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ABSTRACT: The excitation of the Pacific-North American (PNA) teleconnection pattern by the Madden—Julian oscillation
(MJO) has been considered one of the most important predictability sources on subseasonal time scales over the extratropical
Pacific and North America. However, until recently, the interactions between tropical heating and other extratropical modes
and their relationships to subseasonal prediction have received comparatively little attention. In this study, a linear inverse
model (LIM) is applied to examine the tropical-extratropical interactions. The LIM provides a means of calculating the re-
sponse of a dynamical system to a small forcing by constructing a linear operator from the observed covariability statistics of the
system. Given the linear assumptions, it is shown that the PN A is one of a few leading modes over the extratropical Pacific that
can be strongly driven by tropical convection while other extratropical modes present at most a weak interaction with tropical
convection. In the second part of this study, a two-step linear regression is introduced that leverages a LIM and large-scale
climate variability to the prediction of hydrological extremes (e.g., atmospheric rivers) on subseasonal time scales. Consistent
with the findings of the first part, most of the predictable signals on subseasonal time scales are determined by the dynamics of
the MJO-PNA teleconnection while other extratropical modes are important only at the shortest forecast leads.
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1. Introduction and motivation (2008) and Seo and Lee (2017) demonstrated that the initiation
of a PNA can be attributed to the barotropic conversion in-
duced by the interaction between MJO divergent outflow and
the subtropical jet. This is evident especially for specific MJO
phases (Tseng et al. 2019). On interannual time scales, ENSO is
crucial for modulating extratropical circulations. The ENSO
teleconnection was first documented by Bjerknes (1969). With a
one-point regression map, Horel and Wallace (1981) unearthed
the covariability between the PNA pattern and the tropical SST
on interannual time scales. Similar teleconnection patterns were
identified in the following observational and modeling studies
with various statistical approaches, which demonstrate the ro-
bustness of the ENSO-PNA teleconnection (Halpert and
Ropelewski 1992; Trenberth et al. 1998).

A particular motivation of studying tropical-extratropical
teleconnections is that some persistent extratropical extremes,
such as anticyclonic blocking (Henderson et al. 2016), atmo-
spheric rivers (Mundhenk et al. 2016), extreme cold-air out-
breaks (Lin 2018), and heat waves (Lee and Grotjahn 2019),
are associated with the slow variation of the extratropical cir-
culation that can be driven by the interaction between tropical
convection and the extratropical atmospheric circulation.
Sardeshmukh et al. (2000) found a small shift of the ENSO
states can lead to a dramatic increase of extreme events over
the extratropics. In addition, the information from the tropics
takes time to develop over the extratropical regions. A delayed
signal between forcing and response indicates the potential to
leverage the tropical information for subseasonal forecasts of
extratropical weather. By analyzing the ensemble hindcasts
of an operational forecast model, Tseng et al. (2018) found
Corresponding author: Kai-Chih Tseng, kaichiht@princeton.edu  the improved forecast skills of extratropical geopotential

Since the early 1980s, the extratropical teleconnected re-
sponse induced by the large-scale tropical heating [e.g., El
Nifio-Southern Oscillation (ENSO) or Madden-Julian oscil-
lation (MJO)] has been well studied through the framework of
linear Rossby wave theory (Hoskins and Karoly 1981). In the
tropics, due to the weak Coriolis force and horizontal tem-
perature gradient, the convective heating is balanced by the
adiabatic cooling of rising motion (Charney 1963). The diver-
gent outflow in the upper troposphere interacts with the po-
tential vorticity gradient around the subtropical jet and
generates a Rossby wave source (Sardeshmukh and Hoskins
1988; Hoskins and Ambrizzi 1993), which excites Rossby waves
that propagate to the downstream regions. This process allows
for the influence of tropical heating extending beyond the
barrier of tropical easterlies.

One canonical example of tropical-extratropical telecon-
nection is the excitation of the Pacific-North American pattern
(PNA) by tropical convective heating. The PNA encompasses
four high or low pressure centers that follow a wave train that
initiates in the subtropical Pacific, strengthens around the Gulf
of Alaska, and then propagates to the East Coast of the United
States. Studies have found that many PNA events can be ex-
cited by a tropical heating pattern associated with the MJO and
ENSO (Horel and Wallace 1981; Hsu 1996). By conducting a
detailed vorticity budget analysis and idealized simulations in a
dry general circulation model (GCM), Mori and Watanabe
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height over specific MJO phases on subseasonal time scales
(2-5 weeks).

Although the excitation of the PNA by tropical convection
has been well studied, the interaction between the tropics and
other Pacific-North America region teleconnection patterns
(i.e., other leading modes of extratropical variability separate
from the PNA) has received comparatively little attention.
There are two possible reasons. First, the power spectrum of
extratropical circulation is nearly red, and so the slowest-
varying modes such as the PNA may dominate any analysis
that emphasizes explained variance. Thus, when analyzing the
raw data, PNA signal stands out from other extratropical
modes. The second possibility is that the PNA is one of a few
leading modes that can be strongly driven by tropical convec-
tion whereas other modes have little interaction with the
tropics. In this study, we examine both possibilities with a lin-
ear inverse model (LIM). The LIM is a multivariate linear
stochastically forced system, whose parameters are derived
from the observed covariance of system components (Penland
and Sardeshmukh 1995). Although the LIM is statistically
stable, it allows for nonmodal growth on short time scales. In
addition, forecasts derived from LIM can have forecast skills
comparable to state-of-art climate models for seasonal ENSO
prediction and subseasonal prediction (Newman and
Sardeshmukh 2017; Albers and Newman 2019), which indi-
cates its process-level relevance to the full-physics climate
models. Henderson et al. (2020) further demonstrates that
some fundamental dynamics of PNA initiation, such as the
tropical-extratropical teleconnection and the internal extra-
tropical dynamics can be captured by a LIM.

To investigate the interactions between tropical convection
and other extratropical modes in addition to the PNA, this
study is organized as follows. In section 2, detailed descriptions
of the data and a LIM is provided. In section 3, we evaluate and
confirm the suitability of the LIM for modeling PNA region
teleconnection patterns. We then examine and quantify the
optimal tropical forcing patterns that evolve into different
extratropical modes such as the PNA (details are given in the
following sections). In section 4, we propose a two-step linear
regression that enables us to apply a LIM to the prediction of
hydrological variables, including atmospheric river frequency,
on subseasonal time scales without violating the assumptions
inherent in the LIM. We next investigate the relationships
between different extratropical modes and the prediction of
hydrological extremes. Section 5 presents the conclusion and
remarks.

