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D-MODULE AND F -MODULE LENGTH

OF LOCAL COHOMOLOGY MODULES

MORDECHAI KATZMAN, LINQUAN MA, ILYA SMIRNOV, AND WENLIANG ZHANG

Abstract. Let R be a polynomial or power series ring over a field k. We study

the length of local cohomology modules Hj
I (R) in the category of D-modules

and F -modules. We show that the D-module length of Hj
I (R) is bounded

by a polynomial in the degree of the generators of I. In characteristic p > 0
we obtain upper and lower bounds on the F -module length in terms of the
dimensions of Frobenius stable parts and the number of special primes of local
cohomology modules of R/I. The obtained upper bound is sharp if R/I is
an isolated singularity, and the lower bound is sharp when R/I is Gorenstein
and F -pure. We also give an example of a local cohomology module that has
different D-module and F -module lengths.
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1. Introduction

Since its introduction by Grothendieck, local cohomology has become a major
part of commutative algebra that has been studied from different points of view.
When R is a polynomial or power series ring over a field k, each local cohomology
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module Hj
I(R) admits a natural module structure over D(R, k), the ring of k-linear

differential operators (D(R, k)-modules will be reviewed in §2). In characteristic 0,

[Lyu93] shows that Hj
I(R) has finite length as a D(R, k)-module, though Hj

I(R) is
rarely finitely generated as an R-module. To this day, using the finite length prop-
erty of Hj

I(R) in the category of D(R, k)-modules is still the only way to prove that

Hj
I(R) has finitely many associated primes in characteristic 0. In characteristic p,

Frobenius action on local cohomology modules was used with great success by a
number of authors, e.g., [PS73], [HS77], and [HS93]. Lyubeznik ([Lyu97]) concep-
tualizes the previous work to develop a theory of F -modules in characteristic p (the
reader may find an overview in §2).

As we have seen, in characteristic p, local cohomology modules Hj
I(R) can be

viewed as bothD(R, k)-modules and F -modules; [Lyu97] compares these two points
of view. It’s shown that each F -module M admits a natural D(R, k)-module struc-
ture and its length as an F -module, lFR

(M), is no more than its length as aD(R, k)-
module, lD(R,k)(M). The comparison of these two points of view was continued in
[Bli03], where Blickle shows that over an algebraically closed field the D(R, k)-
module length is equal to the F∞-module length (F∞-modules will be reviewed in
§2). The fact that local cohomology modules have finite length as D(R, k)-modules
has found many applications; for instance [NBW14] introduces numerical invariants
of local rings using the length of local cohomology modules as D(R, k)-modules and
shows that there are close connections between these invariants and F -singularities.

Despite the importance of the finiteness of the length of local cohomology mod-
ules as D(R, k)-modules and F -modules, finding the actual length of local coho-
mology modules as such modules remains an intriguing and difficult open question.
In this paper we provide partial answers to this question in characteristic p.

Theorem 1.1 (Theorems 4.3 and 5.1). Let R = k[[x1, . . . , xn]] (or k[x1, . . . , xn])
with m = (x1, . . . , xn), where k is a field of characteristic p > 0. Let A = R/I be
reduced and equidimensional (respectively, graded reduced and equidimensional) of
dimension d ≥ 1.

(1) If A has an isolated non-F -rational point at m (e.g., A has an isolated
singularity at m), then

lD(R,k)(H
n−d
I (R)) = dimk(0

∗
Hd

m(A))s + c = dimk((H
d
m(A))s) + c,

where c is the number of minimal primes of A. Moreover, if k is separably
closed, then

lFR
(Hn−d

I (R)) = lF e
R
(Hn−d

I (R)) = lF∞
R
(Hn−d

I (R)) = lDR
(Hn−d

I (R))

= dimk(0
∗
Hd

m(A))s + c.

(2) If A is F -pure and quasi-Gorenstein, then lFR
(Hn−d

I (R)) is exactly the num-

ber of special primes of Hd
m(A).

One ought to remark that there is an effective algorithm to compute special
primes of Hd

m(A) ([KZ14]); hence the result above provides a practical tool to

compute lFR
(Hn−d

I (R)) when A = R/I is F -pure and quasi-Gorenstein.
We also construct the first example of a local cohomology module over an al-

gebraically closed field whose D(R, k)-module length disagrees with its F -module
length.
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LENGTH OF LOCAL COHOMOLOGY MODULES 8553

Theorem 1.2 (Proposition 7.5). Let R = Fp[x, y, z, t] with p ≡ 4 (mod 7) and let
f = tx7 + ty7 + z7. Then

lFR
(H1

f (R)) = 3 < 7 = lF∞
R
(H1

f (R)) = lD(R,Fp)
(H1

f (R)).

While finding the actual length remains elusive in its full generality, we provide
both upper and lower bounds.

Theorem 1.3 (Theorem 3.5). Let R = k[x1, . . . , xn] be a polynomial ring over a
field k and let f ∈ R be a polynomial of degree d. Then

lD(R,k)(H
1
f (R)) ≤ (d+ 1)n − 1.

Theorem 1.4 (Theorem 4.8). Let R = k[x1, . . . , xn] and m = (x1, . . . , xn). Let
I be a homogeneous reduced and equidimensional ideal of R. Set A = R/I with
dimA = d ≥ 2. Suppose the non-F -rational locus of A has dimension ≤ 1 (e.g.,
the nonsingular locus has dimension ≤ 1). Then we have

lD(R,k)(H
n−d
I (R)) ≤ c+

∑
dimR/P=1

dimκ(P )(H
d−1

P̂AP
(ÂP ))s + dimk(H

d
m(A))s

= c+
∑

dimR/P=1

dimκ(P )(0
∗
Hd−1

P ̂AP
(̂AP )

)s + dimk(0
∗
Hd

m(A))s,

where c is the number of minimal primes of I.

Theorem 1.5 (Theorem 5.1). Let k be a field of positive characteristic, let R
denote the local ring k[[x1, . . . , xn]] (or the graded ring k[x1, . . . , xn]), and let m =
(x1, . . . , xn). Let A = R/I be reduced, equidimensional (or, respectively, graded

reduced and equidimensional), and F -pure of dimension d ≥ 1. Then lFR
(Hn−j

I (R))

is at least the number of special primes of Hj
m(A).

The upper and lower bounds on theD(R, k)-module and FR-module length in the
above results are sharp in many cases (see §§4, 5, 6), and we can explicitly describe

an FR-submodule filtration of Hn−d
I (R) in terms of the generating morphisms when

R/I is Cohen–Macaulay, which is maximal when R/I is Gorenstein and F -pure (see
Theorems 5.8 and 5.5).

We also construct an example (Example 4.11) of a simple D(R, k)-module whose

completion at a prime ideal P is not a simple D(R̂P , κ(P ))-module.
Our paper is organized as follows. In §2, we recall some basic notions and

results regarding D(R, k)-modules, F -modules, and tight closure theory. Section
3 is concerned with Theorem 1.3. Section 4 is devoted to proving Theorem 1.4.
In §5 we prove Theorem 1.5, and we also describe explicitly the maximal FR-
module filtration of Hn−d

I (R) in terms of their generating morphisms when R/I
is Gorenstein and F -injective (the Cohen–Macaulay F -injective case will also be
discussed). In §6 we compute the dimension of the stable part (under the natural
Frobenius action) of the top local cohomology of Fermat hypersurfaces. Section
7 proves Theorem 1.2 and related results. Examples and remarks showing the
sharpness of our bounds will be given throughout.

2. Preliminaries

Throughout this paper, we always assume that R = k[[x1, . . . , xn]] or R =
k[x1, . . . , xn], where k is a field (not necessarily algebraically closed or perfect)
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and A is a reduced and equidimensional quotient or graded reduced and equidi-
mensional quotient of R of dimension d ≥ 1. We set m = (x1, . . . , xn). In this
section we collect some notation and preliminary results from [Lyu97] and [Bli04].

D-modules. The differential operators δ: R → R of order ≤ n can be defined
inductively as follows. A differential operator of order 0 is just multiplication by an
element of R. A differential operator of order ≤ n is an additive map δ: R → R such
that for every r ∈ R, the commutator [δ, r] = δ ◦ r − r ◦ δ is a differential operator
of order ≤ n − 1. The differential operators form a ring with the multiplication
defined via the composition. We denote this ring by DR.

We denote by D(R, k) ⊆ DR the subring of DR consisting of all k-linear differ-
ential operators. Since R = k[[x1, . . . , xn]] or R = k[x1, . . . , xn], it can be verified

that D(R, k) is generated by all operators of the form 1
j!

∂j

∂xj
i

. By a DR-module or a

D(R, k)-module we mean a left module over DR or D(R, k).
When k is a field of characteristic p, it is not hard to show that every differential

operator of order ≤ pe−1 is Rpe

-linear, where Rpe ⊆ R is the subring of all the peth
powers of all the elements of R. In other words, we always have DR is a subring
of

⋃
e HomRpe (R,R).1 In particular, all differential operators are automatically

k-linear if k is perfect; thus DR = D(R, k) if k is perfect.

F -modules. Assume that k is a field of characteristic p. The notion of F -modules
was introduced in [Lyu97] and further investigated and generalized in [Bli01,Bli03].
We use R(e) to denote the target ring of the eth Frobenius map F e: R → R. We
shall let F e(−) denote the Peskine–Szpiro Frobenius functor from R-modules to
R-modules. In detail, F e(M) is given by base change to R(e) and then identifying
R(e) with R, i.e., F e(M) = R(e) ⊗R M .

An F e
R-module is an R-module M equipped with an R-linear isomorphism θ:

M → F e(M), which we call the structure morphism of M . A homomorphism of
F e
R-modules is an R-module homomorphism f : M → M ′ such that the following

diagram commutes:

M
f

��

θ

��

M ′

θ′

��

F e(M)
F e(f)

�� F e(M ′)

When e = 1 we simply say M is an FR-module (or F -module if R is clear from
the context). It is easy to see that every F e

R-module is also an F er
R -module for

every r ≥ 1 by iterating the structure isomorphism r times. The union of the
categories of F e

R-modules over all e forms is what we call the category of F∞
R -

modules.2 With these definitions, the categories of F e
R-modules and F∞

R -modules
are abelian categories.

When R = k[x1, . . . , xn] and M is a graded R-module, there is a natural grading
on F (M) = R(e) ⊗R M given by deg(r ⊗m) = deg r + pe · degm for homogeneous

1In fact DR =
⋃

e HomRpe (R,R) when R is F -finite; i.e., R is finitely generated as an Rp-

module [Yek92].
2In [Bli01,Bli03,Bli04], F e

R-modules and F∞
R -modules are called unit R[F e]-modules and unit

R[F ]-modules respectively. In this paper we will use Lyubeznik’s notation [Lyu97, Remark 5.6]
since we think this is more natural in comparison with the usual FR-modules.
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elements r ∈ R and m ∈ M . With this grading, a graded F e
R-module is an F e

R-
module M such that the structure isomorphism θ is degree-preserving. A morphism
of graded F e

R-modules is a degree-preserving morphism of F e
R-modules. It is not

hard to see that graded F e
R-modules form an abelian subcategory of the category of

F e
R-modules. Graded F e

R-modules, at least for e = 1, were introduced and studied
in detail in [Zha12] and [MZ14].

