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ABSTRACT: Although useful at short and medium ranges, current dynamical models provide little additional skill for

precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing

by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and

predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO

and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and

QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6

(15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of

precipitation across the entire contiguousUnited States andAlaska during all seasons. In almost all regions and seasons, the

model provides ‘‘skillful forecasts of opportunity’’ for 20%–50% of all forecasts valid weeks 3–6. We also find that this

model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO.

Finally, we show that the inclusion of theQBOas a predictor increases the frequency of skillful forecasts of opportunity over

most of the contiguous United States and Alaska during all seasons. These findings will provide guidance to forecasters

regarding the utility of the MJO and QBO for subseasonal precipitation outlooks.

KEYWORDS: Teleconnections; Precipitation; Climate prediction; Forecast verification/skill; Numerical weather predic-

tion/forecasting

1. Introduction
The impacts of precipitation events on a variety of stake-

holders are well documented. Intense precipitation associated

with landfalling atmospheric rivers (ARs) has triggered high

streamflows and flash flooding in California (Dettinger et al.

2011; Neiman et al. 2002; Ralph et al. 2006, 2010, 2013; Ralph

and Dettinger 2012; Waliser and Guan 2017), the U.S. Pacific

Northwest (Neiman et al. 2008b,a, 2011), the U.S. Southwest

(Ralph and Galarneau 2017; Rivera et al. 2014), the U.S.

Midwest (Dirmeyer and Kinter 2009, 2010), and the U.S.

Southeast (Lackmann 2013; Lavers andVillarini 2013;Mahoney

et al. 2016; Moore et al. 2012, 2015). In addition, intense pre-

cipitation from convective storms (Dirmeyer and Kinter 2010;

Hitchens et al. 2010; Lackmann 2013; Lapenta et al. 1995;

Schumacher and Johnson 2006, 2008) and tropical cyclones

(Atallah et al. 2007; Nogueira and Keim 2010; Prat and

Nelson 2013; Wood and Ritchie 2013) have documented links

to flooding.

Aside from short-term public safety hazards such as flood-

ing, precipitation events have long-term impacts through

contributions to the regional water supply. For instance, win-

tertime precipitation in the western United States is crucial for

maintenance and enhancement of the snowpack in mountain-

ous regions (Guan et al. 2010). In turn, this enhanced snowpack
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bolsters the regional water supply and helps alleviate or

prevent drought at lower elevations (Luo et al. 2017; Margulis

et al. 2016; Mote et al. 2016). Precipitation during the warm

season is also critical for agricultural interests elsewhere in

the United States, where the amount of annual precipitation

influences crop yields (Brown et al. 1986; Schiraldi and

Roundy 2017).

Given the range of impacts from precipitation events of all

magnitudes, it is vital to provide skillful precipitation forecasts

valid as far into the future as possible. This is one of the prin-

cipal missions of the National Oceanic and Atmospheric

Administration (NOAA) National Centers for Environmental

Prediction’s (NCEP) Climate Prediction Center (CPC). The

CPC currently offers subseasonal precipitation outlooks

across the contiguous United States and Alaska at leads of

3–4 weeks, known as their week 3–4 precipitation outlook.

To create the outlook, the CPC employs a suite of forecast

tools that includes both dynamical and empirical models.

However, the dynamical models, the empirical models, and

the CPC’s official week 3–4 precipitation outlook only offer

modest skill when verified against observations. Therefore,

the week 3–4 precipitation outlook remains experimental,

while new forecasting tools, such as the incorporation of

stratospheric predictors, are being researched and developed

to improve the outlook.

Consistent with the CPC’s forecast tools, Pan et al. (2019)

found that, while potential methods of extending this time

frame may exist, dynamical model hindcasts from the

Subseasonal-to-Seasonal (S2S) Prediction Project do not pro-

vide additional skill for wintertime precipitation forecasts in

the western United States beyond 14 days. Meanwhile, Sharma

et al. (2017) demonstrated that precipitation hindcasts for

the eastern United States from the NCEP Global Ensemble

Forecast System Reforecast (GEFSRv2) provide little skill

beyond 7 days. These predictive limitations of dynamical

models are consistent with those found for specific drivers of

precipitation such as ARs (Mundhenk et al. 2018; Nardi et al.

2018; Nayak et al. 2014; Wick et al. 2013), blocking associated

with Rossby wave patterns (Martínez-Alvarado et al. 2018;

Matsueda et al. 2011; Vigaud et al. 2018), and tropical cyclones

(Zhang et al. 2014; Zhong et al. 2018).

Although dynamical models struggle to forecast precipita-

tion beyond 2 weeks, empirical models based on sources of

climate variability such as the Madden–Julian oscillation

(MJO) and the stratospheric quasi-biennial oscillation

(QBO) have the potential to add predictive skill beyond the

limits of dynamical models. The MJO, a 30–90-day cycle of

deep convection over the tropical Pacific (Zhang 2005),

modulates downstreamRossby wave patterns (Gibson et al.

2020; Henderson et al. 2016; Riddle et al. 2013; Tseng et al.

2018) and, in turn, precipitation-inducing phenomena such

as ARs (DeFlorio et al. 2019a; Mundhenk et al. 2016),

tropical cyclones (Maloney and Hartmann 2000a,b; Slade

andMaloney 2013), severe convection (Baggett et al. 2018),

and the North American Monsoon (Lorenz and Hartmann

2006). This modulation by the MJO extends to observed

precipitation over North America (Barrett et al. 2015;

Baxter et al. 2014; Dong et al. 2018; Jones 2000; Jones and

Carvalho 2012; Lin et al. 2010; Moon et al. 2012; Zhou et al.

2012). The QBO manifests as a 2–3-yr periodic cycle of

downward propagating easterly and westerly wind regimes

in the equatorial stratosphere (Baldwin et al. 2001). Like

the MJO, the QBO also has demonstrated synoptic tele-

connection patterns, specifically a modulation of the storm

track over the North Pacific (Wang et al. 2018a).

