
Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Transient simulations in water distribution networks: TSNet python package
Lu Xing, Lina Sela⁎

Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Texas 78712, US

A R T I C L E I N F O

Keywords:
Transient simulation
Python
Open source software
Water distribution networks

A B S T R A C T

Modeling transient flow conditions in water distribution networks (WDNs) has shown increasing usability for
various applications, including burst and leak detection, sensor placement, model calibration, and risk assess
ment. To facilitate the integration of transient modeling in these simulation-based applications, this work
contributes a new open source Python package for Transient Simulations in water Networks (TSNet). TSNet
adopts the Method of Characteristics (MOC) for solving the system of partial differential equations governing the
unsteady hydraulics. It allows users to simulate various conditions including operational changes in valves and
pumps, as well as background leaks and pipe bursts. In this paper, the TSNet modeling framework is presented
and a case study is used to showcase its capabilities of simulating WDN responses to valve closure, pump shut-
off, leaks, and bursts with and without a surge protection tank. Results show that valve closure, pump shut-off,
and pipe burst can generate significant transients in the WDN, while background leaks can help damp the
transients to some extent.

Software Availability

TSNet source codes are available from GitHub repository at https://
github.com/glorialulu/TSNet.

TSNet package documentation is available from Read the Docs at
https://tsnet.readthedocs.io.

1. Introduction

Hydraulic transients in water distribution networks (WDNs), in
duced by rapid changes such as pipe bursts, valve and pump operations,
can disturb the steady-state flow conditions by introducing fast flow
changes, imposing abrupt internal pressure force onto the pipeline
systems, and generating pressure waves propagating rapidly
(> 1000m/s) through the piped network [29,60]. The propagation of
the pressure waves is mediated by the complex network topology and
the interactions of the pressure waves propagating through the fluid
with the conduit are reflected in the changes (e.g. attenuation and
phase shift) of the pressure wave. These disturbances have been iden
tified as one of the major contributing factors in the many pipe dete
rioration and catastrophic failures in WDNs [48], thereby disrupting
water supply, wasting a significant amount of treated water, and
creating unexpected opportunities for contamination intrusion [19,28].
Conventionally, transient simulation, as a prominent approach for
modeling and predicting the propagation of transient waves, has been

an essential requirement in the design process for ensuring the hy
draulic integrity of WDNs.

In addition to the applications in WDN design, the transient-based
approach has also gained its popularity in fault detection [1,5,23,63],
condition assessment [53,55,65], model calibration [31,50], pressure
management [13–15,27,30,47], and uncertainty quantification
[1,18,34,44]. For these purposes, transient-based models are commonly
believed to be complementary to other techniques because a significant
amount of information about the WDN can be revealed during a very
short period time as the transient wave travels quickly through the pipe
[63]. This information can then improve the detection accuracy of pipe
defects, reduce the ill-posedness in calibration problems, and maximize
the information gain in assessing pipeline conditions.

Various transient-based methods have been developed using dif
ferent techniques, which can be categorized into (a) model-driven
methods [4,8,11,23,31,40,58,59], and (b) data-driven methods
[5,20,39,43,51,62]. Although data-driven techniques gained increasing
popularity over the past decade due to the rapid development of data
logging and data mining technologies, it is practically impossible to
collect data from every location in the WDNs. Thus, reliable transient
models are still integral to simulate and extrapolate the flow conditions
in the entire system using the data collected from the limited monitored
locations. However, the previous model-driven applications are largely
restricted to pipe segments, such as reservoir-pipeline-valve (RPV)
systems [4,23,59], and simple networks [8,11,40]. The extension of

https://doi.org/10.1016/j.advengsoft.2020.102884
Received 28 September 2019; Received in revised form 19 June 2020; Accepted 27 July 2020

⁎ corresponding author.
E-mail addresses: xinglu@utexas.edu (L. Xing), linasela@utexas.edu (L. Sela).

Advances in Engineering Software 149 (2020) 102884

Available online 01 September 2020
0965-9978/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09659978
https://www.elsevier.com/locate/advengsoft
https://doi.org/10.1016/j.advengsoft.2020.102884
https://github.com/glorialulu/TSNet
https://github.com/glorialulu/TSNet
https://tsnet.readthedocs.io
https://doi.org/10.1016/j.advengsoft.2020.102884
mailto:xinglu@utexas.edu
mailto:linasela@utexas.edu
https://doi.org/10.1016/j.advengsoft.2020.102884
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2020.102884&domain=pdf

these techniques to complex pipe networks has been substantially im
peded by the lack of open-access software incorporating the capabilities
of easy interaction [63]. Ultimately, the extensive transient-based ap
plications require efficient and accurate hydraulic transient simulation
tools as indispensable prerequisites.

Acknowledgedly, a number of commercial software for transient
simulation in WDNs is available, such as Hammer [25], Pipe 2018 [37],
InfoSurge [26], and TransAM [42]; however, the use of these software
for research purposes is restricted. Two major restrictions hindering the
usability of commercial software packages for research are : (1) the
software is packaged as a black-box, and the source codes are not ac
cessible, thus prohibiting any changes, including modification of ex
isting and implementation of new elements, in the source codes; and (2)
in addition to the high cost, the commercial software is designed to
perform single transient simulations and do not offer the capabilities to
perform multiple transient simulations automatically. Thus, users are
required to modify the transient conditions using the graphical user
interface (GUI), perform the simulation, and manually record the hy
draulic responses in the various conditions, which significantly com
plicates the research process. Although [35] developed an open source
software, the MATLAB codes were only applicable to RPV systems,
which substantially limits its practicality. Hence, a clear gap exists
between currently available transient simulation capabilities and the
ever-growing research requirements. To bridge this gap, the authors
considered it imperative to develop an open source package rendering
easiness for interaction, modification, and extension of transient mod
eling and simulation.