2. Data, model, and method
a. Reanalysis and satellite data

We use the European Centre for Medium-Range Weather
Forecasts (ECMWF) third generation reanalysis product
(ERA-Interim; Dee et al. 2011) from 1979 to 2017. Since
the extratropical teleconnection patterns have the strongest
signal during boreal winter, we only use the data from
November through March. To construct a LIM that allows for
studying tropical-extratropical interaction, we include 500-hPa
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geopotential height (Z500) from ERA-Interim and outgoing
longwave radiation data (OLR) obtained from the National
Oceanic and Atmospheric Administration (NOAA) polar-
orbiting satellites (Liebmann and Smith 1996) in the state
vectors of the LIM. To examine the role of extratropical modes
in modulating hydrological extremes, the precipitable water
and the integrated water vapor transport (IVT) are used in this
study. The IVT is defined as

1 300 2 300 2
IVT =- (J qu dp) + (J qu dp) , 1)
8 1000 1000

where q is specific humidity; # and v are zonal and meridional
wind, respectively; g is the gravitational acceleration; and the
integral is evaluated for the layer between 1000 and 300 hPa.

To identify connections between PNA region teleconnection
patterns and hydrological extremes, we apply an atmospheric
river (AR) detection algorithm developed by Mundhenk
et al. (2016) to identify AR activity. Specifically, the detec-
tion algorithm incorporates the anomalous IVT intensity and
geometric information (e.g., aspect ratio and total area) to
identify a plumelike feature with an appropriate spatial scale,
where each time step is scrutinized independently. In this
study, the 94th percentile of the anomalous IVT intensity over
the Pacific basin is used as the minimum threshold of detecting
ARs. This criterion has been used in previous AR studies (e.g.,
Mundhenk et al. 2016, 2018). An AR event is recorded when
the criteria are satisfied or exceeded. The details can be found
in the appendix of Mundhenk et al. (2016), and the detection
algorithm is available online (https:/mountainscholar.org/
handle/10217/170619). All variables are converted into daily
anomalies by removing the first three harmonics of the sea-
sonal cycle and then regridding at 2.5° X 2.5° spatial resolution
due to the highest available resolution of OLR data. The AR
detection is originally conducted at a higher resolution (1° X
1°) and then interpolated to lower resolution to ensure the AR
frequency is not underestimated in this study. The analysis
domain for AR detection spans the North Pacific and North
America (20°-80°N, 150°E-30°W).

b. MJO index

In addition to the OLR data, we also use the Real-Time
Multivariate MJO (RMM) index as a measure of the MJO
activity (Wheeler and Hendon 2004). The RMM index is de-
fined as the principal components (PCs) of the first two leading
empirical orthogonal functions (EOFs) of the combined 200-
hPa zonal wind, 850-hPa zonal wind and OLR fields averaged
over 15°S-15°N. (The daily RMM index is available at http://
www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt.)
In this study, we also replace the OLR-based state vectors with
the RMMs to examine the degree to which the RMM index
captures the tropical forcing of PNA region teleconnection
patterns.

c. LIM

Whitaker and Sardeshmukh (1998) showed that many fea-
tures of extratropical synoptic eddy statistics can be captured
by a linear stochastically forced system. Cash and Lee (2001)
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and Henderson et al. (2020) further demonstrated the optimal
growth of the PNA pattern and the associated tropical-
extratropical interaction are reasonably simulated by a LIM.
A LIM uses the statistics of coarse-grained variables x to ap-
proximate the dynamical evolution of the observed system:

d
Ex—Bx-ﬁ-f, 2)

where x is a state vector, including daily Z500 and OLR
anomalies, B is a stable linear operator, which represents the
interaction among different system variables and ¢ is random
white noise forcing. It is worth mentioning that the linear ap-
proximation of nonlinear processes is also included in matrix B.
In this study, the coarse-grained state vector (i.e., x) consists of
principal components (PCs) of the leading Z500 and OLR
EOFs. Details are provided in section 3. With (2), the homo-
geneous solution of x (i.e., the linear predictable components)
can be written as

x =G x, = eBTXO. 3)
In (3), the subscripts 0 and 7 indicate the deterministic evolu-
tion of x from lag = 0 to lag = 7 and G; is a propagator operator
that provides the best estimation of x, with input X, in a least
squares error sense. Mathematically, G, is the so-called
Jacobian matrix or Green’s function, which can be estimated

by using two covariance matrices C, and Cy:
CC,' =G, 4)

where C, and C, are defined as x,x! and xx , respectively (the
superscript T is the transpose operator). In general, B in (3) is
independent of 7 due to the linear assumption of (2).
According to this relationship, Penland and Sardeshmukh
(1995) proposed a 7 test to examine the reasonableness of the
linearity assumption. Specifically, if a LIM is applicable to a
given dataset, the diagonal element of G, will decay expo-
nentially with the increase of 7, which gives a stable estimation
of B; otherwise, the linear assumption in (1) breaks down. The
T test can be written as

B=1In(G )/r. )

Equation (5) also implies the system of interest can be ap-
proximated by a Markov process. Since we are interested in the
growth of different extratropical modes, a generalized eigen-
value analysis is applied to G, under different norms N:

G,NG_p — u(r)p =0. (6)

In (6), u(7) is the eigenvalue or the growth rate of the system
under the norm N and p is the corresponding eigenvector or the
optimal initial pattern. Henderson et al. (2020) specified a PNA
norm (i.e., Npna) that ensures x, will be a PNA pattern. In this
study, we extend their results by specifying the N with the
norms of different extratropical modes and explore the cor-
responding initial tropical heating patterns. The N matrix can
be derived by calculating the regression coefficient among
different variables in state vectors:
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In (7), r,, is a diagonal matrix where the diagonal elements are
the regression coefficient of each system variable with the PC
of n extratropical leading modes. For example, if n = 1, the first
diagonal element of r, is the regression coefficient between
PC1 and PC1 and the second diagonal element is the regression
coefficient between PC1 and PC2. N, is simply the squared
amplitude of the projection of different modes onto the final
state x,. To ensure the numerical stability when solving the
eigenvalue problems of (6), we include an identity matrix (i.e.,
1) multiplied by a small constant ¢ = 10~ in the original N
matrix. Similar approaches have been used in Henderson et al.
(2020), Vimont et al. (2014), and Tziperman et al. (2008).

3. Tropical-extratropical interaction versus internal ex-
tratropical dynamics

a. T test

In this study, we set up two different LIMs (8). In the first,
the state vectors consist of the PCs from the first 10 leading
EOFs of Z500 and two RMMs [z, 2,. .. , 210 and RMMs in
(8a)]. As discussed below, the 10 leading Z500 EOFs represent
the extratropical Pacific atmospheric teleconnection patterns,
including the PNA. In the second LIM, we replace the RMMs
with PCs of the first 10 leading EOFs of tropical OLR in (8b).
Since we are interested in tropical-extratropical interactions,
the Z500 EOFs are calculated over the extratropical Pacific
domain (20°-80°N, 120°E-90°W) and OLR EOFs are calcu-
lated over a tropical band (15°S-15°N). The first 10 EOFs
of Z500 and OLR explain 80% and 53% of total variances,
respectively, and the results remain qualitatively unchanged
when additional modes are included (not shown). While the
first LIM focuses on the MJO-related teleconnection, the
second LIM more generally addresses which tropical con-
vection patterns can lead to the growth of different extra-
tropical modes.