A generating morphism of an F e
R-module M is an R-module homomorphism

β: M0 → F e(M0), where M0 is some R-module such that M is the limit of the
inductive system in the top row of the commutative diagram

M0
β

��

β

��

F e(M0)

F e(β)

��

F e(β)
�� F 2e(M0)

F 2e(β)
��

F 2e(β)

��

· · ·

F e(M0)
F e(β)

�� F 2e(M0)
F 2e(β)

�� F 3e(M0)
F 3e(β)

�� · · ·

and θ: M → F e(M), the structure isomorphism of M , is induced by the vertical
arrows in this diagram. M0 is called a root ofM if β: M0 → F e(M0) is injective. An
F e
R-module M is called F -finite if M has a generating morphism β: M0 → F e(M0)

with M0 a finitely generated R-module. When M0 is graded and β is degree-
preserving, we say that M is a graded F -finite F e

R-module.
It is a fundamental result of Lyubeznik ([Lyu97]) that local cohomology modules

Hi
I(R) have a natural structure of F -finite F e

R-modules for every e ≥ 1. Moreover,

when R = k[x1, . . . , xn] and I is a homogeneous ideal of R, Hi
I(R) are graded

F -finite F e
R-modules [Zha12].

Following [Lyu97], for any F -finite FR-module M , there exists a smallest FR-
submodule N ⊆ M with the property that M/N is supported only at m. Hence
M/N is isomorphic (as anR-module) toE⊕r where E = ER(k) denotes the injective
hull of k. We define crk(M), the corank of M , to be r.

One important feature of FR-modules is that they have a natural structure of
DR-modules and thus D(R, k)-modules. We briefly recall this here, and we refer
to [Lyu97, §5] for details. Let M be an FR-module with structure isomorphism θ.
We set θe to be the eth iterate of θ, i.e.,

θe = F e−1(θ) ◦ · · · ◦ F (θ) ◦ θ : M → F e(M).

Now every element δ ∈ HomRpe (R,R) acts on F e(M) = R(e) ⊗R M via δ ⊗ idM .
We let δ act on M via θ−1

e ◦ (δ ⊗ idM ) ◦ θe. It is not very difficult to check that
this action is well-defined. Moreover, an entirely similar construction shows that
every F e

R-module also has a canonical structure of a DR-module. It follows that
F∞
R -modules are naturally DR-modules and thus D(R, k)-modules. In sum, we

have the following inclusion of abelian categories:

{FR −modules} ⊆ {F e
R −modules} ⊆ {F∞

R −modules} ⊆ {DR −modules}
⊆ {D(R, k)−modules}.

Therefore for any FR-module M we have the following inequalities on its length
considered in the corresponding categories:

(2.0.1) lFR
(M) ≤ lF e

R
(M) ≤ lF∞

R
(M) ≤ lDR

(M) ≤ lD(R,k)(M).
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A{f}-modules. Recall that we always assume A is a reduced and equidimensional
or graded reduced and equidimensional quotient of R of dimension d ≥ 1. Assume
also that k is a field of characteristic p. Let M be a (in most cases Artinian) module
over A. We say that M is an A{f}-module if there is an additive map f : M → M
such that f(am) = apf(m). We will use Ms =

⋂
k〈f i(M)〉 to denote the Frobenius

stable part of M , note that this is a k-vector space, and that it depends not only
on M but also on the action f on M . It is well-known that when M is either
Noetherian or Artinian over A, Ms is a finite dimensional k-vector space [HS77],
[Lyu97].

Let HR,A denote the Lyubeznik functor introduced in [Lyu97]: for every Ar-
tinian A{f}-module M , we have a natural induced map α: FR(M) → M . Since
FR(M)∨ ∼= FR(M

∨) by [Lyu97, Lemma 4.1], we define

HR,A(M) = lim−→(M∨ α∨
−−→ FR(M

∨)
F (α∨)−−−−→ F 2

R(M
∨) → · · · ),

which is an F -finite FR-module. In the graded case we have a similar functor ∗HR,A

that takes a graded Artinian A{f}-module to a graded F -finite FR-module: one
needs to replace Matlis dual by graded Matlis dual in the construction of ∗HR,A (see
[LSW16] for details). One important example that we will use repeatedly is that

HR,A(H
d
m(A)) ∼= Hn−d

I (R), and in the graded case we also have ∗HR,A(H
d
m(A)) ∼=

Hn−d
I (R) [Lyu97, Example 4.8], [LSW16, Proposition 2.8].

Tight closure and F -singularities. Tight closure theory was introduced by
Hochster-Huneke in [HH90]. In this article, we need only some basic properties
of tight closure of zero in the top local cohomology module, 0∗

Hd
m(A)

. Under mild

conditions, for example, when (A,m) is an excellent local domain of dimension d,

0∗
Hd

m(A)
is the largest proper A-submodule of Hd

m(A) that is stable under the natural

Frobenius action on Hd
m(A) (cf. [Smi97]). A local ring (A,m) is called F -rational

if A is Cohen–Macaulay and 0∗
Hd

m(A)
= 0.3 Under mild conditions on the ring, for

example, when (A,m) is an excellent, reduced, and equidimensional local ring, A is
F -rational on the punctured spectrum if and only if 0∗

Hd
m(A)

has finite length.

A local ring (A,m) of characteristic p > 0 is called F -pure if the Frobenius
endomorphism F : A → A is pure.4 Under mild conditions, for example, when

the Frobenius map A
F−→ A is a finite map or when A is complete, F -purity of

A is equivalent to the condition that the Frobenius endomorphism A
F−→ A is

split [HR76, Corollary 5.3]. The Frobenius endomorphism on A induces a natural
Frobenius action on each local cohomology module Hi

m(A), and we say (A,m) is F -

injective if this natural Frobenius action on Hi
m(A) is injective for every i ([Fed83]).

This holds if A is F -pure [HR76, Lemma 2.2]. For some other basic properties of
F -pure and F -injective singularities, see [HR76], [Fed83], [EH08].

3. A general bound of local cohomology modules as D-modules

In this section, we will establish a bound of Hj
I(R) as a D(R, k)-module when

R = k[x1, . . . , xn] is a polynomial ring over a field k (of any characteristic) in terms

3This is not the original definition of F -rationality but is shown to be equivalent ([Smi97]).
4A map of A-modules N → N ′ is pure if for every A-module M the map N⊗AM → N ′⊗AM is

injective. This implies thatN → N ′ is injective and is weaker than the condition that 0 → N → N ′

be split.
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of the degrees of generators of I. To this end, we begin with recalling the notion of
the Bernstein filtration and k-filtration.

Denote 1
t!

∂t

∂xt
i
by Dt,i for t ∈ N, 1 ≤ i ≤ n. Then D(R, k) = R〈Dt,i | t ∈ N, 1 ≤

i ≤ n〉. We set Fj to be the k-linear span of the set of products

{xi1
1 · · ·xin

n ·Dt1,1 · · ·Dtn,n|i1 + · · ·+ in + t1 + · · ·+ tn ≤ j}.
Then the Bernstein filtration on D(R, k) ([Lyu11, Definition 2.6]) is defined to be
k = F0 ⊂ F1 ⊂ F2 · · · .

Definition 3.1 (Definition 3.2 in [Lyu11]). A k-filtration on a D(R, k)-module M
is an ascending chain of finite-dimensional k-vector spaces M0 ⊂ M1 ⊂ · · · such
that

⋃
i Mi = M and FiMj ⊂ Mi+j for all i and j.

We need the following result of Lyubeznik. We note that in characteristic 0,
the D-module length of holonomic D-modules has been studied before; see [Ber71],
[Bjo79].

Theorem 3.2 (Theorem 3.5 in [Lyu11]). Let M be a D(R, k)-module with a k-
filtration M0 ⊂ M1 ⊂ · · · . Assume there is a constant C such that dimk(Mi) ≤ Cin

for sufficiently large i. Then the length of M as a D(R, k)-module is at most n!C.

The statement of [Lyu11, Theorem 3.5] assumes that there is a constant C such
that dimk(Mi) ≤ Cin for all i ≥ 0; however, the proof of [Lyu11, Theorem 3.5] only
uses the fact that there is a constant C such that dimk(Mi) ≤ Cin for sufficiently
large i. Hence the proof of Theorem 3.2 is identical to the one of [Lyu11, Theorem
3.5] and is omitted.

To illustrate the advantage of requiring only that dimk(Mi) ≤ Cin for sufficiently
large i, we consider a simple example.

Example 3.3. Set Ri to be the k-span of monomials in x1, . . . , xn of degree at
most i. It is clear that R0 ⊂ R1 ⊂ · · · is a k-filtration of R. It is well-known that
dimk(Ri) =

(
n+i
i

)
, which is a polynomial in i of degree n with leading coefficient 1

n! .

Hence, given any ε > 0, we have dimk(Ri) ≤ 1+ε
n! i

n for sufficiently large5 i. Since
the length of a module is an integer, it follows from Theorem 3.2 that the length
of R in the category of D(R, k)-modules is 1. On the other hand, if one requires
dimk(Ri) ≤ Cin for all i, then one will need C ≥ n+1

n! (consider the case when i = 1)
and consequently cannot deduce the correct length of R from [Lyu11, Theorem 3.5].

Remark 3.4. In the proof of [Lyu11, Corollary 3.6], the following statement is
proved: Let M be a D(R, k)-module with a k-filtration M0 ⊆ M1 ⊆ · · · and let f ∈
R be a polynomial of degree d. If there is a constant C such that dimk(Mi) ≤ Cin

for sufficiently large i, then M ′
i = {m

fi | m ∈ Mi(d+1)} induces a k-filtration of Mf

such that dimk(M
′
i) ≤ C(d+ 1)nin for sufficiently large i.

Theorem 3.5. Let f ∈ R be a polynomial of degree d. Then the length of Rf in

the category of D(R, k)-modules is at most (d + 1)n. Also, the length of H1
f (R) is

at most (d+ 1)n − 1.

Proof. Combining Example 3.3 and Remark 3.4, we see thatRf admits a k-filtration
R′

0 ⊂ R′
1 ⊂ · · · such that, for any any ε > 0, one has dimk(R

′
i) ≤ 1+ε

n! (d + 1)nin.

5We should remark that how large i needs to be certainly depends on ε.
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According to Theorem 3.2, we have that the length of Rf in the category ofD(R, k)-
modules is at most (1 + ε)(d + 1)n for any ε > 0; it follows that the length of Rf

in the category of D(R, k)-modules is at most (d+ 1)n.
The second conclusion follows from the exact sequence 0 → R → Rf → H1

f (R)
and the fact that the length of R is 1. �
Corollary 3.6. Let I be an ideal of R. If I is generated by f1, . . . , ft with deg(fi) =

di, then the length of Hj
I(R) in the category of D(R, k)-modules is at most∑

1≤i1≤···≤ij≤t

(di1 + · · ·+ dij + 1)n − 1.

Proof. It is clear from Theorem 3.5 that the length of
⊕

Rfi1 ···fij is at most∑
1≤i1≤···≤ij≤t

(di1 + · · ·+ dij + 1)n.

Our corollary follows from the fact that Hj
I(R) is a proper subquotient of

⊕
Rfi1 ···fij

in the category of D(R, k)-modules. �
The bounds in Theorem 3.5 and Corollary 3.6, though general, are very coarse.

In the rest of the paper, we will focus on the length of Hc
I(R) where c is the height

of I and k is of prime characteristic p, and where F -module theory and tight closure
theory can be used to produce sharper bounds.

