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A framework for A(d, p)B reactions is introduced by merging the microscopic approach to com-
puting the properties of the nucleon-target systems and the three-body n+p+A reaction formalism,
thus providing a consistent link between the reaction cross sections and the underlying microscopic
structure. In this first step toward a full microscopic description, we focus on the inclusion of the
neutron-target microscopic properties. The properties of the neutron-target subsystem are encap-
sulated in the Green’s function which is computed with the Coupled Cluster theory using a chiral
nucleon-nucleon and three-nucleon interactions. Subsequently, this many-body information is intro-
duced in the few-body Green’s Function Transfer approach to (d, p) reactions. Our benchmarks on
stable targets 40,48Ca show an excellent agreement with the data. We then proceed to make specific
predictions for (d, p) on neutron rich 52,54Ca isotopes. These predictions are directly relevant to
testing the new magic numbers N = 32, 34 and are expected to be feasible in the first campaign of
the projected FRIB facility.

Introduction.– Progress on the capability to produce
rare–isotopes beams (RIBs [1–3]) has pushed the explo-
ration frontier into remote parts of the nuclear chart far
from the valley of stability. The expectation that our
traditional knowledge would be challenged as one treads
through these exotic nuclear regions has been experimen-
tally confirmed. A striking example is provided by the
emergence of new magic numbers, i.e the number of nu-
cleons that fill major shells. Magic numbers are one of the
cornerstones of nuclear structure, and nuclei with magic
numbers of proton and/or neutron display a larger stabil-
ity compared to their close neighbors. A recent example
is the experimental evidence of new doubly–magic fea-
tures in the short–lived 52,54Ca [4–6].

Nuclear reactions play a key role in the experimental
study of nuclei, offering a variety of probes allowing to
extract complementary information about the structure
of the systems under study. Within this context, one-
nucleon transfer reactions such as (d, p) are the probe of
choice to obtain information about the nuclear response
to nucleon addition (single-particle strength) as a func-
tion of energy, angular momentum and parity. By com-
paring experimental data to theoretical predictions, re-
action cross sections can also be used as a tool to inform,
validate and refine theoretical structure models. But, in
order to extract unambiguous information from reaction
observables, it is essential to integrate consistently the
structure theory in the reaction formalism. This is the
main objective of this paper.

Although some recent works describe (d, p) reactions
ab initio [7, 8], for most cases of interest one usually
relies on the reduction of the many–body problem to a
few–body one where only the most relevant degrees of
freedom are retained [9, 10]. In this picture, the Hamil-
tonian is given as a sum of two-body effective interactions
between the clusters considered. A standard approach to
obtain the two-body interactions is to fit a simple local
function (e.g., a Woods-Saxon) from experimental elas-

tic scattering data on β–stable isotopes [11, 12]. As no
explicit connection to an underlying microscopic theory
is made, these potentials become less reliable and bring
uncontrolled uncertainties as one considers systems fur-
ther from stability. In the most common approaches in
the field [9, 10] the (d, p) cross section is factorized into a
single-particle reaction term (which accounts for the dy-
namics of the process) and a spectroscopic factor (which
relates to the probability of a certain orbital configura-
tion in the final state). Unlike cross sections, spectro-
scopic factors and potentials are non-observable quanti-
ties [13–16]. They depend on the model and the repre-
sentation used to compute them [17]. Unless they are
calculated consistently within a same framework, seri-
ous calibration issues in the theory could appear. This is
likely to become even more problematic when moving to-
ward uncharted territories of the nuclear landscape. One
must then strive to compute all inputs of the few-body
problem consistently.

In this paper, we introduce a framework that combines
the development in obtaining the microscopic effective
interactions from coupled cluster (CC) theory [18, 19]
and the Green’s Function Transfer (GFT) reaction the-
ory for (d, p) on medium-mass nuclei [20, 21]. In this
merged framework, the structure content of the target
and the neutron-target effective interactions are consis-
tently computed (with the CC approach), resulting from
the same underlying many-body Hamiltonian. Other in-
puts entering the GFT equations are a p − (A + 1) and
a d − A optical potentials (see Method section). In this
first application, both potentials will be taken from phe-
nomenological fits to elastic scattering data. In the future
it is our intention to compute these effective interactions
microscopically. This is beyond the scope of the current
work.