Recent studies have demonstrated dynamical links between

the MJO and QBO. Son et al. (2017) showed that the QBO

accounts for about 40% of the variation inMJO activity during

the boreal winter, while Yoo and Son (2016) found that the

robust relationship between the MJO and QBO is most nota-

ble under easterly QBO conditions, with the strongest rela-

tionship manifesting during the boreal winter and fall. As a

result of this connection, the MJO has been found to be more

predictable during the easterly phase of the QBO (Marshall

et al. 2017). Hendon and Abhik (2018) explained this rela-

tionship using static stability arguments, arguing that QBO-

induced temperature anomalies, and a related decrease in

stability, near the tropopause are more closely aligned with

MJO-related convection under easterly QBO conditions. This

decrease in stability makes the MJO more sensitive to strato-

spheric cooling associated with the easterly QBO. Meanwhile,

Zhang and Zhang (2018) offered an alternative explanation,

showing that under easterlyQBO conditionsmoreMJO events

form in the Indian Ocean, which mitigates the barrier effects of

the Maritime Continent, thus promoting longer MJO event

duration and more MJO days overall. Klotzbach et al. (2019)

demonstrated that the relationship between the MJO and

QBO has been bolstered by increased temperature anomalies

in the upper troposphere and lower stratosphere that man-

ifested in the early 1980s, thus making the connection a rela-

tively new phenomenon.

As noted above, the physical mechanisms via which the

QBO impacts the MJO and its teleconnections are still a sub-

ject of ongoing research, as the relative impacts of the QBO on

the background state, which influences the MJO and its tele-

connections, are not fully understood. For the purposes of this

study, however, we are interested in observed effects that the

MJO and QBO produce with respect to midlatitude tele-

connections. For example, Feng and Lin (2019) found that the

QBO’s modulation of the subtropical westerly jet impacts the

propagation of MJO-induced Rossby waves over the North

Pacific. The combined MJO–QBO state has also been shown

to modulate downstream sensible weather, specifically the

frequency of precipitation-inducing events over North America

(Baggett et al. 2017; Wang et al. 2018b).

As a result of this dynamical relationship between the

MJO and QBO, prior studies have exploited the MJO, or the

combined MJO and QBO state, to improve predictions of

precipitation. For instance, the MJO alone has been shown

to enhance the skill of dynamical (DeFlorio et al. 2019a,b;

Pan et al. 2019) and simple decision (Jones et al. 2011)

models in forecasting precipitation or precipitation-inducing

events (ARs). Based on the influence of the MJO and QBO

on ARs in the western United States, Baggett et al. (2017)

and Mundhenk et al. (2018) demonstrated that an empirical

model based on the current state of the MJO and QBO
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provides skillful forecasts of AR activity in the western

United States at leads of 2–5 weeks. Baggett et al. (2018) also

found that a similar empirical model based on the MJO

provides skill in forecasting severe convection over the U.S.

Southeast and Great Plains at leads of 3–5 weeks. Building

on these verification studies, as well as the observed modu-

lation of sensible weather and the dynamical links between

the two indices, we apply an empirical model based on the

MJO and QBO to predict anomalous (categorical above- or

below-normal) pentadal precipitation at S2S leads, which we

define as weeks 3–6 (15–42 days). While most studies restrict

their analyses of the MJO or QBO influence to a particular

region or season, we run the empirical model using the MJO

and QBO during all seasons across the contiguous United

States and Alaska. The results of our analysis will directly

inform the CPC about the potential utility of incorporating

the QBO as a predictor within its empirical models in order

to improve its week 3–4 precipitation outlook.

We note that El Niño–Southern Oscillation (ENSO) pro-

vides another potential source of predictability. ENSO mani-

fests itself as a 3–6-yr cycle of ocean–atmosphere interactions

associated with anomalous sea surface temperatures in the

equatorial Pacific Ocean (Trenberth 1997). ENSO is known to

influence the global circulation and resultant seasonal precip-

itation patterns across North America (Chiodi and Harrison

2015; Higgins et al. 2000; Ropelewski and Halpert 1986, 1987).

This observed influence on precipitation patterns translates to

enhanced model skill in forecasting seasonal precipitation in

North America (Chen et al. 2017; Wood et al. 2002). Even so,

we choose not to add ENSO as an additional predictor for two

principal reasons: 1) analysis of seasonal data parsed by MJO,

QBO, and ENSO conditions is difficult due to sample size

considerations and 2) prior studies have found that the sea-

sonal impacts of ENSO do not strongly influence the sub-

seasonal relationship between the MJO and QBO (Baggett

et al. 2017; Son et al. 2017; Yoo and Son 2016).

In this study, we first summarize the utility of the empirical

model in predicting precipitation based on the number of

‘‘skillful forecasts of opportunity,’’ which we will define later as

forecasts, made during certain MJO and QBO phase combi-

nations, that are significantly better than a random forecast.

Then, we analyze the influence of the QBO as a predictor by

comparing results to an alternative version of the model with

the QBO removed (i.e., MJO only).

2. Methods

a. Empirical model
To produce precipitation forecasts, we employ the empirical

model introduced by Mundhenk et al. (2018) and later modi-

fied by Baggett et al. (2018). This model uses the current state

of the MJO and QBO to create categorical forecasts of above-

or below-normal pentadal precipitation for all lead times

through week 6. Here, ‘‘pentadal’’ refers to overlapping 5-day

forward running means. Henceforth, we reference these pen-

tads by the lead time of the starting point of their period. For

example, day 6 refers to the pentad spanning the period 6–

10 days after initialization, while day 7 refers to the pentad

spanning the period 7–11 days after initialization. Throughout

this study, we define weeks such that, for example, week 6

refers to pentads starting 36–42 days after initialization. Unlike

prior precipitation forecast verification studies, we extend our

analysis through week 6, so we opt to examine 5-day forecast

windows since it is currently unrealistic to expect a model to

accurately predict the occurrence of precipitation on a given

day 5–6 weeks in advance.We note that themodel is capable of

predicting precipitation anomalies using longer averaging

windows. However, analysis (not shown) of model perfor-

mance using slightly longer 7-day averaging windows indicates

that overall model skill is quite similar across commonly used

averaging windows.

The model makes a binary precipitation anomaly forecast,

for either an ‘‘above-normal’’ or ‘‘below-normal’’ anomaly,

based on the historical response of the forecast variable to the

current state of the MJO and QBO. To accomplish this, the

model compares the conditional distribution of precipitation

anomalies to the full historical distribution of precipitation

anomalies for that season for the years 1979–2017. The con-

ditional distributions are based on season, lead time, and MJO

and QBO characteristics at initialization. We calculate anom-

alies by removing the seasonal cycle, which we define as the

mean and first two harmonics of the particular time series.

Since we wish to assess pentadal precipitation anomalies, both

the conditional and full historical distributions are smoothed

using 5-day forward averaging. If the median of the conditional

distribution is greater than the median of the full distribution,

then the model forecasts above-normal precipitation. If the

median of the conditional distribution is less than the median

of the full distribution, then the model forecasts below-normal

precipitation. We use medians rather than means in order to

better account for climatological precipitation distributions

that are not normal.

