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D-MODULE AND F-MODULE LENGTH
OF LOCAL COHOMOLOGY MODULES

MORDECHAI KATZMAN, LINQUAN MA, ILYA SMIRNOV, AND WENLIANG ZHANG

ABSTRACT. Let R be a polynomial or power series ring over a field k. We study
the length of local cohomology modules H} (R) in the category of D-modules
and F-modules. We show that the D-module length of H; (R) is bounded
by a polynomial in the degree of the generators of I. In characteristic p > 0
we obtain upper and lower bounds on the F-module length in terms of the
dimensions of Frobenius stable parts and the number of special primes of local
cohomology modules of R/I. The obtained upper bound is sharp if R/I is
an isolated singularity, and the lower bound is sharp when R/I is Gorenstein
and F-pure. We also give an example of a local cohomology module that has
different D-module and F-module lengths.
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1. INTRODUCTION

Since its introduction by Grothendieck, local cohomology has become a major
part of commutative algebra that has been studied from different points of view.
When R is a polynomial or power series ring over a field &, each local cohomology
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module HJI(R) admits a natural module structure over D(R, k), the ring of k-linear
differential operators (D(R, k)-modules will be reviewed in §2). In characteristic 0,
[Lyu93] shows that H/(R) has finite length as a D(R, k)-module, though H?(R) is
rarely finitely generated as an R-module. To this day, using the finite length prop-
erty of H}(R) in the category of D(R, k)-modules is still the only way to prove that
HJI(R) has finitely many associated primes in characteristic 0. In characteristic p,
Frobenius action on local cohomology modules was used with great success by a
number of authors, e.g., [PS73], [HS77], and [HS93]. Lyubeznik ([Lyu97]) concep-
tualizes the previous work to develop a theory of F-modules in characteristic p (the
reader may find an overview in §2).

As we have seen, in characteristic p, local cohomology modules H} (R) can be
viewed as both D(R, k)-modules and F-modules; [Lyu97] compares these two points
of view. It’s shown that each F-module M admits a natural D(R, k)-module struc-
ture and its length as an F-module, [, (M), is no more than its length as a D(R, k)-
module, [p(g k) (M). The comparison of these two points of view was continued in
[Bli03], where Blickle shows that over an algebraically closed field the D(R,k)-
module length is equal to the F*°-module length (F*°-modules will be reviewed in
§2). The fact that local cohomology modules have finite length as D(R, k)-modules
has found many applications; for instance [NBW14] introduces numerical invariants
of local rings using the length of local cohomology modules as D(R, k)-modules and
shows that there are close connections between these invariants and F-singularities.

Despite the importance of the finiteness of the length of local cohomology mod-
ules as D(R, k)-modules and F-modules, finding the actual length of local coho-
mology modules as such modules remains an intriguing and difficult open question.
In this paper we provide partial answers to this question in characteristic p.

Theorem 1.1 (Theorems 4.3 and 5.1). Let R = k[[z1,...,z,]] (or k[z1,...,24,])
with m = (1,...,x,), where k is a field of characteristic p > 0. Let A = R/I be
reduced and equidimensional (respectively, graded reduced and equidimensional) of
dimension d > 1.
(1) If A has an isolated non-F-rational point at m (e.g., A has an isolated
singularity at m), then

Iy (T}~ (R)) = dimg(Ofyg (). + ¢ = dimg(HA(4)).) + ¢,

where ¢ is the number of minimal primes of A. Moreover, if k is separably
closed, then

Ip, (H}™(R)) = lpe (H}Y(R)) = lpee (H}“(R)) = Ip, (H}*(R))

= dimy (0 (4))s + .

(2) If A is F-pure and quasi-Gorenstein, then lp, (H?~%(R)) is ezactly the num-
ber of special primes of HZ (A).

One ought to remark that there is an effective algorithm to compute special
primes of H%(A) ([KZ14]); hence the result above provides a practical tool to
compute Ip, (H}"%(R)) when A = R/I is F-pure and quasi-Gorenstein.

We also construct the first example of a local cohomology module over an al-
gebraically closed field whose D(R, k)-module length disagrees with its F-module
length.
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LENGTH OF LOCAL COHOMOLOGY MODULES 8553

Theorem 1.2 (Proposition 7.5). Let R = F,[z,y, 2,t] with p =4 (mod 7) and let
f=tx"+ty" +27. Then

lFR(H}f(R)) =3<T=lpg (H}(R)) = ZD(R,FP)(H}“(R))'

While finding the actual length remains elusive in its full generality, we provide
both upper and lower bounds.

Theorem 1.3 (Theorem 3.5). Let R = k[z1,...,x,] be a polynomial ring over a
field k and let f € R be a polynomial of degree d. Then

Ip(rp (HH(R)) < (d+1)" - 1.

Theorem 1.4 (Theorem 4.8). Let R = k[x1,...,2,] and m = (x1,...,2,). Let
I be a homogeneous reduced and equidimensional ideal of R. Set A = R/I with
dim A = d > 2. Suppose the non-F-rational locus of A has dimension < 1 (e.g.,
the nonsingular locus has dimension < 1). Then we have

IprwE;UR) < e+ D dimm(P)(Hjl;Zl;(//l;))s+dimk(Hg1(A))s
dim R/P=1

= ct+ > dimi(p) (01 57))s + Aime(Ofg (1))
dim R/P=1 P

where ¢ is the number of minimal primes of 1.

Theorem 1.5 (Theorem 5.1). Let k be a field of positive characteristic, let R
denote the local ring k[[z1, ..., zy]] (or the graded ring klx1,...,2y,]), and let m =
(1,...,2n). Let A = R/I be reduced, equidimensional (or, respectively, graded
reduced and equidimensional), and F-pure of dimension d > 1. Then I, (H} 7 (R))
is at least the number of special primes of HZ (A).

The upper and lower bounds on the D(R, k)-module and Fr-module length in the
above results are sharp in many cases (see §84, 5, 6), and we can explicitly describe
an Fr-submodule filtration of H?_d(R) in terms of the generating morphisms when
R/I is Cohen—Macaulay, which is maximal when R/I is Gorenstein and F-pure (see
Theorems 5.8 and 5.5).

We also construct an example (Example 4.11) of a simple D(R, k)-module whose
completion at a prime ideal P is not a simple D(Rp, #(P))-module.

Our paper is organized as follows. In §2, we recall some basic notions and
results regarding D(R, k)-modules, F-modules, and tight closure theory. Section
3 is concerned with Theorem 1.3. Section 4 is devoted to proving Theorem 1.4.
In §5 we prove Theorem 1.5, and we also describe explicitly the maximal Fg-
module filtration of H7~%(R) in terms of their generating morphisms when R/T
is Gorenstein and F-injective (the Cohen—Macaulay F-injective case will also be
discussed). In §6 we compute the dimension of the stable part (under the natural
Frobenius action) of the top local cohomology of Fermat hypersurfaces. Section
7 proves Theorem 1.2 and related results. Examples and remarks showing the
sharpness of our bounds will be given throughout.

2. PRELIMINARIES

Throughout this paper, we always assume that R = k[[z1,...,2,]] or R =
klx1,...,2,], where k is a field (not necessarily algebraically closed or perfect)
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and A is a reduced and equidimensional quotient or graded reduced and equidi-
mensional quotient of R of dimension d > 1. We set m = (z1,...,2,). In this
section we collect some notation and preliminary results from [Lyu97] and [Bli04].

D-modules. The differential operators §: R — R of order < n can be defined
inductively as follows. A differential operator of order 0 is just multiplication by an
element of R. A differential operator of order < n is an additive map J: R — R such
that for every r € R, the commutator [,7] = or — r o ¢ is a differential operator
of order < n — 1. The differential operators form a ring with the multiplication
defined via the composition. We denote this ring by Dg.

We denote by D(R, k) C Dpg the subring of Dg consisting of all k-linear differ-

ential operators. Since R = k[[z1,...,2,]] or R = k[z1,...,2,], it can be verified
that D(R, k) is generated by all operators of the form %8‘9—; By a Dgr-module or a

D(R, k)-module we mean a left module over Dg or D(R, k).

When £ is a field of characteristic p, it is not hard to show that every differential
operator of order < p¢—1 is RP"-linear, where RP?* C R is the subring of all the p¢th
powers of all the elements of R. In other words, we always have Dg is a subring
of |J, Hompgee (R, R).> In particular, all differential operators are automatically
k-linear if k is perfect; thus D = D(R, k) if k is perfect.

F-modules. Assume that k is a field of characteristic p. The notion of F-modules
was introduced in [Lyu97] and further investigated and generalized in [Bli01, Bli03].
We use R(¢) to denote the target ring of the eth Frobenius map F¢: R — R. We
shall let F°(—) denote the Peskine-Szpiro Frobenius functor from R-modules to
R-modules. In detail, F¢(M) is given by base change to R(®) and then identifying
R with R, i.e., F¢(M) = R® @x M.

An Ff-module is an R-module M equipped with an R-linear isomorphism 6:
M — F¢(M), which we call the structure morphism of M. A homomorphism of
Fg-modules is an R-module homomorphism f: M — M’ such that the following
diagram commutes:

M—1

b, b
F(f)

Fe(M) —= Fe(M')

When e = 1 we simply say M is an Fg-module (or F-module if R is clear from
the context). It is easy to see that every Fg-module is also an F§ -module for
every r > 1 by iterating the structure isomorphism r times. The union of the
categories of Fz-modules over all e forms is what we call the category of Fg°-
modules.? With these definitions, the categories of Fg-modules and Fg°-modules
are abelian categories.

When R = k[x1,...,2,] and M is a graded R-module, there is a natural grading
on F(M) = R ®r M given by deg(r ® m) = degr + p® - degm for homogeneous

In fact Dg = J, Homppe (R, R) when R is F-finite; i.e., R is finitely generated as an RP-
module [Yek92].