The CC method has been shown to provide an accurate
description of low–lying spectra and properties of nuclei
with closed (sub–)shells and their neighbors[22–25]. We
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will employ the NNLOsat interaction [26] derived from
chiral effective field theory, which provides an accurate
description of masses and radii in a wide mass–range.
The latter feature is critical for our approach, since a
proper reproduction of the distribution of nuclear matter,
and, more specifically, nuclear radii, are essential to give
an accurate account of reaction observables.

The GFT allows for the computation of (d, p) cross
section for bound, resonant and continuum states in the
(A+n) nucleus by making use of the Green’s Function of
the n−A subsytem [20, 21]. Within this context, the use
of the prior form, in which the n−A interaction appears
explicitly in the T -matrix, is a way to avoid well known
numerical difficulties in the post form associated with the
convergence of the T -matrix integral in the continuum
(see e.g. [27]). The ability to describe the population
of continuum states is one of the main differences with
respect to other approaches making use of microscopic
overlaps in the post representation [28].

To benchmark this new approach (which we will denote
as CC-GFT), we apply it to (d, p) reactions on the doubly
magic stable Ca isotopes 40Ca and 48Ca, for which there
is abundant data. We then make predictions for (d, p) re-
action cross sections on the short-lived 52,54 Ca, given the
recent experimental interest. Precision measurements of
nuclear masses for 52Ca [4] and 2+ excitation energies for
54Ca [5] suggest that these nuclei are also doubly-magic.

This paper is organized as follows. We begin by sum-
marizing the CC-GFT approach. We then demonstrate
the applicability and reliability of the method by bench-
marking our calculations with experimental data mea-
sured on the stable isotopes 40,48Ca, and proceed to make
predictions for the (d, p) transfer cross sections on the ex-
otic Calcium isotopes 52,54Ca.

Method.– The GFT framework is based on a reaction
formalism introduced in the 1980’s to address reactions
in which a fragment of the projectile fused with the tar-
get, while the depleted projectile is detected with energies
and angular distributions characteristic of a direct pro-
cess [29–31]. The formalism has been recently revived
and extended by several groups [21, 32–35]. In [32], the
formalism has been derived as the solution of a three-
body Hamiltonian which includes (i) nucleon-target po-
tentials for the n−A and p−A subsystems and (ii) a p−n
interaction. In addition to the initial (d + A) and final
(p+ (A+ 1)) channels, the intermediate (n+A) channel
is explicitly taken into account. The corresponding set
of 3 coupled equations is solved to first order in the cou-
plings, resulting in a 2-step DWBA approximation. The
formalism then allows to address the population of both
bound and continuum final states, and to disentangle the
contribution from elastic and non-elastic breakup to the
total proton singles (for details, see [20]).

We are interested here in the population of the ground
state of the A+ 1 system [36]. The n− A potential and
the associated single-particle Green’s Function which en-

ter the GFT equations (see Eqs 1, 2) are computed at the
energy E = EA+1

gs , the relative energy of the ground state
in A + 1 with respect to the ground state in A. Within
the CC framework used to calculate them, all A+1 nu-
cleons of the n–A system are active and the (intrinsic)
many–body Hamiltonian is expressed as the sum of ki-
netic terms, Coulomb and nuclear interactions among the
nucleons. The nuclear part of the Hamiltonian is given
by the chiral–EFT interaction NNLOsat which consists of
a nucleon–nucleon (NN) and three–nucleon forces (3NF)
and has been shown to provide an accurate description
of masses and radii in a wide mass–range, and in partic-
ular for 40Ca and 48Ca [26, 37–40]. First, we calculate
the Green’s function Gccsd(E) at the coupled–cluster sin-
gles and doubles (CCSD) approximation, that is, within a
two–particle two–hole (2p−2h) space above the Hartree–
Fock configuration. By construction, the poles of the
particle part [41] of Gccsd(E) correspond to the energy
E = EA+1 of the A+ 1 system, solutions of the particle-
attached equation-of-motion (PA-EOM) coupled-cluster
method [42]. The optical potential V ccsdn−A(E) is then
obtained by inversion of the Dyson Equation fulfilled
by Gccsd(E) [18, 19]. This potential is non–local and
energy–dependent and, for scattering energies, also com-
plex, the imaginary component accounting for the loss of
flux due to absorption into channels other than the elas-
tic channel. For E < 0, the spectrum of V ccsdn−A(E) is the
discrete set of bound state energies of the A+ 1 nucleus,
E = EA+1