Figure 1 shows the first 10 EOFs (regression maps) of ex-
tratropical geopotential height variability used in this study. To
derive the regression maps, we first apply EOF analysis to the
North Pacific-western North America domain extending from
20° to 80°N and from 120°E to 90°W and acquire the corre-
sponding PCs. The daily Z500 anomalies are then regressed
upon the PCs to produce the regression maps shown in Fig. 1.
We will show their relationships with hydrological variables in
later sections. Since EOFs maximize explained variance (in
both space and time), it is not surprising that the first two
leading EOFs, which explain about 35% of Z500 variability in
the domain, are of planetary scale (wavenumbers 1-4). EOF1
is characterized by a dipole structure over the extratropical
Pacific and the North America. The maximum amplitude of
EOF1 is spatially collocated with the regions where the Z500
has the greatest variance on synoptic time scales. This pat-
tern is similar to the North Pacific Oscillation-west Pacific
pattern (NPO-WP) identified by Walker and Bliss (1932).
EOF2 shows a canonical PNA pattern (Wallace and Gutzler
1981) with three high and low pressure centers extending
from the subtropical Pacific to the southeast of North
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The number in the parentheses is variance explained by each leading mode and the corresponding 95% confidence

bounds according to North et al. (1982).

America. The other EOF patterns generally show more
zonally oriented features of smaller scales in both the zonal
and meridional directions, which likely correspond to syn-
optic wave propagation:

2

X = z (8a)
10
RMM1

RMM?2

and

210

OLR, (85)

OLR,,
To quantify the decaying time scales of each extratropical
mode, a 7 test is applied to the first LIM (with RMMs supplying
the tropical state information). Figure 2 illustrates the results
of this test by showing the diagonal elements of G, as a function
of 7, which represents the autocorrelation functions of each
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variable extending to a lag of 14 days. The blue line in each
figure is the corresponding exponential fit, and the legend
shows the exponential fitting equation (real part only). The
rate at which the autocorrelation decreases with tau specifies
the intrinsic time scale of each mode, with an exponential de-
cay indicating a red noise spectrum. The intrinsic time scale of
each mode then can be calculated as the e-folding time of the
exponentially decaying curves. As the forecast lead time ap-
proaches infinity, the linear predictable signals will approach
zero, indicating we are predicting a climatological value (i.e.,
0), which is the red noise assumption of LIM. From Fig. 2, one
can find the exponential curves are closely collocated with the
autocorrelation functions estimated by the LIM, which
supports a red spectrum for each mode. Moreover, the stability
of the decorrelation time scales with respect to choice of lag
validates the use of LIM for predicting daily Z500. This feature
also implies the Markov process can describe the evolution of
the leading extratropical modes. Another apparent feature in
Fig. 2 is that the decorrelation time scales are much longer for
the first two EOFs (5.4 and 7.2 days, respectively) than the
others (~3 days). This indicates that lower-frequency extra-
tropical Pacific Z500 variability with time scales longer than a
week is dominated by the first two EOFs. We also examine the
decorrelation time scales of each extratropical mode in the
second LIM, which replaces the RMMs with the 10 leading
EOFs of tropical OLR. The result is nearly identical to the first
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FIG. 2. The first 10 diagonal elements of G, as a function of 7
(days). The legend and the blue curves show the exponential fitting
function (i.e., the real part) of each extratropical leading mode.

LIM (not shown), which reinforces the robustness of the
analysis.

The 7 test, in general, provides the decaying time scales of
different forced responses, that is, decaying from the maximum
amplitude to a factor of ¢~ !. However, all time scales shown in
Fig. 2 are either shorter than or merely extending to the lower
end of subseasonal time scales (2-5 weeks). This indicates that
the hope for subseasonal predictions within the PNA regions
cannot rely on the persistence of extratropical modes and must
instead involve other processes. Tropical convective forcing
represents one of these most well-known processes (Vitart
2017), as the signal from the tropics takes time to develop over
the extratropical regions. It is therefore important to take the
delayed time scales between tropical forcing and extratropical
responses into account. Thus, in the following section, we will
examine the initial optimal forcing pattern in the tropics with
varying 7 to explore and quantify the importance of different
extratropical modes in subseasonal prediction.

b. The initial optimal forcing in the tropics

In this section, we show the results of initial optimal forcing
patterns in the tropics, which lead to the growth of different
extratropical Z500 modes, as a function of 7 in both RMM-
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FI1G. 3. The optimal MJO forcing for the development of dif-
ferent extratropical modes shown in the Wheeler and Hendon
(2004) RMM phase space. The number in each dot indicates the
time scale in days for initial optimal forcing (i.e., Xo) growing into
the ultimate response pattern (i.e., X,). Results are from the RMM-
based LIM.

based and OLR-based LIMs. The initial optimal forcing pat-
tern is derived by solving the eigenvectors of the generalized
eigenvalue problems in (6). The pattern indicates the initial
perturbation (i.e., Xo), which gives rise to the maximum growth
rate under a given norm N in (7). For example, if one specifies a
norm of N_,, the ultimate pattern of x, will be the pattern of
EOF1 shown in Fig. 1. Similarly, a norm of N_, yields a pattern
that evolves and amplifies into the PNA pattern. Thus, by re-
placing N with various norms (e.g., N;, N,, N_,,...), we can
identify the corresponding tropical forcing pattern for each
extratropical mode. Figure 3 shows the optimal initial RMMs
(i.e., xp) projected onto an MJO phase diagram from the
RMM-based LIM. The numbers within each dot on the phase
diagram are the time difference between the initial pattern and
the ultimate pattern (i.e., 7 — 0). For example, when 7 = 14, the
dots are located in the first quadrant (between MJO phases 5
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and 6) for EOF2 (Fig. 3b). This indicates when we observe
MJO phase 5/6 forcing, the forced positive phase PNA signal is
expected to reach its maximum amplitude 14 days later. (For
the forcing of the negative PNA, the optimal initial RMMs
would be rotated 180° to MJO phases 1/2.) The distance of a
point from the origin represents the strength of interaction
between the MJO forcing and the extratropical response.

From Fig. 3, one can find that among 10 leading Z500 EOFs,
only the second EOF (i.e., the PNA pattern) can be strongly
driven by the MJO forcing, while other extratropical modes
show either a weak or no interaction with MJO forcing. In
addition, some preference for a dipole MJO heating pattern
(e.g., phase 6, convection over the western Pacific and subsi-
dence over the eastern Indian Ocean) can be found in Fig. 3b,
which is consistent with previous studies. Seo and Lee (2017)
and Tseng et al. (2019) have documented that the convective
heating on each side of the Maritime Continent can trigger
similar PNA patterns but with opposite sign. The positive
heating to the east (west) of the Maritime Continent can
generate a negative (positive) PNA pattern based on a nu-
merical experiment in a linear baroclinic model. Thus, a dipole
heating pattern about the Maritime Continent can lead to a
more robust PNA signal due to the constructive interference of
similar wave signals generated by each heating center.

