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A B S T R A C T   

Modeling transient flow conditions in water distribution networks (WDNs) has shown increasing usability for 
various applications, including burst and leak detection, sensor placement, model calibration, and risk assess
ment. To facilitate the integration of transient modeling in these simulation-based applications, this work 
contributes a new open source Python package for Transient Simulations in water Networks (TSNet). TSNet 
adopts the Method of Characteristics (MOC) for solving the system of partial differential equations governing the 
unsteady hydraulics. It allows users to simulate various conditions including operational changes in valves and 
pumps, as well as background leaks and pipe bursts. In this paper, the TSNet modeling framework is presented 
and a case study is used to showcase its capabilities of simulating WDN responses to valve closure, pump shut- 
off, leaks, and bursts with and without a surge protection tank. Results show that valve closure, pump shut-off, 
and pipe burst can generate significant transients in the WDN, while background leaks can help damp the 
transients to some extent.   

Software Availability 

TSNet source codes are available from GitHub repository at https:// 
github.com/glorialulu/TSNet. 

TSNet package documentation is available from Read the Docs at 
https://tsnet.readthedocs.io. 

1. Introduction 

Hydraulic transients in water distribution networks (WDNs), in
duced by rapid changes such as pipe bursts, valve and pump operations, 
can disturb the steady-state flow conditions by introducing fast flow 
changes, imposing abrupt internal pressure force onto the pipeline 
systems, and generating pressure waves propagating rapidly 
( > 1000m/s) through the piped network [29,60]. The propagation of 
the pressure waves is mediated by the complex network topology and 
the interactions of the pressure waves propagating through the fluid 
with the conduit are reflected in the changes (e.g. attenuation and 
phase shift) of the pressure wave. These disturbances have been iden
tified as one of the major contributing factors in the many pipe dete
rioration and catastrophic failures in WDNs [48], thereby disrupting 
water supply, wasting a significant amount of treated water, and 
creating unexpected opportunities for contamination intrusion [19,28]. 
Conventionally, transient simulation, as a prominent approach for 
modeling and predicting the propagation of transient waves, has been 

an essential requirement in the design process for ensuring the hy
draulic integrity of WDNs. 

In addition to the applications in WDN design, the transient-based 
approach has also gained its popularity in fault detection [1,5,23,63], 
condition assessment [53,55,65], model calibration [31,50], pressure 
management [13–15,27,30,47], and uncertainty quantification  
[1,18,34,44]. For these purposes, transient-based models are commonly 
believed to be complementary to other techniques because a significant 
amount of information about the WDN can be revealed during a very 
short period time as the transient wave travels quickly through the pipe  
[63]. This information can then improve the detection accuracy of pipe 
defects, reduce the ill-posedness in calibration problems, and maximize 
the information gain in assessing pipeline conditions. 

Various transient-based methods have been developed using dif
ferent techniques, which can be categorized into (a) model-driven 
methods [4,8,11,23,31,40,58,59], and (b) data-driven methods  
[5,20,39,43,51,62]. Although data-driven techniques gained increasing 
popularity over the past decade due to the rapid development of data 
logging and data mining technologies, it is practically impossible to 
collect data from every location in the WDNs. Thus, reliable transient 
models are still integral to simulate and extrapolate the flow conditions 
in the entire system using the data collected from the limited monitored 
locations. However, the previous model-driven applications are largely 
restricted to pipe segments, such as reservoir-pipeline-valve (RPV) 
systems [4,23,59], and simple networks [8,11,40]. The extension of 
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these techniques to complex pipe networks has been substantially im
peded by the lack of open-access software incorporating the capabilities 
of easy interaction [63]. Ultimately, the extensive transient-based ap
plications require efficient and accurate hydraulic transient simulation 
tools as indispensable prerequisites. 