n . Gccsd(EA+1
gs ) and V ccsdn−A(EA+1

gs ) are then used
in the GFT equations (1) and (2) to compute the (d, p)
cross section for the population of the A+1 ground state.
For a beam energy in the center of mass Ecmd , the out-
going proton energy is Ecmp = Ecmd + Ebd − EA+1

g.s. with
Ebd = −2.22 MeV the deuteron binding energy. The dif-
ferential cross section for detecting the proton within a
solid angle Ωp reads [43]:

dσ

dEpdΩp
= − µpµdkp

4~4π3kd

×
∫

ImGccsd(r, r′, EA+1
gs )ρ∗(r, EA+1

gs )ρ(r′, EA+1
gs ) dr dr′,

(1)

where µp (µd) is the proton (deuteron) reduced mass and
kp (kd) the proton (deuteron) momentum and r (r′) is the
relative n–A coordinate. We have introduced in Eq. (1)
the breakup density amplitude

ρ(r, EA+1
gs ) =

(
χp|V ccsdn−A(r, r′, EA+1

gs ) + Up − Ud|φdχd
〉
,

(2)

where |χp〉 (|χd〉) is the proton (deuteron) elastic scat-
tering solution of the potential Up (Ud) at the energy
Ep (Ed). |χp〉 and |χd〉 are function of respectively, the
p−(A+1) and d−A coordinates. The left round bracket
in Eq. (2) indicates that the integration is performed
over the proton coordinates only. The intrinsec deuteron
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state |φd〉 in Eq. 2 is solution of an s-wave Woods-Saxon
potential which reproduces the radius and binding energy
of the deuteron [20, 21]. Note that since the ground state
in A has 0+ spin and parity, Gccsd and V ccsdn−A conserve an-
gular momentum, and only the component with the spin
and parity Jπ of the ground state of A+ 1 contribute to
Eqs. (1) and (2).

A comment is in order here. The CC calculations are
performed in the laboratory coordinates [18, 19] whereas
the Green’s function and the n − A potentials appear
in the GFT equations (1,2) as functions of the relative
coordinate r = rn − rA (rn, rA are the laboratory co-
ordinates of the neutron and the center of mass of the
target A, respectively). In Eq. (1) and 2, both quanti-
ties are implicitly identified to the CC outputs Gccsd(E)
and V ccsdn−A(E) calculated in the laboratory frame. This
introduces a small error (estimated in the next section)
in the computed (d, p) cross section which is a decreasing
function of the target mass A [44].

Results.– The CC calculations are performed with the
same inputs and model spaces as in [19]. We work in a
mixed basis of single particle (s.p.) Hartree–Fock states
expanded either within the harmonic oscillator shells or
the Berggren basis [45, 46], depending on the partial
wave considered. Working within the Berggren ensem-
ble provides a natural extension of the CC formalism
into the complex–energy plane [24, 47–49] and allows
to compute (weakly) bound and unbound solutions of
the coupled–cluster equations (see also [50–53] for the
use of Berggren basis in the context of configuration–
interaction approaches). The g.s. in 41Ca, 49Ca and
the exotic 53Ca, 55Ca are particle bound. Solving the
CC equations in the Berggren basis then ensures that
the radial asymptotic behavior of the n − A potential is
properly accounted for any value of the separation energy
EA+1
gs . The s.p. basis contains harmonic oscillator shells

such that 2n + l ≤ Nmax along with a discretized set
of Berggren states. While we show results for different
Nmax, we fix the number of discretized-Berggren shells at
Nsh = 50, known to be sufficient for convergence [18, 19].
The NNLOsat interaction includes two–body and three–
body interaction terms [26]. In all calculations, the max-
imum number of quanta allowed in the relative motion
of two nucleons (N2), and three nucleons (N3), are equal
to Nmax, except for the most extensive calculations con-
sidered here, where N2 = 14 and N3 = 16. We use the
normal-ordered two-body approximation for the three-
nucleon force term, which has been shown to work well
in light- and medium mass nuclei [54, 55]. The optical po-
tentials Ud and Up for 40,48Ca(d, p) are taken from [56].
By design, they reproduce deuteron and proton elastic
scattering on the 40,48Ca targets. Since no experimental
data for elastic scattering on the exotic 52Ca and 55Ca
is available, the parameters for Ud and Up are taken in
these cases from global systematics [57, 58].