4. Formulas and upper bounds on the D-module

and F -module length

Notation. Henceforth R denotes k[[x1, . . . , xn]] or k[x1, . . . , xn], where k is a field
of characteristic p > 0, m = (x1, . . . , xn), and we let A = R/I be reduced and
equidimensional or graded reduced and equidimensional of dimension d ≥ 1.

We first analyze the case when A has an isolated non-F -rational point at {m}.
We start with a few lemmas.

Lemma 4.1. Let 0 → L
α−→ M

β−→ N → 0 be an exact sequence of Artinian A{f}-
modules. Let fL, fM , fN denote the Frobenius actions on L,M,N respectively. Then
the stable parts form a left exact sequence of finite dimensional vector spaces: 0 →
Ls

α−→ Ms
β−→ Ns.

Proof. Let K be the perfect closure of k. Define AK = A ⊗k K and for any A{f}-
module X, let XK be the AK{f}-module AK ⊗k X where the action of f is given
by f (

∑μ
i=1 xi ⊗ λi) =

∑μ
i=1 f(xi) ⊗ λp

i for x1, . . . , xμ ∈ X and λ1, . . . , λμ ∈ K.
[Lyu97, Proposition 4.9] implies that XK

s = Xs ⊗k K, so if we could show that

0 → LK

s
αK

−−→ MK

s
βK

−−→ NK

s , the fact that K is faithfully flat over k would imply the

exactness of 0 → Ls
α−→ Ms

β−→ Ns. Therefore we may assume that k is a perfect
field.

The exactness at Ls and βα = 0 are obvious. Hence to prove exactness it
suffices to show that kerβ ⊆ imα. Since N is Artinian, by [Lyu97, Proposition
4.4]

⋃
r≥1 ker f

r
N = ker fr0

N for some r0 sufficiently large and ker fN ⊆ ker f2
N ⊆ · · ·

stabilizes.
Pick x ∈ Ms such that β(x) = 0. Since we are assuming that k is perfect, the

k-vector space generated by fr(M) is just fr(M) for all r ≥ 0; therefore, for each
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r ≥ r0, there exists y ∈ M such that x = fr
M (y). We have fr

N (β(y)) = β(fr
M (y)) =

0. So fr0
N (β(y)) = 0 and hence z = fr0

M (y) ∈ L. Therefore for each r ≥ r0, there

exists z ∈ L such that x = fr−r0
M (z), hence x ∈ Ls. �

Lemma 4.2. Suppose dimA = d ≥ 1. Then (0∗
Hd

m(A)
)s ∼= (Hd

m(A))s.

Proof. We have 0 → 0∗
Hd

m(A)
→ Hd

m(A) → Hd
m(A)/0∗

Hd
m(A)

→ 0. By Lemma 4.1,

it suffices to show that (Hd
m(A)/0∗

Hd
m(A)

)s = 0. But by [Lyu97, Proposition 4.10],

dim(Hd
m(A)/0∗

Hd
m(A)

)s = crkHR,A(H
d
m(A)/0∗

Hd
m(A)

). Let P1, . . . , Pc be all the min-

imal primes of A. By [Bli04, Theorems 4.3 and 4.4], HR,A(H
d
m(A)/0∗

Hd
m(A)

) is a

direct sum of simple FR-modules, each of which has Pi as its unique associated
prime. This implies that crkHR,A(H

d
m(A)/0∗

Hd
m(A)

) = 0 because dimA ≥ 1, and

hence (Hd
m(A)/0∗

Hd
m(A)

)s = 0 as desired. �

Theorem 4.3. Let R = k[[x1, . . . , xn]] (or k[x1, . . . , xn]) with m = (x1, . . . , xn),
where k is a field of characteristic p > 0. Let A = R/I be reduced and equidi-
mensional (respectively, graded reduced and equidimensional) of dimension d ≥ 1.
Assume that A has an isolated non-F -rational point at m (e.g., A has an isolated
singularity at m). Then

lD(R,k)(H
n−d
I (R)) = dimk(0

∗
Hd

m(A))s + c = dimk((H
d
m(A))s) + c,

where c is the number of minimal primes of A. Moreover, if k is separably closed,
then we also have

lFR
(Hn−d

I (R)) = lF e
R
(Hn−d

I (R)) = lF∞
R
(Hn−d

I (R)) = lDR
(Hn−d

I (R))

= dimk(0
∗
Hd

m(A))s + c.

Proof. The second equality follows immediately from Lemma 4.2. Thus it suffices
to show that

lD(R,k)(H
n−d
I (R)) = dimk(0

∗
Hd

m(A))s + c

and

lFR
(Hn−d

I (R)) = dimk(0
∗
Hd

m(A))s + c

when k is separably closed, since the other equalities would follow from (2.0.1).

The short exact sequence 0 → 0∗
Hd

m(A)
→ Hd

m(A) → Hd
m(A)/0∗

Hd
m(A)

→ 0 induces

0 → HR,A(H
d
m(A)/0∗Hd

m(A)) → HR,A(H
d
m(A)) ∼= Hn−d

I (R) → HR,A(0
∗
Hd

m(A)) → 0.

Now by [Bli04, Corollary 4.2 and Theorem 4.4], HR,A(H
d
m(A)/0∗

Hd
m(A)

) is a direct

sum of simpleD(R, k)-modules, each supported at a different minimal prime of A, so
its D(R, k)-module length is c, and in fact each of these simple D(R, k)-modules are

(simple) FR-modules [Bli04, Theorem 4.3]. Thus lD(R,k)(HR,A(H
d
m(A)/0∗

Hd
m(A)

)) =

lFR
(HR,A(H

d
m(A)/0∗

Hd
m(A)

)) = c.

Since A has an isolated non-F -rational point at m, 0∗
Hd

m(A)
has finite length as

an A-module. This implies that HR,A(0
∗
Hd

m(A)
) is supported only at m. Hence

HR,A(0
∗
Hd

m(A)
), as a D(R, k)-module, is a direct sum of finitely many copies of

Hn
m(R) by [Lyu00, Lemma (c)]. Moreover, when k is separably closed, HR,A(0

∗
Hd

m(A)
)

is a direct sum of copies of E = Hn
m(R) even as an FR-module [Ma14a, Lemma 4.3].
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The number of copies of Hn
m(R) is exactly its D(R, k)-module length (FR-module

length when k is separably closed). However, since HR,A(0
∗
Hd

m(A)
) is an

FR-module supported only at m, the number of copies of Hn
m(R) is by definition

crkHR,A(0
∗
Hd

m(A)
), which is dimk(0

∗
Hd

m(A)
)s by [Lyu97, Proposition 4.10]. Hence

lD(R,k)(HR,A(0
∗
Hd

m(A)
)) = dimk(0

∗
Hd

m(A)
)s, and lFR

(HR,A(0
∗
Hd

m(A)
)) = dimk(0

∗
Hd

m(A)
)s

when k is separably closed. �

Remark 4.4. When k is not separably closed, lFR
(Hn−d

I (R)) = dimk(0
∗
Hd

m(A)
)s + c

fails to hold in general; see Corollary 7.4. However, if k is a finite field, then we
always have lF∞

R
(Hn−d

I (R)) = dimk(0
∗
Hd

m(A)
)s + c; see Proposition 7.7.

Remark 4.5. When I is a homogeneous reduced and equidimensional ideal in R =
k[x1, . . . , xn] (i.e., A is a graded domain), it is easy to check that (0∗

Hd
m(A)

)s =

(Hd
m(A))s = (Hd

m(A)0)s since the stable part will be concentrated in degree 0.

Therefore, we have an upper bound of the D(R, k)-module length of Hn−d
I (R) in

the graded isolated singularity case: it is at most dimk(H
d
m(A)0)+c. Geometrically,

it is at most dimk(H
d−1(X,OX)) + c where X = Proj(A).

We have the following application.

Example 4.6. Let A = k[x1, . . . , xn]/(f) where k is a field of prime characteristic p
and deg(f) = n. Denote k[x1, . . . , xn] by R. Then there is a commutative diagram
of short exact sequences

0 �� Hn−1
m (A)0 ��

F

��

Hn
m(R)−n

f
��

fp−1F

��

Hn
m(R)0 = 0 ��

F

��

0

0 �� Hn−1
m (A)0 �� Hn

m(R)−n
f

�� Hn
m(R)0 = 0 �� 0

where F denotes the natural Frobenius maps. It follows that dimk(H
n−1
m (A)0) =

dimk(H
n
m(R)−n) = 1. It also follows from the diagram that F : Hn−1

m (A)0 →
Hn−1

m (A)0 is injective if and only if so is fp−1F : Hn
m(R)−n → Hn

m(R)−n, which
holds if and only if fp−1 /∈ m[p].

Assume further that f is irreducible with an isolated singularity at m over a per-
fect field k; i.e., A is a Calabi–Yau hypersurface over k. Then by Fedder’s Criterion,
F : Hn−1

m (A)0 → Hn−1
m (A)0 is injective if and only if A is F -pure. Consequently,

dimk(H
n−1
m (A)0)s = 1 if and only if A is F -pure. Thus it follows from Theorem 4.3

that

lD(R,k)(H
1
f (R)) =

{
1 A is not F−pure,

2 otherwise.

In particular, when Proj(A) happens to be an elliptic curve, there are infinitely
many primes p such that H1

f (R) is a simple D(R, k)-module and infinitely many

primes p such that H1
f (R) has length 2 as a D(R, k)-module.

Next we partially generalize Theorem 4.3 to the case that the dimension of the
singular locus of R/I is 1. We first prove a lemma, which should be well known to
experts.
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Lemma 4.7. Let M be an (F -finite) FR-module (resp., F∞
R -module). Then MP

and M ⊗ R̂P are (F -finite) FRP
and F

̂RP
-modules (resp., F∞

RP
and F∞

̂RP
-modules).

Moreover, if M is a simple FR-module (resp., simple F∞
R -module), then MP and

M ⊗ R̂P , if not zero, are simple as FRP
and F

̂RP
-modules (resp., simple as F∞

RP

and F∞
̂RP

-modules).

Proof. The conclusion for F -modules follows from Proposition 2.7 and Corollary 2.9
of [Bli04]. The argument for F∞

R -modules is very similar, so we omit the details. �

Theorem 4.8. Let R = k[x1, . . . , xn] and m = (x1, . . . , xn). Let I be a homoge-
neous reduced and equidimensional ideal of R. Set A = R/I with dimA = d ≥ 2.
Suppose the non-F -rational locus of A has dimension ≤ 1 (e.g., the nonsingular
locus has dimension ≤ 1). Then we have

lD(R,k)(H
n−d
I (R)) ≤ c+

∑
dimR/P=1

dimκ(P )(H
d−1

P̂AP
(ÂP ))s + dimk(H

d
m(A))s

= c+
∑

dimR/P=1

dimκ(P )(0
∗
Hd−1

P ̂AP
(̂AP )

)s + dimk(0
∗
Hd

m(A))s,

where c is the number of minimal primes of I.

Proof. Clearly the second equality follows from Lemma 4.2. Therefore it suffices to
prove the first inequality. We may assume that the dimension of the non-F -rational
locus is 1, since otherwise the result follows from Theorem 4.3 (the second term
is 0). We begin with the following claim.

Claim 4.8.1. There exist graded FR-submodules

0 ⊆ L ⊆ M ⊆ Hn−d
I (R)

such that every D(R, k)-module composition factor of L is supported at a minimal
prime of A, every D(R, k)-module composition factor of M/L is supported at a

dimension 1 prime, and Hn−d
I (R)/M is supported only at m.