Acknowledgedly, a number of commercial software for transient 
simulation in WDNs is available, such as Hammer [25], Pipe 2018 [37], 
InfoSurge [26], and TransAM [42]; however, the use of these software 
for research purposes is restricted. Two major restrictions hindering the 
usability of commercial software packages for research are : (1) the 
software is packaged as a black-box, and the source codes are not ac
cessible, thus prohibiting any changes, including modification of ex
isting and implementation of new elements, in the source codes; and (2) 
in addition to the high cost, the commercial software is designed to 
perform single transient simulations and do not offer the capabilities to 
perform multiple transient simulations automatically. Thus, users are 
required to modify the transient conditions using the graphical user 
interface (GUI), perform the simulation, and manually record the hy
draulic responses in the various conditions, which significantly com
plicates the research process. Although [35] developed an open source 
software, the MATLAB codes were only applicable to RPV systems, 
which substantially limits its practicality. Hence, a clear gap exists 
between currently available transient simulation capabilities and the 
ever-growing research requirements. To bridge this gap, the authors 
considered it imperative to develop an open source package rendering 
easiness for interaction, modification, and extension of transient mod
eling and simulation. 

This paper contributes a comprehensive software framework and a 
Python package developed under the MIT license for Transient 
Simulation in water Networks (TSNet). The motivation of this work is 
two-fold: (1) provide users with an open source and freely available 
Python code and package for simulating transients in WDNs that can be 
integrated with other case specific applications, e.g., sensor placement 
and event detection, and (2) encourage users and developers to further 
develop and extend the transient model. With these motivations in 
mind, TSNet was specifically designed such that users familiar with 
EPANET  [49] and/or the Water Network Tool for Resilience (WNTR) 
Python package [36] can use TSNet with minimum efforts. The main 
capabilities of TSNet include: (1) simulating transient system responses 
to operational changes in valves and pumps as well as background 
leakage and pipe bursts, (2) simulating open and closed surge tanks for 
controlling transient response, (3) simulating steady, quasi-steady, and 

unsteady friction models, (4) simulating instantaneous demand at 
nodes using demand-pulse model, and (5) allowing the user to select the 
computational time step and control numerical accuracy and compu
tational complexity. Section 2 describes the main components of the 
TSnet framework, and Section 3 uses an example application to de
monstrate the modeling capabilities and user interactions with TSNet. 

2. Modeling framework 

TSNet is an open source Python package designed to perform 
transient simulations in WDNs. The primary components and capacities 
in TSNet include: (1) create transient models based on EPANET INP 
files [49]; (2) set up transient models, define wave speeds, time step, 
operational changes in valves and pumps, background leaks, pipe 
bursts, location of surge tanks, nodes experiencing instantaneous de
mand, as well as choose the friction model; (3) compute the initial 
conditions for the transient simulation using WNTR Python package  
[36]; (4) perform transient simulations; and (5) obtain flow and pres
sure results. Fig. 1 illustrates the main components of the modeling 
framework of TSNet. 

2.1. Software overview 

TSNet, tested for Python versions 3.5, 3.6, and 3.7, can be installed 
on Windows, Linux, and Mac OS X operating systems. Python dis
tributions, such as Anaconda, are recommended to manage the Python 
environment as they already contain (or easily support installation of) 
many Python packages (e.g. SciPy, NumPy, Pandas, and Matplotlib) 
that are used in the TSNet package. TSNet is available in Python 
Package Index (PyPI), and the stable release version of TSNet can be 
installed through Pip. All source codes can be downloaded from the 
GitHub repository at https://github.com/glorialulu/TSNet, which also 
includes links to software documentation, examples, and contact in
formation for reporting bugs and questions. The software documenta
tion (https://tsnet.readthedocs.io) includes detailed descriptions of the 
modeling framework, modeling conventions and limitations, installa
tion instructions, setting-up and performing transient simulation, and 
getting simulation results. Additionally, details including the numerical 
scheme and comparisons to a commercial software are provided. Three 
example applications are included to demonstrate the application pro
gram interface (API), code structure, and the modeling capabilities of 
TSNet. 

Fig. 1. TSNet modeling framework.  
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2.2. Modeling unsteady hydraulics 

Hydraulic transients are governed by a system of partial differential 
equations, i.e., water hammer equations [61]. Due to the lack of ana
lytical solutions to these systems of equations [33], many previous 
works have proposed to solve the equations with various numerical 
techniques, including but not limited to the method of characteristics 
(MOC) [10,16], wave characteristics method (WCM) [3,60], finite dif
ference method (FDM) [9], finite volume method (FVM) [66], and 
generalized characteristic method (GCM) [45]. Among the myriad of 
techniques employed for transient simulation, MOC is generally con
sidered the most popular numerical solution because of its relative 
accuracy and easiness in programing [22]. Thus, TSNet adopts MOC as 
the solution technique. The following sections present a brief overview 
of the main equations, boundary conditions, and the solution approach. 
Additional detailed information can be found in the following literature  
[38,61]. 