2In [BIi01, B1i03, Bli04], F&-modules and F'g°-modules are called unit R[F*¢]-modules and unit
R[F]-modules respectively. In this paper we will use Lyubeznik’s notation [Lyu97, Remark 5.6]
since we think this is more natural in comparison with the usual Fr-modules.
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elements r € R and m € M. With this grading, a graded F;-module is an Fg-
module M such that the structure isomorphism 6 is degree-preserving. A morphism
of graded Fi-modules is a degree-preserving morphism of Fg-modules. It is not
hard to see that graded F3-modules form an abelian subcategory of the category of
Fg-modules. Graded Fi-modules, at least for e = 1, were introduced and studied
in detail in [Zhal2] and [MZ14].

A generating morphism of an Fgi-module M is an R-module homomorphism
B: My — F¢(My), where Mj is some R-module such that M is the limit of the
inductive system in the top row of the commutative diagram

B F(B)

F2e
My —2 s pe(aag) 9, e () O L

lﬁ lFQ(B) lF%(ﬂ)

Fe F2€ F3e
Fe(Mo) =3 F(Mg) — 53 F*(Mo) — -

and 0: M — F¢(M), the structure isomorphism of M, is induced by the vertical
arrows in this diagram. My is called a root of M if §: My — F¢(My) is injective. An
F§-module M is called F-finite if M has a generating morphism 8: My — F°(My)
with M, a finitely generated R-module. When M, is graded and [ is degree-
preserving, we say that M is a graded F-finite F§-module.

It is a fundamental result of Lyubeznik ([Lyu97]) that local cohomology modules
H%(R) have a natural structure of F-finite Fg-modules for every e > 1. Moreover,
when R = k[z1,...,2,] and T is a homogeneous ideal of R, H%(R) are graded
F-finite Fi§-modules [Zhal2].

Following [Lyu97], for any F-finite Fr-module M, there exists a smallest Fg-
submodule N C M with the property that M/N is supported only at m. Hence
M /N is isomorphic (as an R-module) to E®" where E = Eg(k) denotes the injective
hull of k. We define crk(M), the corank of M, to be r.

One important feature of Fr-modules is that they have a natural structure of
Dp-modules and thus D(R, k)-modules. We briefly recall this here, and we refer
to [Lyu97, §5] for details. Let M be an Fr-module with structure isomorphism 6.
We set 0. to be the eth iterate of 6, i.e.,

0. =F 1 (@)o---0F(f)of: M — F(M).

Now every element § € Hom g, (R, R) acts on F¢(M) = R(®) @p M via § ® idyy.
We let § act on M via ;' o (§ @ idps) o 0. It is not very difficult to check that
this action is well-defined. Moreover, an entirely similar construction shows that
every Fgi-module also has a canonical structure of a Dg-module. It follows that
FgP-modules are naturally Dg-modules and thus D(R, k)-modules. In sum, we
have the following inclusion of abelian categories:

{Fr —modules} C {Fg —modules} C {Fg° — modules} C {Dp — modules}
C {D(R, k) — modules}.

Therefore for any Fr-module M we have the following inequalities on its length
considered in the corresponding categories:

(2.0.1) Urp (M) <lpg (M) <lpge(M) < lprp(M) <lprr)(M).
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A{f}-modules. Recall that we always assume A is a reduced and equidimensional
or graded reduced and equidimensional quotient of R of dimension d > 1. Assume
also that k is a field of characteristic p. Let M be a (in most cases Artinian) module
over A. We say that M is an A{f}-module if there is an additive map f: M — M
such that f(am) = a? f(m). We will use My = (" k(f*(M)) to denote the Frobenius
stable part of M, note that this is a k-vector space, and that it depends not only
on M but also on the action f on M. It is well-known that when M is either
Noetherian or Artinian over A, M is a finite dimensional k-vector space [HS77],
[Lyu97].

Let % a denote the Lyubeznik functor introduced in [Lyu97]: for every Ar-
tinian A{f}-module M, we have a natural induced map a: Fr(M) — M. Since
Fr(M)V = Fr(MVY) by [Lyu97, Lemma 4.1], we define

a\/

A a(M) = lim(M" 255 Fp(MY) 200 FE(MY) = o),
which is an F-finite Fr-module. In the graded case we have a similar functor *#% 4
that takes a graded Artinian A{f}-module to a graded F-finite Fgr-module: one
needs to replace Matlis dual by graded Matlis dual in the construction of *5#% 4 (see
[LSW16] for details). One important example that we will use repeatedly is that
Hr a(HE(A)) = HP(R), and in the graded case we also have *#% a(H%(A)) =
H?~%(R) [Lyu97, Example 4.8], [LSW16, Proposition 2.8].

Tight closure and F-singularities. Tight closure theory was introduced by
Hochster-Huneke in [HH90]. In this article, we need only some basic properties
of tight closure of zero in the top local cohomology module, O;I;in (A Under mild
conditions, for example, when (A, m) is an excellent local domain of dimension d,

OI*EI?“ (a) 18 the largest proper A-submodule of H¢ (A) that is stable under the natural
Frobenius action on H% (A) (cf. [Smi97]). A local ring (A, m) is called F-rational

if A is Cohen-Macaulay and 0y, (4 = 0.3 Under mild conditions on the ring, for
example, when (A, m) is an excellent, reduced, and equidimensional local ring, A is
F-rational on the punctured spectrum if and only if 0f, ) has finite length.

A local ring (A, m) of characteristic p > 0 is called F-pure if the Frobenius
endomorphism F: A — A is pure.* Under mild conditions, for example, when
the Frobenius map A Py Ais a finite map or when A is complete, F-purity of
A is equivalent to the condition that the Frobenius endomorphism A 5o As
split [HR76, Corollary 5.3]. The Frobenius endomorphism on A induces a natural
Frobenius action on each local cohomology module H (A), and we say (A, m) is F-
injective if this natural Frobenius action on HY, (A) is injective for every i ([Fed83]).
This holds if A is F-pure [HR76, Lemma 2.2]. For some other basic properties of
F-pure and F-injective singularities, see [HR76], [Fed83], [EHO0S].

3. A GENERAL BOUND OF LOCAL COHOMOLOGY MODULES AS D-MODULES

In this section, we will establish a bound of H}(R) as a D(R, k)-module when
R = k[z1,...,x,] is a polynomial ring over a field k (of any characteristic) in terms

3This is not the original definition of F-rationality but is shown to be equivalent ([Smi97]).

4A map of A-modules N — N’ is pure if for every A-module M the map N® 4 M — N'®4 M is
injective. This implies that N — N’ is injective and is weaker than the condition that 0 - N — N’
be split.
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of the degrees of generators of I. To this end, we begin with recalling the notion of
the Bernsteln ﬁltratlon and k-filtration.
Denote + t,d pr by D;; for t € N,1 <i<n. Then D(R,k) = R(D;; |t € N,1 <

i <n). We set J] to be the k-linear span of the set of products

{371 x:{’ DDy nlin+- - Fin+ti+---+t, S]}
Then the Bernstein filtration on D(R, k) ([Lyull, Definition 2.6]) is defined to be
kzﬁngleg'“

Definition 3.1 (Definition 3.2 in [Lyull]). A k-filtration on a D(R, k)-module M
is an ascending chain of finite-dimensional k-vector spaces My C M; C --- such
that | J, M; = M and #;M; C M, ; for all i and j.

We need the following result of Lyubeznik. We note that in characteristic 0,
the D-module length of holonomic D-modules has been studied before; see [Ber71],
[BjoT9].

Theorem 3.2 (Theorem 3.5 in [Lyull]). Let M be a D(R,k)-module with a k-
filtration My C My C ---. Assume there is a constant C such that dimy (M;) < Ci™
for sufficiently large i. Then the length of M as a D(R,k)-module is at most n!C'.

The statement of [Lyull, Theorem 3.5] assumes that there is a constant C' such
that dimy (M;) < Ci" for alli > 0; however, the proof of [Lyull, Theorem 3.5] only
uses the fact that there is a constant C' such that dimy(.#;) < Ci" for sufficiently
large i. Hence the proof of Theorem 3.2 is identical to the one of [Lyull, Theorem
3.5] and is omitted.

To illustrate the advantage of requiring only that dimy (M;) < Ci™ for sufficiently
large i, we consider a simple example.

Example 3.3. Set R; to be the k:—span of monomials in x,...,x, of degree at
most i. It is clear that Ry C Ry C --- is a k-filtration of R. It is well-known that
dimg(R;) = ("'H) which is a polynomlal in 7 of degree n with leading coefficient 1

Hence, given any ¢ > 0, we have dim(R;) < 1+€ " for sufficiently large® i. Slnce
the length of a module is an integer, it follows from Theorem 3.2 that the length
of R in the category of D(R,k)-modules is 1. On the other hand, if one requires
dimy (R;) < Ci™ for alli, then one will need C' > "1 (consider the case when i = 1)
and consequently cannot deduce the correct length of R from [Lyull, Theorem 3.5].

Remark 3.4. In the proof of [Lyull, Corollary 3.6], the following statement is
proved: Let M be a D(R, k)-module with a k-filtration My C My C --- and let f €
R be a polynomial of degree d. If there is a constant C such that dimy(M;) < Ci™
for sufficiently large i, then M| = i(d+1)} induces a k-filtration of M;
such that dimy,(M?) < C(d + 1)™i" for sufficiently large i.

Theorem 3.5. Let f € R be a polynomial of degree d. Then the length of Ry in
the category of D(R,k)-modules is at most (d + 1)™. Also, the length of H}(R) is
at most (d+1)" — 1.

Proof. Combining Example 3.3 and Remark 3.4, we see that R; admits a k-filtration
Rj C R} C --- such that, for any any ¢ > 0, one has dimy(R}) < L£=(d + 1)"i".

5We should remark that how large i needs to be certainly depends on e.
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According to Theorem 3.2, we have that the length of Ry in the category of D(R, k)-
modules is at most (1 + ¢)(d + 1)™ for any € > 0; it follows that the length of Ry
in the category of D(R, k)-modules is at most (d + 1)™.