Our argument that only the PNA is strongly excited by
tropical convection is based on our definition of the PNA as
EOF2. We note that other definitions of the PNA may include
contributions from other EOFs. For example, the definition of
the PNA used by the NOAA Climate Prediction Center (CPC)
includes a substantial contribution from EOF1 (not shown).
However, even in that case, the EOF2 contribution to the PNA
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2. Results are from the OLR-based LIM.

is the component that is primarily driven by MJO-related
tropical convection. This can be demonstrated by leaving out
the contributions of EOFs 1-10 to the CPC version of the PNA
and repeating the calculations shown in Fig. 3. We find the
connections between MJO and the PNA are greatly reduced
when we leave out EOF2 but enhanced when we leave out
EOF1, and all other EOFs have little contribution to the PNA
(figure not shown). This indicates that only the EOF2 com-
ponent of the CPC PNA is excited by the MJO.

One might be curious if we replace the RMMs with tropical
OLR PCs, can we still reach the same conclusion? In Fig. 4,
we show the results of the second LIM, which replaces the
RMMs with the tropical OLR PCs. The columns denote dif-
ferent 7 and rows correspond to different extratropical
modes. The shading in Fig. 4 shows the initial optimal con-
vection pattern in the tropics. The OLR patterns share similar
features among many of the extratropical modes, which may
reflect, in part, the truncation to 10 OLR PCs, a choice that
removes much of the smaller-scale OLR features. However,
the conclusion is not sensitive to this choice of truncation:
similar to what we found in Fig. 3b, the PNA (EOF2) features
an initial optimal tropical convective forcing pattern of sub-
stantial amplitude for lags beyond —5 days. In addition, the
preferred spatial structure shows an MJO phase 6 pattern
with a positive heating located in the western Pacific and a
negative heating located in the eastern Indian Ocean. This
again strengthens the conclusion acquired from Fig. 2, that
the PNA is the leading mode of the first 10 EOFs over the
extratropical Pacific strongly driven by tropical forcing, while
other extratropical modes show a modest interaction with
tropical convection.
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target.

Given that ENSO forcing of the PNA is a dominant driver of
seasonal predictability, one may wonder why a clear ENSO
signal does not emerge from the analysis above. For the sub-
seasonal time scales considered here and for daily averaged
data, the MJO forcing of the PNA dominates over the ENSO
forcing. If we extend the LIM to focus on optimal initial OLR
patterns for PNA forcing at lags beyond 30 days (not shown),
then the typical ENSO OLR pattern emerges. However, the
signal on daily time scales is weak, and so temporal averaging
(e.g., monthly or seasonal) would allow the ENSO signal to
emerge more clearly. Henderson et al. (2020) identified a
similar result, whereby the tropical initial OLR signals are in-
significant at a lead longer than 40 days (their Fig. 10b). They
also found including SST in the state vectors helps identify the
ENSO-PNA teleconnection, while the MJO signal still domi-
nates at shorter time scales (their Fig. 3b).

c. The initial optimal forcing in the extratropics

Similar approaches can be used to identify the initial optimal
forcing pattern over the extratropics for triggering these Z500
leading EOFs. Figure 5 shows the G matrix of RMM-based
LIM at r = 5, 10, and 15 days, which represents the interaction
between different modes. The amplitude of G denotes the
strength of interaction. The x axis is the predictor, and the y
axis is the prediction target. To examine the statistical signifi-
cance (i.e., null hypothesis: G = 0), we applied a ¢ test to each
component of G, where the effective degrees of freedom N* is
used. We define N* as NA#/27, where NAt is the total length of
data and 27 is 2 times the e-folding time of the autocorrelation
function. Dotted regions in Fig. 5 indicate the value is signifi-
cantly different from zero at the 1% level.

From Fig. 5a, we can find that all of the significant values are
concentrated along the diagonal element of G, indicating that
the persistence of each leading mode dominates the linear
predictable signals at short forecast leads. However, with the
increase of forecast lead (i.e., Fig. 5¢), the elements that orig-
inally have significant values vanish. Instead, most of the pre-
dictable signals are related to the growth of EOF2 (i.e., the row

Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 05/27/21 03:31 PM UTC

of z,), which involves three processes: 1) transition from EOF1
to EOF2, 2) the persistence of EOF2, and 3) MJO-forced
EOF2. While 3) represents the tropical-extratropical interac-
tions, processes 1 and 2 are associated with the internal ex-
tratropical dynamics. Figure 1 indicates that EOF1 shows a
similar wave propagating feature as with EOF2, which extends
from Hawaii (20°N, 160°W) to Alaska and terminates around
the southeastern United States. However, the MJO-forced
extratropical response does not project onto EOF1 (i.e., no
significant value in the bottom row of Fig. 5¢) and its synoptic
decorrelation time scale (~5.4 days) implies that the growth of
EOF1 is dominated by extratropical synoptic eddies. Thus, the
interaction between EOF1 and EOF2 implies that the growth
of the PNA can also be triggered by internal extratropical
dynamics, which is consistent with the conclusion in Black et al.
(2017). The evolution of the anticyclonic anomaly over the
extratropical Pacific into a PNA pattern is also documented by
Franzke et al. (2011), which showed that some stochastic pro-
cesses in the extratropics can also lead to the growth of PNA. If
we focus on the explained variance by each leading mode, we
can find that EOF1 and EOF?2 are significantly separated from
the rest of the leading modes (North et al. 1982), while they are
not significantly separated from each other. This suggests the
possibility that EOF1 and EOF?2 are paired propagating waves.
However, Fig. 5 also indicates that most of the extratropical
modes show either weak or no interactions with each other at
long forecast leads (>10 days, when most elements of G show
insignificant values). This indicates that internal extratropical
dynamics may provide limited information for the subseasonal
prediction over the extratropical Pacific. We note that this
conclusion is based on the linear assumptions of LIM and the
use of 10 leading EOFs in this particular domain. Hu et al.
(2019) found that the NPO-WP pattern shows a close rela-
tionship with the MJO convection by analyzing lagged com-
posites of extratropical geopotential height in reanalysis data.
In addition, the wave signals from upstream regions, such as
Eurasia, potentially may provide additional predictability
sources (Grazzini and Vitart 2015). The influence of domain
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size on the current conclusions deserves further exploration in
future study.

Given the results presented in Fig. 5, one may hypothesize
that skillful subseasonal predictions over the PNA region, in-
cluding for hydrological extremes, are dominated by the MJO
teleconnection. Thus, the LIM-based subseasonal prediction of
extratropical weather will be addressed in the next section.