This paper contributes a comprehensive software framework and a
Python package developed under the MIT license for Transient
Simulation in water Networks (TSNet). The motivation of this work is
two-fold: (1) provide users with an open source and freely available
Python code and package for simulating transients in WDNs that can be
integrated with other case specific applications, e.g., sensor placement
and event detection, and (2) encourage users and developers to further
develop and extend the transient model. With these motivations in
mind, TSNet was specifically designed such that users familiar with
EPANET [49] and/or the Water Network Tool for Resilience (WNTR)
Python package [36] can use TSNet with minimum efforts. The main
capabilities of TSNet include: (1) simulating transient system responses
to operational changes in valves and pumps as well as background
leakage and pipe bursts, (2) simulating open and closed surge tanks for
controlling transient response, (3) simulating steady, quasi-steady, and

unsteady friction models, (4) simulating instantaneous demand at
nodes using demand-pulse model, and (5) allowing the user to select the
computational time step and control numerical accuracy and compu
tational complexity. Section 2 describes the main components of the
TSnet framework, and Section 3 uses an example application to de
monstrate the modeling capabilities and user interactions with TSNet.

2. Modeling framework

TSNet is an open source Python package designed to perform
transient simulations in WDNs. The primary components and capacities
in TSNet include: (1) create transient models based on EPANET INP
files [49]; (2) set up transient models, define wave speeds, time step,
operational changes in valves and pumps, background leaks, pipe
bursts, location of surge tanks, nodes experiencing instantaneous de
mand, as well as choose the friction model; (3) compute the initial
conditions for the transient simulation using WNTR Python package
[36]; (4) perform transient simulations; and (5) obtain flow and pres
sure results. Fig. 1 illustrates the main components of the modeling
framework of TSNet.

2.1. Software overview

TSNet, tested for Python versions 3.5, 3.6, and 3.7, can be installed
on Windows, Linux, and Mac OS X operating systems. Python dis
tributions, such as Anaconda, are recommended to manage the Python
environment as they already contain (or easily support installation of)
many Python packages (e.g. SciPy, NumPy, Pandas, and Matplotlib)
that are used in the TSNet package. TSNet is available in Python
Package Index (PyPI), and the stable release version of TSNet can be
installed through Pip. All source codes can be downloaded from the
GitHub repository at https://github.com/glorialulu/TSNet, which also
includes links to software documentation, examples, and contact in
formation for reporting bugs and questions. The software documenta
tion (https://tsnet.readthedocs.io) includes detailed descriptions of the
modeling framework, modeling conventions and limitations, installa
tion instructions, setting-up and performing transient simulation, and
getting simulation results. Additionally, details including the numerical
scheme and comparisons to a commercial software are provided. Three
example applications are included to demonstrate the application pro
gram interface (API), code structure, and the modeling capabilities of
TSNet.

Fig. 1. TSNet modeling framework.

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

2

https://github.com/glorialulu/TSNet
https://tsnet.readthedocs.io

2.2. Modeling unsteady hydraulics

Hydraulic transients are governed by a system of partial differential
equations, i.e., water hammer equations [61]. Due to the lack of ana
lytical solutions to these systems of equations [33], many previous
works have proposed to solve the equations with various numerical
techniques, including but not limited to the method of characteristics
(MOC) [10,16], wave characteristics method (WCM) [3,60], finite dif
ference method (FDM) [9], finite volume method (FVM) [66], and
generalized characteristic method (GCM) [45]. Among the myriad of
techniques employed for transient simulation, MOC is generally con
sidered the most popular numerical solution because of its relative
accuracy and easiness in programing [22]. Thus, TSNet adopts MOC as
the solution technique. The following sections present a brief overview
of the main equations, boundary conditions, and the solution approach.
Additional detailed information can be found in the following literature
[38,61].

Transient flow in a pipe is governed by the mass and momentum
conservation equations [61]:

+ =H
t

a
g

V
x

gV sin 0
2

(1)

+ + =
g

V
t

H
x

h1 0f (2)

where H is the head, V is the flow velocity in the pipe, t is time, a is the
wave speed, g is the gravity acceleration, α is the pipe slope, and hf

represents the head loss per unit length due to friction.
The essence of MOC is to transform the set of partial differential

equations (Eq. (1) and (2)) to a set of ordinary differential equations
that apply along specific lines, i.e., characteristics lines. The char
acteristic lines represent the directions in which the disturbance in a
pipe propagates, where +C is associated with a positive propagation
velocity and C with the negative. Then, the compatibility equations
can be formulated as:

+ + + = =C dV
dt

g
a

dH
dt

gh g
a

V dx
dt

a: sin 0 alongf (3)

+ = =C dV
dt

g
a

dH
dt

gh g
a

V dx
dt

a: sin 0 alongf (4)

The explicit MOC technique is then adopted to solve the compat
ibility equations by firstly discretizing in space and time along the
characteristics lines [61]. Subsequently, given the initial conditions, the
head and flow conditions can be matched to the next time step along
the positive and negative characteristic lines by solving the compat
ibility equations simultaneously. The time-marching scheme continues
until the end of the defined simulation period. In networked systems,
the compatibility equations are augmented with element-specific head
and flow conditions that characterize the flow behavior at the boundary
nodes that connect neighboring elements (represented by computa
tional units), such as other pipes, valves, pumps, reservoirs, as well as
leaks and bursts. For example, the conservation of mass and work-en
ergy principles are accounted for at junctions that connected pipes [38];
in-line valves, i.e., valves that are connected by pipes on both sides, and
pumps are modeled in a similar manner with additional specific char
acteristic functions; head at the boundary is explicitly defined in case of
reservoirs and tanks; the velocity boundary condition is combined when
treating end-valves, i.e., valves located at the boundary of the network.

2.3. Friction method

The head loss per unit length (hf) can be expressed as a sum of the
quasi-steady (hfs) and unsteady (hfu) friction [6]. TSNet adopts the
Darcy-Weisbach equation to compute quasi-steady head loss per unit
length along a pipe [38]:

=h f V
gD2f s

2

(5)

where f is the quasi-steady friction factor, and D is the pipe diameter.
The friction factor (f) is updated based on the Reynolds number at each
time step using [24]:

= +
f Re

K
D

1 1.8 log 6.9
3.7

1.11

(6)

where Re is the Reynolds number at the current time step, and K is the
equivalent roughness height. The Darcy-Weisbach method is chosen,
instead of the Hazen-Williams method to model friction, as the Hazen-
Williams is empirically based using experimental data [41]. Ad
ditionally, Darcy-Weisbach is quadratic with respect to the flow velo
city, thus allowing more efficient and accurate numerical calculation. If
the friction method specified by the user in the initial INP file is not
defined as Darcy-Weisbach, TSNet computes the Darcy-Weisbach
coefficients (f) based on the head loss (hf0) and flow velocity (V0) in
initial conditions, using the following equation:

=f
h

V gD/2
f 0

0
2 (7)

Unsteady friction models have also been proposed to improve the
modeling accuracy of transient conditions [7,64,67]. TSNet in
corporates the instantaneous acceleration-based model [6,57]:

= +h k
g

V
t

a V V
x2

·sign()f u
u

(8)

where hfu is the head loss per unit length due to unsteady friction, V
t

is
the local instantaneous acceleration, V

x
is the convective instantaneous

acceleration, and ku is Brunone’s friction coefficient, which can be
analytically determined using Vardy’s sheer decay coefficient (C*) [56]:

=k C*
2u (9)

= >C
Re

Re*
0.00476 laminar flow(2000)

turbulent flow(2000)
Re

7.41
Relog(14.3/ 0.05) (10)

The acceleration terms, i.e., V
t

and V
x

in Eq. 8, are evaluated ex
plicitly using first-order finite difference scheme.

2.4. Pressure-dependent demand

During the transient simulation in TSNet, the demands are treated
as pressure-dependent discharge; thus, the actual demands will vary
from the demands defined by the user. The actual demands (dactual) are
modeled based on the instantaneous pressure head at the node and the
demand discharge coefficients, using the following equation:

=d k Hactual p (11)

where Hp is the pressure head and k is the demand discharge coefficient,
which is calculated as the ratio between the nominal demand (d0) and
the initial pressure head (Hp0) [36]:

=k d
Hp

0

0 (12)

The pressure-dependent demand method allows the actual demands
to fluctuate with the instantaneous local pressure, representing more
realistic conditions [30]. It should be noted that if the pressure head is
negative, the demand flow will be treated as zero, assuming that a
backflow preventer is installed at each node. Moreover, TSNet also
incorporates the simulation of hydraulic transients triggered by in
stantaneous demand pulses [13], which is detailed in the online doc
umentation.

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

3

2.5. Choice of time step

In MOC, the time and space domain is discretized along the char
acteristic lines; thus, the temporal and spatial discretization can be
uniquely determined by specifying the time increment, i.e., time step
(Δt). Once the time step is specified, for a single pipe segment, the
spatial increment (Δx) can be computed by = ×x t a. However,
determining the time step for the entire WDN is not a trivial task.
Several prior works have focused on exploring the choice of the time
step and its effect on the numerical stability of the solutions, the re
solution of the results, and the computational complexity [21,32]. To
begin with, a tradeoff exists between computational complexity and
numerical accuracy: a small time step can yield relatively accurate re
sults, while requiring more computational resources due to the increase
in the density of the computational grid. Additionally, the numerical
scheme poses the following two constraints that have to be satisfied
simultaneously: (1) the Courant’s criterion has to be satisfied for each
pipe [61], indicating the maximum time step allowed in the network
transient analysis should satisfy: =()t i nmin , 1, 2, ,L

N a p
i

i i
where

Ni is the number of computational units in pipe i and np is the number of
pipes in the WDN; (2) the time step has to be the same for all the pipes
in the network, therefore restricting the wave travel time L

N a
i

i i
to be the

same for any computational unit in the network. However, this is not
realistic in a real network, because different pipe lengths and wave
speeds usually result in different wave travel times. Moreover, the
number of computational units in the ith pipe (Ni) has to be an integer
due to the grid configuration in MOC; nevertheless, the combination of
time step and pipe length is likely to produce non-integer value of Ni,
which then requires further adjustment.

This package adopted the wave speed adjustment scheme [61] to
ensure that the two criterion stated above are satisfied. To begin with,
the maximum allowed time step tmax is calculated, assuming there are
two computational segments on the critical pipe:

= =t L
a

i nmin
2

, 1, 2, ,max
i

i
p

(13)

If the user defines a time step greater than t ,max a fatal error will be
raised and the program will be stopped. Otherwise, the user-defined
value will be used as the initial guess for the upcoming two-step ad
justment. The determination of time step is not straightforward, espe
cially in large networks. Thus, we allow the user to ignore the time step
setting, in which case tmax will be used as the initial guess for the
upcoming two-step adjustment.

After setting the initial guess for the time step, the following ad
justments are performed. Firstly, the ith pipe with length (Li) and wave
speed (ai) will be discretized into (Ni) segments:

= =N L
a t

i nround , 1, 2, ,i
i

i max
p

(14)

Secondly, the discrepancies in tmax introduced by the rounding of
Ni will be compensated by correcting the wave speeds as ai(1 ± ϕi),
where ϕi is the wave speed adjustment for pipe i. Least squares ap
proximation is then used to determine Δt such that the sum of squares of
the wave speed adjustments (∑ϕi

2) is minimized [2], as follows:

= =
±

=
=

t t L
a N

i nargmin |
(1)

1, 2, ,t
i

n

i
i

i i i
p,

1

2
p

(15)

Ultimately, an adjusted Δt is determined and used in the transient
simulation. The total number of time steps (tn) can then be calculated
by dividing the simulation duration (tf) by the time step (Δt). The se
lection of the time step is further explained in the online documenta
tion.

2.6. Initial conditions

Prior to performing a transient simulation, initial steady-state con
ditions, i.e. pipe flows and nodal heads, need to be established. TSNet
employs WNTR [36] for simulating the steady state in the network to
establish the initial conditions for the upcoming transient simulations.
WNTR is chosen for simulating the initial conditions due to its cap
abilities of simulating demand-driven or pressure-dependent hydraulics
simulations as well as background leaks.

2.7. Leaks and bursts

During the transient simulation, a leaking node is modeled using the
two compatibility equations (Eq. (3) and (4)), a continuity equation,
and an orifice equation, which quantifies the pressure-dependent leak
discharge (Ql) [38]:

=Q k Hl l pl (16)

where Hpl is the pressure head at the location of the leak, and kl is the
lumped leak coefficient, which aggregates the size of the leak, units,
and leak coefficients. Moreover, if the pressure head is negative, the
leak discharge will be set to zero, assuming a backflow preventer is
installed at the leaking node.