The second conclusion follows from the exact sequence 0 -+ R — Ry — H} (R)
and the fact that the length of R is 1. O

Corollary 3.6. Let I be an ideal of R. If I is generated by f1,. .., fi with deg(f;) =
d;, then the length of H}(R) in the category of D(R, k)-modules is at most

Z (diy +--+di; +1)" = 1.

1<iy <<y <t

Proof. It is clear from Theorem 3.5 that the length of Ry, ..g;, 1s at most

S (di ot di + D)™

1<in << <t

Our corollary follows from the fact that H} (R) is a proper subquotient of @ R fir 1
in the category of D(R, k)-modules. O

The bounds in Theorem 3.5 and Corollary 3.6, though general, are very coarse.
In the rest of the paper, we will focus on the length of Hf(R) where c is the height
of I and k is of prime characteristic p, and where F-module theory and tight closure
theory can be used to produce sharper bounds.

4. FORMULAS AND UPPER BOUNDS ON THE D-MODULE
AND F-MODULE LENGTH

Notation. Henceforth R denotes k[[x1,...,x,]] or k[z1,...,z,], where k is a field
of characteristic p > 0, m = (x1,...,x,), and we let A = R/I be reduced and
equidimensional or graded reduced and equidimensional of dimension d > 1.

We first analyze the case when A has an isolated non-F-rational point at {m}.
We start with a few lemmas.

Lemma 4.1. Let 0 — L % M 25 N = 0 be an ezact sequence of Artinian A{f}-
modules. Let fr,, far, fn denote the Frobenius actions on L, M, N respectively. Then
the stable parts form a left exact sequence of finite dimensional vector spaces: 0 —

L% M, 2N,

Proof. Let K be the perfect closure of k. Define A¥X = A ®; K and for any A{f}-
module X, let X® be the A¥{f}-module A¥ ®; X where the action of f is given
by fOE  m@N) =Y, flz) @ N for z1,...,2, € X and \,...,\, € K.

[Lyu97, Proposition 4.9] implies that XX = X, ®; K, so if we could show that
K K
0— LK 2 MK LN X, the fact that K is faithfully flat over k would imply the

exactness of 0 — Ly < M, ﬁ) Ns. Therefore we may assume that & is a perfect
field.

The exactness at Ly and Sa = 0 are obvious. Hence to prove exactness it
suffices to show that ker 5 C ima. Since N is Artinian, by [Lyu97, Proposition
4.4] U, >, ker fx = ker f? for some 7 sufficiently large and ker fx C ker f% C ---
stabilizes.

Pick € My such that S(x) = 0. Since we are assuming that k is perfect, the
k-vector space generated by f”(M) is just f7(M) for all » > 0; therefore, for each
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r > 10, there exists y € M such that z = f},(y). We have f3(8(y)) = 8(f1;(v)) =
0. So fA’(B(y)) = 0 and hence z = f}7(y) € L. Therefore for each r > rg, there
exists z € L such that = f}; (), hence z € Ls. O

Lemma 4.2. Suppose dim A =d > 1. Then (0% T (A))s >~ (HZ (A)),.

Proof. We have 0 = Oja 4y — HY (A) — HE (A )/0fa 4y = 0. By Lemma 4.1,
it suffices to show that (Hd (A )/OHd (A)) = 0. But by [Lyu97, Proposition 4.10],
dim(Hy (A4)/0314 (4))s = etk AR a(Hy (A) /05 4))- Let Pr,..., P. be all the min-
imal primes of A. By [Bli04, Theorems 4.3 and 4.4], Hr 4(HE(A )/OHd (A) )is a
direct sum of simple Fgr-modules, each of which has P; as its unique associated
prime. This implies that crk #% a(H% (A )/OHd (A)) = 0 because dim A > 1, and
hence (H% (A )/OHd (A)) = 0 as desired. O

Theorem 4.3. Let R = k[[x1,...,z,]] (or klz1,...,z,]) with m = (z1,...,2,),
where k is a field of characteristic p > 0. Let A = R/I be reduced and equidi-
mensional (respectively, graded reduced and equidimensional) of dimension d > 1.
Assume that A has an isolated non-F-rational point at m (e.g., A has an isolated
singularity at m). Then

Ip(ropy (H7 ™ (R)) = dimy (O34 (4))s + ¢ = dimg ((Hy (4))s) + ¢,

where ¢ is the number of minimal primes of A. Moreover, if k is separably closed,
then we also have

Ui (H77(R)) = lrg (H7"(R)) = lryr (H7(R)) = lp, (H7*(R))

= dimk(O;I?“(A))s +c.
Proof. The second equality follows immediately from Lemma 4.2. Thus it suffices
to show that

Ip(r,e H]R)) = dimg (Ofpa (4))s + ¢

and

lre (7~ (R)) = dimg (Ofa (4))s + ¢
when k is separably closed, since the other equalities would follow from (2.0.1).

The short exact sequence 0 — OHd ) HY(A) — HE (A )/OHd (4) — 0 induces

0 — 4 (Hg (A) /05 (A)) — Hra(Hy(A)) = Hy " (R) — A5, a(0] HY, (a)) = 0.

Now by [Bli04, Corollary 4.2 and Theorem 4.4], #% a(H% (A )/OHd (A) ) is a direct
sum of simple D(R, k)-modules, each supported at a different minimal prime of A, so
its D(R, k)-module length is ¢, and in fact each of these simple D(R k)-modules are
(simple) Fr-modules [Bli04, Theorem 4.3]. Thus lp(g k) (#R,a(H d(A )/OHd (A)))
U (R, A (H (A) /054 ) = c.

Since A has an isolated non-F-rational point at m, 0}
an A-module. This implies that % (0 H?"(A))
Hr a0 (A)), as a D(R,k)-module, is a direct sum of finitely many copies of

T () has finite length as

is supported only at m. Hence

H; (R) by [Lyu00, Lemma (c)]. Moreover, when k is separably closed, #r (054 (A))
is a direct sum of copies of E = H[; (R) even as an Fr-module [Malda, Lemma 4.3].
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The number of copies of Hy, (R) is exactly its D(R, k)-module length (Fr-module
length when k is separably closed). However, since %, A(O;I?n ( A)) is an
Fpr-module supported only at m, the number of copies of Hf (R) is by definition
crk %R’A(Oﬁtj“(,q)% which is dirnk;(O;:Ifl“(A))S by [Lyu97, Proposition 4.10]. Hence
ZD(R»k)(%RvA(O;I‘é‘(A))) = dimk(O*H‘f“(A))S’ and lFR(%R,A( I*ilﬁ‘(A))) = dlmk(o;l?n(A))S
when k£ is separably closed. O

Remark 4.4. When k is not separably closed, I, (H7~%(R)) = dimy( T (A))S +c
fails to hold in general; see Corollary 7.4. However, if k is a finite field, then we

always have [ps (H"YR)) = dimy (034 (A))S + ¢; see Proposition 7.7.

Remark 4.5. When [ is a homogeneous reduced and equidimensional ideal in R =
klzy,...,zn] (e, Ais a graded domain), it is easy to check that (0f. (A))S =

(HEL(A))s = (HL(A),y)s since the stable part will be concentrated in degree 0.
Therefore, we have an upper bound of the D(R, k)-module length of H?_d(R) in

the graded isolated singularity case: it is at most dimk(Hﬁl(A)o) +c. Geometrically,
it is at most dimy(H (X, Ox)) 4+ ¢ where X = Proj(A).

We have the following application.

Example 4.6. Let A = k[z1,...,2,]/(f) where k is a field of prime characteristic p
and deg(f) = n. Denote k[z1,...,2,] by R. Then there is a commutative diagram
of short exact sequences

0— s H"'(A)g —— H(R)_p, — 5 H(R)g =0 —— 0

| prlp lF

0 —— HI 1 (A)g —— HIL(R)_ — 5 H(R)g = 0 —— 0

where F denotes the natural Frobenius maps. It follows that dimy(H” *(A)y) =
dimy(H”(R)_,) = 1. It also follows from the diagram that F : H” *(A4)y —
HZ1(A)g is injective if and only if so is fP~'F: HZ%(R)_, — H%.(R)_,, which
holds if and only if fP~' ¢ ml.

Assume further that f is irreducible with an isolated singularity at m over a per-
fect field k; i.e., A is a Calabi—Yau hypersurface over k. Then by Fedder’s Criterion,
F: H' Y (A)g — HYY(A)g is injective if and only if A is F-pure. Consequently,
dimy, (H2. ' (A)o)s = 1 if and only if A is F-pure. Thus it follows from Theorem 4.3
that

1 A is not F—pure,
lD(R,k:) (H}f(R)) = { P

2 otherwise.

In particular, when Proj(A) happens to be an elliptic curve, there are infinitely
many primes p such that H} (R) is a simple D(R, k)-module and infinitely many
primes p such that H}(R) has length 2 as a D(R, k)-module.

Next we partially generalize Theorem 4.3 to the case that the dimension of the
singular locus of R/I is 1. We first prove a lemma, which should be well known to
experts.
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Lemma 4.7. Let M be an (F-finite) Fr-module (resp., F’-module). Then Mp
and M ® Rp are (F-finite) Frp and Fg~-modules (resp., Fg;, and FA—modules)
Moreover, if M is a simple Fr-module (resp simple Fg°-module), then Mp and
M ® }/%TD, if not zero, are simple as Fr, and Fé;-modules (resp., simple as Fg,
and F%%—modules).