4. Mapping red noise climate variability to hydrological
extremes

a. Two-step linear regression

In this section, we examine the relationship between leading
extratropical modes and the prediction of hydrological extremes
over western North America. However, the LIM cannot be di-
rectly applied to the prediction of hydrological extremes because
the statistics of hydrological fields are not Gaussian, indicating
that the distribution of the model residuals would violate the in-
herent assumptions (see appendix B for further discussion). In
addition, the hydrological fields show comparatively short mem-
ory (not shown), which implies the linear predictable components
used for the prediction will be 0 if we apply a LIM to these vari-
ables. Thus, we propose a two-step linear regression, which en-
ables us to map large-scale climate variability to the hydrological
extreme without violating the 7 test [i.e., a stable estimation of B
in (5)]. Specifically, the PCs of the leading Z500 modes are first
predicted by a LIM [i.e., Eq. (3)]. Then the anomalous fields, such
as precipitable water or AR frequency, are predicted using a
linear regression model with PCs of Z500 leading modes as pre-
dictors [Eq. (9)]:
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10
y=2aizi+b. )
i=1

In (9), y is the target of prediction (e.g., Z500, precipitable
water or AR frequency), z; is the principal component of ith
7500 leading mode [i.e., z1, Z2,. - - in (8)], a; is the corresponding
regression coefficient and b is the intercept (constant) of the
regression model. For each grid point, we develop a single
regression model. Physically, the sign of a; represents the shift
of the probability density function (PDF) of y with the change
of z;, which indicates the modulation on hydrological variables
by large-scale climate variability. Here, we focus on deter-
ministic predictions, given by y, but the model can be adapted
for probabilistic predictions. For example, in the case of pre-
dicting AR frequency, if the predicted y is positive, the pre-
diction is for an anomalously active AR state whereas negative
y values indicate the prediction of a less active than normal AR
state. With this model setup, we can leverage a LIM for the
prediction of hydrological extremes without violating the
7 test. We note that we use least squares regression because we
are only focused on shifts in the distribution (i.e., binomial
classification) rather than the prediction of the full distribution
of these hydroclimate variables for which standard least
squares regression would not be appropriate. The extensions to
more informative probabilistic predictions would require other
methods such as quantile regression. The discussion of
“goodness of fit”’ can be found in the appendixes A and B.
Figures 6 and 7 show the spatial pattern of g; for precipitable
water and AR frequency, respectively. The shading represents
the regression coefficient in (9) (i.e., a;) for (precipitable water
and AR) and the contour for Z500. In Figs. 6 and 7, one can
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observe the precipitable water and the AR frequency are
strongly modulated by the large-scale circulations. Specifically,
a dry anomaly of precipitable water and a negative moisture
transport (less AR activity) typically are found to the southeast
(northwest) of high (low) pressure anomalies. These spatial
patterns can be simply explained by the steering flow pattern
and the climatological distribution of moisture (i.e., meridional
gradient and land-sea contrast). Despite that the regression
patterns of AR frequency and precipitable water are alike in
many places, some differences are still evident if one looks
closely at Figs. 6 and 7. This can result from the difference in
their definitions, as the detection of an AR takes the wind
speed and geometry into account while precipitable water only
incorporates moisture information. For example, near the re-
gion of 30°N, 180° of EOF2, the AR frequency regression on
PC2 shows enhanced activity but the precipitable water re-
gression has nearly zero amplitude. This region is characterized
by strong meridional gradient of anomalous Z500 (contours in
EOF?2 of Figs. 6 and 7), which further leads to strong anoma-
lous zonal wind and strong moisture flux in a confined region.
A confined circulation with strong moisture flux implies an
active AR state, which is not necessarily the case for the pre-
cipitable water. This difference also indicates why geometry
plays a role in detecting ARs. When PC2 is elevated, we expect
less frequent incursions of moisture into this region but more
extreme rainfall.

Regardless of the difference in a; between precipitable water
and AR frequency, a strong modulation of large-scale climate
variability in both fields indicates an existing potential of
leveraging a LIM for the extended-range prediction of extreme
events. However, there is still some restriction on applying a
two-step linear regression to the prediction of hydrological
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extremes. First, the use of the leading Z500 EOFs ensures that
most of the Z500 variability can be explained by the minimum
amount of information, which may not be the case for hydro-
logical variables since these are not the EOFs of the hydro-
logical variables. Second, the probability density function of
hydrological extremes can be highly skewed, which limits the
application of a linear model to this problem, as discussed
above and in appendix B. Despite these limitations, in the next
section, we will examine the utility of applying a two-step linear
regression to the prediction of hydrological extremes.

b. The subseasonal prediction of hydrological extremes

Here, we develop a two-class prediction scheme. Specifically,
the OLR-based LIM is first used to predict the Z500 PCs over
different forecast leads. Then, the predicted PCs are used to
predict the shift in direction of the probability density function
(i.e., higher or lower than the 50th percentile, see appendix A)
for a given hydrological variable (e.g., precipitable water or
AR frequency). The skill of the prediction scheme is evaluated
using a leave-one-out cross validation and Heidke skill score
(HSS). Specifically, the verification statistics for a given season
are based on the climatological distribution excluding the one
“left out” verification season, ensuring the independence of
the verification subset. Thus, the 36-yr dataset yields 36 cross
validations. The HSS for the 36 validation sets is then calcu-
lated as

H-FE
T—-E

HSS = X100, (10)
where H is the number of correct forecasts (i.e., how many
events correctly predict the sign of Z500, precipitable water or

ARs), T is the total number of forecasts and E is the expected
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number of correct forecasts by random chance (binomial dis-
tribution, expected value is 7/2 in the two-class scenario). The
HSS can be interpreted as the prediction skill relative to the
expected skill from a random forecast. For example, an HSS of
50 represents 3 times as many correct forecasts as incorrect
forecasts and an HSS of 0 indicates the model prediction skill is
equal to a climatological reference forecast, if a climatological
forecast is defined as an equiprobable random draw.

For these calculations, we initialize the model every day
from November to March and make daily forecasts for the
following 5 weeks. Each forecast lead and grid point are
evaluated independently. The HSS calculations are based on
forecasts aggregated across all initialization dates (151 in to-
tal), years (36 in total), and weekly lead windows (7 per lead),
and so H represents the number of correct forecasts among
the total of 38052 forecasts for the given grid point and lead
window.

Figure 8 shows the 36-yr HSS for three variables: Z500,
precipitable water, and atmospheric river frequency as a
function of forecast lead time. Darker color indicates higher
prediction skills and dotted regions indicate that the HSS is
significantly higher than that of a random forecast at the 5%
level by a binomial test. In Fig. 8, we can observe a few inter-
esting features. First, although the prediction skills expectedly
decrease with the increase of forecast lead, we can find limited
regions where the Z500 skill scores remain elevated at all leads
(i.e., first column of Fig. 8). Notably, these regions are spatially
collocated with the PNA regions (Fig. 8c), which supports the
finding in section 3 that the PNA is the extratropical mode
showing the longest decorrelation time scale of any other
mode. In addition, the analysis of initial optimal forcing also
indicates that the PNA is one of a few leading modes that can
be strongly driven by tropical forcing. These factors mainly
explain why the regions characterized by better prediction
skills at long forecast lead show a PN A-like pattern. Second,
the skillful prediction of precipitable water and atmospheric
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river frequency only show up over specific regions even at short
forecast leads. These regions are mostly concentrated around
the extratropical Pacific and the west coast of North America.