Proof of claim. We have a short exact sequence

0 → 0∗Hd
m(A) → Hd

m(A) → Hd
m(A)/0∗Hd

m(A) → 0

that induces

0 → ∗HR,A(H
d
m(A)/0∗Hd

m(A)) →
∗HR,A(H

d
m(A)) ∼= Hn−d

I (R) → ∗HR,A(0
∗
Hd

m(A)) → 0.

We have, by the graded version of [Bli04, Corollary 4.2 and Theorem 4.4], that
∗HR,A(H

d
m(A)/0∗

Hd
m(A)

) is a direct sum of simple D(R, k)-modules, each supported

at a different minimal prime of A. So we set L = ∗HR,A(H
d
m(A)/0∗

Hd
m(A)

). The

existence of M follows by applying [LSW16, Theorem 2.9(3)] to ∗HR,A(0
∗
Hd

m(A)
),

which is a graded F -finite FR-module. Note that the support of each D(R, k)-
module composition factor of M/L has dimension 1. This is because the support
of ∗HR,A(0

∗
Hd

m(A)
) has dimension 1 since the dimension of the non-F -rational locus

is 1. �
We know that lD(R,k)(L) = c. Moreover, it is clear from the above claim that M

is the smallest FR-submodule of Hn−d
I (R) such that Hn−d

I (R)/M is only supported

at m. So Hn−d
I (R)/M is isomorphic, as a D(R, k)-module, to E⊕r ∼= Hd

m(R)⊕r,
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where r = crkHn−d
I (R) by [Lyu00, Lemma (c)] and the definition of corank. Thus

we have lD(R,k)(H
n−d
I (R)/M) = crkHn−d

I (R) = dimk(H
d
m(A))s by [Lyu97, Propo-

sition 4.10].
It remains to estimate the D(R, k)-module length of M/L. Suppose we have

(4.8.2) 0 ⊆ L = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mt = M ⊆ Hn−d
I (R)

such that each Ni = Mi/Mi−1 is a simple D(R, k)-module. We know that each Ni

has a unique associated prime P with dimR/P = 1 and AP not F -rational.

Claim 4.8.3. The number of Ni such that Ass(Ni) = P is at most crkHn−d

ÎRP
(R̂P ).

Proof of claim. We localize (4.8.2) at P and complete. We have

0 ⊆ L⊗ R̂P = M0 ⊗ R̂P ⊆ M1 ⊗ R̂P ⊆ · · · ⊆ Mt ⊗ R̂P = Hn−d

ÎRP
(R̂P )

with successive quotients Ni ⊗ R̂P (the last equality follows because Hn−d
I (R)/M

is supported only at m). Each Ni ⊗ R̂P is either 0 or a D(R̂P , k)-module sup-

ported only at PR̂P (and thus a direct sum of E(R̂P /PR̂P )), depending on whether

Ass(Ni) �= P or Ass(Ni) = P . Therefore Hn−d

ÎRP
(R̂P )/(L⊗ R̂P ), at least as an R̂P -

module, is isomorphic to E(R̂P/PR̂P )
r. The number of Ni such that Ass(Ni) = P

is thus ≤ r.
But L⊗ R̂P is a direct sum of simple F

̂RP
-submodules of Hn−d

ÎRP
(R̂P ) supported

at minimal primes of ÂP by Lemma 4.7, so we have r = crkHn−d

ÎRP
(R̂P ) by the

definition of corank. This finishes the proof of the claim. �
Applying the above claim to (4.8.2) we get

lD(R,k)(M/L) ≤
∑

dimR/P=1

crkHn−d

ÎRP
(R̂P ).

Because H
̂RP ,̂AP

(Hd−1

P̂AP
(ÂP )) ∼= Hn−d

ÎRP
(R̂P ) (the indices match because I is equidi-

mensional), by [Lyu97, Proposition 4.10] we have

crkHn−d

ÎRP
(R̂P ) = dimκ(P )(H

d−1

P̂AP
(ÂP ))s.

Finally, summing up the D(R, k)-module length of L, M/L, and Hn−d
I (R)/M , we

have:

lD(R,k)(H
n−d
I (R)) ≤ c+

∑
dimR/P=1

dimκ(P )(H
d−1

P̂AP
(ÂP ))s + dimk(H

d
m(A))s. �

We end this section with some remarks and questions regarding Theorem 4.8:

Remark 4.9. It is clear that the sum
∑

dimR/P=1 dimκ(P )(H
d−1

P̂AP
(ÂP ))s in Theorem

4.8 is a finite sum: in fact we only need to consider those primes P such that
AP is not F -rational (which form a finite set by our assumption). We ought to
point out that, more generally, without any assumption on the F -rational locus,
[Lyu97, Proposition 4.14] shows that there are only finitely many prime ideals P

such that (Hj

P̂AP
(ÂP ))s �= 0.

Remark 4.10. We do not know whether the inequality in Theorem 4.8 is an equality.
This is due to the fact that, in the proof of Claim 4.8.3, we do not know whether

the D(R̂P , k)-module Ni ⊗ R̂P is isomorphic to a single copy of E(R̂P /PR̂P ).
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In general, a simple D(R, k)-module may not stay simple as a D(R̂P , κ(P ))-
module after taking localization and completion. We point out the following exam-
ple, which is derived from [Bli03, Example 5.1].

Example 4.11. Let R = k[x] where k is an algebraically closed field of positive
characteristic. Let M = R ⊕ R be a free R-module of rank 2. We give M an
FR-module structure by setting the composition map

R⊕R
θM−−→ F (R)⊕ F (R)

θ−1
R ⊕θ−1

R−−−−−−→ R ⊕R

to be the map represented by the matrix(
−x 1
1 0

)
where θR denotes the standard isomorphism R ∼= F (R).

Next we pick a nonzero simple F∞
R -module N ⊆ M (note that the only associated

prime of N is 0). By [Bli03, Corollary 4.7], N must be a simple D(R, k)-module
since k is algebraically closed. However, after we localize at 0, that is, tensor with
the fraction field k(x) ofR,M⊗Rk(x) becomes a simple F∞

k(x)-module becauseM⊗R

k(x)1/p
∞

is a simple F∞
k(x)1/p∞

-module by [Bli03, Example 5.1].6 Thus we must

have N⊗R k(x) ∼= M ⊗R k(x), but M ⊗R k(x) is not a simple D(k(x), k(x))-module
because obviously every 1-dimensional k(x)-subspace is a nontrivial D(k(x), k(x))-
submodule.

Remark 4.12. One approach to generalizing Theorem 4.8 is to find an F -submodule
M of Hn−d

I (R) such that none of the composition factors of M has 0-dimensional

support and the support of Hn−d
I (R)/M is contained in {m}. In the graded case,

the existence of such an M follows from the proof of [LSW16, Theorem 2.9]. We
don’t know whether [LSW16, Theorem 2.9] can be extended to the nongraded case.

Hence it is natural to ask the following.

Question 4.13. Does there always exist an F -submodule M of Hn−d
I (R) such that

none of the composition factors of M has 0-dimensional support while the support
of Hn−d

I (R)/M is contained in {m}?
Despite the above remarks and questions, we still expect that there should be an

analogue of Theorems 4.3 and 4.8 or similar estimates in the local case and without
the restriction on the non-F -rational locus.

5. A lower bound on F -module length

of local cohomology modules

In this section we will give lower bounds on lFR
(Hc

I(R)). Throughout this section
we will assume R = k[[x1, ..., xn]] with m = (x1, ..., xn), where k is a field of char-
acteristic p > 0, and that A = R/I is reduced and equidimensional of dimension
d > 1. Henceforth in this section E = ER(k) will denote the injective hull of the
residue field of R, and EA = EA(k) = AnnE I will denote the injective hull of the
residue field of A.

6Note that the matrix we used here is the inverse of the matrix in [Bli03, Example 5.1]. This

is because we are describing the matrix representing the F -module structure on M ⊗R k(x)1/p
∞
,

while Blickle was working with the matrix representing the Frobenius action on M ⊗R k(x)1/p
∞
.

We leave the reader to check that they define the same F -module structure on M ⊗R k(x)1/p
∞
.
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We first collect definitions and facts from [Sha07] and [Kat08]. Given an Artinian
A{f}-module W , a special ideal of W is an ideal of A that is also the annihilator
of some A{f}-submodule V ⊆ W , and a special prime is a special ideal that is also
a prime ideal (note that the special ideals depend on the A{f}-module structure
on W , i.e., the Frobenius action f on W ). An important result of Sharp [Sha07,
Corollary 3.7] and Enescu-Hochster [EH08, Theorem 3.6] shows that when f acts
injectively on W , the number of special primes of W is finite.

The module of inverse polynomials E comes equipped with a natural Frobe-
nius map T given by T (λx−α1

1 . . . x−αn
n ) = λpx−pα1

1 . . . x−pαn
n for all λ ∈ k and

α1, . . . , αn ≥ 0. Any Frobenius map on E has the form uT where u ∈ R and any
Frobenius map on EA has that form with u ∈ (I [p] : I) (cf. [Bli01, Proposition
3.36]). Such an action uT on EA is injective if and only if u /∈ m[p] and is nonzero
if and only if u /∈ I [p]. If we now specialize the notion of special ideals to the A{f}-
module EA where f = uT , we see that these are ideals J such that u ∈ J [p] : J and
we refer to these as u-special ideals ([Kat08, Theorem 4.3]). A u-special prime is a
u-special ideal that is also a prime ideal.

5.1. F -pure case. Our main result in this subsection is the following.

Theorem 5.1. Assume A = R/I is reduced and equidimensional of dimension

d ≥ 1. Suppose A is F -pure. Then lFR
(Hn−j

I (R)) is at least the number of special

primes of Hj
m(A). Moreover, when A is quasi-Gorenstein, lFR

(Hn−d
I (R)) is exactly

the number of special primes of Hd
m(A).

Proof. Let P be a special prime of Hj
m(A). Take an A{f}-submodule N ⊆ Hj

m(A)
such that AnnN = P . Recall that the Frobenius action on N induces a map
F (N) → N . We claim that this map is surjective: letting N ′ ⊆ N be the image,
we have N ′ ⊆ N ⊆ Hj

m(A) are A{f}-submodules such that the Frobenius action

on N/N ′ is nilpotent. But Hj
m(A) is anti-nilpotent (i.e., the Frobenius action on

Hj
m(R)/N ′ is injective) by [Ma14b, Theorem 3.7]. So we must have N ′ = N , and

thus F (N) � N is surjective.
Taking the Matlis dual, we get N∨ ↪→ F (N)∨ ∼= F (N∨). This shows that N∨

is a root of HR,A(N) (recall that by definition, HR,A(N) = lim−→(N∨ → F (N∨) →
F 2(N∨) → · · · )). In particular, we know that the set of associated primes of N∨

is the same as the set of associated primes of HR,A(N) (this follows easily from
the argument in [Lyu97, Remark 2.13]). But AnnN = AnnN∨ = P and N∨ is a
finitely generated R-module; thus P is a minimal associated prime of N∨ and hence
a minimal associated prime of HR,A(N). This implies that HR,A(N) must have
a simple FR-module composition factor with P its unique associated prime. But
we have Hn−j

I (R) ∼= HR,A(H
j
m(A)) � HR,A(N). Hence for every special prime P

of Hj
m(A), Hn−j

I (R) has a simple FR-module composition factor with P its unique

associated prime. This proves that lFR
(Hn−j

I (R)) is at least the number of special

primes of Hj
m(A).