The simulation of bursts and leaks is very similar, as they share a
similar set of governing equations. The only difference is that in the
burst model the lumped burst coefficient (kl) changes with time. In
other words, using a burst, the user can model new and evolving con
ditions, while the leak model simulates an existing leak in the system. In
TSNet, the burst is assumed to be developed linearly in time, indicating
that the burst area increases linearly from zero to a size specified by the
user during the specified time period. Thus, a burst event can be
modeled by defining the start time (ts), the time for the burst to fully
develop (tc), and the final burst coefficient when the burst is fully de
veloped.

In TSNet, leaks and bursts are assigned to the network nodes by
specifying the location of the leak/burst node and the corresponding
lumped leak/burst coefficient (kl). Existing leaks should be included in
the initial conditions calculated using WNTR simulator; thus, it is ne
cessary to define the leaks before calculating the initial conditions.
More information about the inclusion of leaks in the steady state cal
culation can be found in WNTR documentation [36].

2.8. Valve operations

Valve operations, including closure and opening, are supported in
TSNet. A valve is modeled using the two compatibility equations (Eq.
(3) and (4)), the continuity equation, and the valve characteristic curve
equation. The default valve type is gate valve with a characteristic
curve defined according to ([38], Figure 10.12). Other valve types can
be defined by supplementing the valve characteristic curve, which de
fines how valve loss coefficient changes with open percentage. In
TSNet, valve closure is simulated by defining the valve closure start
time (ts), the operating duration (tc), the valve opening percentage
when the closure is completed (se), and the operating constant (m),
which characterizes the shape of the closure curve. These parameters
define the valve closure curve, as shown in Fig. 2 (a). The solid black
and dashed red curves correspond to the valve operating curves with

=m 1 and =m 2, respectively.
Valve opening can be simulated by defining a similar set of para

meters related to the valve opening curve. The valve opening curves
with =m 1 and =m 2 are illustrated in Fig. 2 (b).

2.9. Pump operations

TSNet also includes the capability to perform controlled pump

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

4

operations by specifying how pump rotational speed changes over time
with the same set of parameters as in valve operations, i.e., ts, tc, se, m.
Explicitly, during pump start-up, the rotational speed of the pump is
increased based on the user defined operating rule. The pump is then
modeled using the two compatibility equations (Eq. (3) and (4)), a
continuity equation, the pump characteristic curve at the given rota
tional speed, and the affinity laws [38], thus resulting in the rise of
pump flowrate and the addition of mechanical energy. Conversely,
during pump shut-off, as the rotational speed of the pump decreased
according to the user defined operating rule, the pump flowrate and the
addition of mechanical energy decrease. Pump shut-off due to power
failure, when the reduction of pump rotational speed depends on the
characteristics of the pump, e.g., the rotational moment of inertia, has
not been included in the current version of TSNet.

2.10. Surge tanks

The modeling of water hammer protection devices, including the
open and closed surge tanks, are also incorporated in TSNet. An open
surge tank is modeled as an open chamber connected directly to a pi
peline and is open to the atmosphere [61]. In the initial conditions, the
head in the tank is equal to the head in the connected pipeline. During a

transient simulation, an open surge tank moderates pressure transients
by storing the excess water when a pressure jump occurs in the surge
tank connection, and supplies water in the event of a pressure drop. In
TSNet, open surge tanks are assumed to have an infinite height such
that water never overflows and can be added to the network by spe
cifying the location and the cross-sectional area. Due to the modeling
simplicity, open surge tanks can serve as a good initial approach to
investigate the placement of surge protection devices. However, the
infinite height assumption is not realistic and the major disadvantage of
open surge tanks is that it typically cannot accommodate large pressure
transients unless the tank is excessively tall and large, which limits its
usefulness.

TSNet also incorporates a closed surge tank (i.e., air chamber) to
simulate a more realistic surge protection device. An air chamber is a
relatively small sealed vessel with compressed air at its top and water in
the bottom [61]. During a transient simulation, the closed surge tank
moderates pressure transients by slowing down the deceleration or the
acceleration of water flow. For example, when pressure in the upstream
connection increases, water flows into the tank and water level in the
tank increases, then air volume compresses and air pressure increases,
thus slowing down the acceleration of the water in flow into the tank
and the increase in pressure. Similarly, when pressure in the upstream

Fig. 3. Example network for demonstrating TSNet for scenarios: 1) pipe burst, 2) valve closure, 3) pump shut-off, and 4) leak. Results are reported at junctions: 16,
20, 30, 45, 90.

Fig. 2. Valve operating curve: (a) valve closure; (b) valve opening.

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

5

connection drops, water flows from the tank and water level in the tank
decreases, then air volume increases and air pressure decreases, thus
slowing the deceleration of the water flow and the decrease of pressure
head. In TSNet, the user can add a closed surge tank by specifying the
location, cross-sectional area, total height of the surge tank, and initial
water height in the tank.

3. Example applications

The following example applications demonstrate the multiple cap
abilities of TSNet Python package, including pipe burst (Scenario 1),
valve closure (Scenario 2), pump shut-off (Scenario 3), and background
leak (Scenario 4). Additionally, system response with unsteady friction
model, surge tank as well as comparison with Hammer [25] simulation
results are presented. Additional examples including the numerical
scheme, selection of the time step, demand-pulse for simulating in
stantaneous nodal demand, and the complete codes are provided in the
online documentation (https://tsnet.readthedocs.io).

3.1. Creating transient model

Fig. 3 illustrates the example network adopted from [46], which
will be used to demonstrate how to interact with TSNet and its simu
lation results for the different scenarios. The network comprises 126
nodes, 1 reservoir, 2 tanks, 168 pipes, 2 pumps, and 8 valves.

The first two steps to create and set up a transient model in TSNet
include:

1. Create transient model: import TSNet package, read the EPANET
INP file, and create transient model object (see Fig. 4);

2. Define the time step and wave speed in the transient model: in ad
dition to the information included in the INP file, the user needs to
specify the wave speeds for each pipe and the time step for the

transient simulation, as shown in Fig. 5. For illustration purposes,
we assume that the wave speed for the pipes is normally distributed
with a mean of 1200m/s and standard deviation of 100m/s. Then,
assign the randomly generated wave speed to each pipe in the
network according to the order of the pipes defined in the INP file.
Moreover, we set the simulation period =t s20f . Here, we do not
specify the time step, hence the suggested time step will be used as
explained in Section 2.5.

Next, we will show how to define different scenarios for transient
simulations, get and visualize results, as well as compare results be
tween the different scenarios.

