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Let R be a standard graded algebra over a field k and I be a homogeneous 
ideal of R. We study the question whether there is a constant c such that 
Soc(Hj

m(R/It))<−ct = 0 for all t ≥ 1 and a variation of this question. We also 
draw a connection between this question and the notion of gauge-boundedness in 
prime characteristic.
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1. Introduction

Let k be a field and let R be a standard graded k-algebra, i.e. R = k[x1, . . . , xn]/ a where a is a homoge-
neous ideal in k[x1, . . . , xn] that is standard graded. Let m = (x1, . . . , xn) denote the homogeneous maximal 
ideal of R. Following the notation in [5, §13.1], for each graded R-module M , we set

beg(M) := inf{i | Mi �= 0} end(M) := sup{i | Mi �= 0}.

We will denote the socle of M by Soc(M), i.e.

Soc(M) := {z ∈ M | m z = 0} = HomR(R/m, M).

When M is artinian, Soc(M) is a finite-dimensional k-vector space and hence both beg(Soc(M)) and 
end(Soc(M)) are finite. When M is a finitely generated graded R-module, the local cohomology modules 
Hj

m(M) are artinian; consequently both beg(Soc(Hj
m(M))) and end(Soc(Hj

m(M))) are finite. It is clear that

end(Soc(Hj
m(M))) = end(Hj

m(M))

and hence the largest socle degrees of Hj
m(M) calculate the Castelnuovo-Mumford regularity of M :
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reg(M) = max{end(Soc(Hj
m(M))) + j}.

Let I be a homogeneous ideal of R. Then it is known that there exists a constant c such that 
end(Hj

m(R/It)) ≤ ct (cf. [6,11,16]). When one changes {It} to other descending chains of ideals {It} that 
are cofinal with {It} (e.g. symbolic powers or Frobenius powers), then it remains an open problem whether 
end(Hj

m(R/It)) can be bounded from above linearly with respect to t.
In this paper, we are mainly concerned with the lowest socle degree, especially the following question.

Question 1.1. Let I be a homogeneous ideal of R. Does there exist a constant c such that

beg(Soc(Hj
m(R/It))) ≥ −ct

for all j and all t?
Or, more generally, let {It} be a descending chain of ideals that is cofinal with {It}≥1. Is there a linear 

lower bound on beg(Soc(Hj
m(R/It)))?

One ought to remark that in the second part of Question 1.1 ‘linear bound’ needs to be interpreted 
appropriately according to {It}≥1. For instance, if It = I [pt] (the Frobenius powers in characteristic p), then 
‘linear lower bound’ means linear with respect to pt.

There are at least two sources of motivation behind Question 1.1. One source stems from the recent 
results in [2, Theorem 1.2] and [7, Corollary 2.6] which says that under appropriate hypothesis on R

and I there is a constant c such that Hj
m(R/It)≤−ct = 0 for j < dim(R/I). This result implies that 

beg(Soc(Hj
m(R/It))) ≥ −ct for j < dim(R/I) (under the same hypothesis on R and I). Note that, a priori, 

[2, Theorem 1.2] and [7, Corollary 2.6] have no bearing on the top local cohomology Hdim(R/I)
m (R/It) since it 

is non-zero in all sufficiently negative degrees. However, Question 1.1 is still valid for Soc(Hdim(R/I)
m (R/It)). 

Similarly, without particular hypotheses on R and I, local cohomology modules Hj
m(R/It) may not be 

finitely generated and hence it may be the case that Hj
m(R/It)� �= 0 for all � � 0. Question 1.1 remains 

valid without any further hypotheses on R and I, and can certainly be viewed as a natural extension of 
the main results in [7] and [2]. The other source comes from the connection between the notion of gauge-
boundedness and a linear lower bound of Soc(Hd

m(ω[pe])) (cf. Theorem 4.3). Therefore a positive answer 
to Question 1.1 will imply the gauge-boundedness (and hence the discreteness of F -jumping numbers for 
test ideals) for a large class of graded rings (cf. §4 for details). Note that the gauge-boundedness of the full 
Cartier algebra remains an open question for non-Gorenstein rings (cf. [3, Question 5.4(a)]).

Our first main result connects the vanishing Hj
m(R/It)≤−ct = 0 for all lower local cohomology and a 

linear lower bound on the socle degree of the top local cohomology.