Finally, when A is quasi-Gorenstein, Hd
m(A) ∼= EA, the injective hull of the

residue field. So there is a one-one correspondence between A{f}-submodules of

Hd
m(A) and their annihilator ideals. Let P1, . . . , Pm be all the special primes with

htP1 ≥ htP2 ≥ · · · ≥ htPm. Let Qj = P1 ∩ P2 ∩ · · · ∩ Pj . We have an ascending

chain of A{f}-submodules of Hd
m(A) = EA:

0 � AnnE Q1 � AnnE Q2 � · · · � AnnE Qm = EA.
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It suffices to show that HR,A(AnnE Qj/AnnE Qj−1) is a nonzero simple F -module.
It is nonzero because the Frobenius action on AnnE Qj/AnnE Qj−1 is not nilpotent

(in fact it is injective because Hd
m(A) is anti-nilpotent). If it is not simple, then there

exists another A{f}-submodule M such that AnnE Qj−1 � M � AnnE Qj , which

implies that Qj � AnnM � Qj−1. But since the Frobenius action on Hd
m(A) = EA

is injective and M is an A{f}-submodule, AnnM is an intersection of the special
primes by [Sha07, Corollary 3.7] or [EH08, Theorem 3.6]. This is then impossible
by our height hypothesis on Pi and the definition of Qj . �

Remark 5.2. When A is not F -pure, the number of special primes of Hj
m(A) is

not necessarily a lower bound of lFR
(Hn−j

I (R)). In fact, in Example 4.6, when

A = R/f is a Calabi–Yau hypersurface that is not F -pure, then lFR
(H1

f (R)) = 1,

while the number of special primes of H1
m(A) is 2: (f) and m are both special

primes of H1
m(A). So the first conclusion of Theorem 5.1 need not hold when A is

not F -pure.

Example 5.3. Let A = k[x1, . . . , xn]/(xixj | 1 ≤ i < j ≤ n) = R/I. Then A
is a 1-dimensional F -pure ring, and A is not Gorenstein when n ≥ 3. A straight-
forward computation using [EH08, Theorem 5.1] shows that the special primes of
H1

m(A) are Pi = (x1, . . . , x̂i, . . . , xn) and m (thus there are n+1 special primes) but
lFR

(Hn−1
I (R)) = 2n− 1. Hence lFR

(Hn−1
I (R)) is strictly bigger than the number of

special primes when n ≥ 3 (and the difference can be arbitrarily large when n � 0).
This shows that the second conclusion of Theorem 5.1 need not hold when A is not
quasi-Gorenstein.

5.2. Gorenstein case: A second approach. In this subsection we assume that
A = R/I is Gorenstein and F -injective (equivalently, Gorenstein and F -pure). In

this case Hi
I(R) vanishes unless i = n− d, and we already know from Theorem 5.1

that lFR
(Hn−j

I (R)) is equal to the number of special primes of Hd
m(A). Our goal

here is to give a more detailed analysis on the FR-submodules of Hn−j
I (R) in terms

of their generating morphisms, and in particular we recover the second conclusion
of Theorem 5.1.

Since A is Gorenstein, EA
∼= Hd

m(A), and thus there is a natural Frobenius action

on EA. In this case the module I[p]:I
I[p] is a cyclic A-module, and the natural Frobenius

action on EA is given up to sign by uT , where we fix u ∈ I [p] : I whose image in
I[p]:I
I[p] generates it as an A-module (and T denotes the natural Frobenius on E). The
u-special ideals (resp., u-special primes) are thus the special ideals (resp., special
primes), and they are finite by [Sha07, Corollary 3.7] or [EH08, Theorem 3.6].

Following the construction in [Lyu97, §4], we obtain a generating morphism for

Hn−d
I (R) of the form R/I

u−→ R/I [p] with u as above. To obtain a root, we let

K =
⋃

e≥1(I
[pe] : u1+···+pe−1

), and now R/K
u−→ R/K [p] is a root of Hn−d

I (R).

Lemma 5.4. The proper F -finite F -submodules of Hn−d
I (R) have roots J/K

u−→
J [p]/K [p] as J ranges over all proper u-special ideals, and, furthermore, distinct

special ideals J define distinct F -finite F -submodules of Hn−d
I (R).

Proof. [Lyu97, Corollary 2.6] establishes a bijection between F -finite F -submodules

N of Hn−d
I (R) and R-submodules of the root R/K which is given byN �→ N∩R/K.

Fix such N and write J/K = N ∩ R/K. The fact that N is an F -finite

F -submodule of Hn−d
I (R) implies that the image of the restriction of the map
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R/K
u−→ R/K [p] to J/K is in F (J/K) = J [p]/K [p], and hence J is a u-special ideal.

Clearly, any such u-special ideal defines an F -finite F -submodule of Hn−d
I (R), i.e.,

lim
→

(
J/K

u−→ J [p]/K [p] up

−→ J [p2]/K [p2] up2

−−→ . . .
)
.

To finish the proof we need to show that any two distinct u-special ideals J1
and J2 define different F -finite F -submodules of Hn−d

I (R). If this is not the case,

then for some e ≥ 0, uνeJ1/K
[pe] = uνeJ2/K

[pe], where νe = 1+ p+ · · ·+ pe−1 and
uνeJ1 +K [pe] = uνeJ2 +K [pe].

The fact that f is injective on E is equivalent to uνe /∈ L[pe] for all e ≥ 1 and

all proper ideals L � R ([Kat08, Theorem 4.6]), and in particular uνe /∈ J
[pe]
1

and uνe /∈ J
[pe]
2 . But now uνeJ1 ⊆ uνeJ2 + K [pe] ⊆ J

[pe]
2 , and J

[pe]
2 is a primary

ideal (because R is regular); hence J1 ⊆
√

J
[pe]
2 = J2. Similarly, also J2 ⊆ J1,

contradicting the fact that J1 �= J2. �

Theorem 5.5. Let A=R/I be Gorenstein and F -injective where R=k[[x1, . . . , xn]]
or k[x1, . . . , xn] with m = (x1, . . . , xn). Let {P1, . . . , Pm} be the set of all the special

prime ideals of Hd
m(A) which contain K, and assume that these were ordered so that

htP1 ≥ htP2 ≥ · · · ≥ htPm. Write Qj = P1 ∩ · · · ∩ Pj for all 1 ≤ j ≤ m. The
chain of roots

0 ⊂ Qm

K

u

��

⊂ Qm−1

K

u
��

⊂ . . . ⊂ Q1

K

u
��

⊂ R
K

u

��

0 ⊂ Q[p]
m

K[p] ⊂ Q
[p]
m−1

K[p] ⊂ . . . ⊂ Q
[p]
1

K[p] ⊂ R
K[p]

corresponds to a maximal filtration of Hn−d
I (R) in the category of FR-modules.

Proof. Since uQj ⊆ Q
[p]
j and uK ⊆ K [p], the vertical maps are well defined, and

the diagram is clearly commutative.
To show that the factors are nonzero, note that if Qj+1 = P1 ∩ · · · ∩ Pj+1 =

P1 ∩ · · · ∩ Pj = Qj , then Pj+1 ⊇ P1 ∩ · · · ∩ Pj and Pj+1 ⊇ Pi for some 1 ≤ i ≤ j.
But the ordering of P1, . . . , Pm implies that htPj+1 ≤ htPi, giving Pi = Pj+1, a
contradiction.

If the factors are not simple, then for some 1 ≤ j ≤ m there exists a special ideal
J such that P1 ∩ · · · ∩ Pj ∩ Pj+1 � J � P1 ∩ · · · ∩ Pj . Being special, J is radical
and has the form P1 ∩ · · · ∩ Pj ∩ Pk1

∩ Pk2
∩ · · · ∩ Pks

for j < k1, . . . ks ≤ m. Now
for every 1 ≤ � ≤ s, Pk�

⊇ P1 ∩ · · · ∩Pj+1 so Pk�
⊇ Pw for some 1 ≤ w ≤ j+1, and

the height condition implies Pk�
= Pw, and we conclude that J ⊆ P1 ∩ · · · ∩ Pj+1,

a contradiction.
It remains to show that the FR-submodules defined by the roots Qj/K

u−→
Q

[p]
j /K [p] are distinct: this follows from Lemma 5.4. �

Corollary 5.6. Suppose A = R/I is Gorenstein and F -injective. The length of

Hn−d
I (R) in the category of FR-modules equals the number of u-special primes of

Hd
m(A) that contain K.

Remark 5.7. Suppose A = R/I is Gorenstein and F -injective. We can actually

prove that the length of Hn−d
I (R) in the category of F e

R-modules for every e (and
hence in the category of F∞

R -modules) equals the number of u-special primes of
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Hd
m(A) that contain K. It suffices to prove that every F e

R-submodule of Hn−d
I (R)

is already an FR-submodule of Hn−d
I (R). By the same argument as in Lemma

5.4, all F e
R-submodules of Hn−d

I (R) have roots of the form J/K where J is an

ideal containing K with the property u1+p+···+pe−1

J ⊆ J [pe]. Since A = R/I is
Gorenstein and F -injective (and hence F -pure), u is a generator of (I [p] : I)/I [p] as
an R/I-module and u /∈ m[p] by Fedder’s criterion [Fed83]. We will show that these

imply uJ ⊆ J [p], and thus J/K already generates an FR-submodule of Hn−d
I (R).

Since u /∈ m[p] and R is regular, there is a p−1-linear map (i.e., a Frobenius splitting)

φ: R → R such that φ(u) = 1. Therefore u1+p+···+pe−1 ∈ J [pe] : J implies that

u1+p+···+pe−2

= φ(up(1+p+···+pe−2) · u) = φ(u1+p+···+pe−1

) ∈ φ(J [pe] : J)

⊆ φ(J [pe] : J [p]) = J [pe−1] : J,

and thus by an easy induction we have u ∈ J [p] : J (note that we have used

(J [pe−1] : J)[p] = J [pe] : J [p] because R is regular so the Frobenius endomorphism
is flat).

5.3. Cohen–Macaulay case. In this subsection we assume that A = R/I is re-
duced and Cohen–Macaulay. In this case the canonical module of A can be identified
with an ideal ω ⊆ A. Let Ω be the pre-image of ω in R, that is, Ω/I = ω ⊆ A. The
inclusion ω ⊆ A is compatible with the Frobenius endomorphism, and the short
exact sequence 0 → ω ⊆ A → A/ω → 0 induces an A-linear map

0 → Hd−1
m (A/ω) → Hd

m(ω) → Hd
m(A) → Hd

m(A/ω) → 0.

Now each of the Artinian A-modules is equipped with a Frobenius map induced
by the Frobenius endomorphism acting on the short exact sequence, and Hd

m(A/ω)
vanishes since dimA/ω < dimA = d. So we obtain a short exact sequence of
A{f}-modules

0 → Hd−1
m (A/ω) → Hd

m(ω) → Hd
m(A) → 0.

We can now identify Hd
m(ω) with EA = AnnE I. Note that the annihilator of

Hd−1
m (A/ω) in A is ω; hence the annihilator of Hd−1

m (A/ω) in R is Ω (since R/I = A

and Ω/I = ω). Thus we may identify Hd−1
m (A/ω) with AnnE Ω.