Transient flow in a pipe is governed by the mass and momentum 
conservation equations [61]: 
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where H is the head, V is the flow velocity in the pipe, t is time, a is the 
wave speed, g is the gravity acceleration, α is the pipe slope, and hf 

represents the head loss per unit length due to friction. 
The essence of MOC is to transform the set of partial differential 

equations (Eq.  (1) and  (2)) to a set of ordinary differential equations 
that apply along specific lines, i.e., characteristics lines. The char
acteristic lines represent the directions in which the disturbance in a 
pipe propagates, where +C is associated with a positive propagation 
velocity and C with the negative. Then, the compatibility equations 
can be formulated as: 
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The explicit MOC technique is then adopted to solve the compat
ibility equations by firstly discretizing in space and time along the 
characteristics lines [61]. Subsequently, given the initial conditions, the 
head and flow conditions can be matched to the next time step along 
the positive and negative characteristic lines by solving the compat
ibility equations simultaneously. The time-marching scheme continues 
until the end of the defined simulation period. In networked systems, 
the compatibility equations are augmented with element-specific head 
and flow conditions that characterize the flow behavior at the boundary 
nodes that connect neighboring elements (represented by computa
tional units), such as other pipes, valves, pumps, reservoirs, as well as 
leaks and bursts. For example, the conservation of mass and work-en
ergy principles are accounted for at junctions that connected pipes [38]; 
in-line valves, i.e., valves that are connected by pipes on both sides, and 
pumps are modeled in a similar manner with additional specific char
acteristic functions; head at the boundary is explicitly defined in case of 
reservoirs and tanks; the velocity boundary condition is combined when 
treating end-valves, i.e., valves located at the boundary of the network. 

2.3. Friction method 

The head loss per unit length (hf) can be expressed as a sum of the 
quasi-steady (hfs) and unsteady (hfu) friction [6]. TSNet adopts the 
Darcy-Weisbach equation to compute quasi-steady head loss per unit 
length along a pipe [38]: 

=h f V
gD2f s

2

(5) 

where f is the quasi-steady friction factor, and D is the pipe diameter. 
The friction factor (f) is updated based on the Reynolds number at each 
time step using [24]: 
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where Re is the Reynolds number at the current time step, and K is the 
equivalent roughness height. The Darcy-Weisbach method is chosen, 
instead of the Hazen-Williams method to model friction, as the Hazen- 
Williams is empirically based using experimental data [41]. Ad
ditionally, Darcy-Weisbach is quadratic with respect to the flow velo
city, thus allowing more efficient and accurate numerical calculation. If 
the friction method specified by the user in the initial INP file is not 
defined as Darcy-Weisbach, TSNet computes the Darcy-Weisbach 
coefficients (f) based on the head loss (hf0) and flow velocity (V0) in 
initial conditions, using the following equation: 

=f
h
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Unsteady friction models have also been proposed to improve the 
modeling accuracy of transient conditions [7,64,67]. TSNet in
corporates the instantaneous acceleration-based model [6,57]: 
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where hfu is the head loss per unit length due to unsteady friction, V
t

is 
the local instantaneous acceleration, V

x
is the convective instantaneous 

acceleration, and ku is Brunone’s friction coefficient, which can be 
analytically determined using Vardy’s sheer decay coefficient (C*) [56]: 

=k C*
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The acceleration terms, i.e., V
t

and V
x

in Eq. 8, are evaluated ex
plicitly using first-order finite difference scheme. 

2.4. Pressure-dependent demand 

During the transient simulation in TSNet, the demands are treated 
as pressure-dependent discharge; thus, the actual demands will vary 
from the demands defined by the user. The actual demands (dactual) are 
modeled based on the instantaneous pressure head at the node and the 
demand discharge coefficients, using the following equation: 

=d k Hactual p (11) 

where Hp is the pressure head and k is the demand discharge coefficient, 
which is calculated as the ratio between the nominal demand (d0) and 
the initial pressure head (Hp0) [36]: 

=k d
Hp

0

0 (12)  

The pressure-dependent demand method allows the actual demands 
to fluctuate with the instantaneous local pressure, representing more 
realistic conditions [30]. It should be noted that if the pressure head is 
negative, the demand flow will be treated as zero, assuming that a 
backflow preventer is installed at each node. Moreover, TSNet also 
incorporates the simulation of hydraulic transients triggered by in
stantaneous demand pulses [13], which is detailed in the online doc
umentation. 
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2.5. Choice of time step 