Theorem 1.2 (Theorem 3.3). Let R be a standard graded k-algebra over a field k and let I be a homogeneous 
ideal. Set d = dim(R/I). Assume there is a constant c′ such that

beg(Exti
R(k, Hj

m(R/It))) ≥ −c′t (1.2.1)

for j < d, i < d + 2 and for all t ≥ 1. Then there exists a constant c such that

beg(Soc(Hd
m(R/It))) ≥ −ct,

for all t ≥ 1.

In order to apply this theorem in §4, we also prove the following asymptotic vanishing theorem.
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Theorem 1.3 (Theorem 3.5). Let R be a standard graded k-algebra where k is a field of arbitrary characteristic 
and I be a homogeneous ideal of height one in R such that R/I is equi-dimensional. Assume that Rp is 
Cohen-Macaulay and that Ip is principally generated by a non-zero-divisor for each non-maximal prime 
ideal p in R. Then there exists a constant c such that

beg(Hj
m(R/It)) ≥ −ct

for j < dim(R/I) and all t ≥ 1.

As a consequence of Theorem 1.2, we prove

Theorem 1.4 (Corollary 3.6). Assume R and I satisfy the hypothesis in any one of the following three results

(a) Theorem 1.3, or
(b) [2, Theorem 1.2], or
(c) [7, Corollary 2.6].

Then Question 1.1 has a positive answer for Hdim(R/I)
m (R/It), i.e. there is a constant c such that

beg(Soc(Hdim(R/I)
m (R/It))) ≥ −ct

for all t ≥ 1.

Combining these two theorems together with our Theorem 4.3, we have the following consequence on 
gauge-boundedness for standard graded rings with isolated non-Gorenstein points, which partially answers 
[3, Question 5.4(a)].

Theorem 1.5 (Theorem 4.5). Let R be a standard graded integral domain over an F -finite field k of char-
acteristic p. Assume that R satisfies (S2) condition and that Rp is Gorenstein for each non-maximal prime 
ideal p. Then the full Cartier algebra CR is gauge bounded.

The paper is organized as follows. In §2, we collect some materials on graded canonical ideals and 
(graded) Matlis dual which will be needed in §4. In §3, we prove some technical results including both 
Theorems 1.2 and 1.3. In the last section §4, we draw connections between our Question 1.1 and the notion 
of gauge-boundedness and prove Theorem 1.5.

2. Some generalities on canonical ideals and Matlis dual

In this section we collect some basic facts on graded canonical ideals and Matlis dual. These facts might 
already be known to experts; we opt to include them here for lack of proper references.

Let R be a d-dimensional standard graded k-algebra where k is a field. We can write R := S/ a where 
S = k[x1, . . . , xn] be a polynomial ring with the standard grading and I a is a homogeneous ideal in S. Set 
m := (x1, . . . , xn). Since R is a quotient of a polynomial ring, it admits a (graded) canonical module ΩR

which is isomorphic to Extn−d
S (R, S(−n)) (in the category of graded modules). We will denote the graded 

Matlis dual by −()∨, i.e. for each graded R-module M

(M∨)� = Homk(M−�, k).

Part of the graded local duality says that, for each finitely generated graded R-module M , there is a 
degree-preserving isomorphism Hd

m(M) ∼= HomR(M, ΩR)∨.
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Proposition 2.1. Let R be a d-dimensional standard graded k-algebra where k is a field. Assume that R is 
an integral domain and satisfies Serre’s (S2) condition. Then

(a) there is a homogeneous ideal ω of R such that a degree-shift ω(beg(ω) + a(R)) is isomorphic to the 
graded canonical module Ω, where a(R) = end(Hd

m(R)) (called the a-invariant of R); and
(b) the natural map R −→ HomR(ω, ω) is a degree-preserving isomorphism.

Proof. For part (a), the proof of the fact ω(a) is isomorphic to Ω (as graded modules) for some integer a
follows the same proof as the one of [12, Proposition 2.4]. We claim that a = beg(ω) + a(R) and we reason 
as follows. By the graded local duality, ω(a)∨ ∼= Hd

m(R). Thus, a(R) = end(Hd
m(R)) = − beg(ω(a)) =

−(beg(ω) − a) = − beg(ω) + a. This implies that a = beg(ω) + a(R). (Note that the (S2) assumption is not 
used in part (a).)