Proof. The conclusion for F-modules follows from Proposition 2.7 and Corollary 2.9
of [Bli04]. The argument for F3°-modules is very similar, so we omit the details. O

Theorem 4.8. Let R = k[x1,...,z,] and m = (z1,...,2,). Let I be a homoge-
neous reduced and equidimensional ideal of R. Set A = R/I with dim A = d > 2.
Suppose the non-F-rational locus of A has dimension < 1 (e.g., the nonsingular
locus has dimension < 1). Then we have

iR < et Y dimyge (HEL (A5)), + dimy (HA(4)),
dim R/P=1

= c+ Z dimﬁ(p)(OHd 1 (A )) +dimk(01§§n(,4))s’
dim R/P=1
where ¢ is the number of minimal primes of I.
Proof. Clearly the second equality follows from Lemma 4.2. Therefore it suffices to
prove the first inequality. We may assume that the dimension of the non- F-rational

locus is 1, since otherwise the result follows from Theorem 4.3 (the second term
is 0). We begin with the following claim.

Claim 4.8.1. There exist graded Fg-submodules
0CLCMCH!"4R)

such that every D(R, k)-module composition factor of L is supported at a minimal
prime of A, every D(R,k)-module composition factor of M/L is supported at a
dimension 1 prime, and H?id(R)/M is supported only at m.

Proof of claim. We have a short exact sequence
0 = Ofa 4y = Hu(A) = HL(A) /0514 4 = 0
that induces
0 = ", a(Hyy (A) /050 (1)) = “Hr,a(Hy(A) = HF~(R) = A a(0fa ) = 0.

We have, by the graded version of [Bli04, Corollary 4.2 and Theorem 4.4], that
A a(HE (A )/OHd (A)) is a direct sum of simple D(R, k)-modules, each supported
at a different minimal prime of A. So we set L = *#3 4(H% (A )/OHd (A)) The
existence of M follows by applying [LSW16, Theorem 2.9(3)] to *%R7A( (A)),

which is a graded F-finite Fgr-module. Note that the support of each D(R, k)-
module composition factor of M/L has dimension 1. This is because the support
of *"#g, a(0f ( A)) has dimension 1 since the dimension of the non-F-rational locus
is 1. " O

We know that Ip(g k) (L) = c. Moreover, it is clear from the above claim that M
is the smallest Fr-submodule of H}~%(R) such that H?~%(R)/M is only supported
at m. So H? %(R)/M is isomorphic, as a D(R,k)-module, to E®" = H%(R)®"
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where 7 = crk H?%(R) by [Lyu00, Lemma (c)] and the definition of corank. Thus
we have Ip(g ) (H} 4(R)/M) = etk H}~%(R) = dim(HZ (A))s by [Lyu97, Propo-

sition 4.10].
It remains to estimate the D(R, k)-module length of M /L. Suppose we have
(4.8.2) 0CL=MyCM CMC---CM=MCH “R)

such that each N; = M;/M,_; is a simple D(R, k)-module. We know that each N;
has a unique associated prime P with dim R/P =1 and Ap not F-rational.

Claim 4.8.3. The number of N; such that Ass(NV;) = P is at most crk H;%g(é;).
P

Proof of claim. We localize (4.8.2) at P and complete. We have
0CL®Rp=My®Rp C M ®RpC---C M®Rp =H - (Rp)

with successive quotients N; @ Rp (the last equality follows because Hf ~%(R)/M
is supported only at m). Each N; ® Rp is either 0 or a D(Rp, k)-module sup-
ported only at PRp (and thus a direct sum of E(Rp/PRp)) depending on whether
Ass(N;) # P or Ass(N;) = P. Therefore H?;(Rp)/(L ® Rp) at least as an Rp-
P

module, is isomorphic to E(Rp/PRp)". The number of N; such that Ass(N;) = P
is thus <.

But L ® Rp is a direct sum of simple Fz—-submodules of H” (Rp) supported
at minimal primes of Ap by Lemma 4.7, so we have r = crk H;‘R\d(RP) by the

P

definition of corank. This finishes the proof of the claim. (]

Applying the above claim to (4.8.2) we get

n—d (D
Ip(ray(M/L)< > akH)—!(Rp).
dim R/P=1

Because 7~ Z?( (Ap)) & H;%ﬂ(é}) (the indices match because I is equidi-
P

mensional), by [Lyu97 Proposition 4.10] we have
crk H?%(Rp) = dim,,i(p) (H(;,%IF(AP))S

Finally, summing up the D(R, k)-module length of L, M/L, and H}"%(R)/M, we
have:

Iprp(HYR) <c+ D dimyp)(H] (AP))erdimk(Hi(A))s- 0
dim R/P=1

We end this section with some remarks and questions regarding Theorem 4.8:

Remark 4.9. It is clear that the sum } ;. p/p_y d1mm(p)( (Ap))s in Theorem
4.8 is a finite sum: in fact we only need to consider those prlmes P such that
Ap is not F-rational (which form a finite set by our assumption). We ought to
point out that, more generally, without any assumption on the F-rational locus,
[Lyu97, Proposition 4.14] shows that there are only finitely many prime ideals P
such that (F, Z;(AAP))S £0.

Remark 4.10. We do not know whether the inequality in Theorem 4.8 is an equality.
This is due to the fact that, , in the proof of Claim 4.8.3, we do not know whether
the D(Rp, k)-module N; ® Rp is isomorphic to a single copy of E(Rp/PRp)
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In general, a simple D(R,k)-module may not stay simple as a D(ﬁp,ﬁ;(P))—
module after taking localization and completion. We point out the following exam-
ple, which is derived from [Bli03, Example 5.1].

Example 4.11. Let R = k[z] where k is an algebraically closed field of positive
characteristic. Let M = R @ R be a free R-module of rank 2. We give M an
Fgr-module structure by setting the composition map

Onr or' @07
R®R - F(R)® F(R) ———

to be the map represented by the matrix

—x 1
)
where 0 denotes the standard isomorphism R = F'(R).

Next we pick a nonzero simple Fg°-module N C M (note that the only associated
prime of N is 0). By [Bli03, Corollary 4.7], N must be a simple D(R, k)-module
since k is algebraically closed. However, after we localize at 0, that is, tensor with
the fraction field k(x) of R, M@pgk(x) becomes a simple Ff, -module because M &
E(x)Y/P™ is a simple FCoy1/pee-module by [Bli03, Example 5.1].5 Thus we must
have N®@gk(z) 2 M ®gk(z), but M ®p k(z) is not a simple D(k(z), k(x))-module
because obviously every 1-dimensional k(z)-subspace is a nontrivial D(k(x), k(zx))-
submodule.

ROR

Remark 4.12. One approach to generalizing Theorem 4.8 is to find an F-submodule
M of H7~%(R) such that none of the composition factors of M has 0-dimensional
support and the support of Hy~%(R)/M is contained in {m}. In the graded case,
the existence of such an M follows from the proof of [LSW16, Theorem 2.9]. We
don’t know whether [LSW16, Theorem 2.9] can be extended to the nongraded case.

Hence it is natural to ask the following.

Question 4.13. Does there always exist an F-submodule M of H}~%(R) such that
none of the composition factors of M has 0-dimensional support while the support
of H*"%(R)/M is contained in {m}?

Despite the above remarks and questions, we still expect that there should be an
analogue of Theorems 4.3 and 4.8 or similar estimates in the local case and without
the restriction on the non-F-rational locus.

5. A LOWER BOUND ON F-MODULE LENGTH
OF LOCAL COHOMOLOGY MODULES

In this section we will give lower bounds on I, (H(R)). Throughout this section
we will assume R = k[[z1, ..., )] with m = (21, ...,2,), where k is a field of char-
acteristic p > 0, and that A = R/I is reduced and equidimensional of dimension
d > 1. Henceforth in this section E = Eg(k) will denote the injective hull of the
residue field of R, and E4 = E4(k) = Anng I will denote the injective hull of the
residue field of A.

6Note that the matrix we used here is the inverse of the matrix in [Bli03, Example 5.1]. This
is because we are describing the matrix representing the F-module structure on M ®r k:(ac)l/pac7
while Blickle was working with the matrix representing the Frobenius action on M ®pr k(m)l/pw.
We leave the reader to check that they define the same F-module structure on M ®@p k(z)/P™.
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We first collect definitions and facts from [Sha07] and [Kat08]. Given an Artinian
A{f}-module W, a special ideal of W is an ideal of A that is also the annihilator
of some A{f}-submodule V.C W, and a special prime is a special ideal that is also
a prime ideal (note that the special ideals depend on the A{f}-module structure
on W, i.e., the Frobenius action f on W). An important result of Sharp [Sha07,
Corollary 3.7] and Enescu-Hochster [EH08, Theorem 3.6] shows that when f acts
injectively on W, the number of special primes of W is finite.

The module of inverse polynomials E comes equipped with a natural Frobe-
nius map T given by T(A\xy ™' ...x, %) = g P . x,P* for all A € k and
Qai,...,an > 0. Any Frobenius map on E has the form uT where u € R and any
Frobenius map on E4 has that form with « € (IP! : I) (cf. [BliO1, Proposition
3.36]). Such an action uT on E, is injective if and only if u ¢ ml[P! and is nonzero
if and only if u ¢ IPl. If we now specialize the notion of special ideals to the A{f}-
module E4 where f = uT, we see that these are ideals J such that « € JP : J and
we refer to these as u-special ideals ([Kat08, Theorem 4.3]). A u-special prime is a
u-special ideal that is also a prime ideal.

5.1. F-pure case. Our main result in this subsection is the following.

Theorem 5.1. Assume A = R/I is reduced and equidimensional of dimension
d > 1. Suppose A is F-pure. Then lp, (H}L—j(R)) is at least the number of special
primes of B, (A). Moreover, when A is quasi-Gorenstein, lp, (H} %(R)) is exactly
the number of special primes of H%(A).

Proof. Let P be a special prime of HZ (A). Take an A{f}-submodule N C HJ (A)
such that Ann N = P. Recall that the Frobenius action on N induces a map
F(N) — N. We claim that this map is surjective: letting N C N be the image,
we have N’ C N C HJ (A) are A{f}-submodules such that the Frobenius action
on N/N' is nilpotent. But HZ (A) is anti-nilpotent (i.e., the Frobenius action on
HI(R)/N' is injective) by [Mal4b, Theorem 3.7]. So we must have N’ = N, and
thus F(N) — N is surjective.