We apply themodel for initializations during all moving three-

month seasons such as January–March (JFM), February–April

(FMA), etc. However, since the model makes forecasts valid

through week 6, it is often the case that a forecast initialized at

the end of a given three-month season will be valid for days

well outside of the season. For example, a 36-day forecast

initialized on 30 November (at the end of the SON season)

would be valid for the period spanning from 5 to 9 January. In

this situation, it does not make sense to forecast precipitation

responses for this valid time period using climatology from

1 September to 30 November. Therefore, we follow Baggett

et al. (2018) and allow the seasonal distributions used to make

forecasts to shift as a function of lead time such that the start

and end dates of each season are shifted by the number of

lead days. For example, JFM for 14-day forecasts implies

distributions drawn from dates spanning 15 January–14April,

while JFM for 21-day forecasts implies dates spanning 22

January–21 April. By implementing this method, we guar-

antee that all forecasts will use anomaly distributions that

include all valid dates.

b. Predictors and predictands

To create the conditional and full distributions, we examine

historical precipitation (the predictand) and MJO and QBO
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(the predictors) data spanning from 1 January 1979 to 31December

2017. In characterizing the state of the MJO, we use the real-

time multivariate MJO (RMM) index (Wheeler and Hendon

2004). The RMM index assigns a unique MJO phase (1–8) and

amplitude for each day. Similar to Mundhenk et al. (2018) and

Baggett et al. (2018), we employ anMJO amplitude threshold at

initialization such that forecasts are only made under ‘‘active’’

MJO conditions. Specifically, anMJO amplitude greater than or

equal to 1.0 is required for the model to make a prediction on a

given day. Following this protocol, forecasts are initialized on all

active MJO days during the time period, thus accounting for

approximately 61% of all days from 1979 to 2017.

To characterize the state of the QBO, we use the reanalysis-

based CPC QBO index of monthly averaged, standardized

anomalies of zonal wind at 50 hPa, calculated over the equator.

The QBO index assigns a monthly standardized value based on

the prior month’s QBO conditions. In real time, the QBO index

for the priormonth only becomes available around the beginning

of each month. Therefore, we shift the index forward one month

in time in order to simulate the QBO index as a real-time pre-

dictor. The empirical forecast model is conditioned on active

MJOdayswith easterlyQBOconditions and on activeMJOdays

with westerly QBO conditions, where easterly QBO conditions

occur if the QBO index is less than zero and westerly QBO

conditions occur otherwise. For the time period 1979–2017, we

find that easterly QBO months occur approximately 44% of the

time, while westerly QBO months occur approximately 56% of

the time. We do not apply a QBO intensity threshold, as we do

with the MJO. Using a nonzero QBO index threshold to define

easterly and westerly periods would reduce the number of fore-

cast initializations available for our analysis and would also

preclude a direct comparison of the empirical model with and

without the QBO included. Furthermore, the QBO is largely a

continuous phenomenon, unlike theMJO, with active anomalies

always existing somewhere in the equatorial stratosphere.

To characterize precipitation, we use daily total precipita-

tion from the CPC Global Unified Gauge-Based Analysis of

Daily Precipitation (Chen et al. 2008; Xie et al. 2007). This

dataset has a spatial resolution of 0.58 3 0.58. To remain con-

sistent with the MJO and QBO datasets, we subset the pre-

cipitation data to cover the time period from 1 January 1979 to

31 December 2017. We note that, while global in nature, the

dataset only covers land areas.

To provide further dynamical context to the predict-

ability of above- or below-normal pentadal precipitation

using the empirical model (see the supplemental material),

we also examine historical 500-hPa geopotential height and

integrated water vapor transport (IVT) anomalies over the

same time period. Daily mean 500-hPa geopotential height

data comes from the National Centers for Environmental

Prediction–National Center for Atmospheric Research (NCEP–

NCAR) Reanalysis 1 (Kalnay et al. 1996) at a horizontal resolu-

tion of 2.58 3 2.58. We calculate IVT using the formula from

Mundhenk et al. (2016):

IVT5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

g

ð300
1000

qu dp

�2

1

�
1

g

ð300
1000

qy dp

�2
s

. (1)

Here, g is gravitational acceleration, q is specific humidity, u is

zonal wind, y is meridional wind, and p is atmospheric pressure

from 1000 to 300 hPa. Daily mean specific humidity and wind

data on constant pressure surfaces also come from NCEP–

NCAR Reanalysis 1 at a resolution of 2.58 3 2.58. The geo-

potential height and IVT anomalies are calculated by the same

method used for precipitation.

c. Forecast regions
For our study, we define forecast regions as collections of

adjacent precipitation dataset grid cells that are 7.58 3 7.58 in
total size (in other words, 225 0.58 3 0.58 CPC precipitation

dataset grid cells). We run the model separately on 262

overlapping 7.58 3 7.58 forecast regions covering the con-

tiguous United States and Alaska. We apply regions of this

size because they are large enough to capture the typical

spatial scale of midlatitude cyclones that often have em-

bedded finer-scale features such as fronts, vorticity maxima,

and orographic lift. These regions are also small enough to

reduce the occurrence of forecasting total precipitation over

domains with vastly different characteristics. Moreover, this

region size is consistent with a similar analysis in Baggett

et al. (2018). However, additional analysis (not shown) in-

dicates that overall model skill is similar for larger forecast

regions.

Prior to calculating anomalies in each region, full daily

total precipitation is averaged over all grid cells within the

region. The location of each region is based on the latitude

and longitude coordinates of the central grid cell, with the

central grid cells spaced every 2.58 from one another. As

mentioned above, based on the precipitation dataset used

here, these regions cover a maximum of 225 precipitation grid

cells (0.58 3 0.58 in size), although the true number of aver-

aged grid cells varies by region since the precipitation dataset

only includes grid cells over land. That is, daily total precip-

itation in coastal regions is only calculated using land grid

cells. While the high spatial resolution of the precipitation

dataset allows for additional overlapping forecast regions, we

limit the number of overlapping regions analyzed to reduce

computational costs.