In MOC, the time and space domain is discretized along the char
acteristic lines; thus, the temporal and spatial discretization can be 
uniquely determined by specifying the time increment, i.e., time step 
(Δt). Once the time step is specified, for a single pipe segment, the 
spatial increment (Δx) can be computed by = ×x t a. However, 
determining the time step for the entire WDN is not a trivial task. 
Several prior works have focused on exploring the choice of the time 
step and its effect on the numerical stability of the solutions, the re
solution of the results, and the computational complexity [21,32]. To 
begin with, a tradeoff exists between computational complexity and 
numerical accuracy: a small time step can yield relatively accurate re
sults, while requiring more computational resources due to the increase 
in the density of the computational grid. Additionally, the numerical 
scheme poses the following two constraints that have to be satisfied 
simultaneously: (1) the Courant’s criterion has to be satisfied for each 
pipe [61], indicating the maximum time step allowed in the network 
transient analysis should satisfy: =( )t i nmin , 1, 2, ,L

N a p
i

i i
where 

Ni is the number of computational units in pipe i and np is the number of 
pipes in the WDN; (2) the time step has to be the same for all the pipes 
in the network, therefore restricting the wave travel time L

N a
i

i i
to be the 

same for any computational unit in the network. However, this is not 
realistic in a real network, because different pipe lengths and wave 
speeds usually result in different wave travel times. Moreover, the 
number of computational units in the ith pipe (Ni) has to be an integer 
due to the grid configuration in MOC; nevertheless, the combination of 
time step and pipe length is likely to produce non-integer value of Ni, 
which then requires further adjustment. 

This package adopted the wave speed adjustment scheme [61] to 
ensure that the two criterion stated above are satisfied. To begin with, 
the maximum allowed time step tmax is calculated, assuming there are 
two computational segments on the critical pipe: 

= =t L
a
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2

, 1, 2, ,max
i

i
p

(13)  

If the user defines a time step greater than t ,max a fatal error will be 
raised and the program will be stopped. Otherwise, the user-defined 
value will be used as the initial guess for the upcoming two-step ad
justment. The determination of time step is not straightforward, espe
cially in large networks. Thus, we allow the user to ignore the time step 
setting, in which case tmax will be used as the initial guess for the 
upcoming two-step adjustment. 

After setting the initial guess for the time step, the following ad
justments are performed. Firstly, the ith pipe with length (Li) and wave 
speed (ai) will be discretized into (Ni) segments: 

= =N L
a t
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i max
p

(14)  

Secondly, the discrepancies in tmax introduced by the rounding of 
Ni will be compensated by correcting the wave speeds as ai(1  ±  ϕi), 
where ϕi is the wave speed adjustment for pipe i. Least squares ap
proximation is then used to determine Δt such that the sum of squares of 
the wave speed adjustments (∑ϕi

2) is minimized [2], as follows: 
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Ultimately, an adjusted Δt is determined and used in the transient 
simulation. The total number of time steps (tn) can then be calculated 
by dividing the simulation duration (tf) by the time step (Δt). The se
lection of the time step is further explained in the online documenta
tion. 

2.6. Initial conditions 

Prior to performing a transient simulation, initial steady-state con
ditions, i.e. pipe flows and nodal heads, need to be established. TSNet 
employs WNTR [36] for simulating the steady state in the network to 
establish the initial conditions for the upcoming transient simulations. 
WNTR is chosen for simulating the initial conditions due to its cap
abilities of simulating demand-driven or pressure-dependent hydraulics 
simulations as well as background leaks. 

2.7. Leaks and bursts 

During the transient simulation, a leaking node is modeled using the 
two compatibility equations (Eq.  (3) and (4)), a continuity equation, 
and an orifice equation, which quantifies the pressure-dependent leak 
discharge (Ql) [38]: 

=Q k Hl l pl (16) 

where Hpl is the pressure head at the location of the leak, and kl is the 
lumped leak coefficient, which aggregates the size of the leak, units, 
and leak coefficients. Moreover, if the pressure head is negative, the 
leak discharge will be set to zero, assuming a backflow preventer is 
installed at the leaking node. 