Taking the Matlis dual, we get N¥ < F(N)¥V = F(NV). This shows that NV
is a root of % 4(N) (recall that by definition, #% 4(N) = li_r)n(NV — F(NY) —
F2(NVY) — --.)). In particular, we know that the set of associated primes of NV
is the same as the set of associated primes of % 4(IN) (this follows easily from
the argument in [Lyu97, Remark 2.13]). But Ann N = Aun NY = P and NV is a
finitely generated R-module; thus P is a minimal associated prime of NV and hence
a minimal associated prime of ¢z 4(N). This implies that #% 4(N) must have
a simple Fr-module composition factor with P its unique associated prime. But
we have H} 7/ (R) = #p 4(H, (A)) - Sk a(N). Hence for every special prime P
of HZ (A), HY/(R) has a simple Fg-module composition factor with P its unique
associated prime. This proves that Iz, (H} 7 (R)) is at least the number of special
primes of HZ (A).

Finally, when A is quasi-Gorenstein, H%(A4) = E4, the injective hull of the
residue field. So there is a one-one correspondence between A{f}-submodules of
Hi(A) and their annihilator ideals. Let Py, ..., P, be all the special primes with
ht Py > ht P, > --- > ht P,,. Let Q; = PLNPyN---NP;. We have an ascending
chain of A{f}-submodules of H% (A) = E4:

O;AnnEQl ;AnnEQg g ;AHDEQm:EA~
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It suffices to show that & 4(Anng Q;/ Anng Q1) is a nonzero simple F-module.
It is nonzero because the Frobenius action on Anng Q;/ Anng Q;_1 is not nilpotent
(in fact it is injective because H (A) is anti-nilpotent). If it is not simple, then there
exists another A{f}-submodule M such that Anng Q; 1 & M & Anng Q;, which
implies that Q; G Ann M G Q;_1. But since the Frobenius action on HY(A) = Ex
is injective and M is an A{f}-submodule, Ann M is an intersection of the special
primes by [Sha07, Corollary 3.7] or [EHO08, Theorem 3.6]. This is then impossible
by our height hypothesis on P; and the definition of Q;. ]

Remark 5.2. When A is not F-pure, the number of special primes of H/ (A) is
not necessarily a lower bound of I, (H?_j (R)). In fact, in Example 4.6, when
A = R/f is a Calabi-Yau hypersurface that is not F-pure, then Ip, (H} (R)) =1,
while the number of special primes of H. (A4) is 2: (f) and m are both special
primes of HL (A). So the first conclusion of Theorem 5.1 need not hold when A is
not F-pure.

Example 5.3. Let A = klz1,...,2,)/(zsz; |1 <i < j <n)=R/I. Then A
is a 1-dimensional F-pure ring, and A is not Gorenstein when n > 3. A straight-
forward computation using [EH08, Theorem 5.1] shows that the special primes of
HL (A) are P; = (x1,...,%,...,2,) and m (thus there are n+ 1 special primes) but
lp,(H?Y(R)) = 2n — 1. Hence lp, (H} ' (R)) is strictly bigger than the number of
special primes when n > 3 (and the difference can be arbitrarily large when n > 0).
This shows that the second conclusion of Theorem 5.1 need not hold when A is not
quasi-Gorenstein.

5.2. Gorenstein case: A second approach. In this subsection we assume that
A = R/I is Gorenstein and F-injective (equivalently, Gorenstein and F-pure). In
this case H}(R) vanishes unless i = n — d, and we already know from Theorem 5.1
that Ig, (H} 7 (R)) is equal to the number of special primes of H% (A). Our goal
here is to give a more detailed analysis on the Fr-submodules of H?ij (R) in terms
of their generating morphisms, and in particular we recover the second conclusion
of Theorem 5.1.

Since A is Gorenstein, £y = Hgl(A), and thus there is a natural Frobenius action
Ilelg
Il

action on E is given up to sign by uT', where we fix u € I'" : I whose image in
I ;’fl][ generates it as an A-module (and T' denotes the natural Frobenius on E). The
u-special ideals (resp., u-special primes) are thus the special ideals (resp., special
primes), and they are finite by [Sha07, Corollary 3.7] or [EHO08, Theorem 3.6].
Following the construction in [Lyu97, §4], we obtain a generating morphism for
H?"%(R) of the form R/I “ R/I"! with u as above. To obtain a root, we let

K= UQl([[pe] : u1+-..+pe—1)7 and now R/K - R/K! is a root of H} ~%(R).

Lemma 5.4. The proper F-finite F-submodules of Hf~*(R) have roots J/K

JP /K as J ranges over all proper u-special ideals, and, furthermore, distinct

special ideals J define distinct F-finite F-submodules of H?id(R).

Proof. [Lyu97, Corollary 2.6] establishes a bijection between F-finite F-submodules

N of H?*~%(R) and R-submodules of the root R/K which is given by N+ NNR/K.
Fix such N and write J/JK = N N R/K. The fact that N is an F-finite

F-submodule of H?_d(R) implies that the image of the restriction of the map

on E4. In this case the module is a cyclic A-module, and the natural Frobenius
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R/K % R/KW to J/K isin F(J/K) = JP!/KIPl and hence J is a u-special ideal.
Clearly, any such u-special ideal defines an F-finite F-submodule of H}l_d(R), ie.,
lim(J/K gl gl 2y g el 2 )
_)To finish the proof we need to show that any two distinct u-special ideals Jy
and Jy define different F-finite F-submodules of H?~(R). If this is not the case,
then for some e > 0, u”e J; /K] =y J, /KP) where ve =1 +p+---+p°! and
uve J; + KPP = yre J, + KT,

The fact that f is injective on E is equivalent to u”e ¢ LIP’l for all e > 1 and
all proper ideals L C R ([Kat08, Theorem 4.6]), and in particular u”> ¢ Jl[pe]
and ue ¢ J2[pe]. But now u’c.J; C uveJy + KIP°l C J2[pe], and J2[pe] is a primary

ideal (because R is regular); hence J; C \/JQ[pE] = Jo. Similarly, also Jy C Ji,
contradicting the fact that J; # Js. O

Theorem 5.5. Let A=R/I be Gorenstein and F-injective where R=k[[x1, ..., xx]]
orklzy,...,x,] withm = (x1,...,2,). Let {P1,..., Py} be the set of all the special
prime ideals of Hﬁl(A) which contain K, and assume that these were ordered so that
htPy > htPy > - > htPy,. Write Q; = PLN---NP; foralll < j < m. The
chain of roots

Qm Qm-—1 Q1 R
0 C K C K C ... C K C V74
LT L)
Q) e QY R
0 C & € Fwmr € -+ C 7w C Fmw

corresponds to a mazximal filtration of H?id(R) in the category of Fr-modules.

Proof. Since u@Q; C Qgp } and uk C K"l the vertical maps are well defined, and
the diagram is clearly commutative.

To show that the factors are nonzero, note that if Q;4-1 = PiN---NPj4q =
PiNn---NP;=Qj, then Pjy; D PLN---NFP; and Pjy1 D P; for some 1 <4 < 5.
But the ordering of P,..., P, implies that ht P;;, < ht P;, giving P; = Pj41, a
contradiction.

If the factors are not simple, then for some 1 < j < m there exists a special ideal
J such that Py N---NP;N P ©J C PiN---NP;. Being special, J is radical
and has the form PiN---N PN Py, NPy, N--- NPy, for j <ki,...ks <m. Now
forevery 1 <£<s, Py, 2 PiN---NPj1q 80 P, O P, forsome 1 <w < j+1, and
the height condition implies P, = P, and we conclude that J C Py N---N Pjq,
a contradiction.

It remains to show that the Fr-submodules defined by the roots Q;/K —

Qgp ) JKP are distinct: this follows from Lemma 5.4. O

Corollary 5.6. Suppose A = R/I is Gorenstein and F-injective. The length of
H?_d(R) in the category of Fr-modules equals the number of u-special primes of
HY (A) that contain K.

Remark 5.7. Suppose A = R/I is Gorenstein and F-injective. We can actually
prove that the length of H?_d(R) in the category of Fig-modules for every e (and
hence in the category of Fg°-modules) equals the number of u-special primes of
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HZ (A) that contain K. Tt suffices to prove that every Fg-submodule of H7~%(R)
is already an Fg-submodule of H}"%(R). By the same argument as in Lemma
5.4, all Fg-submodules of H}"%(R) have roots of the form J/K where .J is an
ideal containing K with the property ul*P++P""J C JIPl. Since A = R/I is
Gorenstein and F-injective (and hence F-pure), u is a generator of (IP! : I)/IP] as
an R/I-module and u ¢ m[?! by Fedder’s criterion [Fed83]. We will show that these
imply u.J C JP and thus J/K already generates an Fr-submodule of H}~¢(R).
Since u ¢ ml?l and R is regular, there is a p~'-linear map (i.e., a Frobenius splitting)
¢: R — R such that ¢(u) = 1. Therefore u! PP ¢ Jrl: J implies that
ERICLERP)

e—1

I ey ¢(up(1+p+---+pe*2) cu) = p(ul Pt

efl]

C ¢(J[pe] ;J[p]) — Jlr o,

and thus by an easy induction we have v € JP! : J (note that we have used
(Jl" "
is flat).