To maintain consistency with the precipitation data, we

analyze anomalies of 500-hPa geopotential height and IVT

over the same 262 overlapping 7.58 3 7.58 regions. However,

since the gridded datasets of these two quantities have a lower

resolution (i.e., 2.58 3 2.58), these forecast regions have only

nine grid cells. As with precipitation, we average geopotential

height and IVT over the grid cells within each region prior to

calculating anomalies.

d. Model skill metric
We assess the model’s skill using a leave-one-year-out

cross-validation approach (Baggett et al. 2018; Johnson et al.

2014; Mundhenk et al. 2018). Using this approach, we make

forecasts for a particular year (specifically, a 3-month season

during the year) based on seasonal data from the rest of the

historical period with that year left out. We then compare the

forecasts for the left-out year to what was actually observed.

Since we condition on easterly and westerly QBO phases
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separately, we can initially assess the model’s skill under

each QBO phase. In later analyses, we opt to combine ver-

ification results into one ‘‘all QBO’’ pool to isolate the in-

fluence of adding the QBO as a predictor.

Skill is defined using a variation of the Heidke skill score

(HSS) with a baseline random forecast (Baggett et al. 2018;

Mundhenk et al. 2018):

HSS5

�
C2E

T2E

�
3 100, (2)

where C is the number of correct forecasts; T is the total

number of forecasts; and E is the expected number of correct

forecasts. Since the model uses the median of the full historical

distribution to make forecasts of above- or below-normal

precipitation, a random forecast is expected to be correct

50% of the time. This implies that E is always equal to T/2.

Under this definition, HSS ranges from 2100 (all incorrect) to

100 (all correct). An HSS greater than 0 implies that the model

provides more skill than a random, equal-chances forecast. An

HSS of 30 corresponds to a model that is correct 65 out of 100

forecasts made (roughly twice as many correct as incorrect).

For each combination of MJO phase P (1–8) and lead time L

(0–42 days), the HSS should be interpreted as the skill of a

forecast for the 5-day period L to L1 4 days after MJO phase

P when accounting for QBO phase.

e. Statistical significance
We assess statistical significance of model skill based on the

following null hypothesis: MJO and QBO conditions at the

time of forecast initialization do not provide a source of posi-

tive skill for precipitation forecasts. To test this hypothesis, we

employ the random walks method described in DelSole and

Tippett (2016). We determine the number of correct forecasts

from the empirical model and compare to the number of cor-

rect forecasts expected from a model that randomly forecasts

above- or below-normal precipitation. We then compare the

difference (dN) in correct forecasts between the empirical

model and the baseline randommodel to the nth percentile of a

Gaussian distribution of random differences centered on 0. If

the true dN falls above the nth percentile, we conclude that the

empirical model is significantly better than the random model

at the n% confidence level. If the difference between the true

empirical model and the randommodel is the addition of MJO

and QBO conditions as predictors, which is the case in this

study, then we reject the null hypothesis.

In addition, we assess statistical significance of composite

anomaly responses to MJO and QBO conditions based on a

slightly modified null hypothesis: MJO and QBO conditions

on a given day do not influence subsequent pentadal anomalies.

We test this hypothesis using a block bootstrapping approach

(Baggett et al. 2018; Mundhenk et al. 2018) to better account

for autocorrelation associated with the MJO, whose phases

often occur in consecutive blocks of days (i.e., a set of days with

the same active MJO phase). We assign each block of days in

the time period a random MJO phase (1–8) and start date and

calculate composite anomalies for each MJO phase and lead.

We perform 1000 such iterations in order to produce a random

distribution of composite anomalies for each phase and lead

combination. We then compare the observed composite

anomalies to the random distribution. If the observed anomaly

falls outside of the two-sided p% confidence bounds, then we

consider the anomaly statistically significant at the p% confi-

dence level. We later apply the same block bootstrapping

method to test the statistical significance of the percentiles of

precipitation anomalies.

3. Results

a. Skill for all regions and seasons
We first examine the empirical model’s skill in predicting

above- or below-normal pentadal precipitation anomalies for

each combination of MJO phase and lead time during four

nonoverlapping seasons: DJF (winter), MAM (spring), JJA

(summer), and SON (fall). Figure 1 shows a good example of

the model’s positive skill (HSS, see methodology) for precip-

itation forecasts, shown here for the U.S. Southeast under

easterly and westerly QBO conditions. Here, we show results

for all forecasts initialized during fall, so this plot would be

relevant to a forecaster making a forecast on any day between

1 September and 30 November. In this scenario, the HSS

values for a lead of 21 days denote skill for a forecast valid 21–

25 days after initialization, and the seasonal distributions in this

case range from 22 September to 21 December. We highlight

positiveHSS by whiting out those phase and lead combinations

with negative skill. Phase and lead combinations with positive

skill are then colored based on the model’s forecast: above-

normal (blue) or below-normal (red) pentadal precipitation

anomalies. We note that the same results are not expected for

every region and season, so we provide similar HSS plots for all

262 regions in a supplemental online repository (see the

appendix).

For both QBO phases in the U.S. Southeast during fall,

numerous phase and lead combinations exhibit appreciable

positive skill that is significantly better than a randommodel at

90% confidence (black dots). As seen in Fig. 1 and the online

repository, skillful forecasts are generally well distributed by

lead time through week 6. Also evident in Fig. 1 (and later

figures) are the demonstrated differences in results between

easterly and westerly QBO phases, which is consistent with

studies such as Yoo and Son (2016) that showed a stronger

modulating influence of MJO convection under easterly QBO

conditions.We also emphasize here that these results use 5-day

averaging windows and 7.58 3 7.58 regions. Though not ap-

preciably affecting overall model skill, the application of a

slightly longer 7-day averaging window or a larger forecasting

domain may result in changes in skill for individual phase and

lead combinations.

Nonetheless, a distinct propagating MJO signal (marked by

stripes of high HSS values) appears in the U.S. Southeast

during fall. As discussed in Baggett et al. (2018), such signifi-

cant skill at long lead times can be explained by the propa-

gating nature of the MJO and its teleconnections, whereby a

teleconnection forced by one MJO phase may occur under a

subsequent MJO phase even though the teleconnection was

forced by the original MJO phase. In this way, the presence of
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skill at longer leads (e.g., weeks 3–6) is consistent with prior

studies (Baggett et al. 2018; Johnson et al. 2014; Mundhenk

et al. 2018) that have applied this type of empirical model that

relies on the propagation of the MJO.

While Fig. 1 highlights phase and lead combinations that

have positive skill in the U.S. Southeast associated with the

propagation of the MJO, it is not realistic to expect such a

strong propagating MJO signal (and associated skill) to

appear for all regions and seasons. It is often the case that

the model’s skill is negative (i.e., the model is less skillful

than a random forecast) for certain phase and lead combi-

nations. Figure 2 shows the average HSS for each region

and season calculated over all phase and lead combinations.