3.2. Scenario 1: Burst

In Scenario 1, a burst event at JUNCTION-73 is simulated by defining
the burst location, burst start time (=ts s1), time for burst to fully develop
(=tc s1), and the final burst coefficient (final_burst_coeff=0.01 m3/s/(m
H2O)0.5), as shown in Fig. 6.

Once the transient model and the event are established, the tran
sient simulation can then be initialized and executed with the specified
friction model as presented in Fig. 7:

At the beginning of a transient simulation, TSNet will report the
approximated simulation time based on the calculation time of the first
few time steps and the total number of time steps. Additionally, the
computation progress will be printed on the screen as the simulation
proceeds, as shown in Fig. 8.

Once the simulation is completed, the results can be retrieved as
shown in Fig. 9. The burst discharge at JUNCTION-73 is shown in
Fig. 10. Noticeably, burst discharge increases as the burst develops from
1 to 2 seconds. After the burst is fully developed, the burst discharge
fluctuates around 0.07m3/s. If we assume this burst can be fixed within
half an hour, it will waste around 130m3 of treated water. Thus, TSNet

Fig. 4. Creating transient model.

Fig. 5. Defining time step and wave speed.

Fig. 6. Defining a pipe burst.

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

6

https://tsnet.readthedocs.io

can be used to assess water loss during different pipe failure scenarios.
Additionally, network information, operating rules, and simulation

results are saved in the specified tm object, e.g., s1.obj as in this
example (Fig. 7, line 4). Node results include head, discharge through
leaks, bursts, and demand nodes. Link results include head, flow rate,
and velocity at start- and end-node of each link. The result for each
attribute is a Numpy array, representing the time history of the simu
lation results, the length of which equals the total number of simulation
time steps. To retrieve the results from a previously completed simu
lation, one can read the tm object from the s1.obj file and access
results using the Pickle module in Python (see example code in the
online documentation).

Fig. 12 (a) reports the change in the hydraulic head with respect to
the nominal head using different friction models at multiple junctions
across the network, thus clearly showing the time of arrival and the
amplitude of the pressure transient observed at each of the junctions.
The dashed lines represent the simulation results with the steady and
quasi-steady friction models, which predict identical pressure transients
at all reporting junctions. The solid lines show the simulation results
with the unsteady friction model. It can be noticed that the pressure
transient arrives first to JUNCTION-90, and then followed by pressure
transients depicted at JUNCTION-30, JUNCTION-20, JUNCTION-45,
and finally JUNCTION-16. In this scenario, the order of arrival

corresponds to the distance from the reporting location to the location
of burst. Additionally, the highest amplitude of the pressure wave over
40m is observed at JUNCTION-90, closest to the location of the burst.
The amplitude of the waves at the remaining locations decreased as the
wave travels through the pipelines. It should be noted that pressure
wave propagation depends on the wave speeds in the pipes and the
paths taken; hence, the correlation between time of arrival and distance
is case specific. These results can be used to predict the magnitude and
shape of transients induced by burst events and inform sensor place
ment to maximize information gain for pipe failure detection. More
over, further analysis can be performed to assess the internal stress
conditions on the pipelines imposed by pressure transients, thereby
informing proactive local inspection and maintenance.

Furthermore, the computational results using different friction
models agree well for the first pressure drop, while the discrepancies
between the pressure transients are magnified for the latter simulation
period as the results from the unsteady friction model exhibit additional
damping and positive phase shift. The discrepancies in damping and
phase stem from the additional unsteady friction terms with the tem
poral acceleration term (V

t
) contributing to the phase shift, and the

convective acceleration term (V
s
) producing additional damping [57].

However, the contributions of unsteady friction are relatively small in
this example even for the latter period of the 20s simulation time. The
observed changes in damping and phase shift in the pressure agree with
results reported in the literature that unsteady friction model changes
the transient response, but in large water networks these changes are
often marginal [12,17,52,54].

To mediate the effects of pressure transients, a closed surge tank,
i.e., air chamber, is added to the network at JUNCTION-89 by speci
fying the desired location, cross-sectional area (= mta 10 2), total height
of the surge tank (= mth 10), and initial water height in the tank
(= mwh 5), as illustrated in Fig. 11.

The simulation results with a closed surge tank are shown in
Fig. 12(b). The comparison between Fig. 12(a) and (b) demonstrates
that the surge tank can considerably moderate pressure transients. For
example, in (a) without the surge tank, the pressure at JUNCTION-90
(purple line) drops more than 40m at the first cycle, while the ampli
tude of pressure drops with the closed surge tank is reduced sig
nificantly to well below 10m, as shown in (b). In fact, the amplitude of
pressure transients at all reported junctions is below 10m with the surge
tank added at JUNCTION-89.

Fig. 7. Initializing and running transient simulation.

Fig. 8. Runtime output: calculation time and progress.

Fig. 9. Retrieving results.

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

7

3.3. Scenario 2: Valve closure

Scenario 2 simulates the closure of VALVE-1, which starts at the
beginning of the transient simulation, =ts s0 , and takes =tc s1 to
complete. After creating the transient model, the valve closure oper
ating rule is defined as in Fig. 13. Once the transient conditions are

defined, the transient model is initialized by running a steady state si
mulation using the tsnet.simulation.Initializer method and
the transient simulation is performed using the tsnet.simula
tion.MOCSimulator method, as shown in Fig. 7. Results can then be
extracted using the get_link or get_node methods, as illustrated in

Fig. 10. Burst discharge at JUNCTION-73.

Fig. 12. Pressure transients at multiple junctions generated by the burst at JUNCTION-73: (a) without a surge tank; (b) with a surge tank. Solid lines represent the
unsteady friction model and dashed lines represent the steady/quasi-steady friction models.

Fig. 13. Defining valve closure.

Fig. 11. Adding a surge tank.

Fig. 14. Pressure transients at multiple junctions generated by closing
VALVE-1.

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

8

Fig. 9.
The results of head change at multiple junctions are illustrated in

Fig. 14. The valve closure induces pressure drop at JUNCTION-16, lo
cated downstream of the valve, and pressure jump at JUNCTION-20,
positioned upstream of the operating valve. The pressure changes at
other three stations are well below 1m due to the fact that they are
located further away from the valve. Moreover, the amplitude of the
pressure transients generated by this valve closure is generally smaller
than that in Scenario 1 because the initial flow in VALVE-1 is relatively
small.