For part (b), we use our (S2) assumption and the proof is the same as the one of [1, Proposition 4.4] (or 
[9, Remark 2.2(c)]). �

The following observation on Matlis dual will be useful for us in §4.

Proposition 2.2. Let (A, m) be a noetherian complete local ring and let M be a finitely generated A-module. 
Let E denote the injective hull of A/ m. Assume that the surjection F0 = A⊕μ � M induces an isomorphism 
F0 / mF0

∼−→ M/ mM . Then HomA(M, E) −→ HomA(F0, E) (the Matlis dual of F0 � M) is an essential 
extension.

Likewise, let A be a standard graded ring over a field k and M be a finitely generated graded A-module. 
Assume that the degree-preserving surjection ⊕μ

i=1A(αi) � M induces an isomorphism ⊕μ
i=1(A/ m)(αi) 

∼−→
M/ mM . Then the graded Matlis dual of ⊕μ

i=1A(αi) � M is an essential extension.

Proof. Since the proofs in the local case and in the graded case are identical, we include the proof in the 
local case only.

Assume otherwise, HomA(F0, E) would admit a non-zero submodule L such that L ∩ HomA(M, E) = 0, 
i.e. L ⊕ HomA(M, E) is naturally a submodule of HomA(F0, E). By Matlis Duality, we then would have

F0 ∼= HomA(HomA(F0, E), E) � HomA(L ⊕ HomA(M, E), E) ∼= HomA(L, E) ⊕ M

Since HomA(L, E) �= 0, this would imply that the rank of F0 is strictly greater than the minimal number 
of generators of M , a contradiction. �

The following corollary is immediate.

Corollary 2.3. Let (A, m) be a noetherian complete local ring and let M be a finitely generated A-module. 
Let E denote the injective hull of A/ m. Let F• −→ M −→ 0 be the minimal resolution of M . Then

0 −→ HomA(M, E) −→ HomA(F•, E)

is the minimal injective resolution of HomA(M, E).
Likewise, if A is a standard graded ring over a field k and M is a finitely generated graded A-module and 

F• −→ M −→ 0 be the graded minimal resolution of M . Then the graded Matlis dual of F• −→ M −→ 0 is 
the graded minimal injective resolution of the graded Matlis dual of M .
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3. Main technical results

Throughout this section, R denotes a standard graded k-algebra over a field k and F• −→ k −→ 0 denotes 
the minimal graded free resolution of k where F i = ⊕�R(−αi�) with αi� ≥ 0. We set αi := max{αi�}. 
For each finitely generated graded R-module M , we will denote the reflexive dual HomR(M, R)2 by M∗. 
Analogously, for each coherent sheaf F on X = Proj(R), we set F ∗ := Hom (F , OX).

We begin with the following observation which follows immediately from the definition of beg(−).

Lemma 3.1. Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence of graded R-modules where all 
morphisms are degree-preserving. Then

beg(M) = min{beg(L), beg(N)}.

In particular, if M ′ is a subquotient of M , then beg(M ′) ≥ beg(M).

Our next lemma provides a lower bound of the lowest degree of Exti
R(k, M) in terms of beg(M) and the 

graded free resolution of k.

Lemma 3.2. Let M be a finitely generated graded R-module. Then

beg(Exti
R(k, M)) ≥ beg(M) − αi.

Proof. Exti
R(k, M) is the i-th homology of the complex HomR(F•, M) and hence is a subquotient of 

HomR(F i, M) ∼= ⊕�M(αi�). It is clear that beg(⊕�M(αi�)) = beg(M) − αi, and hence Lemma 3.1 im-
plies beg(Exti

R(k, M)) ≥ beg(M) − αi. �
One of our main results in this section is the following criterion.

Theorem 3.3. Let R be a standard graded k-algebra over a field k and let I be a homogeneous ideal. Set 
d = dim(R/I). Assume there is a constant c′ such that

beg(Exti
R(k, Hj

m(R/It))) ≥ −c′t (3.3.1)

for j < d, i < d + 2 and for all t ≥ 1. Then there exists a constant c such that

beg(Soc(Hd
m(R/It))) ≥ −ct,

for all t ≥ 1.

Proof. Since the m-torsion functor Γm sends injectives to injectives and HomR(R/ m, Γm(−)) = HomR(R/

m, −), we have the following spectral sequence:

Ei,j
2 := Exti

R(R/m, Hj
m(−)) ⇒ Exti+j

R (R/m, −).

