otherwise, we designated the trial as ‘incorrectly classified’. The classification rate of the network in
time bin k was then determined as the number of ’correctly classified’ odor trials within time bin k divided
by 100n.

Numerical simulations were carried out using the Euler Method with a time step of ∆t = 0.1ms. Model
code was written in C++ with data analysis and plotting carried out in Matlab. Model code is available
at https://gitlab.com/HarrisonTuckmanWM/antennal-lobe-model-2-0.
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Figure 1: Figure 1. Mechanosensory input shapes PN response patterns. (A) Confocal microscopic images show a single
PN cell body (arrow) located in the medial cluster, labeled with Lucifer yellow fluorescent dye. The square in A1 is magnified
in A2. MC: medial cluster of cell bodies; LC: lateral cluster of cell bodies; G: glomerulus; D: dorsal; V: ventral; L: lateral; M:
medial. (B-E) Response of a representative PN to consecutive non-scented air puffs or pheromone-infused air puffs. While
responses to pheromone-infused air puffs are stronger, non-scented air puffs induce robust responses as well. The peristimulus
histograms (PSTHs) were based on responses to 5 puffs of non-scented air (B1) and pheromone blend (C1) at low air speed,
and responses to the same stimuli but at high air speed (D1, E1). Examples of the raw intracellular spike traces show response
to single stimulus puff under each air speed-stimulus scenario (B2, C2, D2, E2). Note that a non-scented air puff at high speed
evoked a response pattern similar to that evoked by pheromone at high puffing speed. The correlation coefficient between
D1 and E1 is 0.69 whereas the correlation coefficient between B1 and C1 is only 0.19. (F) High flow speed produced more
similar response patterns between the control and pheromone treatment (cyan bar in F1, mean±SE) than the low flow speed
did (blue bar in F1, mean±SE) (Mann-Whitney U test, p < 0.0001, n=7, Panel F1). Raster plots show diverse responses to
non-scented air puffs at high flow rate (F2). From B to E, stimulus delivery started at time zero and lasted for 200 ms. The
black bar below each histogram indicates the duration of one stimulus pulse, but the histogram is averaged across five pulses.
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Figure 2: Figure 2. Response strengths and durations of the 7/9 recorded cells that were deemed responsive to mechanosen-
sory input; responses to strong mechanosensory input alone (Control High Flow), odor with minimal mechanosesory input
(Pheromone Low Flow), and odor concurrently with strong mechanosensory input (Pheromone High Flow) are shown. (A)
Peak firing rate response of each cell divided by the background firing rate for the cell. A cell was deemed responsive to
mechanosensory input if the Control High Flow condition yieled a response exceeding 1.5X background; this threshold is
shown by the dashed line. (B) Total duration of a neuron’s response to each stimulus condition. Data are averaged over 5
trials; error bars show mean ± SEM. Gray bar with no stars indicates p < 0.15; black bar with no stars indicates p < 0.1;
black bar with one star indicates p < 0.05; black bar with two stars indicates p < 0.01. In panel (A), only Pheromone High
Flow vs. Control High Flow and Pheromone Low Flow vs. Pheromone High Flow comparisons were carried out; in panel
(B), only Pheromone Low Flow vs. Control High Flow and Pheromone High Flow vs. Control High Flow comparisons were
carried out. Details can be found in the Methods.
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Figure 3: Figure 3. Schematic of model AL network. Each column represents a glomerulus; squares represent PNs (10
per glomerulus) and circles represent LNs (6 per glomerulus). Arrow heads indicate excitation, while bar heads indicate
inhibition. Within a glomerulus, all cell types form synapses with each other (with cell type-specific connection probabilities),
while glomerular cross-talk is mediated only via LN→PN synapses. An odor is simulated via delivery of excitatory stimulus
current to all cells within a subset of three glomeruli (solid incoming arrows), while strong mechanosensory input is simulated
via delivery of excitatory stimulus current to all cells within all glomeruli (dashed incoming arrows).

Figure 4: Figure 4. Model dynamics in response to odor stimulation alone, with no mechanosensory input. (A) Spike
raster of the AL network. PNs and LNs are grouped together by glomerulus, with the bottom 10 rows in each glomerulus
depicting PNs and the top 6 rows depicting LNs. A one second odor pulse (marked by the black bar on the horizontal axis)
is simulated by sending stimulus current to all cells within glomeruli 1,2 and 3. (B) Plot of the membrane potential, intrinsic
SK current, and incoming synaptic excitation, slow inhibition, and fast inhibition for a single PN in a stimulated glomerulus.
This PN displayed continuous firing behavior. (C) Similar plot as (B), but for a neuron which displayed a more burst-like
firing pattern.