3.4. Scenario 3: Pump shut-off

Scenario 3 illustrates how TSNet models a transient event resulting
from a controlled pump shut-off at PUMP-1, i.e., the pump speed is
ramped down. The pump operating curve is defined by specifying how
pump rotational speed is reduced over time as illustrated in Fig. 15:

Fig. 16 shows the pressure transients at multiple junctions. The
pressure wave generated by pump shut-off reaches the junctions at
different times depending on the distance from the pump: JUNCT
ION-30 senses the transient first, while JUNCTION-45 experiences it
last. Additionally, pressure drops with amplitude greater than 10m can
be discerned at all junctions, indicating the pump shut-off, especially
when operated quickly, can generate significant transients in the WDN.
Therefore, it is essential to evaluate the impacts of pump operations on
the pipelines and design an appropriate procedure to guide pump

operation.
Moreover, TSNet simulation results were compared with Hammer

[25] for all scenarios. Fig. 16 demonstrates the simulation results at the
reporting junctions, where the solid lines represent TSNet results, and
the dashed lines represent Hammer results. Despite the slight dis
crepancies, which can be explained by the different wave speed ad
justment schemes and boundary condition configurations adopted by
the two software, the results from TSNet and Hammer closely resemble
each other both in terms of attenuation and phase shift throughout the
simulation period.

3.5. Scenario 4: Background leak

Scenario 4 introduces a background leak at JUNCTION-20 to the
three scenarios described above. The leak coefficient is set as the final
burst coefficient in Scenario 1. Fig. 17 shows a code snippet for defining
the location and leak coefficient.

The head results at JUNCTION-20 during the three transient cases,
i.e., burst, valve closure, and pump shut-off, with and without the leak
are presented in Fig. 18. The solid lines represent the results without
background leak, while the dashed lines illustrate results with the
background leak. It can be observed that the leak effects the initial
conditions by reducing the head at the leaking node by around 1m.
Furthermore, the amplitude of the pressure changes with the presence
of the leak is slightly reduced compared to the no background leak case.
In other words, the leak acts as the damper for transients and relaxes
the sensitivity of the system in regard to flow disturbances.

Fig. 15. Defining pump shut-off.

Fig. 16. Pressure transients at multiple junctions generated by shuting off
PUMP-1: solid lines represent TSNet results and dashed lines represent Hammer
results.

Fig. 17. Defining background leak.

Fig. 18. Pressure at JUNCTION-20 during various events.

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

9

3.6. Computation time

The computation time of TSNet using different time step and friction
models for this example network is reported in Table 1. The simulations
are performed on a Window machine with Intel(R) Core(TM) i7-7700
CPU@3.60GHz. As expected, computational time increases significantly
with smaller time steps and more complicated friction model.

4. Conclusions

In this paper, we present the TSNet, an open source Python package,
for transient simulation in water networks. All source codes, software
documentation as well as three complete examples including INP net
work files and codes are provided with the package and can be
downloaded from the GitHub repository. The capability and user in
teraction with TSNet is demonstrated through the detailed simulation
example of bursts, leaks, valve closure, surge tank, and pump shut-off.
TSNet package provides users with open source and freely available
Python codes and package for simulating transients in WDNs that can
be integrated with other case specific applications, e.g., sensor place
ment, event detection, model calibration, and sensitivity analysis.
Additionally, this package contributes a platform to encourage users
and developers to further develop, improve, and extend the transient
model.

TSNet does not include all the modeling capabilities of the com
mercial software; instead, it is designed to provide simulation cap
abilities for transient modeling in WDS for the research community that
are currently not available in open source software including
EPANET [49] and WNTR [36]. TSNet is under continuous maintenance,
improvement, and development.

CRediT authorship contribution statement

Lu Xing: Methodology, Software, Validation, Writing - original
draft, Visualization. Lina Sela: Conceptualization, Methodology,
Writing - review & editing, Supervision, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ
ence the work reported in this paper.

Acknowledgments

This work was supported by the University of Texas at Austin
Startup Grant and by the National Science Foundation under Grant
1953206.

References

[1] Alawadhi A, Tartakovsky DM. Bayesian update and method of distributions:
Application to leak detection in transmission mains. Water Resources Research
2020. e2019WR025879

[2] Åström KJ, Wittenmark B. Computer-controlled systems: theory and design. Courier
Corporation; 2013.

[3] Boulos PF, Karney BW, Wood DJ, Lingireddy S. Hydraulic transient guidelines for
protecting water distribution systems. J-Am Water Work Assoc 2005;97(5):111–24.

[4] Brunone B. Transient test-based technique for leak detection in outfall pipes. J

Water Resour Plann Manage 1999;125(5):302–6.
[5] Brunone B, Ferrante M. Detecting leaks in pressurised pipes by means of transients.

J Hydraulic Res 2001;39(5):539–47.
[6] Brunone B, Golia U, Greco M. Effects of two-dimensionality on pipe transients

modeling. J Hydraul Eng 1995;121(12):906–12.
[7] Brunone B, Karney BW, Mecarelli M, Ferrante M. Velocity profiles and unsteady

pipe friction in transient flow. J Water Resour Plann Manage 2000;126(4):236–44.
[8] Capponi C, Ferrante M, Zecchin AC, Gong J. Leak detection in a branched system by

inverse transient analysis with the admittance matrix method. Water Resour
Manage 2017;31(13):4075–89.

[9] Chaudhry M, Hussaini M. Second-order accurate explicit finite-difference schemes
for waterhammer analysis. J Fluids Eng 1985;107(4):523–9.

[10] Chaudhry MH. Transient-flow equations. Applied hydraulic transients. New York,
NY: Springer New York978-1-4614-8538-4; 2014. p. 35–64.

[11] Covas D, Ramos H. Case studies of leak detection and location in water pipe systems
by inverse transient analysis. J Water Resour Plann Manage 2010;136(2):248–57.

[12] Covas D, Stoianov I, Ramos H, Graham N, Maksimovic C. The dynamic effect of
pipe-wall viscoelasticity in hydraulic transients. part i - experimental analysis and
creep characterization. J Hydraulic Res 2004;42(5):517–32.