Since beg(R/It) = 0 for all t ≥ 1, by Lemma 3.2 we have

beg(Extd
R(k, R/It)) ≥ −αd.

2 Since M is finitely generated, HomR(M, R) coincides with the graded ∗HomR(M, R).
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Recall that αd denotes the largest degree-shift in the d-th graded free module in the minimal graded free 
resolution of k. The convergence of this spectral sequence means that Extd

R(k, R/It) admits a filtration · · · ⊆
Ei+1 ⊆ Ei ⊆ · · · ⊆ Extd

R(k, R/It) such that E0,d
∞ = E0/E1. Since E0,d

∞ is a subquotient of Extd
R(k, R/It), it 

follows from Lemma 3.2 that

beg(E0,d
∞ ) ≥ beg(Extd

R(k, R/It)) ≥ −αd.

Since H≥d+1
m (R/It) = 0, we have E0,d

d+2 = E0,d
∞ . For each i ≤ d + 1, the incoming differential to E0,d

i is 
always 0; the outgoing differential is δ0,d

i : E0,d
i −→ Ei,d−i+1

i . Therefore, E0,d
i+1 = ker(δ0,d

i ) ⊆ E0,d
i and hence 

E0,d
i /E0,d

i+1 is a submodule of Ei,d−i+1
i .

Since Ei,d−i+1
2 = Exti

R(k, Hd−i+1
m (R/It)) and the module Ei,d−i+1

i is a subquotient of Ei,d−i+1
i−1 for each 

i, combining our assumption (3.3.1) and Lemma 3.1, we have

beg(Ei,d−i+1
i ) ≥ −c′t

for i ≤ d + 1 and all t ≥ 1. Since E0,d
i /E0,d

i+1 is a submodule of Ei,d−i+1
i , Lemma 3.1 implies that

beg(E0,d
i /E0,d

i+1) ≥ −c′t

for all i ≤ d +1 and for all t ≥ 1. Since beg(E0,d
d+2) = beg(E0,d

∞ ) ≥ −αd, Lemma 3.1 implies that beg(E0,d
d+1) ≥

min{−c′t, −αd}. Now a reverse induction on i shows that

beg(Soc(Hd
m(R/It))) = beg(E0,d

2 ) ≥ min{−c′t, −αd}

which completes the proof. �
Remark 3.4. One may adjust the proof of Theorem 3.3 to derive a sufficient condition on a linear lower 
bound of beg(Exts

R(k, Hd
m(R/It))) for an integer s > 0 (one would need a different range on the homological 

index i in the hypothesis on linear lower bounds on beg(Exti
R(k, Hj

m(R/It)))). Since our main application 
in §4 only requires a linear lower bound on the socle degrees of Hd

m(R/It), we will leave the formulation of 
such a sufficient condition for beg(Exts

R(k, Hd
m(R/It))) (s > 0) to another project or another person.

The following asymptotic vanishing result will be crucial for our application in the next section.

Theorem 3.5. Let R be a standard graded k-algebra where k is a field of arbitrary characteristic and I be a 
homogeneous ideal of height one in R such that R/I is equi-dimensional. Assume that Rp is Cohen-Macaulay 
and that Ip is principally generated by a non-zero-divisor for each non-maximal prime ideal p in R. Then 
there exists a constant c such that

beg(Hj
m(R/It)) ≥ −ct

for j < dim(R/I) and all t ≥ 1.

Proof. Write R = S/J where S = k[x1, . . . , xn] and set X := Proj(R/I) ⊂ Proj(R) ⊆ Pn−1
k . Set Xt =

Proj(R/It), I = Ĩ, and d = dim(X) = dim(R/I) − 1.
The local cohomology and sheaf cohomology are linked by an exact sequence

0 −→ H0
m(R/It) −→ R/It −→ ⊕�H

0(Xt, OXt
(�)) −→ H1

m(R/It) −→ 0

and isomorphisms
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Hj
m(R/It) ∼= ⊕�H

j−1(Xt, OXt
(�)) (j ≥ 2),

where all maps involved are degree-preserving. Therefore, proving our theorem amounts to proving that 
there exists a constant c such that

Hj−1(Xt, OXt
(�)) = 0

for all � ≤ −ct, all j ≤ d and all t ≥ 1.
The assumptions on R and I imply that R/I is generalized Cohen-Macaulay. Therefore there exists a 

constant c0 ≥ 0 such that

beg(Hj
m(R/I)) ≥ −c0,

for j ≤ d. And hence Hj−1(X, OX(�)) = 0 for j ≤ d and for � < −c0. Since R/I is generalized Cohen-
Macaulay, X is a Cohen-Macaulay projective scheme. Let ωX denote the canonical sheaf on X.