The simulation of bursts and leaks is very similar, as they share a 
similar set of governing equations. The only difference is that in the 
burst model the lumped burst coefficient (kl) changes with time. In 
other words, using a burst, the user can model new and evolving con
ditions, while the leak model simulates an existing leak in the system. In 
TSNet, the burst is assumed to be developed linearly in time, indicating 
that the burst area increases linearly from zero to a size specified by the 
user during the specified time period. Thus, a burst event can be 
modeled by defining the start time (ts), the time for the burst to fully 
develop (tc), and the final burst coefficient when the burst is fully de
veloped. 

In TSNet, leaks and bursts are assigned to the network nodes by 
specifying the location of the leak/burst node and the corresponding 
lumped leak/burst coefficient (kl). Existing leaks should be included in 
the initial conditions calculated using WNTR simulator; thus, it is ne
cessary to define the leaks before calculating the initial conditions. 
More information about the inclusion of leaks in the steady state cal
culation can be found in WNTR documentation [36]. 

2.8. Valve operations 

Valve operations, including closure and opening, are supported in 
TSNet. A valve is modeled using the two compatibility equations (Eq. 
(3) and (4)), the continuity equation, and the valve characteristic curve 
equation. The default valve type is gate valve with a characteristic 
curve defined according to ([38], Figure 10.12). Other valve types can 
be defined by supplementing the valve characteristic curve, which de
fines how valve loss coefficient changes with open percentage. In 
TSNet, valve closure is simulated by defining the valve closure start 
time (ts), the operating duration (tc), the valve opening percentage 
when the closure is completed (se), and the operating constant (m), 
which characterizes the shape of the closure curve. These parameters 
define the valve closure curve, as shown in Fig. 2 (a). The solid black 
and dashed red curves correspond to the valve operating curves with 

=m 1 and =m 2, respectively. 
Valve opening can be simulated by defining a similar set of para

meters related to the valve opening curve. The valve opening curves 
with =m 1 and =m 2 are illustrated in Fig. 2 (b). 

2.9. Pump operations 

TSNet also includes the capability to perform controlled pump 
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operations by specifying how pump rotational speed changes over time 
with the same set of parameters as in valve operations, i.e., ts, tc, se, m. 
Explicitly, during pump start-up, the rotational speed of the pump is 
increased based on the user defined operating rule. The pump is then 
modeled using the two compatibility equations (Eq.  (3) and (4)), a 
continuity equation, the pump characteristic curve at the given rota
tional speed, and the affinity laws [38], thus resulting in the rise of 
pump flowrate and the addition of mechanical energy. Conversely, 
during pump shut-off, as the rotational speed of the pump decreased 
according to the user defined operating rule, the pump flowrate and the 
addition of mechanical energy decrease. Pump shut-off due to power 
failure, when the reduction of pump rotational speed depends on the 
characteristics of the pump, e.g., the rotational moment of inertia, has 
not been included in the current version of TSNet. 

2.10. Surge tanks 

The modeling of water hammer protection devices, including the 
open and closed surge tanks, are also incorporated in TSNet. An open 
surge tank is modeled as an open chamber connected directly to a pi
peline and is open to the atmosphere [61]. In the initial conditions, the 
head in the tank is equal to the head in the connected pipeline. During a 

transient simulation, an open surge tank moderates pressure transients 
by storing the excess water when a pressure jump occurs in the surge 
tank connection, and supplies water in the event of a pressure drop. In 
TSNet, open surge tanks are assumed to have an infinite height such 
that water never overflows and can be added to the network by spe
cifying the location and the cross-sectional area. Due to the modeling 
simplicity, open surge tanks can serve as a good initial approach to 
investigate the placement of surge protection devices. However, the 
infinite height assumption is not realistic and the major disadvantage of 
open surge tanks is that it typically cannot accommodate large pressure 
transients unless the tank is excessively tall and large, which limits its 
usefulness. 

TSNet also incorporates a closed surge tank (i.e., air chamber) to 
simulate a more realistic surge protection device. An air chamber is a 
relatively small sealed vessel with compressed air at its top and water in 
the bottom [61]. During a transient simulation, the closed surge tank 
moderates pressure transients by slowing down the deceleration or the 
acceleration of water flow. For example, when pressure in the upstream 
connection increases, water flows into the tank and water level in the 
tank increases, then air volume compresses and air pressure increases, 
thus slowing down the acceleration of the water in flow into the tank 
and the increase in pressure. Similarly, when pressure in the upstream 

Fig. 3. Example network for demonstrating TSNet for scenarios: 1) pipe burst, 2) valve closure, 3) pump shut-off, and 4) leak. Results are reported at junctions: 16, 
20, 30, 45, 90. 