[13] Creaco E, Campisano A, Franchini M, Modica C. Unsteady flow modeling of pres
sure real-time control in water distribution networks. J Water Resour Plann Manage
2017;143(9):04017056.

[14] Creaco E, Campisano A, Modica C. Testing behavior and effects of PRVs and RTC
valves during hydrant activation scenarios. Urban Water J 2018;15(3):218–26.

[15] Creaco E, Pezzinga G, Savic D. On the choice of the demand and hydraulic modeling
approach to WDN real-time simulation. Water Resour Res 2017;53(7):6159–77.

[16] De Almeida AB, Koelle E. Fluid transients in pipe networks. Windsor, United
Kingdom: Elsevier Applied Science; 1992.

[17] Duan H-F, Ghidaoui M, Lee P, Tung Y. Relevance of unsteady friction to pipe size
and length in pipe fluid transients. J Hydraul Eng 2012;138(2):154–66.

[18] Duan H-F, Tung Y-K, Ghidaoui MS. Probabilistic analysis of transient design for
water supply systems. J Water Resour Plann Manage 2010;136(6):678–87.

[19] Ebacher G, Besner M, Clément B, Prévost M. Sensitivity analysis of some critical
factors affecting simulated intrusion volumes during a low pressure transient event
in a full-scale water distribution system. Water Res 2012;46(13):4017–30.

[20] Ferrante M, Brunone B, Meniconi S. Wavelets for the analysis of transient pressure
signals for leak detection. J Hydraul Eng 2007;133(11):1274–82.

[21] Ghidaoui MS, Karney BW, McInnis DA. Energy estimates for discretization errors in
water hammer problems. J Hydraul Eng 1998;124(4):384–93.

[22] Ghidaoui MS, Zhao M, McInnis DA, Axworthy DH. A review of water hammer
theory and practice. Appl Mech Rev 2005;58(1):49–76.

[23] Gong J, Simpson AR, Lambert MF, Zecchin AC, Kim Y-i, Tijsseling AS. Detection of
distributed deterioration in single pipes using transient reflections. J Pipeline Syst
Eng Pract 2012;4(1):32–40.

[24] Haaland SE. Simple and explicit formulas for the friction factor in turbulent pipe
flow. J Fluids Eng 1983;105(1):89–90.

[25] HAMMER, Bentley. Water hammer and transient analysos software. 2019. URL
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-
software/hammer.

[26] Innovyze. Infosurge - user giude. 2019. URL https://www.innovyze.com/en-us/
products/infowater/infosurge.

[27] Izquierdo J, Montalvo I, Pérez-García R, Ayala-Cabrera D. Multi-agent simulation of
hydraulic transient equations in pressurized systems. J Comput Civil Eng
2016;30(4):04015071.

[28] Jones S, Shepherd W, Collins R, Boxall J. Experimental quantification of intrusion
volumes due to transients in drinking water distribution systems. J Pipeline Syst
Eng Pract 2019;10(1):04018026.

[29] Kanakoudis V. A troubleshooting manual for handling operational problems in
water pipe networks. J Water Supply 2004;53(2):109–24.

[30] Kanakoudis V, Gonelas K. Assessing the results of a virtual pressure management
project applied in kos town water distribution network. Desalination Water Treat
2016;57(25):11472–83.

[31] Kapelan Z. Calibration of water distribution system hydraulic models.. University of
Exeter; 2002.

[32] Karney BW, Ghidaoui MS. Flexible discretization algorithm for fixed-grid MOC in
pipelines. J Hydraul Eng 1997;123(11):1004–11.

[33] Karney BW, McInnis D. Efficient calculation of transient flow in simple pipe net
works. J Hydraul Eng 1992;118(7):1014–30.

[34] Khilqa S, Elkholy M, Al-Tofan M, Caicedo JM, Chaudhry MH. Uncertainty quanti
fication for damping in transient pressure oscillations. J Water Resour Plann
Manage 2019;145(9):04019039.

[35] Kjerrumgaard Jensen R, Kær Larsen J, Lindgren Lassen K, Mandø M, Andreasen A.
Implementation and validation of a free open source 1D water hammer code. Fluids
2018;3(3):64.

[36] Klise KA, Hart D, Moriarty D, Bynum ML, Murray R, Burkhardt J, et al. Water

Table 1
TSNet computation time.

Time step (Δt) steady quasi-steady unsteady

0.0115s 84s 131s 206s
0.0055s 238s 409s 679s

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

10

http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0001
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0001
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0001
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0002
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0002
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0003
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0003
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0004
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0004
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0005
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0005
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0006
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0006
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0007
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0007
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0008
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0009
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0009
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0010
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0010
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0011
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0011
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0012
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0012
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0012
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0013
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0013
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0013
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0014
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0014
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0015
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0015
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0016
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0016
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0017
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0017
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0018
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0018
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0019
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0019
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0019
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0020
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0020
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0021
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0021
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0022
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0022
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0023
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0024
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0024
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-software/hammer
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-software/hammer
https://www.innovyze.com/en-us/products/infowater/infosurge
https://www.innovyze.com/en-us/products/infowater/infosurge
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0025
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0026
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0027
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0027
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0028
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0029
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0029
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0030
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0030
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0031
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0031
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0032
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0032
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0032
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0033
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0033
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0033
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0034

Network Tool for Resilience (WNTR) User Manual. Tech. Rep.. Washington, D.C.:
U.S. Environmental Protection Agency; 2017.

[37] KyPipe, LLC. Pipe 2018 users guide. 2019. URL http://kypipe.com/.
[38] Larock BE, Jeppson RW, Watters GZ. Hydraulics of pipeline systems. CRC press;

1999.
[39] Lee P, Lambert M, Simpson A, Vitkovsky J, Misiunas D. Leak location in single

pipelines using transient reflections. Austral J Water Resources 2007;11(1):53–65.
[40] Liggett JA, Chen L-C. Inverse transient analysis in pipe networks. J Hydraul Eng

1994;120(8):934–55.
[41] Liou CP. Limitations and proper use of the hazen-williams equation. J Hydraul Eng

1998;124(9):951–4.
[42] McInnis D., Karney B., Axworthy D.. Transam reference manual. 1998. URL http://

hydratek.com/expertise/transient-analysis-model.
[43] Misiunas D, Vítkovskỳ J, Olsson G, Simpson A, Lambert M. Pipeline break detection

using pressure transient monitoring. J Water Resour Plann Manage
2005;131(4):316–25.