The results for 40Ca(d, p)41Ca and 48Ca(d, p)49Ca at

Ed= 10 MeV are shown in Fig. 1 as a function of
Nmax along with the computed ground state energy in
41,49Ca. The converging pattern of the cross section is
non–monotonic as Nmax increases, and the calculated
angular distributions for the largest model space i.e.
N2/N3 = 14/16 are close to the data (see Fig. 1). We
want to emphasize here that the CC computation of the
inputs for the few-body GFT equations have no free pa-
rameters.

For the largest model space, both nuclei are under-
bound at the PA-EOM level by ∼ 500keV (41Ca) and
∼ 600kev (49Ca) with respect to the experimental val-
ues EA+1

gs = −8.36 MeV (41Ca) and EA+1
gs = −5.14 MeV

(49Ca). We can further improve the results by fixing the
energies to the experimental data while keeping all other
inputs fixed. In that case, we adjust accordingly kp in
Eq. 1 and |χp〉 in Eq. (2), whereas other quantities in
the GFT equation remain unchanged (we use Gccsd and
V ccsdn−A calculated at N2/N3=14/16). We then obtain a
remarkable agreement with the experimental data (red
curve with triangles in Fig. 1). Let us mention here
that previous GFT calculations of the 40Ca(d, p)41Ca
cross section have been performed in [21], with inputs
from the Dispersive Optical Model [59, 60] and that
in [28], post-form DWBA calculations with microscopic
overlaps (computed with the self-consistent Green’s func-
tion [61, 62]) have been reported for transfer reactions on
Oxygen isotopes.

As mentioned above, Ud and Up are taken as phe-
nomenological potentials fitted to reproduce elastic scat-
tering on 40,48Ca. Since these “external” interactions
have been computed independently of the n−A potential,
an uncertainty in the computed (d, p) cross section will
result. Let us consider two interactions Ud1 and Ud2 that
reproduces d − A elastic scattering with the same qual-
ity. At the two-body level, they are equivalent since by
design they reproduce the data. However, in the three-
body system (A, p, n), the differences in their off-shell be-
haviour (which is not constrained by the fit) will result
into an uncertainty on the computed (d, p) cross section.
In order to estimate the uncertainty, we have performed
calculations with Ud and Up fitted from global systemat-
ics [57, 58]. We found a variation of less than 15% at the
peak of the angular differential cross section, stemming
mostly from the d−A optical potential. We should also
point out here that the difference in the accuracy of the
fits (a locally fittted interaction will certainly reproduce
the data more accurately than a global interaction) also
contributes in this estimation. In the future it is our
intention to compute these effective interactions micro-
scopically, consistently with the neutron-target potential.
Using, for instance, the Feshbach projection formalism
[63, 64], Ud could be derived from the n− A, p− A and
p− n potentials.

With the pragmatic choice of using the locally fitted
potentials for Ud and Up the quality of our results hinges
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FIG. 1. Calculations of the angular differential cross sections:
a) 40Ca(d, p)41Ca(g.s.) at 10 MeV and b) 48Ca(d, p)49Ca(g.s.)
at 10 MeV. The curves show the results of CC-GFT calcu-
lations as a function of Nmax. Also indicated are the PA-
EOM energies EA+1

gs . The red curve with triangles, labeled
Nmax = 14/16 (Eex), was obtained within the largest model
space by adjusting the energy to the experimental value. The-
oretical calculations are compared with data (in full circle)
from [56].

on i) the reproduction of bulk properties of nuclei (such
as the charge radius, which is reflected in the radial ex-
tension of the n-A potential) by the chiral NNLOsat in-
teraction, ii) the consistent calculations, within the CC,
of the Green’s function and n-A potential and iii) the
integration of these quantities in the reaction framework
by means of the few-body GFT equations.