Fig. 2. Valve operating curve: (a) valve closure; (b) valve opening.  
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connection drops, water flows from the tank and water level in the tank 
decreases, then air volume increases and air pressure decreases, thus 
slowing the deceleration of the water flow and the decrease of pressure 
head. In TSNet, the user can add a closed surge tank by specifying the 
location, cross-sectional area, total height of the surge tank, and initial 
water height in the tank. 

3. Example applications 

The following example applications demonstrate the multiple cap
abilities of TSNet Python package, including pipe burst (Scenario 1), 
valve closure (Scenario 2), pump shut-off (Scenario 3), and background 
leak (Scenario 4). Additionally, system response with unsteady friction 
model, surge tank as well as comparison with Hammer  [25] simulation 
results are presented. Additional examples including the numerical 
scheme, selection of the time step, demand-pulse for simulating in
stantaneous nodal demand, and the complete codes are provided in the 
online documentation (https://tsnet.readthedocs.io). 

3.1. Creating transient model 

Fig. 3 illustrates the example network adopted from [46], which 
will be used to demonstrate how to interact with TSNet and its simu
lation results for the different scenarios. The network comprises 126 
nodes, 1 reservoir, 2 tanks, 168 pipes, 2 pumps, and 8 valves. 

The first two steps to create and set up a transient model in TSNet 
include:  

1. Create transient model: import TSNet package, read the EPANET 
INP file, and create transient model object (see Fig. 4); 

2. Define the time step and wave speed in the transient model: in ad
dition to the information included in the INP file, the user needs to 
specify the wave speeds for each pipe and the time step for the 

transient simulation, as shown in Fig. 5. For illustration purposes, 
we assume that the wave speed for the pipes is normally distributed 
with a mean of 1200m/s and standard deviation of 100m/s. Then, 
assign the randomly generated wave speed to each pipe in the 
network according to the order of the pipes defined in the INP file. 
Moreover, we set the simulation period =t s20f . Here, we do not 
specify the time step, hence the suggested time step will be used as 
explained in Section 2.5. 

Next, we will show how to define different scenarios for transient 
simulations, get and visualize results, as well as compare results be
tween the different scenarios. 

3.2. Scenario 1: Burst 

In Scenario 1, a burst event at JUNCTION-73 is simulated by defining 
the burst location, burst start time ( =ts s1 ), time for burst to fully develop 
( =tc s1 ), and the final burst coefficient (final_burst_coeff=0.01 m3/s/(m 
H2O)0.5), as shown in Fig. 6. 

Once the transient model and the event are established, the tran
sient simulation can then be initialized and executed with the specified 
friction model as presented in Fig. 7: 

At the beginning of a transient simulation, TSNet will report the 
approximated simulation time based on the calculation time of the first 
few time steps and the total number of time steps. Additionally, the 
computation progress will be printed on the screen as the simulation 
proceeds, as shown in Fig. 8. 

Once the simulation is completed, the results can be retrieved as 
shown in Fig. 9. The burst discharge at JUNCTION-73 is shown in  
Fig. 10. Noticeably, burst discharge increases as the burst develops from 
1 to 2 seconds. After the burst is fully developed, the burst discharge 
fluctuates around 0.07m3/s. If we assume this burst can be fixed within 
half an hour, it will waste around 130m3 of treated water. Thus, TSNet 

Fig. 4. Creating transient model. 

Fig. 5. Defining time step and wave speed.  

Fig. 6. Defining a pipe burst.  
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can be used to assess water loss during different pipe failure scenarios. 
Additionally, network information, operating rules, and simulation 

results are saved in the specified tm object, e.g., s1.obj as in this 
example (Fig. 7, line 4). Node results include head, discharge through 
leaks, bursts, and demand nodes. Link results include head, flow rate, 
and velocity at start- and end-node of each link. The result for each 
attribute is a Numpy array, representing the time history of the simu
lation results, the length of which equals the total number of simulation 
time steps. To retrieve the results from a previously completed simu
lation, one can read the tm object from the s1.obj file and access 
results using the Pickle module in Python (see example code in the 
online documentation). 