As discussed earlier, one potential restriction on applying a
two-step linear regression to the prediction of hydrological
extremes is that the leading Z500 modes may explain most of
the variance of daily Z500 but not necessarily of precipitable
water or atmospheric river frequency. However, in support of
the reliance on the leading Z500 modes for the basis of the
hydroclimate predictions, only limited forecast skill improve-
ments can be found when the additional Z500 modes are used
(not shown). In addition, we see widespread regions over the
extratropical Pacific showing skillful forecasts in days 0-6,
demonstrating the importance of different extratropical modes
in determining the prediction of hydrological extremes at short
forecast leads. With the increase of forecast lead (i.e., days 7-13
and 14-20; Figs. 8e.f), only confined regions, such as the Gulf of
Alaska and coastal California, show significant skill scores.
Unsurprisingly, these are also the regions where the precipi-
table water is strongly modulated by the PNA circulation (i.e.,
the shading in Figs. 8a or 8f is similar to the shading of EOF2 in
Fig. 6). Similar features can also be found in atmospheric river
frequency, where the regions with high prediction skills are
mostly concentrated around the Pacific basin and parts of the
Atlantic storm track (Fig. 8g) at short forecast leads. At lead
times of 7-20 days, the regions with high prediction skills of
atmospheric river frequency shift to the subtropical Pacific,
where the subtropical jet is characterized by strongest vari-
ability on intraseasonal time scales (figure not shown). As
discussed previously, the detection of atmospheric rivers takes
both intensity and geometry information into account, where
the strong signal is typically found in the filament structure of
extratropical storms. It is therefore intuitive that these regions
show high prediction skills since the PNA can efficiently
modulate the storm track variability over these regions. One
should be aware that HSS values may be misleadingly high
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over the regions with very rare AR occurrence, such as eastern
Canada, since the highly skewed data allows a high proportion
of hits for predictions of no AR occurrence. Thus, we mask out
the regions where the frequency of AR climatology is less
than 2%.

Previous studies have demonstrated that the prediction of
extratropical circulations and associated hydrological extremes
show a strong dependence on MJO phase (Mundhenk et al.
2018). Thus, the results shown in Fig. 8 do not account for the
windows of forecast opportunity associated with preferred
MJO phases since all winter days are used. In addition, the
nonzero off-diagonal elements of G allow for nonmodal growth
of different extratropical modes in short time scales, which may
benefit the prediction of non-PNA patterns. Seo and Lee
(2017) and Tseng et al. (2019) demonstrated that the MJO-
induced PNA signal is only robust in specific phases due to the
wave interference (see section 3b), while the prediction in
other phases may be dominated by other extratropical modes.
It is therefore worthwhile to show the HSS as a function of
forecast lead and initial MJO phase. Figures 9-11 display the
HSS of Z500, precipitable water and AR frequency, respec-
tively. Specifically, we partition by MJO phase according to the
initial day (i.e., 7 = 0) with MJO amplitude greater than 1
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standard deviation. In Fig. 9, we can find the HSS patterns are
quite similar to those shown in Figs. 8a—c. At short forecast
leads (i.e., week 1), the LIM does well in predicting the sign of
7500 for all MJO phases (whole domain is characterized by
significant prediction skills). With the increase of lead time
(weeks 2 and 3), only the PNA regions show significant skill
scores. Two additional features from this figure stand out. First,
the significant prediction skills shown in Figs. 8b and 8c are
contributed by certain MJO phases (i.e., 2, 3, 6,7, and 8), which
is consistent with previous research (e.g., Lin et al. 2010; Tseng
et al. 2018). Second, the non-PNA extratropical modes provide
limited information on extended-range forecasts (2-3 weeks,
phase 4) even when the PNA signal is not robust. This feature is
evident in days 14-20 forecasts initialized in MJO phase 4.
According to previous studies, the MJO teleconnection signal
is weak in phase 4 due to the destructive interference of Rossby
wave signals from both sides of the Maritime Continent.
However, although the MJO-PNA signal is weak, there are
still only limited regions showing significant skill scores, indi-
cating that the predictable signals from other non-PNA modes
are weak as well.

Figure 10 shows the HSS of precipitable water. Similar to the
feature found in Fig. 8, most regions are characterized by
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significant skill scores at short forecast leads (i.e., the first
week). In particular, Alaska and the west coast of North
America (e.g., California and British Columbia) have the
highest values over the domain. This feature remains evident in
the second and the third weeks while the skill scores in other
regions decrease dramatically. One might be curious why the
regions that show high prediction skills in precipitable water
and Z500 are not spatially collocated. The reason is that pre-
cipitable water prediction is more closely tied to the influence
of atmospheric circulation than to the mass fields. According to
geostrophic balance, the mass fields, as represented by Z500,
and the atmospheric circulation are orthogonal in space, indicat-
ing that the regions with high AR prediction skills will tend to be
orthogonal in space to the Z500 field as well. The MJO phase-
dependent features and PNA-related precipitable water pattern
are evident in the second and third forecast weeks, indicating that
the MJO-PNA teleconnection is the dominant source of skill at
longer lead times while other extratropical modes are important in
week 1. The analysis of atmospheric river frequency forecast skill
(Fig. 11) generally yields the same conclusion.

The other interesting feature shown in Figs. 9-11 is that the
regions with high skill scores are not symmetric between the
first half (i.e., phases 1-4) and the second half (i.e., phases 5-8)
of the MJO life cycle. For example, the atmospheric river
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frequency shows highest skill scores in Alaska and the sub-
tropical Pacific for MJO phases 1-4, weeks 2-3 (Fig. 11).
However, the regions with high prediction skills shift to the
Great Plains for MJO phases 5-8. Given that the patterns of
MJO-related OLR anomalies are identical but with opposite
sign between the first and second half of the MJO life cycle, one
may hypothesize that such symmetry also would be observed in
the extratropical response. However, Figs. 9-11 suggest that
this hypothesis does not hold. One possible explanation is that
the initial extratropical pattern is not symmetric between these
two stages and thus leads to the growth of non-PNA modes.
However, the asymmetric skill does not imply that the pre-
diction skill of hydrological extreme is not a function of MJO
phases. Instead, it suggests that some nonlinear processes
cannot be captured by a simple linear model. This result is
consistent with Mundhenk et al. (2018), which uses a binomial
model with MJO phases as predictors. Since the asymmetry of
extratropical internal dynamics is beyond the scope of this
study, we will address this hypothesis in future study. Thus, we
will focus on the role of tropical-extratropical teleconnection
on extended (i.e., 2-4 weeks) prediction in the following
analysis.