The difference between the center of mass coordinates
used in the GFT equations (1) and (2) and the laboratory
coordinates used in CC introduces a small uncertainty in
the calculation of the (d, p) cross section as discussed be-
fore. We estimate it by comparing the resulting difference
in the cross sections when a shift ∆ is added to EA+1

gs

while keeping all other inputs fixed in the GFT equa-
tions. We take ∆ = EAgs∗−EAgs, where EAgs∗ is the CCSD
energy for the “mass-shifted” nucleus A [65]. This shift
amounts to a 1/A effect, and for 40Ca, ∆ = 190 keV. This
results in a small difference (< 4%) in the 40Ca(d, p)41Ca
cross section at the θCM ∼ 40◦ peak, smaller than the
experimental error bars (see Fig 1).

Encouraged with the good results obtained on the sta-
ble Ca isotopes, we make predictions for the (d, p) cross
section with the unstable (although particle–bound),
neutron–rich 52Ca and 54Ca, for which experimental evi-
dence of shell closure has been reported [66]. Recent mea-

(Eexp)

(Eexp)

a)

b)

Egs   (MeV)A+1

Egs   (MeV)A+1

FIG. 2. Predictions for the angular distributions: a)
52Ca(d, p)53Ca(g.s.) at 10 MeV and b) 54Ca(d, p)55Ca(g.s.)
at 10 MeV. We also list the energies EA+1

gs calculated at the
PA-EOM level to be compared with the experimental values
E = −3.46 MeV for 53Ca and E = −2.60 MeV for 55Ca (see
caption of Fig. 1 for more details).

surements have shown an increase in the charge radius
of 52Ca (reproduced by CC calculations with NNLOsat)
with respect to what is expected for a double magic sys-
tem [38]. The required beam intensity for these experi-
ments is expected to be achieved at FRIB from its first
day of operation. The ground state energies for 53,55Ca
are otherwise known (EA+1

gs = −3.46 MeV for 53Ca and

EA+1
gs = −2.60 MeV for 55Ca), to be compared with

the N2/N3=14/16 PA-EOM calculations (EA+1
gs = −3.16

MeV for 53Ca and EA+1
gs = −1.76 MeV for 55Ca). The

results are shown in Fig. 2. The difference between the
experimental and computed energies in 53Ca is ∼300 keV
whereas it is ∼ 820 keV for 53Ca. This results in a larger
difference between the 54Ca(d, p)55Ca cross sections cal-
culated with the PA-EOM energy and the experimental
value.

Conclusions.– We take in this paper an important step
towards the development of a consistent microscopic the-
ory for (d, p) reactions in medium-mass nuclei. Within a
many-body framework where all nucleons are active, we
compute the Green’s functions and n–A optical poten-
tials in the CC approach, with the two-and three-body
NNLOsat interaction. The (d, p) cross section is then
obtained by integrating the CC calculations in the GFT
few-body formalism. We thus fundamentally depart from
standard reaction formalisms: in our approach, the ob-
servable cross section is reproduced from the consistent
calculation, as enforced by the Dyson equation, of two
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non-observable quantities, namely the Green’s function
and the n–A optical potential. Using phenomelogical
p − (A + 1) and d − A potentials, we obtain converged
results in good agreement with available data for 40,48Ca,
and show that the quality of the calculation can be im-
proved further by adjusting the energy of the populated
ground state to the experimental value. In the future, we
plan to compute these effective interactions microscopi-
cally, en-par with the neutron-target input. CC calcula-
tions have been successful in reproducing the experimen-
tal findings regarding the exotic isotopes 52,54Ca, around
the N = 32, 34 recently found closed shells. The formal-
ism presented here allows for the integration of these CC
calculations in the reaction framework, and can predict
(d, p) reaction cross sections for 52,54Ca. These experi-
ments are expected to be feasible in the near future at
the new FRIB facility.
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and P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012).

[56] G. Brown, A. Denning, and J. Haigh, Nuclear Physics
A 225, 267 (1974).

[57] A. J. Koning and J. P. Delaroche, Nucl. Phys. A 713,
231 (2003).

[58] Y. Han, Y. Shi, and Q. Shen, Phys. Rev. C 74, 044615
(2006).

[59] M. H. Mahzoon, R.J.Charity, W.H.Dickhoff, H.Dussan,
and S.J.Waldecker, Phys. Rev. Lett. 112, 162503 (2014).

[60] S. J. Waldecker, C. Barbieri, and W. H. Dickhoff, Phys.
Rev. C 84, 034616 (2011).

[61] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev.
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