Our assumption on I implies that I t / I t+1 = Symt(I / I 2). Set N := (I / I 2)∗ which is the normal 
bundle on X (relative to Proj(R)), then I t / I t+1 = Symt(N ∗). Combining the long exact sequence of 
sheaf cohomology associated with the short exact sequence

0 −→ Symt(N ∗) −→ OXt+1 −→ OXt
−→ 0

and an induction on t, we conclude that to prove our theorem it suffices to show there exists an integer c1
such that

Hj−1(X, Symt(N ∗)(�)) = 0 (3.5.1)

for j ≤ d and for � < −c1t. By Serre duality (which holds since X is Cohen-Macaulay and equi-dimensional), 
(3.5.1) is equivalent to

Hd−j+1(X, Symt(N ∗)∗(−�) ⊗ ωX) = 0 (3.5.2)

for j ≤ d and for � < −c1t (i.e. −� > c1t).
By our assumption on I, the normal bundle N is a line bundle. It is well-known that the symmetric 

powers agree with divided powers for line bundles (e.g. [13, Lemma 2.17]); hence

Symt(N ∗)∗ = Symt(N ).

Therefore, (3.5.2) is equivalent to

Hd−j+1(X, Symt(N )(−�) ⊗ ωX) = 0

for j ≤ d and for � < −c1t (i.e. −� > c1t). This amounts to finding a linear upper bound on the maximal 
non-vanishing degree which follows immediately from [7, Theorem 2.1]. This completes the proof of our 
theorem. �

As an application of our criterion Theorem 3.3, we have the following corollary.

Corollary 3.6. Assume R and I satisfy the hypothesis in one of the following three results

(a) Theorem 3.5, or
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(b) [2, Theorem 1.2], or
(c) [7, Corollary 2.6].

Then Question 1.1 has a positive answer for Hdim(R/I)
m (R/It), i.e. there is a constant c such that

beg(Soc(Hdim(R/I)
m (R/It))) ≥ −ct

for all t ≥ 1.

Proof. Under any of the hypothesis, there exists a constant c′ such that

beg(Hj
m(R/It)) ≥ −c′t

for all t ≥ 1 and j < dim(R/I). Consequently,

beg(Soc(Hj
m(R/It))) ≥ beg(Hj

m(R/It)) ≥ −c′t,

for all t ≥ 1 and j < dim(R/I). Combining this with Lemma 3.2, we see that the hypothesis in Theorem 3.3
is satisfied. This completes the proof. �

We end this section with the following lemma which is needed in the next section.

Lemma 3.7. Let R be a d-dimensional standard graded algebra over a field k. Assume that Hd−1
m (R) is finitely 

generated. Then for each homogeneous ideal I the following statements are equivalent:

(a) there is a constant c such that beg Soc(Hd−1
m (R/It)) ≥ −ct for all t ≥ 1,

(b) there is a constant c′ such that beg Soc(Hd
m(It)) ≥ −c′t for all t ≥ 1.

Proof. Consider the exact sequence

· · · −→ Hd−1
m (R) f−→ Hd−1

m (R/It) g−→ Hd
m(It) −→ Hd

m(R) −→ 0

induced by the short exact sequence 0 −→ It −→ R −→ R/It −→ 0. Since Hd−1
m (R) is finitely generated, 

there exists an integer �0 such that Hd−1
m (R)<�0 = 0. Let L denote the image of f and M denote the image 

of g. (Note that M depends on t.) Since L is a graded quotient of Hd−1
m (R), we have L<�0 = 0. The short 

exact sequence 0 −→ L −→ Hd−1
m (R/It) −→ M −→ 0 induces an exact sequence

0 −→ Soc(L) −→ Soc(Hd−1
m (R/It)) −→ Soc(M) −→ Ext1

R(k, L)

Lemma 3.2 implies that Ext1
R(k, L)<�1 = 0 for an integer �1. Hence the statement (a) is equivalent to

(*) there is a constant c1 such that beg(M) ≥ −c1t for all t ≥ 1.