To support the conclusion that the MJO-induced telecon-
nection is the dominant predictability source at long forecast
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leads, we carried out an additional experiment in which the
PCs of every extratropical leading mode at 7 = 0 are set to zero
(i.e., [z1, 22, - - -, 210] = 0in Eq. (8)). This model setup inhibits
the growth of any disturbance by the internal extratropical
dynamics and only allows the tropical forcing to influence the
extratropics. The result is demonstrated in Fig. 12, which shows
the fractional area with significant skill scores in both the
original LIM (OLR-based LIM) and in the version for which
the initial conditions of the extratropical modes have been set
to zero. From this analysis, we find that the original LIM
skillfully predicts the sign of Z500, precipitable water and at-
mospheric river frequency in most regions (>60%) for the first
5 days, with the greatest skill for Z500 forecasts. The tropical—
extratropical teleconnection only accounts for about 20%-—
30% of the significant fractional area. However, with the
increase of lead time (>15 days), the MJO teleconnection
emerges as the dominant signal for all variables. It is worth
mentioning that the extratropics-removed initial condition
experiment has even better skill than the original LIM at some
long forecast leads, particularly for AR frequency although
these differences generally are modest. This is because the
extratropical modes introduced at the initial state may be a
greater source of noise than skill at the longest lead. This ex-
periment supports the finding in section 3c that the internal
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extratropical dynamics are only beneficial for week 1 forecasts
due to their short decorrelation time scales, while the MJO
teleconnection is the dominant signal at longer lead times.

5. Concluding remarks

The role of the MJO-PNA teleconnection in modulating the
extratropical circulation and associated hydrological extremes
has been extensively examined in the past decade. However,
other extratropical modes, which potentially can influence the
hydrological extremes, have received comparatively little at-
tention. By using a linear inverse model, this study explores
the role of internal extratropical dynamics and tropical-
extratropical teleconnection in subseasonal prediction. In
general, two processes jointly determine the importance of
different modes in modulating extratropical circulation over
different time scales: 1) the necessary time scales for the de-
velopment of the tropical-extratropical teleconnection and 2)
the e-folding time of each extratropical mode. These two
processes are illustrated in Fig. 13. An initial optimal forcing
analysis indicates that the PN A pattern is one of a few leading
modes (the first 10 EOFs) over the extratropical Pacific that
can be strongly driven by the MJO forcing, while other modes
show either weak or no interaction with tropical forcing. In
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FIG. 12. The fractional area of statistically significant (5% level)
skill scores over the domain 20°-80°N, 120°E-90°W in the original
LIM (solid lines) and in the version for which the initial conditions
of the extratropical modes have been set to zero (dashed lines).

addition, an autoregression analysis shows that the NPO-WP
(i.e., EOF1) and PNA pattern (i.e., EOF2) are characterized by
the longest decorrelation time scales than any other modes.
Thus, for time scales shorter than a week (process 2 in Fig. 13),
every extratropical mode contributes a certain amount of in-
formation to the extratropical prediction. However, with in-
creasing lead time, due to the short e-folding time of non-PNA
modes (<7 days) and the necessary time scales (~14 days,
process 1 in Fig. 13) for the development of the MJO-PNA
teleconnection, the PNA is the only extratropical mode ben-
eficial for subseasonal prediction for lead times beyond about
2 weeks, at least for western North America.

In the second part of this study, we proposed a two-step linear
regression that maps large-scale climate variability to hydrological
extremes. This setup enables us to use a LIM to predict hydrological
extremes without violating the 7 test. The predictions of Z500, pre-
cipitable water, and atmospheric river frequency are consistent with
the earlier results in that the predictable signals are dominated by the
MJO-PNA teleconnection for time scales longer than 2 weeks.

This study provides a likely explanation for why the PN A pattern
is a dominant source of skill for time scales longer than 2 weeks
when other modes have modest impact at this forecast lead time.
However, there are a few questions that remain unanswered. First,
the assumption that nonlinear processes decorrelate much faster
than the deterministic linear components may be badly violated if
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the nonlinear feedback is slow. Most of the long-term signals
(i.e., >3 months) in the atmosphere are determined by the slow
nonlinear processes such as the asymmetry between El Nifio and La
Nifia (An and Jin 2004) or troposphere-stratosphere interactions
(Domeisen et al. 2020), which are excluded in the LIMs of this
study. Henderson et al. (2020) has demonstrated the ENSO dy-
namics plays a nonnegligible role in determining the growth of the
PNA. In addition, other low-frequency variability such as quasi-
biennial oscillation (QBO) can modulate the MJO teleconnection
as well (Feng and Lin 2019). Thus, the dependence of the G matrix
change on climate state and the incorporation of slow nonlinear
processes are areas of ongoing research. Second, the linear regres-
sion in (9) might not be the most ideal approach of mapping climate
variability to the hydrological extremes or other variables since
the underlying distribution can be highly skewed. The test of
Gaussianity in appendix B shows that extensions to more infor-
mative probabilistic predictions would require other methods such
as quantile regression. Sardeshmukh et al. (2000) and Tseng et al.
(2020) demonstrated the spread of daily Z500 PDF varies in dif-
ferent ENSO states, suggesting the importance of the nonlinear
dynamics for probabilistic forecasts. Thus, taking the underlying
distribution into account is a possible direction for future research.
Third, some previous studies such as Xiang et al. (2020) demon-
strated the NPO-WP can be skillfully predicted to lead times up to
3 weeks in a state-of-the-art dynamical forecast model, while our
study suggests that MJO-PNA is the only predictability source at
this time scales. A few reasons might lead to this difference. The
domain that we used is limited to the extratropical Pacific and part
of North America, while some signals from upstream regions (e.g.,
Eurasia) can be additional predictability sources (Grazzini and
Vitart 2015). In addition, the selection of state vectors also influ-
ences the predictable signals. Henderson et al. (2020) demonstrated
that including SST in the state vectors helps identify the predictable
signals in tropical convection at the longer leads (=40 days). These
processes deserve additional analysis in future work.