Fig. 12 (a) reports the change in the hydraulic head with respect to 
the nominal head using different friction models at multiple junctions 
across the network, thus clearly showing the time of arrival and the 
amplitude of the pressure transient observed at each of the junctions. 
The dashed lines represent the simulation results with the steady and 
quasi-steady friction models, which predict identical pressure transients 
at all reporting junctions. The solid lines show the simulation results 
with the unsteady friction model. It can be noticed that the pressure 
transient arrives first to JUNCTION-90, and then followed by pressure 
transients depicted at JUNCTION-30, JUNCTION-20, JUNCTION-45, 
and finally JUNCTION-16. In this scenario, the order of arrival 

corresponds to the distance from the reporting location to the location 
of burst. Additionally, the highest amplitude of the pressure wave over 
40m is observed at JUNCTION-90, closest to the location of the burst. 
The amplitude of the waves at the remaining locations decreased as the 
wave travels through the pipelines. It should be noted that pressure 
wave propagation depends on the wave speeds in the pipes and the 
paths taken; hence, the correlation between time of arrival and distance 
is case specific. These results can be used to predict the magnitude and 
shape of transients induced by burst events and inform sensor place
ment to maximize information gain for pipe failure detection. More
over, further analysis can be performed to assess the internal stress 
conditions on the pipelines imposed by pressure transients, thereby 
informing proactive local inspection and maintenance. 

Furthermore, the computational results using different friction 
models agree well for the first pressure drop, while the discrepancies 
between the pressure transients are magnified for the latter simulation 
period as the results from the unsteady friction model exhibit additional 
damping and positive phase shift. The discrepancies in damping and 
phase stem from the additional unsteady friction terms with the tem
poral acceleration term ( V

t
) contributing to the phase shift, and the 

convective acceleration term ( V
s
) producing additional damping [57]. 

However, the contributions of unsteady friction are relatively small in 
this example even for the latter period of the 20s simulation time. The 
observed changes in damping and phase shift in the pressure agree with 
results reported in the literature that unsteady friction model changes 
the transient response, but in large water networks these changes are 
often marginal [12,17,52,54]. 

To mediate the effects of pressure transients, a closed surge tank, 
i.e., air chamber, is added to the network at JUNCTION-89 by speci
fying the desired location, cross-sectional area ( = mta 10 2), total height 
of the surge tank ( = mth 10 ), and initial water height in the tank 
( = mwh 5 ), as illustrated in Fig. 11. 

The simulation results with a closed surge tank are shown in  
Fig. 12(b). The comparison between Fig. 12(a) and (b) demonstrates 
that the surge tank can considerably moderate pressure transients. For 
example, in (a) without the surge tank, the pressure at JUNCTION-90 
(purple line) drops more than 40m at the first cycle, while the ampli
tude of pressure drops with the closed surge tank is reduced sig
nificantly to well below 10m, as shown in (b). In fact, the amplitude of 
pressure transients at all reported junctions is below 10m with the surge 
tank added at JUNCTION-89. 

Fig. 7. Initializing and running transient simulation.  

Fig. 8. Runtime output: calculation time and progress.  

Fig. 9. Retrieving results.  
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3.3. Scenario 2: Valve closure 

Scenario 2 simulates the closure of VALVE-1, which starts at the 
beginning of the transient simulation, =ts s0 , and takes =tc s1 to 
complete. After creating the transient model, the valve closure oper
ating rule is defined as in Fig. 13. Once the transient conditions are 

defined, the transient model is initialized by running a steady state si
mulation using the tsnet.simulation.Initializer method and 
the transient simulation is performed using the tsnet.simula
tion.MOCSimulator method, as shown in Fig. 7. Results can then be 
extracted using the get_link or get_node methods, as illustrated in  

Fig. 10. Burst discharge at JUNCTION-73.  

Fig. 12. Pressure transients at multiple junctions generated by the burst at JUNCTION-73: (a) without a surge tank; (b) with a surge tank. Solid lines represent the 
unsteady friction model and dashed lines represent the steady/quasi-steady friction models. 

Fig. 13. Defining valve closure.  

Fig. 11. Adding a surge tank.  