For this and all similar figures, the value for each of the 262

overlapping regions is plotted at the region’s unique central

grid cell, which is plotted as a 2.58 3 2.58 box for visual

clarity. Yellow boxes in Fig. 2 show an example of two

overlapping forecast regions, with the average HSS for

these regions indicated by the shading of the grid cells at the

centers of the boxes. Figure 2 indicates that in some regions

and seasons the aggregated negative skill over all MJO

phases for weeks 3–6 actually outweighs the positive skill.

However, examination of individual regions and seasons

indicates that it is still possible for regions and seasons with

high aggregated negative skill to feature some phase and

lead combinations with positive skill, even if the pattern of

high skill is not as coherent as in Fig. 1. For example, Fig. 2

shows that under the easterly QBO, negative skill out-

weighs positive skill over weeks 3–6 over the West Coast

during winter and the southern Great Plains during sum-

mer. However, analysis of these regions (Figs. S1 and S2

in the online supplemental material) shows that positive

skill is still available for some phase and lead combina-

tions. Over the West Coast during winter, positive skill

FIG. 1. Empirical model skill (HSS) for precipitation forecasts for each combination of MJO

phase (1–8) and lead time (0–42 days). Forecasts are initialized from September through

November and are valid for the U.S. Southeast (region centered at latitude 34.758N, longitude

272.258E). Skill is shown for eachQBOphase. Here, we white out all negative skill. Blues imply

positive skill for forecasts of above-normal precipitation, while reds imply positive skill for

forecasts of below-normal precipitation. Black dots indicate that the empirical model’s skill is

significantly better than a random model at the 90% confidence level.
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for below-normal precipitation forecasts is especially prev-

alent during weeks 4 and 5 following MJO phases 3 and 4

under easterly QBO conditions. Over the southern Great

Plains during summer, positive skill manifests during weeks 4

and 5 following MJO phases 7 and 8 under easterly QBO

conditions.

Therefore, the key to successfully applying this model is to

take advantage of those conditions under which a skillful

FIG. 2. The average total skill (HSS) calculated over all MJO phase and lead time combinations when using the

MJO and QBO as predictors. We show average skill for each QBO phase. Blues indicate a positive average HSS, while

reds indicate a negative averageHSS.All eightMJOphases are considered fromweek 3 throughweek 6 (lead days 15–42).

Yellow boxes indicate two examples of overlapping forecast regions. As is the case for all overlapping regions, the average

total HSS for these yellow regions are indicated by the shading of the grid cells at the centers of the boxes.
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forecast can be made. To better isolate such instances of

positive skill, we analyze all phase and lead combinations in

each region and season to identify ‘‘skillful forecasts of

opportunity.’’ We define a skillful forecast of opportunity

as a particular phase and lead combination for which the

model’s HSS is significantly better than a random forecast at

the 90% confidence level using random walks. This char-

acterization of skillful forecasts of opportunity is consistent

with Baggett et al. (2018) and Mundhenk et al. (2018). In

Fig. 1, for example, those phase and lead combinations

considered skillful forecasts of opportunity are marked with

black dots.

Figure 3 displays the frequency of skillful forecasts of op-

portunity across the contiguous United States and Alaska

during each of the four seasons. For each season, we weight

the frequencies based on how often each active MJO phase

occurs under each QBO phase. Given an active MJO (61% of

the time) and a particular phase of the QBO, skillful forecasts

of opportunity are available approximately 20%–50% of the

time during weeks 3–6 in most regions and seasons. While we

show results parsed by QBO phase (easterly QBO occurs

44% of the time versus 56% for westerly QBO), we note that

similar frequencies occur when combining verification met-

rics for both QBO phases (not shown). In some regions and

seasons, such as the Midwest during spring under both QBO

phases, the model only provides skillful forecasts of oppor-

tunity at a rate of about 10%–20%. However, in other regions

and seasons, like the Pacific Northwest during summer under

westerly QBO or the southern Great Plains during winter

under easterly QBO, skillful forecasts of opportunity are

present for greater than 50% of forecasts, given active MJO

conditions.

How much skill do these skillful forecasts of opportunity

actually provide? To answer this question, we calculate the

average HSS among skillful forecasts of opportunity. As with

frequency, we weight the average HSS based on how often

each active MJO phase occurs. We find that, on average,

skillful forecasts of opportunity provide appreciable skill (HSS

between 20 and 30) in most regions and seasons (Fig. 4). In

some regions and seasons skill scores exceed 33, implying that

the model is correct more than twice as often as incorrect.

Therefore, although skillful forecasts of opportunity are not

always available, they provide a valuable source of skill when

they do arise.

b. Drivers of empirical model skill
We next seek to provide context to the empirical model’s

skill at select phase and lead combinations. Since the em-

pirical model bases its forecasts on historical responses of

pentadal precipitation anomalies to MJO and QBO condi-

tions, we expect that the model’s skill is a result of the

strength of the historical response to MJO and QBO condi-

tions at initialization. We first examine the strength of the

historical response for each phase and lead combination in a

sample region and season, the U.S. Southeast during fall (the

same region and season as in Fig. 1). We use the percentile of

the median of the conditional distribution of precipitation

anomalies, with respect to the full historical distribution of

precipitation anomalies, as a proxy for the strength of the

historical response for the given phase and lead combination.

Figure 5 shows these percentiles for the U.S. Southeast

during fall. Open dots indicate that the actual composite

precipitation anomalies at that phase and lead combination

are significantly different than those expected by random

chance based on a block-bootstrapping method with 1000

iterations at 80% confidence, while filled dots denote 90%

confidence.

Comparison of Figs. 1 and 5 indicates a high correlation

between the HSS and the percentiles of themedian conditional

precipitation anomalies in the U.S. Southeast during fall. To

better understand this relationship, we examine the strength of

response of precipitation anomalies for each region while

parsing by MJO phase, QBO phase, and season. Figures 6 and

7 show spatial fields of the percentiles of precipitation anom-

alies for the period 15–19 days after initialization for eachMJO

and QBO phase during winter (DJF) and fall (SON), respec-

tively. We choose to highlight this lead time period because it

falls at the beginning of the CPC’s week 3–4 precipitation

outlook. For a forecaster at the CPC, these plots could be used

as tool to inform the outlook, as they provide the dominant

precipitation response at a lead of 3 weeks based on the current

state of the MJO and QBO.