The short exact sequence 0 −→ M −→ Hd
m(It) −→ Hd

m(R) −→ 0 induces an exact sequence

0 −→ Soc(M) −→ Soc(Hd
m(It)) −→ Soc(Hd

m(R))

Since Soc(Hd
m(R)) is bounded from below by a constant (independent of t), it follows that the statement 

(∗) is equivalent to the statement (b). This completes the proof. �
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4. An application to gauge-boundedness

Let R be an F -finite noetherian commutative ring of characteristic p. The full Cartier algebra of R is 
defined as

CR := ⊕e≥0 CR
e , where CR

e = HomR(F e
∗ R, R).

The investigation of singularities and test ideals in characteristic p using CR was initiated by Schwede in 
[14,15] and later the idea was refined by Blickle in [3]. The Cartier algebra CR comes with a non-commutative 
ring structure (see [3, §2]). Generally speaking, the ring structure of CR is rather complex. A notion of gauge 
bounded introduced in [3] can be used to control the complexity of CR.

Remark 4.1. Let S = k[x1, . . . , xn] where k is an F -finite field and let R = S/I. One can build a filtration 
of R as follows.3 Set Rm to be the finite dimensional k-vector space of R spanned by the images of the 
monomials of degree at most m:

xe1
1 · · · xen

n , for
∑

i

ei ≤ m.

For each r ∈ R, one sets δ(r) = m iff r ∈ Rm\Rm−1 and calls δ a gauge for R.
The full Cartier algebra CR is gauge bounded if there is a constant c and elements ϕe,j ∈ CR

e (generating 
CR

e as a left R-module) such that

δ(ϕe,j(r)) ≤ δ(r)
pe

+ c, for each e and j.

If CR is gauge bounded, then for each ideal a of R, the F -jumping numbers of τ(R, at) are a subset of 
the real numbers with no limit points; in particular, they form a discrete set. This is [3, Corollary 4.19].

We record the following sufficient condition for CR to be gauge bounded, which is most relevant to this 
section.

Lemma 4.2. Let R be a standard graded algebra over a field k of characteristic p. If there is a constant c
such that the maximal degree of any minimal generator of HomR(F e

∗ R, R) is at most c for all e ≥ 1, then 
CR is gauge-bounded.

Proof. Write R = S/ a where S is a polynomial ring and a is a homogeneous ideal. Then [8, Lemma 1.6]
says that

HomR(F e
∗ R, R) ∼= F e

∗ ( (a[pe] : a)
a[pe] ).

Therefore our lemma is equivalent to [10, Lemma 2.2]. �
Let R be a standard graded integral domain over an F -finite field k of characteristic p. By Proposition 2.1, 

R admits a graded canonical ideal ω such that a degree-shift ω(beg(ω) +a(R)) is the graded canonical module. 
To ease our notation, we will set a := beg(ω) + a(R), i.e. ω(a) is the graded canonical module of R.

The following theorem is crucial to our application to gauge-boundedness.

3 As discussed in [3, §4], there are at least two different filtrations of S one can use: one is filtered by the total degree – the one 
we use in this section and in [4]; the other is filtered by the max degree of any variable.
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Theorem 4.3. Let R be a standard graded integral domain over an F -finite field k of characteristic p and ω
be the canonical ideal. Assume that R satisfies (S2) condition. Then there exists a constant c such that the 
maximal degree of any minimal generator of HomR(F e

∗ R, R) is at most c for all e ≥ 1 if and only if

beg(Soc(Hd
m(ω[pe]))) ≥ −(c − a)pe

for all e ≥ 1, where d = dim(R).

Proof. We have degree-preserving isomorphisms:

HomR(F e
∗ R, R) ∼= HomR(F e

∗ R, HomR(ω, ω)) ∼= HomR(F e
∗ R ⊗R ω, ω).

Let S denote the polynomial ring k[x1, . . . , xn]. Under our hypothesis, F e
∗ R ⊗R J is finitely generated. 