Fig. 14. Pressure transients at multiple junctions generated by closing 
VALVE-1. 
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Fig. 9. 
The results of head change at multiple junctions are illustrated in  

Fig. 14. The valve closure induces pressure drop at JUNCTION-16, lo
cated downstream of the valve, and pressure jump at JUNCTION-20, 
positioned upstream of the operating valve. The pressure changes at 
other three stations are well below 1m due to the fact that they are 
located further away from the valve. Moreover, the amplitude of the 
pressure transients generated by this valve closure is generally smaller 
than that in Scenario 1 because the initial flow in VALVE-1 is relatively 
small. 

3.4. Scenario 3: Pump shut-off 

Scenario 3 illustrates how TSNet models a transient event resulting 
from a controlled pump shut-off at PUMP-1, i.e., the pump speed is 
ramped down. The pump operating curve is defined by specifying how 
pump rotational speed is reduced over time as illustrated in Fig. 15: 

Fig. 16 shows the pressure transients at multiple junctions. The 
pressure wave generated by pump shut-off reaches the junctions at 
different times depending on the distance from the pump: JUNCT
ION-30 senses the transient first, while JUNCTION-45 experiences it 
last. Additionally, pressure drops with amplitude greater than 10m can 
be discerned at all junctions, indicating the pump shut-off, especially 
when operated quickly, can generate significant transients in the WDN. 
Therefore, it is essential to evaluate the impacts of pump operations on 
the pipelines and design an appropriate procedure to guide pump 

operation. 
Moreover, TSNet simulation results were compared with Hammer   

[25] for all scenarios. Fig. 16 demonstrates the simulation results at the 
reporting junctions, where the solid lines represent TSNet results, and 
the dashed lines represent Hammer results. Despite the slight dis
crepancies, which can be explained by the different wave speed ad
justment schemes and boundary condition configurations adopted by 
the two software, the results from TSNet and Hammer closely resemble 
each other both in terms of attenuation and phase shift throughout the 
simulation period. 

3.5. Scenario 4: Background leak 

Scenario 4 introduces a background leak at JUNCTION-20 to the 
three scenarios described above. The leak coefficient is set as the final 
burst coefficient in Scenario 1. Fig. 17 shows a code snippet for defining 
the location and leak coefficient. 

The head results at JUNCTION-20 during the three transient cases, 
i.e., burst, valve closure, and pump shut-off, with and without the leak 
are presented in Fig. 18. The solid lines represent the results without 
background leak, while the dashed lines illustrate results with the 
background leak. It can be observed that the leak effects the initial 
conditions by reducing the head at the leaking node by around 1m. 
Furthermore, the amplitude of the pressure changes with the presence 
of the leak is slightly reduced compared to the no background leak case. 
In other words, the leak acts as the damper for transients and relaxes 
the sensitivity of the system in regard to flow disturbances. 

Fig. 15. Defining pump shut-off.  

Fig. 16. Pressure transients at multiple junctions generated by shuting off 
PUMP-1: solid lines represent TSNet results and dashed lines represent Hammer 
results. 

Fig. 17. Defining background leak.  

Fig. 18. Pressure at JUNCTION-20 during various events.  
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3.6. Computation time 

The computation time of TSNet using different time step and friction 
models for this example network is reported in Table 1. The simulations 
are performed on a Window machine with Intel(R) Core(TM) i7-7700 
CPU@3.60GHz. As expected, computational time increases significantly 
with smaller time steps and more complicated friction model. 

4. Conclusions 

In this paper, we present the TSNet, an open source Python package, 
for transient simulation in water networks. All source codes, software 
documentation as well as three complete examples including INP net
work files and codes are provided with the package and can be 
downloaded from the GitHub repository. The capability and user in
teraction with TSNet is demonstrated through the detailed simulation 
example of bursts, leaks, valve closure, surge tank, and pump shut-off. 
TSNet package provides users with open source and freely available 
Python codes and package for simulating transients in WDNs that can 
be integrated with other case specific applications, e.g., sensor place
ment, event detection, model calibration, and sensitivity analysis. 
Additionally, this package contributes a platform to encourage users 
and developers to further develop, improve, and extend the transient 
model. 

TSNet does not include all the modeling capabilities of the com
mercial software; instead, it is designed to provide simulation cap
abilities for transient modeling in WDS for the research community that 
are currently not available in open source software including 
EPANET [49] and WNTR [36]. TSNet is under continuous maintenance, 
improvement, and development. 
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