We note that strong precipitation responses often occur in

regional clusters that are, in most instances, statistically sig-

nificant with at least 80% confidence using block boot-

strapping with 1000 iterations (significance denoted by white

dots). One such cluster can be seen in the U.S. Pacific

Northwest during winter under westerly QBO conditions

(Fig. 6). In this region and season, strong positive precipita-

tion anomaly responses occur 15–19 days after active MJO

phases 1–3. In contrast, strong negative precipitation anom-

aly responses occur 15–19 days after active MJO phases 4–6.

In general, the strength, location, and spatial extent of these

clusters depends on season, though we note that strong re-

sponses manifest during all seasons (precipitation anomaly

responses for other seasons are shown in Figs. S3 and S4).

Nonetheless, we find that precipitation anomalies are mod-

ulated by the phases of the MJO and QBO. We also find that

this modulation by MJO and QBO phase occurs for anoma-

lies of precipitation into Week 6 (Figs. S5–S8), as well as for

related synoptic quantities like 500-hPa geopotential height

(Figs. S9–S16) and IVT (Figs. S17–S24). Figures 6 and 7 also

highlight, for a given MJO phase, differences in historical

precipitation anomaly responses between easterly and west-

erly QBO phases. For example, Fig. 6 indicates a cluster of

statistically significant positive precipitation anomalies in the

western United States 15–19 days following MJO phase 4

under easterly QBO conditions. However, there is a similarly

strong cluster of negative precipitation anomalies in the

western United States 15–19 days following MJO phase 4

under westerly QBO conditions. Again, visual inspection of

all similar plots shows that the precipitation responses vary

as a function of QBO phase, which is consistent with the

findings of past studies showing that the strength of the MJO

and QBO relationship differs by QBO phase (see introduc-

tion). These differences merit future study.
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This regional perspective further highlights the parallels

that exist between the clusters of strong historical re-

sponses seen in Figs. 6 and 7 and skill seen in, for example,

the U.S. Southeast during fall (Fig. 1). Under westerly QBO

conditions, for example, skillful forecasts of opportunity

for below-normal precipitation exist in the U.S. Southeast

15–19 days after MJO phases 2 and 3 during the fall (Fig. 7).

Meanwhile, Fig. 7 indicates a cluster of relatively strong

FIG. 3. The frequency of skillful forecasts of opportunity. Frequency is calculated over all instances in which a

forecast is made (i.e., the MJO is active). We show the frequency of skillful forecasts of opportunity for each QBO

phase. Opportunities are defined as phase and lead combinations for which the skill is significantly better than a

random forecast at the 90% confidence level. Frequencies are calculated over allMJOphase and lead combinations

from week 3 through week 6 (lead days 15–42).
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negative precipitation anomaly responses over the region

15–19 days after MJO phases 2 and 3 under westerly QBO

conditions. Figure 1 also highlights skillful forecasts of

opportunity for above-normal precipitation in the U.S.

Southeast 15–19 days after MJO phases 5, 6, and 8 under

westerly QBO conditions. As expected, Fig. 7 shows broad

areas of strong positive precipitation anomaly responses over

the eastern half of the United States, including the Southeast,

FIG. 4. The average skill (HSS) calculated over all skillful forecasts of opportunity when using theMJO andQBO

as predictors. We show the average HSS over all skillful forecasts of opportunity for each QBO phase.

Opportunities are defined as phase and lead combinations for which the skill is significantly better than a random

forecast at the 90% confidence level. HSS is averaged over all MJO phase and lead combinations from week 3

through week 6 (lead days 15–42).
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15–19 days after MJO phases 5, 6, and 8. Analysis over all re-

gions and seasons (not shown) indicates that the percentile of

the conditional precipitation anomaly for each region and

season is highly correlated with the empirical model’s skill.

Since model skill strongly varies with the historical precipi-

tation response toMJO andQBO conditions, we next examine

the relationship between historical precipitation response and

the responses of other synoptic variables to MJO and QBO

conditions. Figure 8 shows the Spearman correlation between

the percentiles of the conditional distribution median 500-hPa

geopotential height and precipitation anomalies. Again, percen-

tiles are calculated in terms of the full historical distribution.

With a few exceptions, especially over the U.S. Midwest, pre-

cipitation anomaly responses are negatively correlated with ge-

opotential height anomaly responses (i.e., positive precipitation

anomalies with anomalous troughing) at 500 hPa (red regions in

Fig. 8). This correlation is most pronounced over the western half

of the United States, where instability and other impacts from

overhead troughs interact with the mountainous terrain to

produce enhanced precipitation. Since upper-level divergence

(convergence) theoretically occurs downstream of 500-hPa

troughs (ridges), we also test the correlation of precipitation

anomalies with geopotential height anomalies in regions up-

stream, though we find that correlations are very similar (not

shown). This may occur because we use a combination of

spatial (7.58 3 7.58 forecast regions) and temporal (5-day av-

eraging) scales that is sufficient to capture both the upper-level

height feature and the downstream precipitation response.

Figure 9 shows the Spearman correlation between the

percentiles of the conditional distribution median IVT and

FIG. 5. Percentile of the median of the conditional distribution of precipitation anomalies

with respect to the full distribution of precipitation anomalies for each combination of MJO

phase (1–8) and lead time (0–42 days). Days chosen for ‘‘day 0’’ occur from September through

November over the U.S. Southeast (region centered at latitude 34.758N, longitude 272.258E).
Percentiles are shown for eachQBOphase. Greens indicate anomalies greater than themedian

of the full distribution, while reds indicate anomalies less than the median of the full distri-

bution. Open white dots indicate statistical significance of the anomaly using block boot-

strapping over 1000 iterations at 80% confidence, and filled white dots indicate significance at

90% confidence.
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precipitation anomalies. We find that IVT and precipitation re-

sponses are highly positively correlated in the western and

southeast United States. These high correlations are likely re-

lated to the climatological distribution of landfalling ARs and

tropical cyclones, both of which can produce extreme rainfall

associated with anomalously high IVT. We find slightly negative

correlations between IVT and precipitation responses in theU.S.

northern Great Plains, potentially due in part to occasional

downsloping of westerly plumes of high winds aloft (likely as-

sociated with plumes of anomalously high IVT) in the lee of the

Rockies. Possible evidence of this is an associated cluster of high

positive correlations that occur on the western slopes of the

Rockies, especially during winter, spring, and fall. Nonetheless,

we note that further study is required to definitively attribute any

of these correlations to specific phenomena.