We now have a short exact sequence

0 → AnnE Ω → AnnE I → Hd
m(A) → 0

of A{f}-modules, and we can also write Hd
m(A) = AnnE I/AnnE Ω. Recall that

any Frobenius action on AnnE I has the form uT where T is the natural Frobenius
on E and u ∈ (I [p] : I). Fix u ∈ R to be such that uT is the Frobenius action on
AnnE I in the exact sequence above. We now can obtain an FR-module filtration
of Hn−d

I (R) = HR,A(AnnE I/AnnE Ω) by applying the Lyubeznik functor HR,A

to a chain of surjections

AnnE I/AnnE Ω → AnnE I/AnnE J1 → · · · → AnnE I/AnnE Jm

where J1, . . . , Jm are u-special ideals such that Ω ⊇ J1 ⊇ · · · ⊇ Jm ⊇ I. We let

K =
⋃

e≥1(I
[pe] : u1+p+···+pe−1

) so that Ω/K
u−→ Ω[p]/K [p] is a root for Hn−d

I (R) =

HR,A(AnnE I/AnnE Ω).

Theorem 5.8. Assume that A = R/I is Cohen–Macaulay. Let {P1, . . . , Pm} be
the set of all the u-special prime ideals P ⊇ K such that P � Ω and u /∈ P [p],
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and assume that these were ordered so that htP1 ≥ htP2 ≥ · · · ≥ htPm. Write
Qj = Ω ∩ P1 ∩ · · · ∩ Pj for all 1 ≤ j ≤ m. The chain of roots

0 ⊂ Qm

K

u

��

⊂ Qm−1

K

u
��

⊂ . . . ⊂ Q1

K

u
��

⊂ Ω
K

u

��

0 ⊂ Q[p]
m

K[p] ⊂ Q
[p]
m−1

K[p] ⊂ . . . ⊂ Q
[p]
1

K[p] ⊂ Ω
K[p]

corresponds to a filtration of Hn−d
I (R) in the category of F -modules with nonzero

factors.

Proof. The homomorphic images AnnE I/AnnE Q1, . . . ,AnnE I/AnnE Q1 of

AnnE I/AnnE Ω are preserved by the natural Frobenius action on Hd
m(A) ∼=

AnnE I/AnnE Ω because each Qi, being the intersection of u-special ideals, is itself
special.

An application of the Lyubeznik functor HR,A to the chain of surjections

AnnE I/AnnE Ω → AnnE I/AnnE J1 → · · · → AnnE I/AnnE Jm

yields a filtration of Hn−d
I (R) whose generating morphisms are the vertical maps in

the following commutative diagram:

0 ⊂ Qm

I

u

��

⊂ Qm−1

I

u
��

⊂ . . . ⊂ Q1

I

u
��

⊂ Ω
I

u

��

0 ⊂ Q[p]
m

I[p] ⊂ Q
[p]
m−1

I[p] ⊂ . . . ⊂ Q
[p]
1

I[p] ⊂ Ω
I[p]

We can replace these generating morphisms by their corresponding roots and obtain
the commutative diagram

0 ⊂ Qm

K

u

��

⊂ Qm−1

K

u
��

⊂ . . . ⊂ Q1

K

u
��

⊂ Ω
K

u

��

0 ⊂ Q[p]
m

K[p] ⊂ Q
[p]
m−1

K[p] ⊂ . . . ⊂ Q
[p]
1

K[p] ⊂ Ω
K[p]

where now all vertical maps are roots, and once we show that the inclusions in this
diagram are strict, this gives a filtration of Hn−d

I (R) with nonzero factors.
We need to show that for all e ≥ 1 and all 1 ≤ i < m,

(Q
[pe]
i+1 : uνe) � (Q

[pe]
i : uνe),

where νe = 1 + p + · · · + pe−1. If we have equality, we may take radicals of both
sides to obtain√

(Ω[pe] : uνe) ∩
i+1⋂
j=1

√
(P

[pe]
j : uνe) =

√
(Ω[pe] : uνe) ∩

i⋂
j=1

√
(P

[pe]
j : uνe) ,

and so √
(P

[pe]
i+1 : uνe) ⊇

√
(Ω[pe] : uνe) ∩

i⋂
j=1

√
(P

[pe]
j : uνe) .
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We claim that uνe /∈ P
[pe]
j for each j and we will use induction on e to prove this.

When e = 1, this is precisely our assumption that u /∈ P
[p]
j . We assume that

uνe /∈ P
[pe]
j and we wish to prove that uνe+1 /∈ P

[pe+1]
j . If uνe+1 ∈ P

[pe+1]
j , then we

would have

uνe ∈ (P
[pe+1]
j : upe

) = (P
[p]
j : u)[p

e] ⊆ P
[pe]
j ,

a contradiction, where the last inclusion follows from the fact that P
[p]
j is P -primary

and our assumption that u /∈ P
[p]
j .

Consequently (P
[pe]
i+1 : uνe) �= R, and we must have (P

[pe]
i+1 : uνe) ⊆ Pi+1. So

Pi+1 ⊇
√

(Ω[pe] : uνe) ∩
⋂i

j=1

√
(P

[pe]
j : uνe), and hence Pi+1 must contain one of

the ideals in the intersection. Since these ideals are among the unit ideal, P1, . . . , Pi

and
√
(Ω[pe] : uνe) ⊇ Ω, this is impossible. �

We have the following immediate corollary of Theorem 5.8.

Corollary 5.9. Let A,R, I, u,K,Ω be as in Theorem 5.8. The length of Hn−d
I (R)

in the category of F -modules is at least the number of u-special prime ideals P ⊇ K
of Hd

m(A) such that P � Ω and u /∈ P [p].

Remark 5.10. If A is quasi-Gorenstein and we take Ω = R, the prime special ideals
in the statement of Theorem 5.8 are the prime special ideals P ⊇ I of Hd

m(A) such
that P ⊇ K, and u /∈ P [p]. The set of all such primes has been known to be finite
([KS12, Remark 5.3]), and if A is also F -injective, we obtain the same set of primes
as in Theorem 5.5; thus Theorem 5.8 generalizes Theorem 5.5.

6. A computation of Fermat hypersurfaces

We have seen from Theorem 4.3 and Remark 4.5 that the problem of com-
puting the D(R, k)-module length of Hn−d

I (R) when A = R/I is a graded iso-
lated singularity comes down to computing the dimension of the Frobenius stable
part of Hd

m(A)0. In this section we study this problem for Fermat hypersurfaces
A = k[x0, . . . , xd]/(x

n
0 +xn

1 + · · ·+xn
d ) with d ≥ 2. We express the dimension of the

Frobenius stable part of Hd
m(A) explicitly in terms of the number of solutions to a

system of equations on remainders. These results generalize earlier computations
of Blickle in [Bli01, Examples 5.26–5.29].

Remark 6.1. Let A = k[x0, x1, . . . , xd]/(x
n
0 +xn

1 + · · ·+xn
d ). Then the degree 0 part

of the top local cohomology Hd
m(A) has a k-basis consisting of the elements of the

form
xc
0

x
a1
1 ···xad

d

, where a1, . . . , ad are positive integers and a1 + · · ·+ ad = c ≤ n− 1.

Therefore, its dimension is
(
n−1
d

)
.

In the following we will use s%t to denote the remainder of s mod t.

Remark 6.2. We want to record an elementary observation. Let n ≥ 2 be an integer
and let p be a prime. Let p = nk+ r where r is the remainder. If for some positive
integer a < n, n|ar, then we claim that p|n.

This is because n|ar and a < n implies that n and r must have a nontrivial
common divisor. But p = nk + r is prime, so the only nontrivial common divisor
that n and r could have is p, in which case we must have p divides n.
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Theorem 6.3. Let A = k[x0, x1, . . . , xd]/(x
n
0 + xn

1 + · · ·+ xn
d ) with d ≥ 2. Suppose

p ≡ r mod n. If p does not divide n, then the dimension of the stable part of Hd
m(A)

can be computed as the number of solutions of the following system of inequalities
on 1 ≤ ai ≤ n− 1:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1 + · · ·+ ad < n,

(ra1)%n+ · · ·+ (rad)%n < n,

(r2a1)%n+ · · ·+ (r2ad)%n < n,
...

(rϕ(n)−1a1)%n+ · · ·+ (rϕ(n)−1ad)%n < n.

Proof. A basis of the degree 0 part of Hd
m(A) is formed by the elements

xc
0

xa1
1 · · ·xad

d

,

where a1 + · · ·+ ad = c < n and ai ≥ 1. On such elements, Frobenius acts as

xc
0

xa1
1 · · ·xad

d

�→ xcp
0

xa1p
1 · · ·xadp

d

=
x
(cr)%n
0 · (−xn

1 − · · · − xn
d )


 cp
n �

xa1p
1 · · ·xadp

d

.

After expanding the expression we obtain the sum of monomials of the form

(−1)

cp
n �

(
� cp
n �

α1, . . . , αd

)
x
(cr)%n
0 · (xnα1

1 · · ·xnαd

d )

xa1p
1 · · ·xadp

k

for α1+ · · ·+αd = � cp
n �. This element will be zero unless αin < aip for all i. Hence

it is zero if αi > �aip
n � for some i. In particular, the element

xc
0

x
a1
1 ···xad

d

is in the

kernel of the Frobenius map if

α1 + · · ·+ αd =
⌊cp
n

⌋
>
⌊a1p

n

⌋
+ · · ·+

⌊adp
n

⌋
;

i.e., a1p%n+ · · ·+ adp%n = a1r%n+ · · ·+ adr%n ≥ n. Similarly, if⌊cp
n

⌋
=
⌊a1p

n

⌋
+ · · ·+

⌊adp
n

⌋
,

the only term that can possibly survive is(
� cp

n �
�a1p

n �, . . . , �adp
n �

)
(−1)


cp
n �x

(cr)%n
0 · (x
a1p

n �
1 · · ·x
adp

n �
d )n

xa1p
1 · · ·xadp

d

=

(
� cp
n �

�a1p
n �, . . . , �adp

n �

)
(−1)


cp
n �x

(cr)%n
0

x
(a1r)%n
1 · · ·x(adr)%n

d

.

Since � cp
n � < p, the binomial coefficient

( 
 cp
n �


 a1p
n �,...,
 adp

n �
)
is nonzero. Thus the last

possibility that the above term is zero is that air is divisible by n for some i. But
this cannot happen as explained in Remark 6.2 (since this implies p|n).

In sum, an element of the basis

xc
0

xa1
1 · · ·xad

d

is not in the kernel of Frobenius if and only if

(ra1)%n+ · · ·+ (rak)%n < n.

Licensed to Univ of Illinois at Chicago. Prepared on Thu May 27 11:09:12 EDT 2021 for download from IP 128.248.156.45.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LENGTH OF LOCAL COHOMOLOGY MODULES 8571

Thus the claim follows after considering further iterates of Frobenius (we only need
to consider the first ϕ(n) − 1 iterates because rϕ(n) ≡ 1 mod n by Fermat’s little
theorem, so further iterates would repeat this pattern), because if a basis element
is not in the kernel of all the iterates of the Frobenius map, then it contributes to
an element in Hd

m(A)s. �

Corollary 6.4. Suppose p � n. Then Frobenius acts injectively on Hd
m(A)0 if and

only if p ≡ 1 mod n. As a consequence, (Hd
m(A)0)s = Hd

m(A)0 if and only if p ≡ 1
mod n.

Proof. If p ≡ 1 mod n the claim immediately follows from Theorem 6.3. For
the other direction, we need to show that there are integers ai ≥ 1 such that
a1 + · · ·+ ad < n but (ra1)%n+ · · ·+ (rad)%n ≥ n.