NP = g1 gl because R is regular so the Frobenius endomorphism

5.3. Cohen—Macaulay case. In this subsection we assume that A = R/I is re-
duced and Cohen-Macaulay. In this case the canonical module of A can be identified
with an ideal w C A. Let Q be the pre-image of w in R, that is, /I = w C A. The
inclusion w C A is compatible with the Frobenius endomorphism, and the short
exact sequence 0 - w C A — A/w — 0 induces an A-linear map

0— HE Y (A/w) — HE (W) — HE(A) — HE (A/w) — 0.
Now each of the Artinian A-modules is equipped with a Frobenius map induced
by the Frobenius endomorphism acting on the short exact sequence, and H% (A/w)
vanishes since dimA/w < dimA = d. So we obtain a short exact sequence of
A{f}-modules
0 — HE Y (A/w) — HE (w) — HE(A) — 0.
We can now identify H%(w) with E4 = AnngI. Note that the annihilator of
H% 1(A/w) in A is w; hence the annihilator of HS (A /w) in R is Q (since R/T = A
and Q/I = w). Thus we may identify HS ' (A/w) with Anng €.
We now have a short exact sequence
0— Anng Q — Anng I — HE(A) =0

of A{f}-modules, and we can also write H. (A) = Anng I/ Anng Q. Recall that
any Frobenius action on Anng I has the form T where T is the natural Frobenius
on E and u € (IP! : I). Fix u € R to be such that uT is the Frobenius action on
Anng I in the exact sequence above. We now can obtain an Fg-module filtration
of H}"*(R) = #% a(Anng I/ Anng Q) by applying the Lyubeznik functor % 4
to a chain of surjections

Amng I/ Anng Q — Anng I/ Anng J; — -+ — Anng I/ Anng J,,
where Ji,...,J,, are u-special ideals such that & > J; 2 --- D J,, D I. We let
K= U621(I[pc] LT o that Q/K % QlP/KTP s a oot for H?(R) =
Hr a(Anng I/ Anng Q).

Theorem 5.8. Assume that A = R/I is Cohen—-Macaulay. Let {Py,..., Py} be
the set of all the u-special prime ideals P O K such that P 2 Q and u ¢ Pl
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and assume that these were ordered so that ht P, > ht P, > --- > ht P,,,. Write
Qi =QNPN---NP; forall1 < j <m. The chain of roots

Qm Qm-—1 Q1 Q
0 C K C K C ... C Na V74
L L]
Q%] Q[P] Q[P] Q
0 C # C Fmr C .. C #Hx C %xm

corresponds to a filtration of H?id(R) in the category of F'-modules with nonzero
factors.

Proof. The homomorphic images AnngI/AnngQi,...,Anngl/Anng @y of
Anng I/ Anng Q are preserved by the natural Frobenius action on HY(A) =
Anng I/ Anng Q because each @Q;, being the intersection of u-special ideals, is itself
special.

An application of the Lyubeznik functor %% 4 to the chain of surjections

Amng I/ Anng Q — Anng I/ Anng J; — -+ — Anng I/ Anng J,,

yields a filtration of H?_d(R) whose generating morphisms are the vertical maps in
the following commutative diagram:

Qm-—1 Q1 Q

0 C T C -7 c ... C T C T
Q! Qb QY Q
0 C ; C fini c ... C 71r] C 0T

We can replace these generating morphisms by their corresponding roots and obtain
the commutative diagram

Qm Qm-—1 Q1 Q
0 C K C K C ... C K C V74
L L]
Q%] Q[P] [p] Q
0 C # C Fmr C .. C #Hx C %@

where now all vertical maps are roots, and once we show that the inclusions in this
diagram are strict, this gives a filtration of H}~%(R) with nonzero factors.
We need to show that for alle > 1 and all 1 <17 < m,

QF]:uvey ¢ Q) ure),

where v, = 14+ p + --- + p°~ L. If we have equality, we may take radicals of both
sides to obtain

i+1

/(Q[p uue m \/ uue \/( pe] . uyg h P[pe] . UV€)7
j=1

and so

7

\/(Pi[fl] tuve) 2 \/(Q[p s uve) ﬂ v/ ( P[p suve).

Jj=1
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We claim that u"e ¢ P][p 7 for each 7 and we will use induction on e to prove this.

When e = 1, this is precisely our assumption that u ¢ Pj[p ). We assume that

u’e ¢ Pj[pe] and we wish to prove that u"e+1 ¢ Pj[pe+1], If ue+t € Pj[peﬂ]7 then we
would have
e+1 e e .
= (PJ[P Foyp )= (P][p] )Pl C Pj[p ],
]

a contradiction, where the last inclusion follows from the fact that P][p is P-primary
and our assumption that u ¢ P][p I,

Consequently (Pi[fl] :u’*) # R, and we must have (P[pE] s ur*) C Piyg. So

it1
Piy1 2 /(QPTyre) N m;:1 (Pj[pe] :u”e), and hence P;;; must contain one of
the ideals in the intersection. Since these ideals are among the unit ideal, P, ..., P;

and /(QP°) : yre) D Q, this is impossible. O

We have the following immediate corollary of Theorem 5.8.

Corollary 5.9. Let A, R,I,u, K, be as in Theorem 5.8. The length of H?id(R)
in the category of F'-modules is at least the number of u-special prime ideals P O K
of HE (A) such that P 2 Q and u ¢ PP

Remark 5.10. If A is quasi-Gorenstein and we take 2 = R, the prime special ideals
in the statement of Theorem 5.8 are the prime special ideals P D I of H% (A) such
that P O K, and u ¢ PPl The set of all such primes has been known to be finite
([KS12, Remark 5.3]), and if A is also F-injective, we obtain the same set of primes
as in Theorem 5.5; thus Theorem 5.8 generalizes Theorem 5.5.

6. A COMPUTATION OF FERMAT HYPERSURFACES

We have seen from Theorem 4.3 and Remark 4.5 that the problem of com-
puting the D(R, k)-module length of H} %(R) when A = R/I is a graded iso-
lated singularity comes down to computing the dimension of the Frobenius stable
part of H% (A)o. In this section we study this problem for Fermat hypersurfaces
A =klzo,...,zq]/(zf +2 +---+z)) with d > 2. We express the dimension of the
Frobenius stable part of H% (A) explicitly in terms of the number of solutions to a
system of equations on remainders. These results generalize earlier computations
of Blickle in [Bli01, Examples 5.26-5.29)].

Remark 6.1. Let A = k[zo, x1,...,2q]/(zf +2T7 +---+2]). Then the degree 0 part

of the top local cohomology Hgl(A) has a k-basis consisting of the elements of the

form ﬁ, where aq, ..., aq are positive integers and a1 +---+ag=c<n—1.
1

Therefore, its dimension is ("gl).
In the following we will use s%t to denote the remainder of s mod t.

Remark 6.2. We want to record an elementary observation. Let n > 2 be an integer
and let p be a prime. Let p = nk + r where r is the remainder. If for some positive
integer a < m, n|ar, then we claim that p|n.

This is because n|ar and a < n implies that n and » must have a nontrivial
common divisor. But p = nk + r is prime, so the only nontrivial common divisor
that n and r could have is p, in which case we must have p divides n.
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Theorem 6.3. Let A = k[xg,z1,...,2q]/(af + 27 +---+2]) with d > 2. Suppose
p=r mod n. Ifp does not divide n, then the dimension of the stable part ongl(A)
can be computed as the number of solutions of the following system of inequalities
onl<a; <n-—1:

ar+---+ag<n,

(ra1)%mn + -+ (raq)%n < n,

(r?a)%n + -+ (r’aq)%n < n,

(reM=1a)%n + - - - + (r*™=1a)%n < n.

Proof. A basis of the degree 0 part of H% (A) is formed by the elements
_ T
I(fl DY Id

where a1 + -+ +aq = ¢ <n and a; > 1. On such elements, Frobenius acts as

c cp (cr)%on n ny| <2
To Lo _ %y '(_xl_"'_xd)L”J

ai agq aip aqp aip aqp
xl ...‘Td xl ...l‘d a’;l .'.‘Td

After expanding the expression we obtain the sum of monomials of the form

(er)%n na no
)3:0 (@3

ap adp
l‘l DR xk

2|

(=)L (al,tn

ey Oy

for ay +---+aq = [£]. This element will be zero unless a;n < a;p for all i. Hence
it is zero if a; > | %] for some i. In particular, the element % is in the
1 d

kernel of the Frobenius map if
c a a
a1+ Fag= {_pJ > {LPJ 4+t {LpJ’
n n n
ie., a1p%n + -+ - + agp%n = ayr%n + - - - + agr%n > n. Similarly, if

2]- (2] +--+[22]

n n
the only term that can possibly survive is

C, e r)% % % n
E3 R C T
L%J?"'?L% Itlllp"'xgdp

= (L%J,L.%J ) (=)L) glon%n

.. I_aanJ xgalr)%n o .’L‘gadr)%n .
cp

Since | 2| < p, the binomial coefficient ( is nonzero. Thus the last

L52] )
[HE2 )., 42
possibility that the above term is zero is that a;r is divisible by n for some i. But
this cannot happen as explained in Remark 6.2 (since this implies p|n).
In sum, an element of the basis

%
:I;?]‘ e :I;;d
is not in the kernel of Frobenius if and only if

(ray))%m + - -+ (rag)%n < n.
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Thus the claim follows after considering further iterates of Frobenius (we only need
to consider the first ¢(n) — 1 iterates because 7#(™) = 1 mod n by Fermat’s little
theorem, so further iterates would repeat this pattern), because if a basis element
is not in the kernel of all the iterates of the Frobenius map, then it contributes to
an element in H% (A),. O

Corollary 6.4. Suppose p t n. Then Frobenius acts injectively on H% (A)g if and
only if p=1 mod n. As a consequence, (H%(A)o)s = HL(A)o if and only if p =1
mod n.

Proof. If p = 1 mod n the claim immediately follows from Theorem 6.3. For
the other direction, we need to show that there are integers a; > 1 such that
a1+ +aqg <nbut (ra)%n+ -+ (raqg)%n > n.

Now r is invertible modulo n, take 1 < ay < n — 1 such that a1 = —1 mod n.
Then since ra; > 1 for all 4 > 1, we always have (rai)%n + -+ + (raq)%n > n as
d>2. a

Corollary 6.5. If p = —1 mod n for some h, then Frobenius acts nilpotently on
H%(A)g. As a consequence, (H%(A)g)s = 0 in this case.