[44] Moser G, Paal SG, Smith IF. Leak detection of water supply networks using error-
domain model falsification. J Comput Civil Eng 2017;32(2):04017077.

[45] Nault J, Karney B, Jung B-S. Generalized flexible method for simulating transient
pipe network hydraulics. J Hydraul Eng 2018;144(7):04018031.

[46] Ostfeld A, Uber JG, Salomons E, Berry JW, Hart WE, Phillips CA, et al. The battle of
the water sensor networks (BWSN): adesign challenge for engineers and algorithms.
J Water Resour Plann Manage 2008;134(6):556–68.

[47] Prescott SL, Ulanicki B. Improved control of pressure reducing valves in water
distribution networks. J Hydraul Eng 2008;134(1):56–65.

[48] Rezaei H, Ryan B, Stoianov I. Pipe failure analysis and impact of dynamic hydraulic
conditions in water supply networks. Procedia Eng 2015;119:253–62.

[49] Rossman L. EPANET 2 users manual. Tech. Rep.. Washington, D.C.: U.S.
Environmental Protection Agency; 2000.

[50] Simpson A, Vitkovsky J, Lambert M. Transients for calibration of pipe roughnesses
using genetic algorithms. BHR group conference series publication. 39. Bury St.
Edmunds; Professional Engineering Publishing; 1998; 2000. p. 587–98.

[51] Srirangarajan S, Allen M, Preis A, Iqbal M, Lim HB, Whittle AJ. Wavelet-based burst
event detection and localization in water distribution systems. J Signal Process Syst
2013;72(1):1–16.

[52] Stephens M, Simpson AR, Lambert MF, Vítkovskỳ JP. Field measurements of un
steady friction effects in a trunk transmission pipeline. Impacts of global climate
change. 2005. p. 1–12.

[53] Stephens ML, Lambert MF, Simpson AR. Determining the internal wall condition of
a water pipeline in the field using an inverse transient. J Hydraul Eng
2012;139(3):310–24.

[54] Stephens ML, Lambert MF, Simpson AR, Vitkovsky J. Calibrating the water-hammer
response of a field pipe network by using a mechanical damping model. J Hydraul
Eng 2011;137(10):1225–37.

[55] Tuck J, Lee P. Inverse transient analysis for classification of wall thickness varia
tions in pipelines. Sensors 2013;13(12):17057–66.

[56] Vardy AE, Brown JM. Transient, turbulent, smooth pipe friction. J Hydraulic Res
1995;33(4):435–56.

[57] Vítkovskỳ JP, Bergant A, Simpson AR, Lambert MF. Systematic evaluation of one-
dimensional unsteady friction models in simple pipelines. J Hydraul Eng
2006;132(7):696–708.

[58] Vítkovskỳ JP, Simpson AR, Lambert MF. Leak detection and calibration using
transients and genetic algorithms. J Water Resour Plann Manage
2000;126(4):262–5.

[59] Wang X-J, Lambert MF, Simpson AR, Liggett JA, Vítkovskỳ JP. Leak detection in
pipelines using the damping of fluid transients. J Hydraul Eng
2002;128(7):697–711.

[60] Wood DJ, Lingireddy S, Boulos PF, Karney BW, McPherson DL. Numerical methods
for modeling transient flow in distribution systems. J Am Water Work Assoc
2005;97(7):104–15.

[61] Wylie EB, Streeter VL, Suo L. Fluid transients in systems. 1 Prentice Hall Englewood
Cliffs, NJ; 1993.

[62] Xing L, Sela L. Unsteady pressure patterns discovery from high-frequency sensing in
water distribution systems. Water Res 2019;158:291–300.

[63] Xu X, Karney B. An overview of transient fault detection techniques. Modeling and
monitoring of pipelines and networks. Springer; 2017. p. 13–37.

[64] Zarzycki Z, Kudźma S, Urbanowicz K. Improved method for simulating transients of
turbulent pipe flow. J Theoretic Appl Mech 2011;49(1):135–58.

[65] Zhang C, Gong J, Simpson AR, Zecchin AC, Lambert MF. Impedance estimation
along pipelines by generalized reconstructive method of characteristics for pipeline
condition assessment. J Hydraul Eng 2019;145(4):04019010.

[66] Zhao M, Ghidaoui MS. Godunov-type solutions for water hammer flows. J Hydraul
Eng 2004;130(4):341–8.

[67] Zielke W. Frequency-dependent friction in transient pipe flow. J Basic Eng
1968;90(1):109–15.

L. Xing and L. Sela Advances in Engineering Software 149 (2020) 102884

11

http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0034
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0034
http://kypipe.com/
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0035
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0035
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0036
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0036
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0037
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0037
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0038
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0038
http://hydratek.com/expertise/transient-analysis-model
http://hydratek.com/expertise/transient-analysis-model
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0039
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0039
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0039
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0040
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0040
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0041
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0041
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0042
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0042
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0042
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0043
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0043
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0044
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0044
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0045
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0045
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0046
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0046
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0046
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0047
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0047
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0047
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0048
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0048
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0048
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0049
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0049
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0049
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0050
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0050
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0050
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0051
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0051
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0052
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0052
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0053
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0053
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0053
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0054
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0054
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0054
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0055
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0055
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0055
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0056
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0056
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0056
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0057
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0057
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0058
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0058
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0059
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0059
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0060
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0060
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0061
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0061
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0061
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0062
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0062
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0063
http://refhub.elsevier.com/S0965-9978(19)30934-2/sbref0063

	Transient simulations in water distribution networks: TSNet python package
	Software Availability
	1 Introduction
	2 Modeling framework
	2.1 Software overview
	2.2 Modeling unsteady hydraulics
	2.3 Friction method
	2.4 Pressure-dependent demand
	2.5 Choice of time step
	2.6 Initial conditions
	2.7 Leaks and bursts
	2.8 Valve operations
	2.9 Pump operations
	2.10 Surge tanks

	3 Example applications
	3.1 Creating transient model
	3.2 Scenario 1: Burst
	3.3 Scenario 2: Valve closure
	3.4 Scenario 3: Pump shut-off
	3.5 Scenario 4: Background leak
	3.6 Computation time

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