In the supplementalmaterial, we also examine the influence of

underlying synoptic conditions on the prediction skill for above-

or below-normal pentadal precipitation anomalies. We find that

the magnitudes of geopotential height anomaly responses are

positively correlatedwithHSS for precipitation (Fig. S25),mostly

in the western United States. We also find that the magnitudes

of historical IVT responses are positively correlated withHSS for

precipitation (Fig. S26), largely along the western and Gulf

coasts, regions most influenced by focused areas of high IVT.

However, since the correlations are not equal to 1, these synoptic

quantities alone do not fully account for the variance (i.e., the

correlations squared) of the model’s skill in predicting pentadal

precipitation anomalies for weeks 3–6. Certainly, geopotential

height and IVT fields alone do not provide enough physical in-

formation about other synoptic drivers of precipitation, such as

surface temperature and moisture fields. In addition, these syn-

optic quantities do not resolve important mesoscale circulations

(e.g., gust fronts, sea and land breezes, mountain and valley cir-

culations), terrain features, or land-atmosphere interactions (e.g.,

soil moisture, vegetation fraction, etc.).

Overall, our findings showing that the MJO and QBO

modulate precipitation, geopotential height, and IVT anoma-

lies agree with past findings from those like Wang et al.

(2018a), who in their Fig. 11 schematically demonstrate the

influence of the combined MJO–QBO state on the North

Pacific storm track. However, further study is required to iso-

late the most important drivers. at all spatial and temporal

scales, of the strong precipitation responses to MJO and QBO

conditions. Specifically, future studies should leverage findings

of past studies (see introduction) demonstrating the modula-

tion of sensible weather over North America in order to place

the results shown here into proper dynamical context.

c. Influence of the QBO
In the preceding sections, we established the ability of

the empirical model to use the MJO and QBO as predictors

to produce skillful forecasts of opportunity for above- or

FIG. 6. Percentile of the median of the conditional distribution of precipitation anomalies with respect to the full distribution of

precipitation anomalies parsed by MJO phase (1–8) and QBO phase for winter (DJF). MJO phases increase from top to bottom in each

column. Percentiles are valid for the 5-day window beginning at day 15. Blues indicate precipitation anomalies greater than the median,

while reds indicate precipitation anomalies lower than the median. White dots denote statistical significance at the 80% confidence level

using block bootstrapping with 1000 iterations.
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below-normal pentadal precipitation anomalies. We now

seek to isolate the importance of the QBO as a predictor.

To characterize the influence of the QBO phase on the

predictions, we run the model using only the MJO (i.e., no

conditioning on QBO phase) and compare regional and

seasonal skill to the skill expected when incorporating the

QBO. To maintain a constant sample size between cases,

we combine the verification metrics for easterly and west-

erly QBO conditions and calculate skill scores. While prior

studies (see introduction) have demonstrated the QBO’s

modulation of theMJO, the nature of the modulation varies

by QBO phase (see Figs. 6, 7, for example). Therefore, we

expect model performance to differ when adding the spe-

cific QBO phase as a predictor.

Figure 10 demonstrates that, in all seasons, adding the

QBO increases the frequency of skillful forecasts of oppor-

tunity in a majority of regions over all MJO phases. When

adding the QBO as a predictor, skillful forecasts of oppor-

tunity are more frequent in over 70% of the regions, with the

exception of the fall (about 61%). Table 1 lists, by season, the

exact percentage of regions with an increase in skillful fore-

casts of opportunity. Figure 11 shows that adding the QBO

also increases the average HSS of skillful forecasts of op-

portunity over all MJO phases in almost all regions (see

Table 1). In fact, for many regions and seasons, adding the

QBO increases the average HSS by more than 4, implying an

increase in average success rate by more than 2% per op-

portunity. Over all phase and lead combinations, however,

statistically significant decreases in skill frequently occur

when adding the QBO as a predictor (Fig. S27). The pro-

nounced decrease in HSS in many regions and seasons seems

to contradict the increase in frequency of skillful forecasts of

opportunity. This implies that adding the QBO preferentially

enhances positive skill that is already high while decreasing

skill when it is modest or negative. This finding, in particular,

merits additional analysis to identify a physical explanation,

perhaps related to the demonstrated dynamical relationship

between the QBO, MJO, and their teleconnections. For

example, further analysis could determine the degree to

which the QBO enhances specific precipitation-related

MJO teleconnections, like frontogenesis or surface pressure,

over parts of North America. Perhaps, the QBO preferentially

enhances specific MJO teleconnections that are already strong,

thus likely to produce high predictability for precipitation on

their own. At the same time, the QBO may destructively in-

terfere with more modest MJO teleconnections over North

America, leading to decreased predictive skill. Such questions

could be the focus of future studies.

Finally, to test the robustness of the QBO’s influence to

the confidence level used to define skillful forecasts of op-

portunity, we perform similar analyses using two stricter

confidence levels: 95% and 97.5% (Table 1). For example,

FIG. 7. Percentile of the median of the conditional distribution of precipitation anomalies with respect to the full distribution of

precipitation anomalies parsed by MJO phase (1–8) and QBO phase for fall (SON). MJO phases increase from top to bottom in each

column. Percentiles are valid for the 5-day window beginning at day 15. Blues indicate precipitation anomalies greater than the median,

while reds indicate precipitation anomalies lower than the median. White dots denote statistical significance at the 80% confidence level

using block bootstrapping with 1000 iterations.
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Table 1 shows that during the summer, the percentage of

regions with higher frequency of skillful forecasts of opportu-

nity increases from 72.9% to 88.2% to 93.9% as confidence

level increases. Meanwhile, the percentage of regions with

higher average HSS for skillful forecasts of opportunity de-

creases from 92.0% to 77.1% to 69.1% as confidence level in-

creases. We note from Table 1 that the majority of regions and

seasons see an enhancement of skillful forecasts of opportunity

FIG. 8. The Spearman correlation between the percentiles, with respect to their respective full distributions, of

the conditional distribution median 500-hPa geopotential height (‘‘Z500’’) and precipitation anomalies. We show

the correlation for each QBO phase. Reds indicate increasing precipitation anomalies with decreasing height

anomalies (anomalous troughs), while blues indicate increasing precipitation anomalies with increasing height

anomalies (anomalous ridges). Correlation is calculated over MJO phase and lead combinations from week 3

through 6 (lead days 15–42).
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for all three commonly used statistical significance thresh-

olds. Therefore, we are confident that the QBO’s influence

is robust across varying definitions of skillful forecasts of

opportunity.