Proof. Consider the equation
(—a1)%n + -+ (—aq)%n <n

corresponding to r* (which is = p" = —1 mod n). Since 1 < a; < n—1, (—a1)%n =
n — ay, so the equation becomes

dn—ay — -+ —aqg <n.

But this equation has no solution since a; + -4+ aq <n and d > 2. O

Remark 6.6. The converse to the last corollary does not hold. For example, if
n = 11 and d = 2, then a direct computation shows that Frobenius acts nilpotently
on HZ (A)o unless p=1 mod n.

7. D-MODULE LENGTH VS. F-MODULE LENGTH

We continue to use the notation as in the beginning of §§4 and 5. In [Bli03],
Blickle made a deep study on the comparison of D-module and F-module length.
For example, in [Bli03, Theorem 1.1 or Corollary 4.7] it was proved that if & is alge-
braically closed, then for every F-finite F'5°-module M, we have lpp (M) = Ip, (M),
which is also = Ip (g k) (M) since Dp = D(R, k) when k is perfect. Moreover, when
k is perfect but not algebraically closed, Blickle constructed an example [Bli03, 5.1]
of a simple Fg’-module that is not Dg-simple (equivalently, not D(R, k)-simple
since k is perfect). In particular, even the Fg°-module length may differ from the
D(R, k)-module length in general.

However it is not clear whether these pathologies are artificial; i.e., can they
occur for local cohomology modules with their natural Fg-module structure? In
this section we will construct an example of a local cohomology module of R, with
k algebraically closed, such that its Fr-module length is strictly less than its Dg-
module length.

To begin, let V' be a vector space over a field k of positive characteristic p. Then
we can describe an eth Frobenius action f on V in the following way. Choose

Licensed to Univ of lllinois at Chicago. Prepared on Thu May 27 11:09:12 EDT 2021 for download from IP 128.248.156.45.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8572 M. KATZMAN, L. MA, I. SMIRNOV, AND W. ZHANG

a basis eq,...,e, of V. Let f(e;) = aser + -+ + apie,. Then for any element
b= (by,...,b,)T written in the basis e;, we can write
f(b) = AblP],

where A = (a;;) and [bP] raises all entries to the p°th power. Or explicitly,

air a2 o Qin [

Qg1 G2 - Q2pn !

f(b) = :
be°
anl1 am2 - Anp n

Via this description it is very easy to see the following result.

Lemma 7.1. Let k be a field of positive characteristic p and let V be a finite dimen-
sional vector space with an eth Frobenius action f. Let A be a matriz describing the
action of f in some basis e;. Then in a new basis obtained by an orthogonal matriz
O, f is represented by the matriz OA(OT)[”E], where all entries of the transpose O7
are raised to the p®th power.

Proposition 7.2. Let R = k[z1,...,x,) or k[[x1,...,2,]] and let V' be a k-vector
space with an eth Frobenius action f. Then lpe(#r r(V)) is the length of any
longest flag of f-subspaces

ocvicWc---CcV,,=V

such that f is not nilpotent on V;/V;_1 for every i.

In particular, lpe (#r r(V)) = dimV if and only if there is a basis of V' such
that, with the notation as in Lemma 7.1, f can be represented by an upper-triangular
matriz A with nonzero entries on the main diagonal.

Proof. The first claim is [Lyu97, Theorem 4.7].

If lpe (#7,r(V)) = dim V, then we must have dim V; = i. Then we will choose
a compatible basis for the flag, i.e., V; = k{e1,...,e;). Since f(V;) C V;, now
f(e;) = ajier + -+ + aze;. Thus the matrix representing f is upper-triangular.
Moreover, since f acts nontrivially on V;/V;_;, we must have a;; # 0. So the
matrix has nonzero entries on the main diagonal.

Conversely, if the matrix is upper-triangular with nonzero entries on the main
diagonal in some basis, it is easy to see that V; = k(ey,...,e;) form a flag of
f-subspaces where f acts nontrivially on V;/V;_;. |

Remark 7.3. Before proceeding further, we need a simple result in linear algebra.
Over a finite field I, where p # 3, consider the matrix

0 0 a
M=1a 0 0
0 a O

where a # 0 in F),. The characteristic polynomial of this matrix is
N —a®=(N=—a)(\? + Xa+a?).

The discriminant of the quadratic polynomial is D = —3a?. Thus if —3 is a qua-
dratic residue in IF),, then the characteristic polynomial has three distinct eigenval-
ues. On the other hand, if —3 is not a quadratic residue, then (1,1,1) is the only
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eigenvector and the restriction of the matrix M on the subspace of ]Fg orthogonal
to (1,1,1) can be expressed as
0 —a
()
which has no eigenvalues over IF),.
By quadratic reciprocity, —3 is a quadratic residue if and only if p = 1 (mod 3).
Thus if p # 1 (mod 3), this matrix has no eigenvalues over F, and thus cannot be

transformed in an upper-triangular form by a change of basis. Otherwise, it has
three eigenvectors and can be transformed in an upper-triangular form.

Our first example shows that [p,(H7 “(R)) can be strictly less than
Iree (H7 °(R)) and thus strictly less than (p(g k) (H7 °(R)) by (2.0.1) if &k is not
separably closed, even when A = R/I has isolated singularities.

Corollary 7.4. Let p be a prime number, let R =F,[z,y, 2], and let f = z+y" +
27. Then
16 fp=1 (mod?7),
lpe(H}(R) = lp,(H}(R) =<7 ifp=2ord (mod7),
1 otherwise.

On the other hand,

16 4ifp=1 (mod7),
ifp=2ord (mod7) andp=1 (mod 3),
ifp=2ord (mod7) andp#1 (mod 3),
otherwise.

) # lFR(H}(R)) for any p =11 (mod 21).

Proof. Let V' denote the k-vector space (OI*{?“(R/J,))S = (HZ(R/f)o)s- By Corol-

laries 6.4 and 6.5, Frobenius acts injectively on HZ (R/f)o if p = 1 (mod 7) and
nilpotently if p = 3,5,6 (mod 7). When p = 2 or 4 (mod 7), using the algorithm
described in Theorem 6.3 it can be checked that the Frobenius map (i.e., e = 1) on
V is spanned by two 3-cycles. If p =4 (mod 7), the cycles are

Ip,(H}(R)) =

A BN |

~—

In particular, lp, (H}c (R

23 25 28 23 25 28
While if p =2 (mod 7), the cycles become

53 56 45 53 56 45

xTy%x‘*—y?%x—y‘i and x—y2—>$2—y4—>x7y.

In particular, one obtains that
15 ifp=1 (mod7),
dimV =46 ifp=2or4 (mod7),
0 otherwise.
Since R/(f) is an isolated singularity, ZDR(H}(R)) = dimV + 1 by Theorem
4.3. In the cases when Frobenius acts injectively or nilpotently on HZ2 (R/f)o,

we also deduce from Proposition 7.2 that [p, (H} (R)) = dimV + 1 (note that
when Frobenius acts injectively on HZ (R/f)o, the proof of Theorem 6.3 shows that
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Frobenius sends each canonical basis element of H2 (R/f)o to a multiple of itself,
so the representing matrix is diagonal).

In the remaining cases, in order to compute its Fz-module length we will study
a matrix which represents the Frobenius map on V' by Proposition 7.2. We can
use the proof of Theorem 6.3 to describe the Frobenius action on the cycles. If
p = Tk + 4, one obtains that the Frobenius action on both cycles is described by

the matrix
6k+3
0 0 (_1)6k+3 (zkil)
A= (_1)3k+1(3k]:-1) 0 0 ,
0 (=12 (5 0
where we have chosen the natural bases, e.g., e; = IZTZ, = %, es % for the
first cycle. Similarly, if p = 7Tk + 2, the matrix is
5k+1
0 0 e
oMo 0
0 O o

We claim that the nonzero entries of A are equal. Observe that by Wilson’s
theorem

(= 1lp = m)! = (0= Dlp—m)(p—n— 1)1
= (= D=n)(=n— 1)+ (—p+ 1) = (-1
mod p. Furthermore, because p = 7k + 4 is odd, k is odd. Thus we can rewrite
(5k;+2> (5k +2)! (p — 2k — 2)!

k)T (R)I@Ak+2)!  (p—6k—4)(4k + 2)!

_ L)tk 6k +3\  (6k+3
a 2%k+1)  \2k+1
and

<5k+2>  (Bk+2)! (p—2k—2)!! _(1)5k(3k+1> __<3k+1>.

k ~ (k)!(4k+2)!  k!(p—3k—2) k k
The case of p = Tk + 2 is identical.

Since a? = a for any element a € F,, the Frobenius action is linear. Thus by
Lemma 7.1 and Remark 7.3, the matrix associated to the Frobenius map on the
chosen basis can be transformed into upper-triangular form if and only if p = 1
(mod 3). Thus by Proposition 7.2, in the case p = Tk + 4 or p = 7k + 2, we obtain
that lFR(H}(R)) = lp,(#rr(V))+1 =7 when p = 1 (mod 3), and otherwise
Ir,(H}(R)) =5.

Lastly, it is easy to see that the third iterate of the Frobenius map on V can be
represented by a diagonal matrix; hence

ng(%Rﬁ(V)) = ng(%R,R( I*{?“(R/f))) = lF§° (%R,R(O;I‘?“(R/f))) =6
and Ip= (H}(R)) = 7. O
Finally, we exhibit an example of a local cohomology module of R, with k alge-
braically closed, such that its D(R, k)-module length (equivalently, its Fp°-module

length) is strictly bigger than its Fr-module length. Recall that by Theorem 4.3,
this cannot happen if A = R/I has isolated singularities.
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Proposition 7.5. Let p =7k +4 be a prime number. Let R = Fp [x,y, z,t] and let
f=tx"+ty" +27. Then

lr (Hp(R)) = 3 < T = lpge (H}(R)) = Iy, (H}(R)).