Let F• −→ HomR(F e
∗ R, R) −→ 0 be the minimal graded resolution of HomR(F e

∗ R, R). By Remark 2.2, 
HomR(F e

∗ R, R)∨ −→ F∨
0 is an essential extension. Set d = dim(R). Then we have degree-preserving isomor-

phisms:

Hd
m(F e

∗ R ⊗R ω) ∼= HomR(F e
∗ R ⊗R ω, ω(a))∨

∼= HomR(F e
∗ R ⊗R ω, ω)∨(−a)

∼= HomR(F e
∗ R, HomR(ω, ω))∨(−a)

∼= HomR(F e
∗ R, R)∨(−a)

Therefore the resulted degree-preserving R-linear map Hd
m(F e

∗ R⊗R ω) −→ F∨
0 (−a) is an essential extension. 

Write F0 = ⊕μe

j=1R(−αej) where μe is the minimal number of generators of HomR(F e
∗ R, R). Then α :=

max{αej} is the maximal degree of a minimal generator of HomR(F e
∗ R, R). With this presentation of F0, 

it is evident that

F∨
0 = HomR(F0, E) ∼= ⊕μe

j=1 E(αej).

Consequently, the degree-preserving R-linear map Hd
m(F e

∗ R ⊗R ω) −→ ⊕μe

j=1 E(αej − a) is an essential exten-
sion. Since both Hd

m(F e
∗ R ⊗R ω) and E are artinian, we must have

Soc(Hd
m(F e

∗ R ⊗R ω)) = Soc(⊕μe

j=1 E(αej − a)) = ⊕μe

j=1k(αej − a)

where we use the fact that Soc(E) = k and it lives in degree 0. Therefore,

beg(Soc(Hd
m(F e

∗ R ⊗R ω))) = min{−αej + a} = − max{αej − a}.

The short exact sequence 0 −→ ω −→ R −→ R/ω −→ 0 induces an exact sequence 0 −→ Tor1(F e
∗ R, R/ω) −→

F e
∗ R ⊗R ω −→ F e

∗ ω[pe] −→ 0 which in turn induces an exact sequence of local cohomology:

Hd
m(Tor1(F e

∗ R, R/ω)) −→ Hd
m(F e

∗ R ⊗R ω) −→ Hd
m(F e

∗ ω[pe]) −→ 0

Since Tor1(F e
∗ R, R/ω) is killed by ω, its dimension is less than d. Thus, Hd

m(Tor1(F e
∗ R, R/ω)) = 0. This 

implies Hd
m(F e

∗ R ⊗R ω) ∼−→ Hd
m(F e

∗ ω[pe]). Therefore

beg(Soc(Hd
m(ω[pe]))) = pe beg(Soc(Hd

m(F e
∗ ω[pe]))) = pe(− max{αej − a}).

This shows that there is a constant c such that max{αej} ≤ c for all e ≥ 1 if and only if 
beg(Soc(Hd

m(ω[pe]))) ≥ −(c − a)pe for all e ≥ 1. �
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Theorem 4.4. Let R be a d-dimensional standard graded integral domain over an F -finite field k of charac-
teristic p and let ω denote its graded canonical ideal. Assume that R satisfies (S2) condition and that Rp is 
Gorenstein for each non-maximal prime ideal p. Then there exists a constant c such that

beg(Soc(Hd
m(ω[pe]))) ≥ −cpe (4.4.1)

for all e ≥ 1.

Proof. Since Rp is Gorenstein for each non-maximal prime ideal p, we have ωp is a principal ideal for each 
non-maximal prime ideal p. It follows that ω

[pe]
p = ωpe

p for each non-maximal prime ideal p. Therefore 
dim(ωpe

/ω[pe]) = 0. Hence Hd
m(ωpe) = Hd

m(ω[pe]). Hence (4.4.1) is equivalent to

beg(Soc(Hd
m(ωpe

))) ≥ −cpe (4.4.2)

for all e ≥ 1.
Since Rp is Gorenstein for each non-maximal prime ideal p, it follows R is generalized Cohen-Macaulay 

and hence Hd−1
m (R) is finitely generated. A combination of Lemma 3.7 and Corollary 3.6 completes the 

proof. �
The following theorem now follows immediately from Lemma 4.2, Theorem 4.4 and Theorem 4.3.

Theorem 4.5. Let R be a d-dimensional standard graded integral domain over an F -finite field k of charac-
teristic p. Assume that R satisfies (S2) condition and that Rp is Gorenstein for each non-maximal prime 
ideal p. Then CR is gauge bounded.
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