The insight we have gained about tropical-extratropical inter-
action through the use of LIM raises some interesting questions
for future work. First, what other processes contribute to sub-
seasonal predictability in this region, and how well can extensions
of this LIM capture these processes? For example, would a LIM
that incorporates troposphere-stratosphere interaction yield bet-
ter skill, and if so, what modes would be responsible for the in-
crease in skill? Second, why is the PNA the only mode that is
strongly modulated by the MJO? Third, in dynamical forecast and
global climate models, does the bias in tropical convection pref-
erentially impact the PNA-related circulation while having little
impact on all other extratropical modes? All of these questions
deserve further exploration in future studies.
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F1G. 13. Two processes in determining the predictable signals over different time scales.
From (a) to (b) is process 1, which shows the tropical convection forcing the PNA pattern and
the necessary time for the development of the tropical-extratropical teleconnection, which is
about 14 days (only the PNA pattern is strongly excited by process 1). From (b) to (c) is process
2, which is the memory of the extratropical response, which depends on the e-folding time of
each mode. The e-folding times range from 1.4 days (EOF9) to 7.2 days (EOF2). Shading shows
the lagged Z500 composite anomalies for times when the PCs of extratropical leading modes
are equal or greater than one standard deviation at lag 0. Blue shading indicates negative values
and red shading indicates positive values. The values of Z500 ranges from —100 to 100 m with
an interval 10 m. Contours are the lagged OLR composite anomalies. The values of contours
range from —10 Wm ™2 (blue) to 10 W m ™2 (red) with an interval of 1 Wm 2.
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APPENDIX A
Examining the Goodness of Fit by a Binomial Distribution
and Eq. (9) in a Two-Class Classification Problem
a. Testing goodness of fit by a binomial distribution

The linear assumption of (9) can be badly violated if the un-
derlying distribution of the predictand is highly skewed (see
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appendix B). However, this violation may not invalidate the anal-
ysis if we only focus on the directional shift of the PDF since we only
consider the sign of the predicted anomaly rather than the ampli-
tude or distribution of the predictand. Thus, in this appendix, we
examine the suitability of using (9) and a binomial distribution for
modeling the sign of the precipitable water and atmospheric river
frequency anomaly. Specifically, we will first test the following null
hypothesis and then evaluate the goodness of fit by (9):

H: The shift direction of the PDF (i.e., greater/smaller than
50th percentile) for a given hydrological variable follows a
binomial distribution.
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the expected PDF (line) given by Eq. (A1) at 27.5°N, 110°W.

To test the hypothesis, we divide the winter season data
into different subsets according to year (i.e., 1979/80 NDJFM,
1980/81 NDJFM, etc.); 36 seasons yield 36 subsets with each
subset having a length about 151 days (November-March).
Then, each day in a given season is marked with 1 if AR or
precipitable water anomaly is positive; days are marked with
0 otherwise. Following standard binomial classification ter-
minology, we call all days marked with 1 “‘success trials.”
Then, the sum of success trials for each season gives us a total
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indicating the number of days with positive AR or precipi-
table water anomalies. The bar graph in Fig. A1 shows the
PDF according to H, from these 36 subsets over an example
location of 27.5°N, 110°W. The x axis represents the number
of days in a season with positive AR frequency anomaly and
the y axis represents the number of seasons corresponding to
each bin. For example, the peak around x =7 and y = 16%
indicates that a total of 16% of the seasons (~6 seasons) had 7
active AR days. To compare this histogram with the corre-
sponding binomial distribution, we use the following formula
to derive the theoretical binomial PDF:

prie=0= ()t (A1)
where Pr(x = k) is the probability density when x = k, n is the
number of total trials (i.e., ~151 days in this case), and k is the
number of success trials (e.g., number of active AR days in
the case of Fig. A1, which ranges from 0 to 151) and p is the
climatological frequency (e.g., total AR days in 36 seasons
divided by total number of days). The solid curve in Fig. Al
shows the theoretical curve based on Eq. (A1). The next step is
using the chi-square to test if the observed histogram and the
theoretical PDF are significantly different from each other.
The chi-square statistic is given by

go E)
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FIG. A2. Stippling indicates grid points where the chi-square statistic is smaller than 185,
which is the 95% confidence level for (a) atmospheric rivers and (b) precipitable water.
Mathematically, this indicates the PDFs over these regions are not significantly different from

that of a binomial distribution.
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F1G. B1. The p value of ¢ based on Jarque-Bera test for (a) atmospheric river and
(b) precipitable water prediction.

where O; is observed values (i.e., bar in Fig. Al) and E; is the
expected values (i.e., curve in Fig. Al). In the case that the null
hypothesis is correct, the chi-square statistic follows a chi-
square distribution. For sufficiently large values of the statistic,
we can reject the null hypothesis. In our case, the 95% confi-
dence interval for chi-square statistics is about 185 with a given
degrees of freedom = 149 [151 bins (days) — 2 degrees of
freedom due to the preprocessing]. As long as the estimated
chi-square statistic is greater than 185, we reject the null hy-
pothesis at the 5% level. In Fig. A2, we show the regions where
we cannot reject the null hypothesis (i.e., binomial distribution
is a reasonable approximation). We find that the binomial
distribution null hypothesis cannot be rejected over most
parts of the domain. The regions where the null hypothesis
cannot be rejected correspond with those where AR or precip-
itable water variability is most active (e.g., Pacific or Atlantic
storm track).

b. Comparing goodness of fit by (9) with random binomial
forecast

In this part of appendix, we examine if Eq. (9) is a better
model for forecasting the shift direction of the PDF than the
random binomial forecast [i.e., p = 0.5 in (A1)]. Similarly, we
first generate the PDF of the successful forecast by (9) as what
we did in the bar plot of Fig. Al. The only difference is that the
x axis represents the number of successful forecasts in a given
season rather than active AR days shown in Fig. A1l. We also
derived the theoretical PDF with p = 0.5 by using Eq. (A1). To
test the statistical significance, we can check if the observed
PDF falls outside the 95% confidence level of the theoretical
PDF. The result is shown in Fig. 8, where scattered regions
indicate the prediction made by Eq. (9) is superior to ran-
dom binomial forecast. Similar approaches can be applied to
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different subsets such as dividing the data into subsets ac-
cording to the MJO phases (i.e., Figs. 9-11).

APPENDIX B

Examining the Gaussianity of Eq. (9)

In this appendix, we examine the suitability of using (9) for
modeling the amplitude of precipitable water and atmospheric
river frequency anomalies. First, we derive the residual term of
regression models:

10
§:yobsiy:ynbsi(;aizi+b>’ (Bl)
where yops is the observed value of precipitable water or at-
mospheric river anomaly, y is the predictive value, and ¢ is the
residual term. We then estimate skewness y and kurtosis K of
& based on the following formulas:

1fi" .

y=————5 and (B2)
1 7\
=9
%2 -9
K= 71;: =3, (B3)
2
|:r_lj=1 =9 }

where 7 is the total number of events, £; is the residual of jth events,
and £ is the averaged residual for all events [which is O since b is
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included in (9)]. With these definitions, a Jarque—Bera (JB) test is
applied to (B1) to examine the Gaussianity of residual term:

JB=n_k(y2+lK2),

6 4 (B4)

where k is the number of regressors used in (B1). If residual
term is well-behaved, JB will approach a chi-squared distri-
bution. Hence, once y and K are estimated p values can be
calculated to test the assumption of non-Gaussianity: if the p
value of each of these is less than 5% the null hypothesis that
the data is normally distributed can be rejected at the 5% level.
Figure B1 shows the p value for the precipitable water and AR
frequency predictions based on (B4). As we can see, the p value
is less than 5% over most regions, indicating that we can reject
the null hypothesis of Gaussian residuals. The most notable
exception is for precipitable water around part of the Great
Plains and the Gulf of Mexico.
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