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Figure 5: Figure 5. (A) Raster plot of model dynamics during a one second odor pulse (with no mechanosensory input), in
the case that all PNs either have no SK currents (left) or very strong SK currents (right). Note that PNs without SK current
exhibit more continuous firing, whereas PNs with high SK currents exhibit more burst-like behavior. (B) Spike rasters for a
single stimulated PN in the model during a 1 second odor pulse, for varying levels of the strength of the PN’s SK current.
As SK strength increases, firing behavior shifts from being continuous to bursting. (C) The standard deviation of interspike
interval during odor stimulation was used to quantify the burstiness of a PN. A small standard deviation represents relatively
homogeneous firing, while a larger standard deviation represents fluctuations between short interspike intervals within a burst
and long interspike intervals between bursts. The scatter plot shows SK strength and standard deviation in interspike interval
for each PN during odor presentation (only PNs within active glomeruli are included). A positive correlation of r=0.57 reveals
that SK currents indeed play a role in the emergence of heterogeneous bursting behavior.
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Figure 6: Figure 6. (A) Raster plot of the model AL during odor presentation with no mechanosensory input (left) and
membrane potential, SK current, incoming synaptic excitation, slow inhibition, and fast inhibition for a sample PN (right);
plots shown are in the case that fast inhibition is removed from the network. Note that removing fast inhibition diminishes
the phase I hyperpolarization (I1) of PNs upon odor onset. (B) Similar plots as in (A), but with slow inhibition rather than
fast inhibition removed from the network. Note that removing slow inhibition eliminates the prolonged AHP phase (I2) of
PNs following odor offset. Black bar represents odor stimulus.
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Figure 7: Figure 7. Raster plots of the first three model glomeruli (left) and firing rates of a sample PN from one of these
glomeruli over 10 ms windows and averaged over 100 trials (right) for (A) odor input only, (B) mechanosensory input only,
(C) additive odor and mechanosensory integration, and (D) normalized odor and mechanosensory integration. These results
closely mimic the experimental results shown in figure 1, displayed in panel insets on the right for comparison. Black bar
represents stimulus; different trials in the same stimulus condition correspond to different instantiations of the Poisson noise
received by each neuron, with network connectivity and parameters fixed across trials.
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Figure 8: Figure 8. (A) Raster plots of three sample glomeruli within the model AL during AL stimulation by a 1 second
pulse of mechanosensory input only (black bar), in the case where slow inhibition is removed (left), fast inhibition is removed
(center), or the SK current is removed (right) from the model. Slow inhibition appears to have the largest effect in causing the
transient nature of the mechanosensory response. (B) Raster plots of a sample stimulated glomerulus during AL stimulation
by a 1 second pulse of mechanosensory input only (left) or odor input only (right) for varying strengths of the slow inhibitory
synapses from LNs to PNs. As slow inhibitory strength increases, both mechanosensory and odor responses appear more
transient, though the mechanosensory response becomes transient at lower slow inhibitory strengths than the odor response.
(C) Left: Bar plot for PN firing rate, averaged over all network PNs and normalized by the background firing rate, during the
last 500 ms of a 1 second pulse of mechanosensory input only. Data are shown in the case of the fully intact model (control)
as well as in cases where various network components are removed. Mean and standard deviations are computed over 100
trials. Note that, without slow inhibition, there is little response suppression during the last 500 ms of the stimulus pulse.
Center: PN firing rate, averaged over all network PNs and normalized by the background firing rate, during the last 500 ms
of a 1 second pulse of mechanosensory input only or odor input only, as a function of the strength of slow inhibitory synapses.
Mean and standard deviations are computed over 100 trials. Right: Same as in the center panel, except PN firing rate is
plotted as a function of the density of LN→PN synapses. Note that during the latter half of a stimulus pulse the response to
mechanosensory input alone, compared to the response to odor input alone, is suppressed at lower values of slow inhibitory
strength or LN→PN connection probability.
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Figure 9: Figure 9. (A) Left: Raster of model AL network spikes in response to simultaneous presentation of two odors
(without mechanosensory input). Odor 1 stimulated glomeruli 1, 2, and 3; odor 2 stimulated glomeruli 3, 4, and 5. Right: Bar
chart of PN firing rate, averaged over the entire AL, for simultaneous presentation of two odors with various degrees of overlap
in the glomeruli activated by each odor; data show means and standard deviations computed over 100 trials (differing letters
above bars indicate p < 0.05 statistical significance). The less the overlap in stimulated glomeruli, the greater the suppression
of PN responses, likely due to greater AL-wide activation of the LN network. (B) Left: Plots of the odor classification rate
of net PN activity during a one second period of odor presentation for the odor only, additive odor and mechanosensory, and
normalized odor and mechanosensory stimulus scenarios. A panel of 20 odors was employed, and the correct classification
rate of net PN activity was computed in 10 ms windows using a simple linear classification scheme (see Methods for details).
Right: Same plot as in the left panel, except with slow inhibition removed from the model.
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