Proof. Denote R/(f) by A. First we claim that (z,y, z) A is the only height-2 prime
ideal of A that contains the test ideal 7(A) of A. By [ST12, Theorem 6.4], we have

T(4) =) > (P,

e ¢gcHoma(A/P¢,A)

where ¢ is a test element for A. According to [Hoc07, Theorem on page 184], 25 is
a test element for A and we may set ¢ = 25. Since A = R/(f), we have

r=( Y e )a

e pcHomp(R!/P° R)

It is straightforward to check that (25,45, 26) C 7(A) and 7(A) has height 2. Hence
(z,y,2)A is the only height-2 prime ideal that contains the test ideal 7(A) of A.
Consequently, Ap is F-rational for each height-2 prime P # (z,y, 2)A or, equiva-
lently, OL?AP(‘KP) =0

Next we calculate the stable part of H> (A) where m = (z,y, 2,t). To this end,
we assign the grading deg(z) = deg(y) = 1, deg(z) = 2, and deg(t) = 7 degrees
1,1,2,7 to R, and, consequently, f is homogeneous. It is straightforward to check
that H2 (A)o has an F)-basis:

25 2° P 20 20 P
to2y |7 | toy? |7 | toty | T | tady? | [ty | | toyt |

Because the degree of z is larger that the degrees of x and y, each of these elements
is nilpotent under the natural Frobenius action. For example, raising the last
generator to the power p = 7k + 4, we get

42k+24 B 23(27)6k+3 B 23(x7+y7)6’“+3
t7k+4x7k+4y28k+16 - t7k+4x7k+4y28k+16 - tk+1x7k+4y28k+16 ’

which necessarily equals 0 since the degree of any monomial in z,y in the numer-
ator is 7(6k + 3), which is greater than (7k + 4) 4 (28k + 16). Hence H2 (A), =
(HE (A)o)s = 0.

Given the grading on R, we are in the situation of Theorem 4.8. By Claim
4.8.1, there exists a graded Fr-module filtration 0 C L C M C H}(R) where L is
supported at (f), each D(R,F,)-module (equivalently, Dg-module or F3°-module)
composition factor of M/L is supported at (z,y,z), and H}(R)/M is supported
only at m = (z,y, z, ).

By [Bli04, Corollary 4.2 and Theorem 4.4],

IprF,) (L) =lrgp (L) =lp, (L) = 1,
because there is only one minimal prime (f) of A. Moreover, we have
Up(rr,) (Hp(R)/M) = Uz (H}(R) /M) = lp, (H}(R) /M) = 0

since dimg_ (H3,(A))s = 0. Thus we actually have M = H}(R) in this example.
It remains to compute lD(pr)(M/L), lpe(M/L), and lp,(M/L). Note that
the first two are equal because we are working over an algebraically closed field
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[Bli03, Theorem 1.1]. Moreover, if we take an Fp’-module (resp., Fr-module)
filtration of M/L, say

L=MyCM CMyC---CM=M=H}R),

such that each N; = M;/M;_; is a simple F-module (resp., simple Frp-module)
supported at P = (x,y, z) and then if we localize at P and complete, we have

L®Rp=My®Rp CMy®Rp C---C M;®Rp =H}(Rp)

such that each successive quotient N; ® E} is still simple as an F%—module (resp.,
P

as an Fz—-module) by Lemma 4.7.
P
Observe that

Rp/(f) = Fp(t)[lw,y, 2]}/ (t2" + ty" + 27),
which is an isolated singularity. Hence by Proposition 7.2 (and the proof of Theorem
4.3), the FA—module (resp., F—-module) length of Hf (Rp)/(L@é;) is the longest
flag of Frobenlus stable subspaces of

V= (OH?H(Fp(t)[[r7y7Z]]/(tz7+ty7+z7))>S ’

Via a direct computation similar to the proof of Theorem 6.3 one can show that
dimV =6 and V is a direct sum of two 3-dimensional Frobenius-stable subspaces.
In the natural bases as in the proof of Corollary 7.4, the Frobenius action on each
cycle is represented by the matrix:

0 0 3k+1 t6k+3 0 0 t6k+3
A= (R o X 2) = (3k+1) B0 0
0 (3kk+l)t5k+2 0 k 0 t5k+2 0

We can easily see that the third iterate of the Frobenius map on V' can be
represented by a diagonal matrix. Hence by Proposition 7.2,

Ly (HY(Fp) /(L Fip) = leze (HY(RP)/(L & Fp)) =
and thus by the above discussion,
Ip(r,)(Hp(R) = lrp (H}(R)) =1+ 6 =T.

Finally let us show that V has no proper subspace stable under the Frobenius
action. If U is a proper Frobenius-stable subspace and v € U, then we must have
that (v, F(v), F?(v)) CU S V. Thus if v = (a,b,¢) in the standard basis, then

a t5k+3cp t6k+3+(5k+2)pbp2
det | b t3kH1gr  BhH1HOHIR" [ =0,
c  $9k+2pp t5k+2+(3k+1)pap2

Observe that if w = Av, then
det(w, Fw, F?w) = NPT det (v, Fv, F?v),

so we can multiply v by the common denominator of a, b, ¢ and assume that a, b, ¢
e Fp[t].
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By a direct computation, we have

a #6k+3.p t6k:+3+(5k+2)pbp2

2

A=det|p 3kt+igpr t3k+1+(6k+3)pcp
¢ ok+2pp t5k+2+(3k+l)pap2

2 2 2
:t(3k+1)p+8k+3ap +p+1 t(6k+3)p+8k+3abpcp _ t(3k+1)p+11k+5ap beP

4 $(Ok+3)p+9k+4 p*+p+1 | p(5k+2)p+11k+5pp° +p+1 _ 4(5k+2)p+9k+4 ppp® .

Note that we may factor out t(3*+DP+8k43 and obtain A = tGk+HPH8EH3 A’ where

2 2 2
A = P Tp+l _ 4 Bk+2)p o p7 _ 43k+2 0700

+ t(3k+2)p+k+1cp2+p+1 + t(2k+1)p+3k+2bp2+p+1 _ t(2k+1)p+k+1apbp2 c.

Let dega = a,degb = ,degc = . Then we have
deg a?” TP+ = p2a + pa + a,
deg tBFH2Pgppp® — 12~ p(B+3k+2)+q,
deg 13k+24P" pep — pPa+py+ B+ 3k + 2,
deg tFH2PHRHT 0 404l — 120 4 p(y 4 3k 4 2) by 4k + 1,
deg t2RHDPE3R+2pp* tp41 — 128 4 (3 4 Ok + 1) + B+ 3k + 2,
deg R+ Dp+h+1 ppp® o p?B+pla+2k+1)+y+Ek+1.

Now we prove that there is always a nonzero term with highest degree in A’
(hence A’ cannot be zero). We consider the following three cases:

(1) v = max{a, 5}.
(2) B>vand 8> a.
(3) a>max{s,~v}.

The point is that in case (1) (similarly, in cases (2) and (3)), deg t 3k T2)p+kt1:p*+p+1
(resp., deg HEE+DP+3k+2pp° +p+1 Jog a”2+p+1) is strictly bigger than the degree of
the other five terms. We give a detailed explanation in case (2) and leave the other
cases to the reader to check (they are all very similar). In case (2), since p = 7Tk +4,
we have

deg25(2’”1)”+3k+2b7”2“’+1 — deg af Pt >3k+2>0,
degt(2k+1)p+3k+2bp2+p+1 _ degt(3k+2)pabpcp2
>p*(B—7) —plk+1) > p* —p(k+1) >0,
degt(zk'*'l)p'*'?’lwrzb3”2Jr”"'1 — deg 13k+24P" peP > p2(B—a)+p(B—7)>0,
degt(2k+1)p+3k+2bp2+p+1 — deg 1Bk+2)p+k+1 P +pt1
> P+ p)(B—=7) —plk+1) > p* +p—pk+1) >0,
degt(2k+1)p+3k+2bp2+p+1 — deg @R DPHR+L gppp® o p(f—a)+2k+1>0.
This finishes the proof that V' does not have Frobenius stable subspaces and thus

iy (Hp(Rp) /(L@ Rp)) =2,
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and hence by the above discussion
lD(R,Fp)(H}(R)) =lp=(Hy(R)) =1+2=3. 0

Remark 7.6. Blickle [Bli03, Section 5] showed that for a general F-finite F5°-module
M the two lengths [pee (M) and Ip(gx)(M) might be different if the residue field
k is perfect but not algebraically closed. However, we do not know whether this
can happen when M = H}(R). The Fermat hypersurfaces cannot provide such an
example: the natural Frobenius action decomposes into cycles, and thus the matrix
representing some large iterate of the Frobenius action will be a diagonal matrix.
Hence Theorem 4.3 and Proposition 7.2 show that the two lengths always coincide
in this case.

We end with a slight generalization of Blickle’s result ([Bli03, Theorem 1.1]) to
local cohomology modules of rings with an isolated non- F-rational point over finite
fields.

Proposition 7.7. Let (R,m, k) and A = R/I be as in the Notation at the beginning
of 84. Assume k is a finite field and A has an isolated non-F-rational point at m.
Then lpge (H7(R)) = Ip(r,k) (H7 (R)).

Proof. Following the proof of Theorem 4.3 and Proposition 7.2, it is enough to show
that there exists e > 0 such that the matrix B, representing the eth Frobenius
action on (Ol*ilﬁn ( A))S is an upper triangular matrix. We will show that in fact B,
is the identity matrix for e > 0 sufficiently divisible. It is easy to observe that
B, = By - ng] e nghl] where BP'l denotes the matrix obtained by raising each

entry of B to its p'th power. Suppose k = F,» and thus B[P") = B. Hence we know

that Bpe = B - (BiP)e... (BF" 1])e. Now the result follows from the elementary
fact that over Fp», every invertible matrix B has a power that is the identity matrix:
look at the Jordan normal form of B in Fp; taking a large pth power will make
each Jordan block into a diagonal matrix. But an invertible diagonal matrix over

Fp» can be raised to a large power to make each diagonal entry be 1. O
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