Now r is invertible modulo n, take 1 ≤ a1 < n− 1 such that a1r ≡ −1 mod n.
Then since rai ≥ 1 for all i > 1, we always have (ra1)%n + · · · + (rad)%n ≥ n as
d ≥ 2. �

Corollary 6.5. If ph ≡ −1 mod n for some h, then Frobenius acts nilpotently on
Hd

m(A)0. As a consequence, (Hd
m(A)0)s = 0 in this case.

Proof. Consider the equation

(−a1)%n+ · · ·+ (−ad)%n < n

corresponding to rh (which is≡ ph ≡ −1 mod n). Since 1 ≤ ai ≤ n−1, (−a1)%n =
n− a1, so the equation becomes

dn− a1 − · · · − ad < n.

But this equation has no solution since a1 + · · ·+ ad < n and d ≥ 2. �

Remark 6.6. The converse to the last corollary does not hold. For example, if
n = 11 and d = 2, then a direct computation shows that Frobenius acts nilpotently
on H2

m(A)0 unless p ≡ 1 mod n.

7. D-module length vs. F -module length

We continue to use the notation as in the beginning of §§4 and 5. In [Bli03],
Blickle made a deep study on the comparison of D-module and F -module length.
For example, in [Bli03, Theorem 1.1 or Corollary 4.7] it was proved that if k is alge-
braically closed, then for every F -finite F∞

R -moduleM , we have lF∞
R
(M) = lDR

(M),
which is also = lD(R,k)(M) since DR = D(R, k) when k is perfect. Moreover, when
k is perfect but not algebraically closed, Blickle constructed an example [Bli03, 5.1]
of a simple F∞

R -module that is not DR-simple (equivalently, not D(R, k)-simple
since k is perfect). In particular, even the F∞

R -module length may differ from the
D(R, k)-module length in general.

However it is not clear whether these pathologies are artificial; i.e., can they
occur for local cohomology modules with their natural FR-module structure? In
this section we will construct an example of a local cohomology module of R, with
k algebraically closed, such that its FR-module length is strictly less than its DR-
module length.

To begin, let V be a vector space over a field k of positive characteristic p. Then
we can describe an eth Frobenius action f on V in the following way. Choose
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a basis e1, . . . , en of V . Let f(ei) = a1ie1 + · · · + anien. Then for any element
b = (b1, . . . , bn)

T written in the basis ei, we can write

f(b) = Ab[p
e],

where A = (aij) and [bp
e

] raises all entries to the peth power. Or explicitly,

f(b) =

⎛⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 am2 · · · ann

⎞⎟⎟⎟⎠
⎛⎜⎝bp

e

1
...
bp

e

n

⎞⎟⎠ .

Via this description it is very easy to see the following result.

Lemma 7.1. Let k be a field of positive characteristic p and let V be a finite dimen-
sional vector space with an eth Frobenius action f . Let A be a matrix describing the
action of f in some basis ei. Then in a new basis obtained by an orthogonal matrix
O, f is represented by the matrix OA(Oτ)[p

e], where all entries of the transpose Oτ

are raised to the peth power.

Proposition 7.2. Let R = k[x1, . . . , xn] or k[[x1, . . . , xn]] and let V be a k-vector
space with an eth Frobenius action f . Then lF e

R
(HR,R(V )) is the length of any

longest flag of f-subspaces

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm = V

such that f is not nilpotent on Vi/Vi−1 for every i.
In particular, lF e

R
(HR,R(V )) = dimV if and only if there is a basis of V such

that, with the notation as in Lemma 7.1, f can be represented by an upper-triangular
matrix A with nonzero entries on the main diagonal.

Proof. The first claim is [Lyu97, Theorem 4.7].
If lF e

R
(HR,R(V )) = dimV , then we must have dimVi = i. Then we will choose

a compatible basis for the flag, i.e., Vi = k〈e1, . . . , ei〉. Since f(Vi) ⊆ Vi, now
f(ei) = ai1e1 + · · · + aiiei. Thus the matrix representing f is upper-triangular.
Moreover, since f acts nontrivially on Vi/Vi−1, we must have aii �= 0. So the
matrix has nonzero entries on the main diagonal.

Conversely, if the matrix is upper-triangular with nonzero entries on the main
diagonal in some basis, it is easy to see that Vi = k〈e1, . . . , ei〉 form a flag of
f -subspaces where f acts nontrivially on Vi/Vi−1. �

Remark 7.3. Before proceeding further, we need a simple result in linear algebra.
Over a finite field Fp where p �= 3, consider the matrix

M =

⎛⎝0 0 a
a 0 0
0 a 0

⎞⎠
where a �= 0 in Fp. The characteristic polynomial of this matrix is

λ3 − a3 = (λ− a)(λ2 + λa+ a2).

The discriminant of the quadratic polynomial is D = −3a2. Thus if −3 is a qua-
dratic residue in Fp, then the characteristic polynomial has three distinct eigenval-
ues. On the other hand, if −3 is not a quadratic residue, then (1, 1, 1) is the only
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eigenvector and the restriction of the matrix M on the subspace of F3
p orthogonal

to (1, 1, 1) can be expressed as (
0 −a
a −a

)
,

which has no eigenvalues over Fp.
By quadratic reciprocity, −3 is a quadratic residue if and only if p = 1 (mod 3).

Thus if p �= 1 (mod 3), this matrix has no eigenvalues over Fp and thus cannot be
transformed in an upper-triangular form by a change of basis. Otherwise, it has
three eigenvectors and can be transformed in an upper-triangular form.

Our first example shows that lFR
(Hn−c

I (R)) can be strictly less than

lF∞
R
(Hn−c

I (R)) and thus strictly less than lD(R,k)(H
n−c
I (R)) by (2.0.1) if k is not

separably closed, even when A = R/I has isolated singularities.

Corollary 7.4. Let p be a prime number, let R = Fp[x, y, z], and let f = x7+y7+
z7. Then

lF∞
R
(H1

f (R)) = lDR
(H1

f (R)) =

⎧⎪⎨⎪⎩
16 if p ≡ 1 (mod 7),

7 if p ≡ 2 or 4 (mod 7),

1 otherwise.

On the other hand,

lFR
(H1

f (R)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
16 if p ≡ 1 (mod 7),

7 if p ≡ 2 or 4 (mod 7) and p ≡ 1 (mod 3),

5 if p ≡ 2 or 4 (mod 7) and p �≡ 1 (mod 3),

1 otherwise.

In particular, lDR
(H1

f (R)) �= lFR
(H1

f (R)) for any p ≡ 11 (mod 21).

Proof. Let V denote the k-vector space (0∗H2
m(R/f))s = (H2

m(R/f)0)s. By Corol-

laries 6.4 and 6.5, Frobenius acts injectively on H2
m(R/f)0 if p ≡ 1 (mod 7) and

nilpotently if p ≡ 3, 5, 6 (mod 7). When p ≡ 2 or 4 (mod 7), using the algorithm
described in Theorem 6.3 it can be checked that the Frobenius map (i.e., e = 1) on
V is spanned by two 3-cycles. If p ≡ 4 (mod 7), the cycles are

z3

x2y
→ z5

xy4
→ z6

x4y2
and

z3

xy2
→ z5

x4y
→ z6

x2y4
.

While if p ≡ 2 (mod 7), the cycles become

z3

x2y
→ z6

x4y2
→ z5

xy4
and

z3

xy2
→ z6

x2y4
→ z5

x4y
.

In particular, one obtains that

dimV =

⎧⎪⎨⎪⎩
15 if p ≡ 1 (mod 7),

6 if p ≡ 2 or 4 (mod 7),

0 otherwise.

Since R/(f) is an isolated singularity, lDR
(H1

f (R)) = dimV + 1 by Theorem

4.3. In the cases when Frobenius acts injectively or nilpotently on H2
m(R/f)0,

we also deduce from Proposition 7.2 that lFR
(H1

f (R)) = dimV + 1 (note that

when Frobenius acts injectively on H2
m(R/f)0, the proof of Theorem 6.3 shows that
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Frobenius sends each canonical basis element of H2
m(R/f)0 to a multiple of itself,

so the representing matrix is diagonal).
In the remaining cases, in order to compute its F e

R-module length we will study
a matrix which represents the Frobenius map on V by Proposition 7.2. We can
use the proof of Theorem 6.3 to describe the Frobenius action on the cycles. If
p = 7k + 4, one obtains that the Frobenius action on both cycles is described by
the matrix

A =

⎛⎝ 0 0 (−1)6k+3
(
6k+3
2k+1

)
(−1)3k+1

(
3k+1

k

)
0 0

0 (−1)5k+2
(
5k+2

k

)
0

⎞⎠ ,

where we have chosen the natural bases, e.g., e1 = z3

x2y , e2 = z5

xy4 , e3 = z6

x4y2 for the

first cycle. Similarly, if p = 7k + 2, the matrix is⎛⎜⎝ 0 0 (−1)5k+1
(
5k+1
4k+1

)
(−1)3k

(
3k
k

)
0 0

0 (−1)6k+1
(
6k+1
4k+1

)
0

⎞⎟⎠ .

We claim that the nonzero entries of A are equal. Observe that by Wilson’s
theorem

(n− 1)!(p− n)! = (n− 1)!(p− n)(p− n− 1) · · · 1
= (n− 1)!(−n)(−n− 1) · · · (−p+ 1) = (−1)n

mod p. Furthermore, because p = 7k + 4 is odd, k is odd. Thus we can rewrite(
5k + 2

k

)
=

(5k + 2)!

(k)!(4k + 2)!
=

(p− 2k − 2)!

(p− 6k − 4)!(4k + 2)!

= (−1)4k+2

(
6k + 3

2k + 1

)
=

(
6k + 3

2k + 1

)
and(

5k + 2

k

)
=

(5k + 2)!

(k)!(4k + 2)!
=

(p− 2k − 2)!

k!(p− 3k − 2)!
= (−1)5k

(
3k + 1

k

)
= −

(
3k + 1

k

)
.

The case of p = 7k + 2 is identical.
Since ap = a for any element a ∈ Fp, the Frobenius action is linear. Thus by

Lemma 7.1 and Remark 7.3, the matrix associated to the Frobenius map on the
chosen basis can be transformed into upper-triangular form if and only if p ≡ 1
(mod 3). Thus by Proposition 7.2, in the case p = 7k + 4 or p = 7k + 2, we obtain
that lFR

(H1
f (R)) = lFR

(HR,R(V )) + 1 = 7 when p ≡ 1 (mod 3), and otherwise

lFR
(H1

f (R)) = 5.
Lastly, it is easy to see that the third iterate of the Frobenius map on V can be

represented by a diagonal matrix; hence

lF 3
R
(HR,R(V )) = lF 3

R
(HR,R(0

∗
H2

m(R/f))) = lF∞
R
(HR,R(0

∗
H2

m(R/f))) = 6

and lF∞
R
(H1

f (R)) = 7. �

Finally, we exhibit an example of a local cohomology module of R, with k alge-
braically closed, such that its D(R, k)-module length (equivalently, its F∞

R -module
length) is strictly bigger than its FR-module length. Recall that by Theorem 4.3,
this cannot happen if A = R/I has isolated singularities.
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Proposition 7.5. Let p = 7k+4 be a prime number. Let R = Fp[x, y, z, t] and let
f = tx7 + ty7 + z7. Then

lFR
(H1

f (R)) = 3 < 7 = lF∞
R
(H1

f (R)) = lD(R,Fp)
(H1

f (R)).