4. Conclusions
We apply an empirical model based on the MJO and QBO to

predict above- or below-normal pentadal precipitation anomalies

for weeks 3–6 (15–42 days) throughout the contiguous United

FIG. 9. The Spearman correlation between the percentiles, with respect to their respective full distributions, of

the conditional distribution median IVT and precipitation anomalies. We show the correlation for each QBO

phase. Reds indicate increasing precipitation anomalies with decreasing IVT anomalies, while blues indicate in-

creasing precipitation anomalies with increasing IVT anomalies. Correlation is calculated overMJOphase and lead

combinations from week 3 through 6 (lead days 15–42).
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States and Alaska during all seasons. First, in each region and

season we analyze the occurrence of skillful forecasts of oppor-

tunity, phase and lead combinations at which the empirical

model’s skill is significantly better than a random model at 90%

confidence. We find that such opportunities are available for

approximately 20%–50% of all forecasts in most regions and

seasons, while some regions exhibit even higher frequencies. We

also find that, on average, skillful forecasts of opportunity provide

HSS values between 15 and 30.

We next put the empirical model’s skill at weeks 3–6 into

context by exploring the relationship between the historical

precipitation response (anomalies) to the MJO and QBO and

theHSS for precipitation for eachphase and lead combination.We

find that historical precipitation responses during weeks 3–6 are

modulated by the MJO and QBO during all seasons throughout

the contiguous United States and Alaska. Furthermore,

responses of other synoptic drivers of precipitation, like

geopotential height and IVT, are also modulated by the

MJO and QBO during weeks 3–6, a finding that is consistent

with prior studies (Baggett et al. 2017; Feng and Lin 2019;

Wang et al. 2018b). Overall, we find that historical precipitation

responses to the MJO and QBO are strongly correlated

with empirical model skill. In addition, we show that his-

torical 500-hPa geopotenial height and IVT responses are

also correlated with precipitation responses and associated

precipitation forecast skill, though neither quantity fully

explains the skill or the historical response to MJO and

QBO conditions.

Last, we assess the influence of adding theQBOas a predictor

by comparing the empirical model to an alternative version that

FIG. 10. The difference in frequency of skillful forecasts of opportunity when using both the MJO and QBO as

predictors compared to the MJO only. When considering the QBO, we combine verification metrics for active

MJO/easterly QBO and activeMJO/westerly QBO cases to calculate HSS. Opportunities are defined as phase and

lead combinations for which the skill is significantly better than a random forecast at the 90% confidence level.

Greens indicate regions and seasons in which adding the QBO increases the frequency of opportunities, while

browns indicate regions and seasons in which adding the QBO decreases the frequency of opportunities. All eight

MJO phases are considered from week 3 through week 6 (lead days 15–42).

TABLE 1. The percentage of regions with an increase in frequency

of skillful forecasts of opportunity and the percentage of regions with

an increase in average HSS for skillful forecasts of opportunity. The

confidence level refers to the confidence associated with a one-sided

random walks significance test with respect to a random model.

‘‘FOO’’ is shorthand for a skillful forecast of opportunity.

Season

Confidence

level

Percent FOO

frequency

increased (%)

Percent avg FOO

HSS

increased (%)

Winter 90 88.2 95.4

95 96.9 85.9

97.5 96.6 75.2

Spring 90 88.9 93.9

95 95.8 83.6

97.5 96.6 73.7

Summer 90 72.9 92.0

95 88.2 77.1

97.5 93.9 69.1

Fall 90 60.7 96.6

95 74.0 82.1

97.5 82.1 69.8
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solely uses the MJO as a predictor. We show that while com-

bining theMJO andQBO tends to further decrease skill when it

is already modest or low, adding the QBO increases the fre-

quency of skillful forecasts of opportunity in a majority of re-

gions and seasons. We also find that adding the QBO increases

the average HSS of skillful forecasts of opportunity in most re-

gions and seasons. The exact fraction of regions enhanced varies

by season and confidence level. Thus, we conclude that adding

the QBO preferentially enhances skill where it is already high.

These results demonstrate the utility of theMJO andQBO as

predictors for anomalous pentadal precipitation in a variety of

regions and seasons. We build on the findings of Baggett et al.

(2018) and Mundhenk et al. (2018), who applied this type of

model to S2S forecasts of severe convection and ARs, two

phenomena associated with precipitation. We also build on the

findings of Johnson et al. (2014), who first demonstrated the

utility of an empiricalmodel based on historicalMJOandENSO

conditions to predict temperatures across the United States at

S2S leads. Given past studies that have demonstrated the mod-

ulating influence of the MJO and QBO on precipitation-

inducing phenomena, it makes sense that the MJO and QBO

would be useful predictors of precipitation.

While the empirical model’s utility is restricted to select

‘‘opportunities,’’ we demonstrate that these opportunities

present a significant improvement over current dynamical

models at S2S leads. This empirical model provides an

additional forecasting tool that could help inform the CPC’s

week 3–4 precipitation outlook, thereby supplementing dy-

namical models while also highlighting sources of predict-

ability that dynamical models have yet to fully exploit.
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FIG. 11. The difference in average skill (HSS) among skillful forecasts of opportunity when using both the MJO

and QBO as predictors compared to only using the MJO. When considering the QBO, we combine verification

metrics for active MJO/easterly QBO and active MJO/westerly QBO cases to calculate HSS. Opportunities are

defined as phase and lead combinations for which the skill is significantly better than a random forecast at the 90%

confidence level. Greens indicate regions and seasons in which adding the QBO increases the average HSS, while

browns indicate regions and seasons in which adding the QBO decreases the average HSS. All eight MJO phases

are considered from week 3 through week 6 (lead days 15–42).
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APPENDIX

Online Repository
Since most of the analyses herein and in the main text are

summaries over all phase and lead combinations, we provide an

online repository of HSS calculations by region and season. The

contents of this online repository (https://hdl.handle.net/10217/

195747) depict HSS for each region and season in an MJO phase

by lead time space (similar to Fig. 1 for the U.S. Southeast during

fall). The repository also contains maps of HSS for all MJO/QBO

phase and lead combinations. In this repository, stakeholders can

select a region and season of interest and identify the exact MJO

and QBO phases for which skillful forecasts of opportunity are

available. The analyses performedhere, for precipitation using the

MJO and QBO, are also included in an online web application

project (http://barnes.atmos.colostate.edu/S2SPredictionModel/).
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