Proof. Denote R/(f) by A. First we claim that (x, y, z)A is the only height-2 prime
ideal of A that contains the test ideal τ (A) of A. By [ST12, Theorem 6.4], we have

τ (A) =
∑
e

∑
φ∈HomA(A1/pe ,A)

φ(c1/p
e

),

where c is a test element for A. According to [Hoc07, Theorem on page 184], z6 is
a test element for A and we may set c = z6. Since A = R/(f), we have

τ (A) =
(∑

e

∑
ϕ∈HomR(R1/pe ,R)

ϕ((fpe−1z6)1/p
e

)
)
A.

It is straightforward to check that (x6, y6, z6) ⊂ τ (A) and τ (A) has height 2. Hence
(x, y, z)A is the only height-2 prime ideal that contains the test ideal τ (A) of A.

Consequently, ÂP is F -rational for each height-2 prime P �= (x, y, z)A or, equiva-
lently, 0∗

H2
P ̂AP

( ̂AP )
= 0.

Next we calculate the stable part of H3
m(A) where m = (x, y, z, t). To this end,

we assign the grading deg(x) = deg(y) = 1, deg(z) = 2, and deg(t) = 7 degrees
1, 1, 2, 7 to R, and, consequently, f is homogeneous. It is straightforward to check
that H3

m(A)0 has an Fp-basis:[
z5

tx2y

]
,

[
z5

txy2

]
,

[
z6

tx4y

]
,

[
z6

tx3y2

]
,

[
z6

tx2y3

]
,

[
z6

txy4

]
.

Because the degree of z is larger that the degrees of x and y, each of these elements
is nilpotent under the natural Frobenius action. For example, raising the last
generator to the power p = 7k + 4, we get[

z42k+24

t7k+4x7k+4y28k+16

]
=

[
z3(z7)6k+3

t7k+4x7k+4y28k+16

]
=

[
z3(x7 + y7)6k+3

tk+1x7k+4y28k+16

]
,

which necessarily equals 0 since the degree of any monomial in x, y in the numer-
ator is 7(6k + 3), which is greater than (7k + 4) + (28k + 16). Hence H3

m(A)s =
(H3

m(A)0)s = 0.
Given the grading on R, we are in the situation of Theorem 4.8. By Claim

4.8.1, there exists a graded FR-module filtration 0 ⊆ L ⊆ M ⊆ H1
f (R) where L is

supported at (f), each D(R,Fp)-module (equivalently, DR-module or F∞
R -module)

composition factor of M/L is supported at (x, y, z), and H1
f (R)/M is supported

only at m = (x, y, z, t).
By [Bli04, Corollary 4.2 and Theorem 4.4],

lD(R,Fp)
(L) = lF∞

R
(L) = lFR

(L) = 1,

because there is only one minimal prime (f) of A. Moreover, we have

lD(R,Fp)
(H1

f (R)/M) = lF∞
R
(H1

f (R)/M) = lFR
(H1

f (R)/M) = 0

since dim
Fp
(H3

m(A))s = 0. Thus we actually have M = H1
f (R) in this example.

It remains to compute lD(R,Fp)
(M/L), lF∞

R
(M/L), and lFR

(M/L). Note that

the first two are equal because we are working over an algebraically closed field
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[Bli03, Theorem 1.1]. Moreover, if we take an F∞
R -module (resp., FR-module)

filtration of M/L, say

L = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Ml = M = H1
f (R),

such that each Ni = Mi/Mi−1 is a simple F∞
R -module (resp., simple FR-module)

supported at P = (x, y, z) and then if we localize at P and complete, we have

L⊗ R̂P = M0 ⊗ R̂P ⊆ M1 ⊗ R̂P ⊆ · · · ⊆ Ml ⊗ R̂P = H1
f (R̂P )

such that each successive quotient Ni⊗ R̂P is still simple as an F∞
̂RP

-module (resp.,

as an F
̂RP

-module) by Lemma 4.7.

Observe that

R̂P /(f) ∼= Fp(t)[[x, y, z]]/(tx
7 + ty7 + z7),

which is an isolated singularity. Hence by Proposition 7.2 (and the proof of Theorem

4.3), the F∞
̂RP

-module (resp., F
̂RP

-module) length of H1
f (R̂P )/(L⊗R̂P ) is the longest

flag of Frobenius-stable subspaces of

V =
(
0∗
H2

m(Fp(t)[[x,y,z]]/(tx7+ty7+z7))

)
s
.

Via a direct computation similar to the proof of Theorem 6.3 one can show that
dimV = 6 and V is a direct sum of two 3-dimensional Frobenius-stable subspaces.
In the natural bases as in the proof of Corollary 7.4, the Frobenius action on each
cycle is represented by the matrix:

A =

⎛⎝ 0 0
(
3k+1

k

)
t6k+3(

3k+1
k

)
t3k+1 0 0

0
(
3k+1

k

)
t5k+2 0

⎞⎠ =

(
3k + 1

k

)⎛⎝ 0 0 t6k+3

t3k+1 0 0
0 t5k+2 0

⎞⎠ .

We can easily see that the third iterate of the Frobenius map on V can be
represented by a diagonal matrix. Hence by Proposition 7.2,

lF 3
̂RP

(H1
f (R̂P )/(L⊗ R̂P )) = lF∞

̂RP

(H1
f (R̂P )/(L⊗ R̂P )) = 6,

and thus by the above discussion,

lD(R,Fp)
(H1

f (R)) = lF∞
R
(H1

f (R)) = 1 + 6 = 7.

Finally let us show that V has no proper subspace stable under the Frobenius
action. If U is a proper Frobenius-stable subspace and v ∈ U , then we must have
that 〈v, F (v), F 2(v)〉 ⊆ U � V . Thus if v = (a, b, c) in the standard basis, then

det

⎛⎜⎝a t6k+3cp t6k+3+(5k+2)pbp
2

b t3k+1ap t3k+1+(6k+3)pcp
2

c t5k+2bp t5k+2+(3k+1)pap
2

⎞⎟⎠ = 0 ,

Observe that if w = λv, then

det(w,Fw, F 2w) = λp2+p+1 det(v, Fv, F 2v),

so we can multiply v by the common denominator of a, b, c and assume that a, b, c
∈ Fp[t].
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By a direct computation, we have

Δ =det

⎛⎜⎝a t6k+3cp t6k+3+(5k+2)pbp
2

b t3k+1ap t3k+1+(6k+3)pcp
2

c t5k+2bp t5k+2+(3k+1)pap
2

⎞⎟⎠
=t(3k+1)p+8k+3ap

2+p+1 − t(6k+3)p+8k+3abpcp
2 − t(3k+1)p+11k+5ap

2

bcp

+ t(6k+3)p+9k+4cp
2+p+1 + t(5k+2)p+11k+5bp

2+p+1 − t(5k+2)p+9k+4apbp
2

c.

Note that we may factor out t(3k+1)p+8k+3 and obtain Δ = t(3k+1)p+8k+3Δ′, where

Δ′ = ap
2+p+1 − t(3k+2)pabpcp

2 − t3k+2ap
2

bcp

+ t(3k+2)p+k+1cp
2+p+1 + t(2k+1)p+3k+2bp

2+p+1 − t(2k+1)p+k+1apbp
2

c.

Let deg a = α, deg b = β, deg c = γ. Then we have

deg ap
2+p+1 = p2α+ pα+ α,

deg t(3k+2)pabpcp
2

= p2γ + p(β + 3k + 2) + α,

deg t3k+2ap
2

bcp = p2α+ pγ + β + 3k + 2,

deg t(3k+2)p+k+1cp
2+p+1 = p2γ + p(γ + 3k + 2) + γ + k + 1,

deg t(2k+1)p+3k+2bp
2+p+1 = p2β + p(β + 2k + 1) + β + 3k + 2,

deg t(2k+1)p+k+1apbp
2

c = p2β + p(α+ 2k + 1) + γ + k + 1.

Now we prove that there is always a nonzero term with highest degree in Δ′

(hence Δ′ cannot be zero). We consider the following three cases:

(1) γ ≥ max{α, β}.
(2) β > γ and β ≥ α.
(3) α > max{β, γ}.

The point is that in case (1) (similarly, in cases (2) and (3)), deg t(3k+2)p+k+1cp
2+p+1

(resp., deg t(2k+1)p+3k+2bp
2+p+1, deg ap

2+p+1) is strictly bigger than the degree of
the other five terms. We give a detailed explanation in case (2) and leave the other
cases to the reader to check (they are all very similar). In case (2), since p = 7k+4,
we have

deg t(2k+1)p+3k+2bp
2+p+1 − deg ap

2+p+1 ≥ 3k + 2 > 0,

deg t(2k+1)p+3k+2bp
2+p+1 − deg t(3k+2)pabpcp

2

> p2(β − γ)− p(k + 1) ≥ p2 − p(k + 1) > 0,

deg t(2k+1)p+3k+2bp
2+p+1 − deg t3k+2ap

2

bcp > p2(β − α) + p(β − γ) > 0,

deg t(2k+1)p+3k+2bp
2+p+1 − deg t(3k+2)p+k+1cp

2+p+1

> (p2 + p)(β − γ)− p(k + 1) ≥ p2 + p− p(k + 1) > 0,

deg t(2k+1)p+3k+2bp
2+p+1 − deg t(2k+1)p+k+1apbp

2

c = p(β − α) + 2k + 1 > 0.

This finishes the proof that V does not have Frobenius stable subspaces and thus

lF
̂RP

(H1
f (R̂P )/(L⊗ R̂P )) = 2,
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and hence by the above discussion

lD(R,Fp)
(H1

f (R)) = lF∞
R
(H1

f (R)) = 1 + 2 = 3. �

Remark 7.6. Blickle [Bli03, Section 5] showed that for a general F -finite F∞
R -module

M the two lengths lF∞
R
(M) and lD(R,k)(M) might be different if the residue field

k is perfect but not algebraically closed. However, we do not know whether this
can happen when M = Hc

I(R). The Fermat hypersurfaces cannot provide such an
example: the natural Frobenius action decomposes into cycles, and thus the matrix
representing some large iterate of the Frobenius action will be a diagonal matrix.
Hence Theorem 4.3 and Proposition 7.2 show that the two lengths always coincide
in this case.

We end with a slight generalization of Blickle’s result ([Bli03, Theorem 1.1]) to
local cohomology modules of rings with an isolated non-F -rational point over finite
fields.

Proposition 7.7. Let (R,m, k) and A = R/I be as in the Notation at the beginning
of §4. Assume k is a finite field and A has an isolated non-F -rational point at m.
Then lF∞

R
(Hc

I(R)) = lD(R,k)(H
c
I(R)).

Proof. Following the proof of Theorem 4.3 and Proposition 7.2, it is enough to show
that there exists e > 0 such that the matrix Be representing the eth Frobenius
action on (0∗

Hd
m(A)

)s is an upper triangular matrix. We will show that in fact Be

is the identity matrix for e � 0 sufficiently divisible. It is easy to observe that

Be = B1 · B[p]
1 · · ·B[pe−1]

1 where B[pi] denotes the matrix obtained by raising each

entry of B to its pith power. Suppose k = Fpn and thus B[pn] = B. Hence we know

that Bne = Be
1 · (B[p]

1 )e · · · (B[pn−1]
1 )e. Now the result follows from the elementary

fact that over Fpn , every invertible matrix B has a power that is the identity matrix:

look at the Jordan normal form of B in Fp; taking a large pmth power will make
each Jordan block into a diagonal matrix. But an invertible diagonal matrix over
Fpn can be raised to a large power to make each diagonal entry be 1. �
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